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Abstract

Inthefield of drug discovery, many methods of molecular modeling have been employed to study complex biological and chemical
systems. Experimental strategies are integrated with computational approaches for the identification, characterization, and
development of novel drugs and compounds. In modern drug designing, molecular docking is an approach that explores the
confirmation of a ligand within the binding site of a macromolecule. To date, many software and tools for docking have been
employed. AutoDock Vina (in UCSF [University of California, San Francisco] Chimera) is one of the computationally fastest
and most accurate software employed in docking. In this paper, a sequential demonstration of molecular docking of the ligand
fisetin with the target protein Akt has been provided, using AutoDock Vinain UCSF Chimera 1.12. Thefirst step involves target
protein ID retrieval from the protein database, the second step involves visualization of the protein structure in UCSF Chimera,
the third step involves preparation of the target protein for docking, the fourth step involves preparation of the ligand for docking,
the fifth step involves docking of the ligand and the target protein as Mol.2 files in Chimera by using AutoDock Vina, and the
final step involvesinterpretation and analysis of the docking results. By following the guidelines and steps outlined in this paper,
researchers with no previous background in bioinformatics research can perform computational docking in an easier and more
user-friendly manner.

(JMIR Bioinformatics Biotechnol 2020;1(1):€14232) doi:10.2196/14232
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compounds (ligands) are docked into the binding site of the
receptor, following which the binding affinity of the complex
is estimated. This constitutes a significant part of the
structure-based drug design process. For a thorough
understanding and estimation of the ligand/protein complex,
the ability to visualize the binding interactions and geometries

Introduction

In the modern era of pharmaceutical research, many methods
of molecular modeling have been employed to study complex
chemical and biological systems in a variety of programs of
drug discovery. It is very important to integrate experimental

strategies into computational approaches in the identification,
characterization, and development of novel and propitious
compounds. Molecular docking isan approach used extensively
in modern drug designing and development; it explores the
conformations of ligands within the macromolecular target
binding site, providing an estimation of receptor-ligand binding
free energy for al different conformations. Small molecular

https://biocinform.jmir.org/2020/1/€14232

by using a fast and accurate protocol for docking is required
[1].

To date, avariety of algorithmsfor docking are available, which
can lead to a better understanding of the benefits and drawbacks
of these methods. However, most of the free tools rely on the
knowledge of the command-line interface. For biologists, this
is a laborious process and hence they avoid it. The proper
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estimation of each method can lead to the development of
plausible strategies and the origination of reproducible and
relevant results.

Autodock and AutoDock Vina(The Scripps Research Institute)
are some of the most widely used, free, open-source tools for
molecular docking simulations[2]. AutoDock isacollection of
command-line programsthat can be employed to predict binding
conformations of a small flexible ligand to a macromolecular
target whose structure is known. This technique combines the
rapid grid-based method used for energy evaluation with
conformation searching and simulated annealing.

AutoDock 4 was used for molecular docking previously. The
new AutoDock Vinahasamore accurate binding a gorithm that
can speed up the rate by approximately 2 orders of magnitude
as compared to AutoDock 4. In addition, AutoDock 4 has
significantly improved predictions of binding mode, assessed
by the training tests employed in the AutoDock 4. By the use
of multithreading on the multicore machines, faster processing
can be achieved from parallelism. AutoDock Vina clusters the
results for the user in a transparent way and automatically
calculates the grid maps.

The UCSF (University of California, San Francisco) Chimera
software isused for visualization as well as analysis of density
maps, 3D microscopy, molecular structures, and the associated
data [3]. The challenges in the scope, size, and types of data
used with the experimental cutting-edge methods are addressed
by this software. It provides advanced options for high-quality
rendering (reliable calculations of the molecular surface,
interactive ambient occlusion, etc) and provides professional
approaches to the design and distribution of the software.
Chimerais a freely available software for noncommercial use
and shows advances particularly in its performance,
extensibility, visualization, and usability.

Chimera is segmented into major components: a core that has
a role in providing visualization and basic services and
extensions that have a higher-level functionality. Two major
extensions of Chimera are very important: the first one is the
multiscale, which can visualize the molecular assemblies of
large-scale components such as the viral coats, and the second
one is collaborative interface, which allows sharing of the
chimera session interactively, despite being at separate locales.
The other extensions of chimerainclude the Multalign Viewer,
which shows multiple sequence alignments and the associated
structures, the Movie that replays the trajectories of molecular
dynamics, the Volume Viewer that isresponsiblefor displaying
and analyzing the volumetric data, and ViewDock that screens
the docked ligand orientations. Chimera is available for all
operating systems. It can be freely used by academic and
nonprofit users.

For the purpose of this protocol, Akt and flavonoid fisetin are
used. Protein kinase B, aso known as Akt is a
serine/threonine-specific protein that regulates cell growth and
survival [4]. In various cancers, the PI3K or Akt signaling
cascade is upregulated and linked with enhanced progression
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and proliferation of cancer cells. Akt is an important part of
signaling cascades for cell endurance and growth throughout
the progression and proliferation in cancer. It controls the cell
cycle, growth, and survival by indirectly altering cyclin D1
levels and directly activating inhibitors of cyclin-dependent
kinases (WAFL/p21 and KIP1/p27) [5].

The plant-derived flavonoid named fisetin present in various
edible natural sources is reported to possess antiproliferative
potential [6]. Invasion, proliferation, and metastatic growth are
inhibited significantly by the use of various concentrations of
fisetin, especially in lung cancer. Current research has reported
that the PI3K/AKkt cascade is a direct target of fisetin in human
cells, which is a hallmark for growth and survival [7].

The tools employed in Chimera are robust, simple, and
interactive, and the computations involved take afew seconds.
The major benefit of Chimera is that it integrates a large
collection of interactive methods. These tools also play arole
in the preparation of input and examination of resultsfrom more
specialized, complex, and noninteractive algorithmic analysis
software. Both the interactive and the noninteractive analyses
are beneficial.

Methods

Requirementsfor Docking

Docking requiresthefollowing: (1) Windows7, 8, or 10 or Mac
operating system and Linux, and (2) UCSF Chimera 1.12.

Instructions
The stepwise instructions for docking are provided below:

Retrieval

Retrieve the required target protein structure from the major
database Protein Data Bank (PDB) [8,9] asa PDB file.

Use of UCSF Chimera for Docking the Target Protein

UCSF Chimera is an extensible program that is meant mainly
for visuaization and analysis of the molecular structures.
However, in this paper, we are operating Autodock Vina in
Chimerafor docking purposes.

1. Click on thefile and fetch by ID, as shown in Figure 1.

2. Input the PDB ID of the protein (Akt: 3QKK). Figure 2
presents a screenshot of how to obtain the protein structure
through PDB ID in Chimera. Any protein can be fetched
by inserting the PDB 1D of the protein.

3. When the protein is fetched, its structure is downloaded
through the website; hence, aworking internet connection
isrequired, or the PDB file can be downl oaded beforehand
and simply be opened thorough File > open. Figure 3
displaysthe Akt structure retrieved in UCSF Chimera.

4. Create aworking directory for the docking project that is
convenient to access, such as Users/Desktop/Docking/.
Start saving all your prepared filesthere, for example, save
3QKK as Akt.pdb.
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Figure 1. Screenshot of the processto fetch/deliver a protein structure in Chimera.
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Figure 2. Screenshot of the retrieved protein structure of Akt from the RCSB protein database.
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Figure 3. Screenshot of the retrieval of protein database structure of the proteinin UCSF (University of California, San Francisco) Chimera.
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1. To easily define the active site, the already present inhibitor  residues as nonstandard residues. Due to the selection, SMH
needsto be identified. To do so, select theinhibitor by click on  gppears to be highlighted in green.
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Figure 4. Screenshot of selecting nonstandard residues.
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2. After selecting the nonstandard (inhibitor) residues, the residue from the rest of the protein (Figure 5), change the color
residues must be accorded a color. To distinguish the chosen by clicking on Actions> Color > red (any color of your choice).
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Figure5. Screenshot of changing the color of the nonstandard (inhibitor) residues.
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3. Theprotein needsto be optimized for docking. Click on Tools  prep tools are al available within Chimera. These dock prep
> Structure Editing > Dock Prep (Figure 6). Therequired dock tools are available in the structure editing file menu option.
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Figure 6. Screenshot of an illustration of preparation of the protein for docking (ie, Dock Prep).
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4. In the dock prep box, select all options except “Delete
non-complexed ions’ and click OK (Figure 7).

https://bioinform.jmir.org/2020/1/€14232 JMIR Bioinformatics Biotechnol 2020 | vol. 1 |iss. 1 [e14232 | p.9
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR BIOINFORMATICS AND BIOTECHNOLOGY Butt et al

Figure 7. Screenshot of an example of the Dock Prep box that pops up.
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5. Add hydrogen to the proteins by selecting the appropriate  program to make the best choice according to the model by
following options and click OK (Figure 8). We dlow the selecting the abovementioned options.
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Figure 8. Screenshot of adding hydrogen atoms to the protein.
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6. Assign charges to the protein by clicking on the Gasteiger
charges (Figure 9) and click OK.
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Figure 9. Screenshot of the selection of Gasteiger charges for Akt.
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7. Select the net charges (Figure 10) and click OK. For most
proteins, the net charges equal to zero.
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Figure 10. Screenshot of the net charges of a protein.
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8. Savethisfile again as preped_Akt.PDB. used. Figure 11 shows how to fetch ligands from PubChem
. . . usingitsID.

Erepwl ng the Ligand for DC_’C!(' ng _ _ 2. Enter the PubChem CID and click apply.

Similar to the process of obtaining the protein, drugs with 3. The ligand needs to be optimized as the protein was

Pubchem compound 1D (CID) can be fetched through the optimized. Click on Tools> Structure Editing > Dock Prep,

software with aworking internet connection. and repeat the same steps followed for preparing the protein.

1. Click on Structure Editing > Build Structure > PubChem These stepsinclude removing solvents, adding hydrogens,

and determining the charge. Figure 12 shows an overview
of the dock prep for the ligand.

4. Theligand Fisetin is saved as prep_fisetin.mol2 filein the
working directory earlier created (Figure 13).

CID or you can even insert the simplified molecular-input
line-entry system (SMILES) of the novel compound being
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Figure 12. Screenshot of preparing the ligand for docking.
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Figure 13. Screenshot illustrating the location of the ligand Mol2 file.
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1. Click on Tools > Surface or Binding Analysis > Autodock
Vina (Figure 14).

The following steps outline the process for docking:
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Figure 14. Screenshot of the process to access the Autodock Vinatool in Chimera.
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2. We will set up the grid box values on the active site; thisis  determined by reading theliterature (Figure 15). For the purpose
usually where the previous inhibitor was present. In case an  of this protocol, we will use the active site that already had an
inhibitor is absent or the active site is relatively unknown, the inhibitor attached to it.

size of the box and the location of the amino acids are
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Figure 15. Screenshot of configuring the grid box valuesin Chimera.
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3. Browse the output file and save as Akt Fisetin.pdbqt in the Delete (Figure 16). The removal of the inhibitor is important
same directory. to easily visualize the docking results. The 3QKK PDB needs

4. Delete the inhibitor molecule attached to the origina 3D to be saved again as preped_Akt.PDB.

structure. Thereafter, select Actions > Atoms and Bonds >
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Figure 16. Screenshot of deletion of the inhibitor that is bound to the protein.
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5. Choose the receptor as the protein (preped Akt) from the important to set the right receptor and ligand. In the receptor
drop-down menu and the ligand as prep_fisetinnmol2. It is and ligand options, change everything to TRUE (Figure 17).
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Figure 17. Screenshot of the receptor and ligand options configuration in Autodock Vina.
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6. Select the Opal Web service or enter thelocal path wherethe
installed version of Autodock Vinais placed and click on OK
(Figure 18).
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Figure 18. Selection of the Opal web service app in Chimera.
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the final step of Docking, that is, outcome/results of docking,

which are score, root-mean-square deviation (RMSD) lower
bound, and RMSD upper bound.

Results

Outcome of Docking

After the successful run of Autodock Vina, the following
dialogue box will appear with the solution. Figure 19 portrays
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Figure 19. Screenshot of the Result Box after completion of docking.
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Visualization of docking can be done as follows:

https://biocinform.jmir.org/2020/1/€14232

<l

1. To see the hydrogen bonding between the receptor and the
ligands using the result dialogue box (Figure 20), select H Bonds
> Add Count to the Entire Receptor.
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Figure 20. Screenshot of visualizing hydrogen bonding between the receptor and ligand.
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2. This opens an H-bond parameter dialogue box (Figure 21).

sREN ESYICA IS

< | o "

the bonding. Thetable showing all theinformation on hydrogen

Select Intermodel to visualize bonding between receptor and  bondsand RMSD is presented at the end of the docking session

ligand. Different parameters can be adjusted to better picture

https://biocinform.jmir.org/2020/1/€14232

(Figure 22).
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Figure 21. Screenshot of the H-bond Parameters dialogue box.
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Figure 22. Screenshot of the table showing the number of hydrogen bonds and root-mean-square deviation values.
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3. To be able to retrieve the docking session later at any stage, to use Autodock and Autodock Vina due to its command-line
it can be saved by selecting File > Save Session as > An Akt interface and do not have access to high-end software such as
Fisetin Docking (name the session). Gold Suite and Molecular Operating Environment to perform

computational docking easily. The use of Chimera with

Discussion Autodock Vina has not been demonstrated before, and due to

the ease of the graphical user interface of Chimera, it can bea

Computationally fast and accurate docking of aligand witha go-to tool for someone who is just starting to learn
target protein can be performed using AutoDock Vina in  piginformatics.
Chimera. This protocol will help researchers who are not able
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Abstract

Background: The novel coronavirus disease (COVID-19), which is caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), hasled to the ongoing 2019-2020 pandemic. SARS-CoV-2 isapositive-sense single-stranded RNA coronavirus.
Effective countermeasures against SARS-CoV-2 infection require the design and devel opment of specific and effective vaccine
candidates.

Objective: To addressthe urgent need for a SARS-CoV-2 vaccine, in the present study, we designed and validated one cytotoxic
T lymphocyte (CTL) and one helper T lymphocyte (HTL) multi-epitope vaccine (MEV) against SARS-CoV-2 using variousin
silico methods.

Methods: Both designed MEV's are composed of CTL and HTL epitopes screened from 11 Open Reading Frame (ORF),
structural and nonstructural proteins of the SARS-CoV-2 proteome. Both MEVsalso carry potential B-cell linear and discontinuous
epitopes as well as interferon gamma—inducing epitopes. To enhance the immune response of our vaccine design, truncated
(residues 10-153) Onchocerca volvulus activation-associated secreted protein-1 was used as an adjuvant at the N termini of both
MEVs. The tertiary models for both the designed MEV's were generated, refined, and further analyzed for stable molecular
interaction with toll-like receptor 3. Codon-biased complementary DNA (cDNA) was generated for both MEV s and analyzed in
silico for high level expression in amammalian (human) host cell line.

Results: In the present study, we screened and shortlisted 38 CTL, 33 HTL, and 12 B cell epitopes from the 11 ORF protein
sequences of the SARS-CoV-2 proteome. Moreover, the molecular interactions of the screened epitopes with their respective
human leukocyte antigen allele binders and the transporter associated with antigen processing (TAP) complex were positively
validated. The shortlisted screened epitopes were utilized to design two novel MEV's against SARS-CoV-2. Further molecular
models of both MEV s were prepared, and their stable molecular interactions with toll-like receptor 3 were positively validated.
The codon-optimized cDNAs of both MEV swere also positively analyzed for high levels of overexpression in ahuman cell line.

Conclusions: The present study is highly significant in terms of the molecular design of prospective CTL and HTL vaccines
against SARS-CoV-2 infection with potential to dicit cellular and humoral immune responses. The epitopes of the designed
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MEVs are predicted to cover the large human population worldwide (96.10%). Hence, both designed MEV's could be tried in

Vivo as potential vaccine candidates against SARS-CoV-2.

(JMIR Bioinformatics Biotechnol 2020;1(1):€19371) doi:10.2196/19371

KEYWORDS

COVID-19; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); coronavirus; human transporter associated with
antigen processing (TAP); toll-like receptor (TLR); epitope; immunoinformatics; molecular docking, molecular dynamics

simulation; multiepitope vaccine

Introduction

The novel coronavirus disease (COVID-19), which is caused
by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), hasresulted in the ongoing outbreak of asevere
form of respiratory disease leading to death with a mortality
rate of 3.4%[1]. SARS-CoV-2isanovel coronavirus associated
with arespiratory disease that initiated in the city of Wuhan in
Hubei province, China. The diseaseis highly contagious; as of
March 21, 2020, it had spread to 182 countries and territories
since its outbreak in China in December 2019. Worldwide, as
of March 21, 2020, the total number of confirmed cases was
reported to be 266,073, and the total death count was reported
to be 11,184 [2]. Overal, SARS-CoV-2 infection has created
a global emergency. The economic impact of COVID-19 is
even harsher and has placed the world at economic risk. As of
March 9, 2020, the worst case scenario was a US $2 trillion
shortfall in global income, with a $220 billion impact on
developing countries. The COVID-19 shock will cause a
recessionin several countriesand depress global annual growth
thisyear to below 2.5%, which isthe recessionary threshold for
the world economy [3].

The infection mechanism and pathogenesis of SARS-CoV-2
arecurrently largely unknown. According to the National Center
for Biology Information (NCBI) protein sequence database[4],
the proteome of SARS-CoV-2 iscomposed of 11 Open Reading
Frame (ORF), structural and non-structural proteins. These
include a polyprotein (ORFl1ab), surface protein (S protein),
ORF3, envelope protein (E protein), membrane protein (M
protein), ORF6, ORF7a, ORF7b, ORF8, nucleocapsid protein
(N protein), and ORF10. The actual functions and pathogenic
or proliferative roles of these SARS-CoV-2 coronavirus proteins
are currently largely unknown.

The SARS-CoV-2 polyprotein (ORF1ab), with alength of 7096
amino acids (AAS), is composed of 16 different expressed
proteins, namely leader protein (nspl, location: 1-180 AA);
nsp2 (location: 181-818 AA); nsp3 (former nspl, carries
conserved  domains: N-terminal acidic, predicted
phosphoesterase,  papain-like  proteinase,  Y-domain,
transmembrane domain 1 and adenosine diphosphate-ribose
1"-phosphatase, location: 819-2763 AA); nsp4 (contains
transmembrane domain 2, location: 2764-3263 AA); 3C-like
proteinase (nspbS, main proteinase, mediates cleavage
downstream of nsp4, location: 3264-3569 AA); nsp6 (putative
transmembrane domain, location: 3570-3859 AA); nsp7
(location: 3860-3942 AA); nsp8 (location: 3943-4140 AA);
nsp9 (ssRNA-binding protein, location: 4141-4253 AA); nspl0
(formerly known as growth-factor-like protein, location:
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4254-4392 AA); nspll (location: 4393-4405 AA);
RNA-dependent RNA polymerase (nspl2, location: 4393-5324
AA); helicase (nspl13; zinc-binding domain, NTPase/helicase
domain, RNA 5'-triphosphatase, location: 5325-5925 AA);
3-to-5' exonuclease (nspl4, location: 5926-6452 AA); endo
RNAse (nspl5, location: 6453-6798 AA); and 2'-O-ribose
methyltransferase (nspl6; location: 6799-7096 AA).

The SARS-CoV-2 coronavirus S protein is a structural protein
that actsasaspike protein; itslocation is 21563-25384 AA, and
its length is 1273 AA. The ORF3a protein is located at
25393-26220 AA, and its length is 275 AA. The E protein
(ORF4) isastructural protein; itslocation is 26245-26472 AA,
and itslength is 75 AA. The M protein (ORFb5) is a structural
protein; its location is 26523-27191 AA, and its length is 222
AA. The ORF6 protein is located at 27202-27387 AA, and its
lengthis61 AA. The ORF7aproteinislocated at 27394-27759
AA, anditslength is 121 AA. The ORF7b protein islocated at
27756-27887 AA, and its length is 43 AA. The SARS-CoV-2
coronavirus ORF8 protein is located at 27894-28259 AA, and
its length is 121 AA. The N protein) (ORF9) is a structural
protein; its location is 28274-29533 AA, and its length is 419
AA. The ORF10 proteinislocated at 29558-29674 AA and has
alength of 38 AA [4].

Although the exact mechanismsand roles of the abovementioned
proteins of the SARS-CoV-2 coronavirus proteome are not well
known, these proteins are potentia candidates for use in
vaccines against SARS-CoV-2 coronavirus infection. In this
study, we screened high-potential epitopes from all the
abovementioned proteins; further, we designed and proposed
cytotoxic T lymphocyte (CTL) and helper T lymphocyte (HTL)
multiepitope-based vaccine candidates against SARS-CoV-2
coronavirusinfection.

Methods

Background

Inthisstudy on SARS-CoV-2 coronavirus, we screened potential
epitopes and designed and proposed two multiepitope vaccines
(MEV's) composed of screened CTL and HTL epitopes with
overlapping regions of B cell epitopes. Hence, the proposed
MEV's have the potential to elicit both humora and cellular
immune response. To enhance immune response, truncated
(residues 10-153) Onchocerca volvulus activation-associated
secreted protein-1 (Ov-ASP-1) was utilized as an adjuvant at
the N-termini of both MEVs. The truncated Ov-ASP-1 was
chosen due to its potential to activate antigen-processing cells
(APCs) [5-7]. All the SARS-CoV-2 proteins mentioned in the
introduction were utilized to screen potential CTL, HTL, and
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B cell epitopes. The screened epitopes were further studied to
identify overlapping consensus regions among them. The
epitopes showing regions of partial or complete overlap were
chosen for further detailed studies.

The chosen CTL and HTL epitopes were analyzed for their
molecular interactions with their respective human leukocyte
antigen (HLA) allele binders. Moreover, the molecular
interactions of the chosen CTL epitopeswere analyzed for with
thetransporter associated with antigen processing (TAP) cavity
to observe their smooth passage from the cytoplasm to the
endoplasmic reticulum (ER) lumen [8,9]. Tertiary models of
both MEV's were generated and refined. Both MEV models
were further utilized to screen B cell linear and discontinuous
epitopes aswell asinterferon gamma (IFNy)-inducing epitopes.

Molecular signaling by multipletoll-like receptorsis an essential
component of theinnateimmune response against SARS-CoV-2.
Because Ov-ASP-1 primarily binds APCs among human
peripheral blood mononuclear cells and triggers
proinflammatory cytokine production via toll-like receptor 3
(TLR3), the molecular interactions of both the CTL and HTL
MEV models with TLR3 were further analyzed by molecular
docking studies [10-13]. Furthermore, the codon-optimized
cDNAs of both MEVs were analyzed and were found to have
high levels of expression in a mammalian (human) cell line,
whichwould facilitatein vivo expression, experimentation, and
trials (see Supplementary Figure S1 in Multimedia Appendix
1).

Screening of Potential Epitopes

T cell Epitope Prediction

Screening of CTL Epitopes

The CTL epitopes were screened using the Immune Epitope
Database (IEDB) tools MHC (major histocompatibility
complex)-1 Binding Predictions and MHC-I Processing
Predictions [14-16]. These two tools use six different methods
(consensus, NN-align, SMM-align, combinatorial library,

Sturniolo, and NetMHClIpan), and they generate a percentile
rank and atotal score, respectively.

The screening is based on the total number of cleavage sitesin
the protein. The TAP score estimates an effective - og value of
the half maximal inhibitory concentration (ICgp) for binding to
the TAP of a peptide or its N-terminal prolonged precursors.
The MHC binding prediction score is the - og(ICsg) value for
binding to the MHC of a peptide [17]. The ICy, values
(nanomolar) for each epitope and MHC allele binding pair were
also obtained using the MHC-I Binding Predictions IEDB tool.
Epitopes with high, intermediate, and low affinities of binding
to their HLA dlele binders have | C, values of <50 nM, <500
nM, and <5000 nM, respectively.

The immunogenicities of all the screened CTL epitopes were
also obtained using the MHC | Immunogenicity IEDB tool [17]
with all parameters set to the default to analyze thefirst, second,
and C-terminus amino acids of each screened epitope. Thetool
predicts the immunogenicity of agiven peptide-MHC complex
based on the physiochemical properties of its constituting amino
acids and their positions within the peptide sequence.

https://bioinform.jmir.org/2020/1/€19371

Srivastava et al

Screening of HTL Epitopes

To screen out the HTL epitopesfrom the SARS-CoV-2 proteins,
the IEDB tool MHC-1I Binding Predictionswas used. Thistool
generatesapercentile rank for each potential peptide. Thelower
the percentile rank, the higher the affinity. This percentile rank
is generated by the combination of three different methods,
namely combinatorial library, SMM_align, and Sturniolo, and
by comparing the score of the peptide against the scores of five
million other random 15-mer peptides in the SWISS-PROT
database [18-21]. The rank from the consensus of al three
methods was generated by the median percentile rank of the
three methods.

Population Coverage by CTL and HTL Epitopes

The IEDB Population Coverage tool was used to elucidate the
world human population coverage by the shortlisted 38 CTL
and 33 HTL epitopes derived from 9 SARS-CoV-2 proteins
[22]. T cells recognize the complex between a specific major
MHC molecule and a particular pathogen-derived epitope. The
given epitope will only €elicit a response in an individual who
expresses an MHC molecule that is capable of binding that
particular epitope. This denominated MHC restriction of T cell
responses and the MHC polymorphism provides the basis for
population coverage study. The MHC types are expressed at
dramatically different frequenciesin different ethnicities. Hence,
a vaccine with larger population coverage could be of greater
importance [21]. Clinical administration of multiple epitopes,
including both CTL and HTL epitopes, is predicted hereto have
a higher probability of larger human population coverage
worldwide.

B Cell Epitope Prediction

Sequence-Based B Cell Epitope Prediction

The protein sequence—based Bepipred Linear Epitope Prediction
method [23] was utilized to screen linear B cell epitopes from
11 different SARS-CoV-2 protein ORFs. The B Cell Epitope
Prediction Tools of the IEDB server were utilized. In this
screening, parameters such as the hydrophilicity, flexibility,
accessihility, turns, exposed surface, polarity, and antigenic
propensity of the polypeptides are correlated with their location
in the protein. This enables a search for continuous epitopes
predicted from a protein sequence. The prediction is based on
the propensity scales for each of the 20 amino acids. For a
window size n, i — (n — 1)/2 neighboring residues on each side
of residue i are used to compute the score for residue i. The
Bepipred Linear Epitope Prediction method used hereis based
on the propensity scale method as well as the physiochemical
properties of the given antigenic sequence to screen potential
epitopes [23].

Characterization of Potential Epitopes

Epitope Conservation Analysis

The shortlisted CTL, HTL, and B cell epitopes screened from
eleven SARS-CoV-2 proteinswere analyzed for the conservancy
of their amino acid seguences using the IEDB Epitope
Conservancy Analysis tool. The epitope conservancy is the
number of protein sequences retrieved from the NCBI protein
database that contains that particular epitope. The analysis was
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performed against the entire respective source protein sequences
of SARS-CoV-2 proteins retrieved from the NCBI protein
database [24].

Epitope Toxicity Prediction

The ToxinPred tool was used to analyze the toxicity of the
shortlisted CTL, HTL, and B cell epitopes. Thetool enablesthe
identification of highly toxic or nontoxic short peptides. The
toxicity check analysis was performed using the support vector
machine-based ToxinPred method using a dataset of 1805
positive sequences and 3593 negative sequences from
SWISS-PROT as well as an aternative dataset comprising the
same 1805 positive sequences and 12,541 negative sequences
from the Trandated European Molecular Biology Laboratory
(TrEMBL) database [25].

Overlapping Residue Analysis

The overlapping residue analysisfor the shortlisted 38 CTL, 33
HTL, and 12 B cell linear epitopeswas performed using multiple
sequence alignment analysiswith the European Bioinformatics
Ingtitute’s Clustal Omegatool [26]. The Clustal Omegamultiple
sequence alignment tool virtually aligns any number of protein
sequences and delivers an accurate alignment.

Selection of Epitopesfor Molecular Interaction StudiesWith
HLA Allelesand the TAP Transporter

Based on the overlapping residue analysis of the shortlisted
CTL, HTL, and linear B cell epitopes, a few CTL and HTL
epitopes were chosen for further analysis. The chosen epitopes
arecircledin Supplementary Figure S10 (Multimedia A ppendix
1). These epitopes were chosen based on their partial or full
overlapping sequence regions among all three types of epitopes
(CTL, HTL, and B cell). The chosen epitopes were further
analyzed for their interactions with their respective HLA allele
binders and TAP cavity interactions.

Molecular I nteraction Analysisof the Selected Epitopes
with HLA Allelesand the TAP Transporter

Tertiary Structure Modeling of HLA Allelesand Selected
T Cell Epitopes

SWISS-MODEL [27] was used for homology modeling of the
HLA class| and |l alele binders of the chosen epitopes. The
amino acid sequences of the HLA alele binders were retrieved
from the Immuno Polymorphism Database (IPD-IMGT/HLA).
Templates for homology modeling were chosen based on the
highest amino acid sequence similarity. All the generated HLA
allele models had acceptable QMEAN values (cutoff -4.0)
(Supplementary Table S1, Multimedia Appendix 1). The
QMEAN value gives a composite quality estimate involving
both global and local analysis of the model [28].

PEP-FOLD 2.0 [29], a de novo structure prediction tool
available at RPBS Web Portal, was utilized to generate tertiary
structures for the chosen CTL and HTL epitopes.

Molecular Interaction Analysisof Chosen CTL andHTL
Epitopes With HLA Alleles

The PatchDock tool was utilized for in silico molecular docking
studies of the selected CTL and HTL epitopes with their
respective HLA class| and I allele binders. PatchDock utilizes
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an algorithm for unbound (real-life) docking of molecules for
protein-protein complex formation. The algorithm carries out
rigid docking, and the surface variability/flexibility isimplicitly
addressed through liberal intermolecular penetration. The
algorithm focuses on the initial molecular surface fitting on
localized, curvature-based surface patches, the use of geometric
hashing and pose clustering for initial transformation detection,
computation of shape complementarity utilizing Distance
Transform, efficient steric clash detection and geometric fit
scoring based on multiresolution shape representation, and
utilization of biological information by focusing on hotspot-rich
surface patches [30-32].

Molecular I nteraction Analysisof Selected CTL Epitopes
With the TAP Transporter

The TAPtransporter plays an important role in the presentation
of aCTL epitope. From the cytosol after proteasome processing,
the fragmented peptide of the foreign protein is transported to
the ER through the TAP transporter. From the ER, these short
peptides reach the Golgi bodies and are then presented on the
cell surface [9]. Molecular interaction studies of the chosen
CTL epitopes within the TAP cavity were performed by
molecular docking using the PatchDock tool. For accurate
prediction, the cryo-EM structure of the TAP transporter (PDB
ID: 5uld) was used by removing the antigen from the TAP
cavity of the original structure[8].

Design, Characterization, and Molecular Interaction
Analysisof MEVsWith Immune Receptors

Design of the MEVs

The screened and shortlisted high-scoring 38 CTL and 33 HTL
epitopes were utilized to design CTL and HTL MEVs (Tables
1 and 2). Two short peptides, EAAAK and GGGGS, were used
asrigid and flexiblelinkers, respectively (Supplementary Figure
S2, Multimedia Appendix 1). The GGGGS linker provides
proper conformational flexibility to thetertiary structure of the
vaccine and hence facilitates stable conformation of the vaccine.
The EAAAK linker facilitates domain formation and hence aids
the vaccine to obtain its fina stable structure. Truncated
Ov-ASP-1 protein was utilized as an adjuvant at the N termini
of both the CTL and HTL MEVs[5-7,33-37].

Characterization of the Designed MEVs

Physicochemical Property Analysis of the Designed MEV's

The ProtParam tool [38] was utilized to anayze the
physiochemical properties of the amino acid sequences of the
designed CTL and HTL MEVs. The ProtParam analysis
performsan empirical investigation of the amino acid sequence
in agiven query. ProtParam computes various physicochemical
properties derived from a given protein sequence.

I FNy-Inducing Epitope Prediction

From the designed amino acid sequences of both MEVS,
potential I FNy epitopeswere screened by the IFN epitope server
using ahybrid motif and support vector machine approach; the
motif-based method used was MERCI (Motif-EmeRging and
with Classes-Identification). This tool predicts peptides from
protein sequences that have the capacity to induce IFNy release
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from CD4" T cells. This module generates overl apping peptides
from the query sequence and predicts | FNy-inducing peptides.
For the screening, the IEDB database was used with 3705
IFNy-inducing and 6728 non—FNy-inducing MHC class Il
binders [39,40].

MEV Allergenicity and Antigenicity Prediction

Both the designed MEV swere further analyzed for allergenicity
and antigenicity prediction using the AlgPred [41] and VaxiJen
[42] tools, respectively. The AlgPred prediction is based on the
similarity of an already known epitope with any region of the
submitted protein. To screen allergenicity, the SWISS-PROT
data set consisting of 101,725 non-allergens and 323 allergens
was used. VaxiJen utilizes an alignment-free approach that is
based solely on the physicochemical properties of the query
amino acid sequence. To predict the antigenicity, VaxiJen uses
bacterial, viral, and tumor protein datasets to derive models for
the prediction of the antigenicity of awhole protein. Every set
consists of known 100 antigens and 100 nonantigens.

Tertiary Structure Modeling, Refinement, and Validation
of the MEVs

The tertiary structures of the designed CTL and HTL MEVs
were generated by homology modeling using the I-TASSER
modeling tool [43]. I-TASSER is aprotein structure prediction
tool that is based on the sequence-to-structure-to-function
paradigm. The tool generates 3D atomic models from multiple
threading alignments and iterative structural assembly
simulations for a submitted AA sequence. I-TASSER is based
onthestructuretemplatesidentified by LOMETS, ametaserver
from the Protein Data Bank (PDB) library. I-TASSER only uses
the template with the highest Z-score, which is the difference
between the raw and average scores in the unit of standard
deviation. For each target model, the [-TASSER simulations
generate a large ensemble of structural conformations, called
decoys. To select the final models, |-TASSER uses the
SPICKER program to cluster all the decoys based on their
pairwise structure similarity and reports up to 5 models. A
normalized Z-score >1 indicates a good alignment and vice
versa. The Cov represents the coverage of the threading
alignment and isequal to the number of aligned residuesdivided
by thelength of the query protein. Ranking of template proteins
is based on the TM-score of the structural alignment between
the query structure model and known structures. The root mean
square deviation (RMSD) is the RMSD between template
residues and query residues that are structurally aligned by the
TM-align agorithm.

Both the generated MEV models were refined using the
ModRefiner [44] and GalaxyRefine [45] tools. The TM-score
generated by ModRefiner indicates the structural similarity of
the refined model to the original input model. The closer the
TM-score to 1, the greater the similarity of the original and
refined models. The RMSD of the refined model shows the
conformational deviation from the initial input models.

The GalaxyRefine tool refines the query tertiary structure by
repeated structure perturbation and by using the subsegquent
structural relaxation by the molecular dynamicssimulation. The
GalaxyRefine tool generates reliable core structures from
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multiple templates and then rebuil ds unreliable loops or termini
using an optimization-based refinement method [46,47]. To
avoid any breaksin the 3D model, GalaxyRefine usesthetriaxial
loop closure method. The MolProbity score generated for a
given refined model indicates the |og-weighted combination of
the clash score, the percentage of Ramachandran unfavored
residues and the percentage of bad side chain rotamers.

Validation of the Refined Models of the CTL and HTL
MEVs

The refined CTL and HTL MEV 3D models both were further
validated by the RAMPAGE anaysis tool [48,49]. The
generated Ramachandran plots for the MEV models show the
sterically allowed and disallowed residues along with their
dihedral psi (W) and phi (@) angles.

Linear and Discontinuous B-cell Epitope Prediction of
the MEVs

The ElliPro antibody epitope prediction tool available at the
IEDB was used to screen the linear and discontinuous B cell
epitopes from the MEV models. The ElliPro method analyses
are based on the location of aresidue in the 3D structure of a
protein. For example, the residues lying outside an ellipsoid
covering 90% of theinner core protein residues score the highest
protrusion index (PlI) of 0.9. The discontinuous epitopes
predicted by the ElliPro tool are clustered based on the distance
R in angstroms between the centers of mass of two residues
lying outside the largest possible ellipsoid. A larger value of R
indicates that more distant residues (residue discontinuity) are
screened in the epitopes [50,51].

Molecular Interaction Analysis of MEVsWith an
Immunological Receptor

Molecular Docking Studies of the MEVsand TLR3

Molecular interaction analysis of both designed MEVs with
TLR3 was performed by molecular docking and molecular
dynamicssimulations. Molecular docking was performed using
the PatchDock server [32]. PatchDock utilizes an algorithm for
unbound docking of molecules (mimicking the real world
environment) for protein-protein complex formation, as
explained earlier [30,31]. For molecular docking, the 3D
structure of the human TLR3 ectodomain was retrieved from
the PDB (PDB ID: 2A0Z). The study provides the dynamical
properties of the designed system with the MEV-TLR3
complexes and guesses at the interactions between the
molecules; also, it gives exact predictions of bulk properties,
including hydrogen bond formation and the conformation of
the molecules forming the complex.

Molecular Dynamics Simulation Studies of the MEVs
and the TLR3 Complex

The MEV-TLR3 molecular interactions were further evaluated
using molecular dynamics simulations. The molecular dynamics
simulationswere performed for 10 nanosecondsusing YASARA
(Yet Another Scientifc Artifcial Reality Application) [52]. The
simulations were performed in an explicit water environment
in a dodecahedron simulation box at a constant temperature
(298 kelvin) and pressure (1 atmosphere) at pH 7.4 with a
periodic cell boundary condition. The solvated systems were
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neutralized with counterions (sodium chloride, concentration
0.9 molar). The AMBER14 force field was applied to the
systemsduring the simulations[53,54]. Long-range el ectrostatic
energies and forces were calculated using the particle
mesh—based Ewald method [55]. The solvated structures were
minimized by the steepest descent method at a temperature of
298 K and a constant pressure. Then, the complexes were
equilibrated for a period of 1 nanosecond. After equilibration,
aproduction molecular dynamics simulation was run for 10 ns
at a constant temperature and pressure, and time frames were
saved every 10 picoseconds for each simulation. The RMSD
and root mean square fluctuation (RM SF) values for the alpha
carbon (C,) atoms, backbone atoms, and all the atoms of both

MEV complexeswere analyzed for each simul ation conducted.

Generation and Analysis of cDNA of the MEVs

cDNAs of both MEVs, codon-optimized for expression in a
mammalian (human) cell line, were generated using the Java
Codon Adaptation Tool. The generated cDNAs of both the
MEVs were further analyzed by the GenScript Rare Codon
Analysis Tool. This tool analyzes the GC content, codon
adaptation index (CAl) and tandem rare codon frequency for a
given cDNA [56,57]. The CAl indicatesthe possibility of cDNA
expression in a chosen expression system. The tandem rare
codon frequency indicatesthe presence of low-frequency codons
inagiven cDNA.
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Results

Screening of Potential Epitopes

T Cell Epitope Prediction

Screening of CTL Epitopes

CTL epitopes were screened using the MHC-I Binding
Predictions and MHC-I Processing Predictions IEDB tools.
These epitopes were shortlisted based on the total humber of
cleavage sites in the protein, low 1Cg, (NM) vaues for
epitope-HLA class| alele pairs, and binding to the TAP cavity.

The 38 epitopes predicted by the MHC-I Binding Predictions
tool with the highest percentile ranks were shortlisted for MEV
design and are listed in Table 1. The remaining 101
epitope-HLA | alele pairs are listed in Supplementary Table
S8 (Multimedia Appendix 1). The 67 epitope-HLA | dlelepairs
predicted by the MHC-I Processing Predictions tool with the
highest total scores are listed in Supplementary Table S9
(Multimedia Appendix 1).

The immunogenicities of the shortlisted CTL epitopes were
also determined and are noted in Table 1 and in Supplementary
Tables S8 and S9 (Multimedia Appendix 1). A higher
immunogenicity scoreindicates greater immunogenic potential
of the given epitope.
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Table 1. Characteristics of the shortlisted high-percentile-ranking SARS-CoV-2 CTL epitopes and their respective HLA allele binders.

SARS-Cov-22 Peptidelength, Peptidesequence Conservancy (%) Immunogenicity  Toxicity — Allele  njethods used? Percentile
protein amino acids rank
E protein® 9 LLFLAFVVF  480/482(99.59) 0.2341 Nontoxic B1501 Consensus 0.1
(ann/smm/comblib_sid-
ney
2008)
E protein 9 LTALRLCAY 478/482 (99.17)  0.01886 Nontoxic A0L01 Consensus(ann/smm) 0.12
M proteind 11 YFIASFRLFAR  474/477(99.37)  0.19709 Nontoxic A330L ann 0.03
M protein 10 ATSRTLSYYK® 472/477(98.95) -0.13563 Nontoxic A1L1:01 Consensus(ann/smm) 0.06
N protein' 9 MEVTPSGTW  485/498 (97.39) -0.06279 Nontoxic B44:02 Consensus(anrn/smm) 0.06
N protein 9 KPRQKRTAT 487/498 (97.79) -0.20542 Nontoxic B07:02 Consensus 0.1
(ann/smm/comblib_sid-
ney
2008)
orfl0 9 MGYINVFAF 477/480 (99.38) —0.09452 Nontoxic B350l Consensus 0.1
(ann/smm/comblib_sid-
ney
2008)
orf10 10 GYINVEAFPF® 232/236(98.31) 0.20158 Nontoxic A2301 Consensus(ann/smm) 0.11
orf-1ab 11 SEMVMCG- 452/456 (99.12)  0.32633 Nontoxic B44:02 ann 0.03
GSLY
orf-1ab 11 FYWFFS- 455/456 (99.78)  0.37766 Nontoxic A3301 ann 0.04
NYLKR
orf-1ab 8 ISNSWLMW 454/456 (99.56) —0.24791 Nontoxic B58:01 ann 0.05
orf-1ab 10 ETISLAGSYK  455/456 (99.78) 0.08174 Nontoxic A6801 Consensus(ann/smm) 0.06
orf-1ab 9 QEILGTVSW 455/456 (99.78)  0.27341 Nontoxic B44:02 Consensus(ann/smm) 0.06
orf-1ab 9 STFNVPMEK 456/456 (100.00) -0.32016 Nontoxic A1L1:01 Consensus(ann/smm) 0.06
orf-1ab 10 RMYIFFASFY  456/456 (100.00) 0.21107 Nontoxic A30:02 Consensus(ann/smm) 0.06
orf-1ab 10 FLFVAAIFYL 454/456 (99.56) -0.19814 Nontoxic A0201 Consensus(ann/smm) 0.06
orf-1ab 10 RYFRLTLGVY  456/456 (100.00) 0.03976 Nontoxic A30:02 Consensus(ann/smm) 0.06
orf-1ab 9 FLNGSCGSV 456/456 (100.00) —0.20585 Nontoxic A0203 Consensus(ann/smm) 0.06
orf-1ab 9 CTDDNALAY  476/479 (99.37) 0.32004 Nontoxic AOLOL Consensus(ann/smm) 0.06
orf-1ab 10 CT- 476/479(99.37)  0.28694 Nontoxic AOLOL Consensus(ann/smm) 0.06
DDNALAYY®
orf-1ab 11 MYKGLP- 456/456 (100.00) -0.11151 Nontoxic A3301 ann 0.06
WNVVR
orf-lab 10 SIINNTVYTK® 456/456(100.00) 0.15936 Nontoxic A11:01 Consensus(ann/smm) 0.06
orf-1ab 10 LPVNVAFELW  450/456 (98.68) —0.00254 Nontoxic B5301 Consensus(ann/smm) 0.06
orf-1ab 9 DEWSMATYY® 455/456(99.78) 0.07355 Nontoxic B44:03 Consensus(ann/smm) 0.07
orf-1ab 10 YILFTRFFYV  454/456 (99.56) —0.02845 Nontoxic A0206 Consensus(ann/smm) 0.07
orf-1ab 10 YIFFASFYYV  456/456 (100.00) 0.12661 Nontoxic A0206 Consensus(ann/smm) 0.07
ORF3a 9 YLYALVYFL®  456/456(100.00) 0.40924 Nontoxic A0201 Consensus 0.1
(ann/smm/comblib_sid-
ney
2008)
ORF3a 10 IPYNSVTSS 454/456 (99.56) 0.13772 Nontoxic B51:01 Consensus(ann/smm) 0.11
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SARS-Cov-22 Peptidelength, Peptidesequence Conservancy (%) Immunogenicity Toxicity  Allele  pethods used? Percentile
protein amino acids rank
Orf6 8 RTFKVSIW 466/481 (96.88)  0.13151 Nontoxic B57.01 ann 0.05
Orf6 11 AEILLIIMRTF  471/481 (97.92) -0.32835 Nontoxic B44:02 ann 0.06
ORF7a 8 RARSV SPK 480/481 (99.79) -0.18221 Nontoxic A3001 ann 011
ORF7a 10 QLRARSVSPK  479/481(99.58) 0.1815 Nontoxic A0301 Consensus(ann/smm) 0.16
orf7b 9 FLAFLLFLV 472/480 (98.33) -0.16177 Nontoxic A0203 Consensus(ann/smm) 0.07
orf8 9 HFYSKWYIR 472/480 (98.33) -0.27456 Nontoxic A3L0Ol Consensus(ann/smm) 0.11
Sprotein? 10 WTA- 470/472 (99.58)  0.15455 Nontoxic A6802 Consensus(ann/smm) 0.06
GAAAYYV
Sprotein 10 FPNITNLCPF 472/472(100.00) 0.1009 Nontoxic B5301 Consensus(ann/smm) 0.06
Sprotein 10 NYNYLYRLFR 465/472(98.52) 0.08754 Nontoxic A3301 Consensus(ann/smm) 0.07
Sprotein 8 NYLYRLFR 465/472 (98.52)  0.13144 Nontoxic A3301 ann 0.07

8SARS-CoV-2: severe acute resipiratory syndrome coronavirus 2.

BMethods: ann: artificial neural network. Comblib_sidney2008: combinatorial peptide libraries [19]. smm: stabilized matrix method.

CE protein: envelope protein.
dm protein: membrane protein.

eMatches a recently published epitope, indicating consensus with results [58].

N protein: nucleocapsid protein.
9S protein: surface protein.

Screening of HTL Epitopes
The screening of HTL epitopesfrom 11 different SARS-CoV-2

ORF proteins was performed based on percentile rank. The
smaller the percentilerank, the higher the affinity of the peptide

https://bioinform.jmir.org/2020/1/€19371

RenderX

to itsrespective HLA allele binders. The 33 epitopes with high
percentile ranking were shortlisted (Table 2). An additional 180
potential HTL cell epitope-HLA allele 11 pairs with high
percentile ranks screened in our study are listed in
Supplementary Table S10 (Multimedia Appendix 1).
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Table 2. Characteristics of the shortlisted high-scoring SARS-CoV-2 HTL epitopes and their respective HLA allele binders.

Srivastava et al

SARS-CoV-22protein Peptide Conservancy (%) Toxicity Alleles M ethods used? Percentile rank
E protein® LLFLAFVVFLLVTLA  480/482(99.59) Nontoxic ~ DPA1- Consensus 0.02
03:0/DPB1-04:02 (comb.lib./smm/nn)
E protein VLLFLAFVVFLLVTL 480/482 (99.59)  Nontoxic DPA1- Consensus 0.02
03:0/DPB1-04:02 (comb.lib./smm/nn)
M protein® GLMWLSYFIASFRLF  465/477 (97.48) Nontoxic ~ DPA1- Consensus 0.05
01:03/DPB1-02:01 (comb.lib./smm/nn)
M Protein LMWLSYFIASFRLFA 466/477 (97.69)  Nontoxic DPA1- Consensus 0.05
01:03/DPB1-02:01 (comb.lib./smm/nn)
M protein LSYYKLGASQRVAGDE 472/477(98.95) Nontoxic ~ DRB1-09:01 Consensus 0.06
(comb.lib./smm/nn)
N protei nf AQFAPSASAFFGMSR  486/498 (97.59) Nontoxic ~ DRB1-09:01 Consensus 0.01
(comb.lib./smm/nn)
N protein IAQFAPSASAFFGMS 485/498 (97.39) Nontoxic ~ DRB1-09:01 Consensus 0.01
(comb.lib./smm/nn)
N protein PQIAQFAPSASAFFG 485/498 (97.39) Nontoxic ~ DRB1-09:01 Consensus 0.01
(comb.lib./smm/nn)
ORFlab AIILASFSASTSARV 456/456 (100.00) Nontoxic ~ DRB1-09:01 Consensus 0.01
(comb.lib./smm/nn)
ORF1ab ESPFVMMSAPPAQY E© 456/456 (100.00) Nontoxic ~ DRB1-01:01 Consen_sus 0.01
(comb.lib./smm/nn)
ORFlab IILASFSASTSAFVE 456/456 (100.00) Nontoxic ~ DRB1-09:01 Consensus 0.01
(comb.lib./smm/nn)
ORFlab QESPFVMMSAPPAQY  456/456 (100.00) Nontoxic DRB1-01:01 Consensus 0.01
(comb.lib./smm/nn)
ORFlab SPFVMMSAPPAQYEL  456/456 (100.00) Nontoxic DRB1-01:01 Consensus 0.01
(comb.lib./smm/nn)
ORF3a FVRATATIPIQASLP 478/481 (99.37)  Nontoxic DPA1- NetMHCllpan 0.12
02:01/DPB1-14:01
ORF3a LLFVTVYSHLLLVAA 467/481 (97.08)  Nontoxic DRB1-01:01 Consensus 0.1
(comb.lib./smm/nn)
ORF6 FKVSIWNLDYIINLI 478/481 (99.38)  Nontoxic DQA1- Consensus 0.02
01:0/DQB1-05:01 (comb.lib./smm/nn)
ORF6 KVSIWNLDY IINLII 478/481 (99.38)  Nontoxic DQA1- Consensus 0.02
01:0/DQB1-05:01 (comb.lib./smm/nn)
ORF6 TEKVSIWNLDYIINL® 478/481 (99.38) Nontoxic DQA1- Consen;us 0.02
01:0/DQB1-05:01 (comb.lib./smm/nn)
ORF7a IILFLALITLATCEL 479/480 (99.79)  Nontoxic DRB1-01:01 Consensus 0.16
(comb.lib./smm/nn)
ORF7a ILFLALITLATCELY 479/480 (99.79)  Nontoxic DRB1-01:01 Consensus 0.16
(comb.lib./smm/nn)
ORF7b CFLAFLLFLVLIMLI 231/236 (97.88)  Nontoxic DPA1- Consensus 0.03
03:0/DPB1-04:02 (comb.lib./smm/nn)
ORF7b LCFLAFLLFLVLIML 231/236 (97.88)  Nontoxic DPA1- Consensus 0.02
03:0/DPB1-04:02 (comb.lib./smm/nn)
ORF7b YLCFLAFLLFLVLIM 231/236 (97.88)  Nontoxic DPA1- Consensus 0.02
03:0/DPB1-04:02 (comb.lib./smm/nn)
ORF8 CTQHQPYVVDDPCPI 476/480 (99.17)  Nontoxic DRB3-01:01 Consensus 0.08
(comb.lib./smm/nn)
ORF8 HQPYVVDDPCPIHFY 476/480 (99.17)  Nontoxic DRB3-01:01 Consensus 0.08

(comb.lib./smm/nn)
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SARS-CoV-22protein  Peptide Conservancy (%) Toxicity Alleles Methods used® Percentile rank
ORF8 QPYVVDDPCPIHFYS  476/480(99.17) Nontoxic = DRB3-01:01 Consensus 0.07
(comb.lib./smm/nn)
ORF10 INVFAFPFTIYSLLL 476/480 (99.17) Nontoxic ~ HLA-DPA1- Consensus 0.29
01:03/DPB1-02:01 (comb.lib./smm/nn)
ORF10 YINVFAFPFTIYSLL 476/479 (99.37) Nontoxic  DPAl- Consensus 0.29
01:03/DPB1-02:01 (comb.lib./smm/nn)
Sproteind KTQSLLIVNNATNVY  472/472(100.00) Nontoxic ~ DRB1-13:02 Consensus 0.01
(smm/nn/sturniolo)
Sprotein LLIVNNATNVVIKVC  469/472(99.36) Nontoxic DRB1-13:02 Consensus 0.01
(smm/nn/sturniolo)
Sprotein QSLLIVNNATNVVIK 471/472 (99.79) Nontoxic ~ DRB1-13:02 Consensus 0.01
(smm/nn/sturniolo)
Sprotein SLLIVNNATNVVIKVE  471/472(99.79) Nontoxic ~ DRB1-13:02 Consensus 0.01
(smm/nn/sturniolo)
Sprotein TQSLLIVNNATNVVI 471/472 (99.79) Nontoxic ~ DRB1-13:02 Consensus 0.01
(smm/nn/sturniolo)

8SARS-CoV-2: severe acute resipiratory syndrome coronavirus 2.

bMethods: comblib.: combinatorial library. nn: neural network. smm: stabilized matrix method.

°E protein: envelope protein.
dm protein: membrane protein.

EMatches a recently published epitope, indicating consensus with results [58].

N protein: nucleocapsid protein
9S protein: surface protein.

Population Coverage by CTL and HTL Epitopes

The population coverage by the shortlisted epitopes was also
studied, particularly in China, France, Italy, the United States,
South Asia, East Asia, Northeast Asia, and the Middle East.
From this study, we can conclude that the combined use of all
the shortlisted CTL and HTL epitopes would have an average
worldwide popul ation coverage as high as 96.10% (SD 23.74)
(Supplementary Table S12, Multimedia Appendix 1).
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B Cell Epitope Prediction

Sequence-Based B Cell Epitope Prediction

To screen B cell epitopes, we used the Bepipred Linear Epitope
Prediction method. In our study, we screened 12 B cell epitopes
from 11 SARS-CoV-2 ORF proteins which show partial or
complete overlap with the shortlisted CTL and HTL epitopes
(Table 3). An additional 206 B cell epitopeswith epitope lengths
of at least four AAs and amaximum of 20 AAs were screened
and are listed in Supplementary Table S11, Multimedia
Appendix 1.
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Table 3. Characteristics of the shortlisted SARS-CoV-2 linear B cell epitopes obtained by the BepiPred method.

SARS-CoV-22protein Peptide length, amino acids ~ Conservancy (%)  Overlapping B cell epitope Toxicity
M protein® 12 471/477(98.74)  KLGASQRVAGDS Nontoxic
N protein® 42 483/498 (96.99) RLNQLESKMSGKGQQQQGQTVTKKSAAEASK Nontoxic
KPRQKRTATKA
ORFlab 20 455/456 (99.78) GTTQTACTDDNALAYYNTTK Nontoxic
ORF3a 12 478/481 (99.37) QGEIKDATPSDF Nontoxic
ORF3a 6 471/481 (97.92) PYNSVT Nontoxic
ORF7a 9 479/480 (99.79) LYHYQECVR Nontoxic
ORF7a 26 470/480 (97.92)  VKHVYQLRARSVSPKLFIRQEEVQEL Nontoxic
ORF8 23 460/480 (95.83) QSCTQHQPYVVDDPCPIHFY SKW Nontoxic
ORF8 9 476/480 (99.17) RVGARKSAP Nontoxic
Sprotei nd 11 470/472 (99.58) TPGDSSSGWTA Nontoxic
Sprotein 35 470/472 (99.58) FPNITNLCPFGEVFNATRFASV YAWNRKRISNCVA Nontoxic
Sprotein 62 454/472 (96.19) NLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIY Nontoxic

QAGSTPCNGVEGFNCY FPLQSY GFQPTN

8SARS-CoV-2: severe acute resipiratory syndrome coronavirus 2.
&Y protein: membrane protein.

N protein: nucleocapsid protein

ds protein: surface protein.

Characterization of Potential Epitopes

Epitope Conservation Analysis

Sequence conservation analysisof thescreened CTL, HTL, and
B cell epitopes showed the highly conserved nature of the
shortlisted epitopes. The amino acid sequences of boththe CTL
epitopes and the HTL epitopes were found to be significantly
conserved among the NCBI-retrieved protein sequences of
SARS-CoV-2 (the CTL epitopeswere 96.88%-100% conserved
and the HTL epitopeswere 97.08%-100% conserved; see Tables
1, 2, and 4 and Supplementary Tables S8, S9, S10, and S11,
Multimedia Appendix 1).

Epitope Toxicity Prediction

Toxicity analyses of al the screened CTL, HTL, and B cell
epitopes were also performed. The ToxinPred study of all the
shortlisted epitopes showed that they all are nontoxic (Tables
1, 2, and 4; Supplementary Tables S8, S9, S10, and S11,
Multimedia Appendix 1).

Overlapping Residue Analysis

The AA sequence overlap among the shortlisted CTL, HTL,
and B cdll epitopes from 11 SARS-CoV-2 ORF proteins was
analyzed using the Clustal Omegamultiple sequence alignment
analysistool. The analysis showed that several CTL, HTL, and
B cell epitopeshad overlapping AA sequences. TheCTL, HTL,
and B cell epitopes with two or more overlapping AA residues

https://bioinform.jmir.org/2020/1/€19371

are shown in Supplementary Figure S3 (Multimedia Appendix
1).

Selection of Epitopesfor Molecular Interaction Studieswith
HLA Allelesand the TAP Transporter

The epitopes showing overlap among the CTL, HTL, and B cell
epitopes are circled in Supplementary Figure S10 (Multimedia
Appendix 1) and were chosen for further study of their
interactions with HLA alleles and the TAP transporter.

Molecular Interaction Analysis of Selected Epitopes
With HLA Allelesand the TAP Transporter

Molecular I nteraction Analysis of the Chosen CTL and
HTL Epitopes With HLA Alleles

Molecular docking studies of the chosen CTL and HTL epitopes
with their respective HLA class | and Il alele binders were
performed using the PatchDock tool. Images were generated
by PyMOL [59]. The study revealed significant molecular
interactions between all the chosen epitopes and their HLA
alele binders, showing the formation of multiple hydrogen
bonds (Figure 1). Furthermore, B-factor analysis of all the
epitope-HLA allele complexes showed that the epitope ligand
had a stable (blue) binding conformation in complex with the
HLA allele molecule (Supplementary Figure $4, Multimedia
Appendix 1). The violet-indigo-blue-green-yellow-orange-red
(VIBGYOR) color presentation was used, where blue is very
stable.

JMIR Bioinformatics Biotechnol 2020 | vol. 1 |iss. 1 |e19371 | p.37
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR BIOINFORMATICS AND BIOTECHNOLOGY

Srivastava et al

Figure 1. Molecular docking analysis of SARS-CoV-2 CTL epitopesand HLA aleles. Molecular docking of the chosen CTL and HTL epitopes (cyan
sticks) binding the amino acid residues of their respective HLA class | and class |1 allele binders (magenta sticks). The study shows that the docked
complexes are stable, with the formation of multiple hydrogen bonds (green dots, lengths in angstroms). CTL: cytotoxic T lymphocyte. HLA: human

leukocyte antigen.

1. ATSRTLSYYK-HLA-A*11:01

CTL epitopes - HLA Class | allele com

2. HFYSKWYIR-HLA-A*31:01

lexes

3. CTQHQPYVVDDPCPI-HLA-DRB3*01:01

Asp835GIn178

4. HQPYVVDDPCPIHFY-HLA-DRB3*01:01

5. LSYYKLGASQRVAGD-HLA-DRE1*09:01

6. QPYVVDDPCPIHFYS-HLA-DRB3*01:01

Molecular I nteraction Analysisof Selected CTL Epitopes
With the TAP Cavity

The molecular docking interaction analysis of the chosen CTL
epitopes with the TAP cavity showed significantly strong
molecular interactions with the formation of several hydrogen
bonds at different sites of the TAP cavity. Two sites of
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interaction were of particular interest: one closer to the
cytoplasmic end and another closer to the ER lumen (Figure 2).
This study confirms the feasibility of transportation of the
chosen CTL epitopes from the cytoplasm to the ER lumen,
which is an essential event for the representation of an epitope
by HLA allele molecules on the surface of antigen-presenting
cells.
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Figure 2. Molecular docking analysis of two CTL epitopes within the TAP transporter cavity. The molecular interactions of the CTL epitopes (cyan
sticks) within the TAP cavity (gray ribbons/sticks) are shown. Detailed interactions between the residues of the epitopes and the TAP transporter residues
are shown, with hydrogen bond formation indicated with green dots. H bonds are shown in green dots with lengths in angstroms. TAP: transporter

associated with antigen processing.
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Epitope ATSRTLSYYK through TAP cavity

Characterization and Molecular |nteraction Analysis
of the Designed MEVswith Immune Receptors

Characterization of the Designed MEVs

Physicochemical Property Analysisof the Designed MEVs

ProtParam analysis of both the CTL and HTL MEVs was
performed to analyze their physiochemical properties. The

Arg312
Ala5t Pro513

Epitope HFYSKWYIR through TAP cavity

empirical physiochemical propertiesof theCTL andHTL MEVs
are given in Table 4. The aiphatic indices and grand averages
of hydropathicity of both MEVs indicate their globular and
hydrophilic natures. Theinstability index scores of both MEV's
indicates the stable nature of the protein molecules.

Table 4. Physicochemical property analysis based on the amino acid sequences of the designed CTL and HTL MEVs.

Cytotoxic T lymphocyte multiepitope vaccine

Helper T lymphocyte multiepitope vaccine

Property
Length (amino acids) 704
Molecular 72.62
weight (kilodaltons)
Theoretical protrusion index 9.70
Expected half-life (hours)
Escherichia cali 10
Yesst 30
Mammalian cell 20
Aliphatic index 61.09
Grand average of hydropathicity —0.090
Instability index 4431

810
82.80

8.64

10
30
20
96.43
0.501
40.28

I FNy-Inducing Epitope Prediction
IFNy-inducing epitopes are involved in both the adaptive and

the innate immune response. IFNy-inducing 15mer peptide
epitopes were screened from the amino acid sequences of the
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CTL and HTL MEVs using the IFNepitope server. A total of
20 CTL MEV and 20 HTL MEV INFy-inducing positive
epitopeswith ascore>1 were shortlisted (Supplementary Table
S2, Multimedia Appendix 1).
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Allergenicity and Antigenicity Prediction of the MEV's

Both the CTL and HTL MEVswere found to be nonallergenic
by the AlgPred analysis (scores of —0.95185601 and —1.1293352,
respectively; thethreshold was—0.4). The CTL and HTL MEV's
were asoindicated by VaxiJen analysisto be probable antigens
(prediction scores of 0.4485 and 0.4215, respectively; the default
thresholdis0.4). Hence, with the mentioned analysistools, both
the CTL and HTL MEVs are predicted to be nonallergic and
antigenic in nature.

Srivastava et al

Tertiary Structure Modeling, Refinement, and Validation
of the MEVs

3D homology models were generated for both the CTL and
HTL MEvsusing the I-TASSER modeling tool (Figure 3). The
models were generated for the CTL MEV (PDB ID: 5n8pA,
normal Z-score of 1.49, Cov of 0.92, TM-score of 0.916, and
RMSD of 1.04 A) and theHTL MEC (PDB ID: 5n8pA, normal
Z-score of 1.52, Cov of 0.97, TM-score of 0.916, and RMSD
of 1.04 A).

Figure 3. Tertiary structure modelling of the CTL and HTL multiepitope vaccines. The epitopes are shown in cyan. The adjuvant (Ov-ASP-1) is shown
in orange. Thelinkers are shown in gray, and the 6xHis tag is shown in magenta. Cartoon and surface presentations of both the MEVs are shown. CTL:

cytotoxic T lymphocyte. HTL: helper T lymphocyte.

B. HTL Multi-epitope vaccine model

The generated CTL and HTL 3D models were both further
refined by ModRefiner to repair any gaps, followed by
GalaxyRefine refinement. The refinement by ModRefiner
showed TM-scores of 0.9189 and 0.9498 for the CTL and HTL
models, respectively; because these values are close to 1, the
initial and refined models were structurally similar. After
refinement, the RMSDs for the CTL and HTL models with
respect to the initial model were 3.367 A and 2.318 A,
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respectively. Further, boththe CTL and HTL MEV modelswere
refined with GalaxyRefine, and model 1 was chosen based on
the best scoring parameters. The CTL MEV model refinement
output model (Ramachandran favored 83.6%, GDT-HA 0.9371,
RMSD 0.459, MolProbity 2.539, clash score 23.2, and poor
rotamers 1.8) and the HTL MEV mode! refinement output mode!
(Ramachandran favored 87.7%, GDT-HA 0.9552, RMSD 0.402,
MolProbity 2.537, clash score 27.9, and poor rotamers 1.6)
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show that well-refined and acceptable models were generated
for both the MEVs. After refinement, al the mentioned
parameters were found to be significantly improved in
comparison to the initial CTL and HTL MEV models
(Supplementary Table S3, Multimedia Appendix 1).

Validation of the Refined Models of the CTL and HTL
MEVs

Both the CTL and HTL models were analyzed with the
RAMPAGE analysis tool after refinement. The refined CTL
MEV model was found to have 85.8% residues in the favored
region, 11.3% residues in the allowed region, and only 3.0%
residuesin the outlier region; meanwhile, therefined HTL MEV
model was found to have 88.9% residues in the favored region,
8.9% residuesin the allowed region, and only 2.2% residuesin
the outlier region (Supplementary Figure S5, Multimedia
Appendix 1).

Linear and Discontinuous B-cell Epitope Prediction
From the MEVs

Linear and discontinuous B-cell epitope prediction was
performed to identify potential linear and discontinuous epitopes
in the refined 3D models of the CTL and HTL MEVs utilizing
the ElliPro tool available on the IEDB server. The screening
revealed that the CTL MEV carries 17 linear and 2 potential
discontinuous B cell epitopes and the HTL MEV carries 17
linear and 4 potential discontinuous epitopes. The wide range
of the Pl scores of the linear and discontinuous epitopes in the
CTL and HTL MEVs show the high potential of the epitopes
to cause humoral immune response (Pl scores: CTL MEV linear
and discontinuous B cell epitopes: 0.511-0.828 and 0.664-0.767,
respectively; HTL MEV linear and discontinuous B cell
epitopes:  0.518-0.831 and 0.53-0.776, respectively)
(Supplementary Tables S4, S5, S6, and S7, Multimedia
Appendix 1).

Molecular Interaction Analysis of the MEVsWith
Immunological Receptors

Molecular Docking Studies of the MEVs With TLR3

The refined models of both the CTL and HTL MEVs were
further studied for their molecular interactions with the
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ectodomain of human TLR3. Therefore, molecular docking of
the CTL and HTL MEV modelswiththe TLR3 crystal structure
model (PDB ID: 2A0Z) was performed utilizing the PatchDock
tool. The generated docking conformations with the highest
scores of 20776 and 20350 for the CTL and HTL MEVS,
respectively, were chosen for further study. The highest docking
scoreindicatesthe best geometric shape complementarity fitting
conformation of the MEV and the TLR3 receptor as predicted
by the PatchDock tool. Both the CTL and HTL MEVsfit into
the ectodomain region of TLR3 after docking, involving
numerous molecular interactions with active site residues of the
TLR3 cavity region (Figure 4A, C, D, and F). As shown in
Figure 4A and 4D, an entire patch of the TLR3 cavity surface
is involved in the molecular interactions with the MEVs,
favoring the formation of molecular complexes between the
MEVs and the TLR3 ectodomain cavity. Paticular residues
involved in this interaction are shown in Fig 4C and 4F
(CTL:TLR3: Y496:D437, K467:H359, A521:K 416, P547:K 416,
S545:N361, G544:K 330, VV565:Y 307, Y 538:H129, V537:N 105,
Y 634:H108. HTL:TLR3: S629:K 416, S649:Y 307, G668:K 330,
H810:E533, H809:R484, H805:H359, N801:R325, H613:N230,
N252:N718, Y701:Q107). The CTL and HTL MEV's showed
theformation of multiple hydrogen bondswithin the ectodomain
cavity region of TLR3.

B-factor analysis of the MEV-TLR3 complexes was also
performed. The B-factor indicates the displacement of the atomic
positionsfrom an average (mean) value, asin, themoreflexible
the atom, the larger its displacement from the mean position
(mean-squares displacement) (Figure 4B, 4D). PDBsum [60]
was used to calculate patches on the TLR3 receptor indicating
the region of binding sites. The B-factor analysis of the CTL
and HTL MEV s bound to the TLR3 receptor shows that most
of the regions of the MEVs bound to TLR3 are stable. The
B-factor analysis is represented by a VIBGYOR color
presentation, where blue represents a low B-factor and red
represents ahigh B-factor (Figure 4B, 4D). Theseresults suggest
tendencies toward stable complex formation for both the CTL
and HTL MEVs with the ectodomain of the human TLR3
receptor.
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Figure 4. Molecular docking studies of the CTL and HTL MEVswith TLR3. (A), (D): The docking complexes of CTL-TLR3 and HTL-TLR3 with
patches on the TLR3 receptor indicating the region of binding sites calculated by PDBsum [60]. (C), (F): Detailed molecular interactions between the
binding site residues of the CTL and HTL MEVsand TRL3 (CTL, HTL: cyan; TLR3: magenta). Hydrogen bond formation is shown by orange dotted
lines. (B), (E): B-factors of the docked MEV s to the TLR3 receptor. The presentation isin VIBGYOR color, with blue showing alow B-factor and red
showing a high B-factor. Most of the MEV regions are blue, showing low B-factors; this indicates the formation of stable complexes with the TLR3
receptor. CTL, cytotoxic T lymphocyte. HTL, helper T lymphocyte. TLR3, toll-like receptor 3.
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Molecular Dynamics Simulation Study of the Complexes
of the MEVswith TLR3

Both the complexes CTL-TLR3 and HTL-TLR3 were further
subjected to molecular dynamics simulation analysis to
investigate the stability of the molecular interactions involved.
Both the MEV-TLR3 complexes showed very convincing and

https://bioinform.jmir.org/2020/1/€19371
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reasonably stable RMSD values for the C,, backbone, and all
atoms (CTL-TLR3 complex: approximately 4-7.5A; HTL-TLR3
complex: approximately 3.0-9.8 A) which stabilized toward the
end (Figure 5A and 5C). The RMSDs of both complexes
remained in the abovementioned RM SD range for agiven time
window of 10 ns a reasonably invariable temperature
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(approximately 278 K) and pressure (approximately 1 atm). The
molecular docking and molecular dynamics simulation studies
of al the MEV-TLR complexes indicate tendencies toward
stable complex formation. Almost all the AA residues of the
CTL and HTL MEV's complexed with TLR3 showed RM SFs

Srivastava et d

in an acceptable range (approximately 2-6 A) (Figure 5B and
5D). These results indicate that both the CTL-TLR3 and
HTL-TLR3 complexes are stable, with acceptable molecular
interaction tendencies.

Figure 5. Molecular dynamics simulations of the CTL and HTL MEVswith TLR3. (A), (C): Root mean square deviations for the Ca, backbone, and
al atomsfor the CTL MEV-TLR3 complex and the HTL MEV-TLR3 complex. (B), (D): Root mean square fluctuations of all the amino acid residues
of the CTL MEV and the HTL MEV in complex with the TLR3 immune receptor. A: angstroms. COVID-19: coronavirus disease. CTL: cytotoxic T
lymphocyte. HTL: helper T lymphocyte. MEV: multiepitope vaccine. TL3: toll-like receptor 3. RMSD: root mean square deviation. RMSD Ca: root
mean square deviation for the alpha carbon atoms. RMSD Bb: root mean sguare deviation for the backbone atoms. RMSD All: root mean sguare

deviation for all atoms. RMSF: root mean square fluctuation.
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In Silico Analysis of cDNA of the MEVsfor Cloning
and Expression Potency in a Mammalian Host Cell
Line

cDNA optimizedfor CTL and HTL expressioninamammalian
(human) host cell line was generated using the Java Codon
Adaptation Tool. Further, the generated optimized cDNAs for
both the MEV swere analyzed using the GenScript Rare Codon
Analysis Tool. The analysis reveal ed that the codon-optimized
cDNAs of both the CTL and HTL MEVs have crucial and
favorable compositions for high-level expression in a
mammalian cell line (CTL MEV: GC content 70.40%, CAI
score 1.00, and 0% tandem rare codons, HTL MEV: GC content
69.26%, CAI score 1.00, and 0% tandem rare codons). Ideally,
the GC content of cDNA should be 30%-70%; a CAl scorethat
indicates the possibility of cDNA expression in a chosen
expression system should be between 0.8 and 1.0; and the

https://bioinform.jmir.org/2020/1/€19371

RenderX

tandem rare codon frequency that indicates the presence of
low-freguency codonsin cDNA should be <30%. Tandem rare
codons may hinder proper expression of the cDNA or even
interrupt the translational machinery of the chosen expression
system. Therefore, as per the GenScript Rare Codon analysis,
the cDNAs of both the MEVs satisfy al the mentioned
parameters and are predicted to have high expression in the
mammalian (human) host cell line.

Discussion

Principal Findings

In the present study, we have reported the design of CTL and
HTL multiepitope-based vaccine candidates against
SARS-CoV-2infection. These MEV sare composed of multiple
CTL and HTL epitopeswith truncated Ov-ASP-1 as an adjuvant
a the N termini of both the MEVs. To design the
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abovementioned MEV's, we screened potential CTL and HTL
epitopes from the entire proteome of the SARS-CoV-2
coronavirus. The screened epitopes showed potential due to
their low 1Cg, values (nM) for HLA interaction, high
immunogenicity, nontoxicity, favorable TAP cavity interaction,
high conservancy, and high percentile rankings (determined
using the IEDB MHC-I Binding Predictions and MHC-II
Binding Predictionstools). Furthermore, the popul ation coverage
of the shortlisted 38 CTL and 33 HLT epitopes and their HLA
allele binders was analyzed; the results were very satisfying,
with atotal world population coverage of 96.10%. Moreover,
12 B cell epitopeswith lengths of 4-20 AAswere screened that
showed full or partial overlap with the shortlisted CTL and HTL
epitopes. All the shortlisted epitopes were highly conserved,
with a conservancy range between 97.08% and 100%; at the
same time, all the epitopes were nontoxic. All the shortlisted
CTL,HTL, and B cell epitopeswere also shown to overlap with
each other, which further indicated their highly immunogenic
nature. The overlapping epitopesof CTL and HTL were chosen
for further analysis of their molecular interactions with HLA
alleles and the TAP cavity. Molecular interaction analysis of
the chosen overlapping epitopes with their respective HAL
allele binders showed very favorable results. Similarly, the
molecular interaction analysis of the CTL epitopes within the
TAP cavity showed very favorable results for the smooth
passage of the epitopesthrough the cavity from the cytoplasmic
end (C terminal) to the ER lumen end (N terminal) of the
transmembrane transporter. Further, the two MEVs were
designed and modeled utilizing aflexiblelinker (GGGGS). The
chosen adjuvant (truncated Ov-ASP-1) was linked at the N
terminal of both the MEV's using a rigid linker (EAAAK).
Modeling and further refinement of both the MEVs was
performed, and highly sterically acceptable models were
generated. The molecular weights of both the MEVswere also
very acceptable for expression in suitable systems (CTL MEV:
72.62 kilodaltons, HTL MEV: 82.80 kDa). Further, both the
MEVs were shown to contain 20 INFy-inducing positive
epitopes. Both the MEVs were also analyzed to contain
numerous linear (CTL: 17, HTL: 17) and discontinuous (CTL:
2, HTL: 4) B cell epitopes. Both the MEV s were analyzed and
found to be nonallergenic but antigenic in nature.

Furthermore, both the CTL and HTL MEVswere analyzed for
their molecular interactions with the immune receptor TLR3.
TLRsact as sentinels for the human immune system; therefore,
favorable and stable interactions of both the MEVswith TLR3
are essential. In our study, we confirmed the stable interactions
of both the CTL and HTL MEVs with the TLR3 receptor.
Molecular docking studies revealed that numerous residues of
both MEVsareinvolved in the formation of polar contactswith
TLR3 receptor AA residues. Furthermore, the molecular
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dynamics studies confirmed stable molecular interactions
between both MEV sand TL R3 based on the acceptable RMSDs
for the backbones of both the CTL-MEV-TLR3 and
HTL-MEV-TLR3 complexes.

Moreover, both MEVs were shown to have very favorable
expression in vitro. We analyzed the codon-biased cDNAs for
both the CTL and HTL MEV sfor the mammalian (human) cell
line expression system and found very acceptable CG contents
and CAls as well as 0% tandem rare codons. Therefore, both
the designed MEV s can be expressed in the chosen expression
system and further tested in vivo as potential vaccine candidates
against SARS-CoV-2 infection.

Conclusion

We have designed and proposed two MEVs derived from
multiple CTL and HTL epitopes against SARS-CoV-2
(COVID-19). The chosen CTL and HTL epitopes show
significant sequence overlap with screened linear B cell epitopes.
The shortlisted CTL and HTL epitopes were used to design
CTL and HTL MEVs. Tertiary models of both the generated
CTL and HTL MEV's were shown to contain potentia linear
and discontinuous B cell epitopes as well as potential INFy
epitopes. Therefore, the designed MEV's are predicted to be
capable of diciting humoral and cellular immune responses.
Because Ov-ASP-1 binds to APCs and triggers
pro-inflammatory cytokine production via TLR3, truncated
Ov-ASP-1 was used as an adjuvant at the N termini of both the
CTL and HTL MEV models. The molecular interactions of the
chosen overlapping clustering epitopes with their respective
HLA allele binderswere validated by molecular docking studies.
The molecular interactions of the chosen CTL epitopes with
the TAP transporter cavity were also analyzed. Analysis of the
average world popul ation coverage by both the shortlisted CTL
and HTL epitopes combined revealed coverage of 96.10% of
theworld population. The molecular interaction analysis of both
the CTL and HTL MEVs with the immunoreceptor TLR3
showed very convincing structural fitting of the MEV sinto the
ectodomain of the TLR3 cavity. This result was further
confirmed by molecular dynamics simulation studies of both
the CTL-MEV-TLR3 and HTL-MEV-TLR3 complexes,
indicating tendencies toward stable molecular complex
formation of both MEV's with TLR3. cDNAs for both MEV's
were generated considering codon-biasing for expression in a
mammalian (human) host cell line. Both cDNAswere optimized
with respect to their GC content and zero tandem rare codons
toincreasetheir possihility of high expression inthe mammalian
host cell line (human). Therefore, for further studies, both the
designed CTL and HTL MEV s could be cloned, expressed, and
tested for in vivo validation and animal trialsas potentia vaccine
candidates against SARS-CoV-2 infection.
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Abstract

Background: The RNA genome of the emerging novel coronavirusis rapidly mutating, and its human-to-human transmission
rate is increasing. Hence, temporal dissection of their evolutionary dynamics, the nature of variations among different strains,
and understanding the single nucl eotide polymorphismsin the endemic settings are crucia . Delineating the heterogeneous genomic
constellations of this novel virus will help us understand its complex behavior in a particular geographical region.

Objective: Thisisacomprehensive analysis of 95 Indian SARS-CoV-2 genome sequences available from the Global Initiative
on Sharing All Influenza Data (GISAID) repository during the first 6 months of 2020 (January through June). Evolutionary
dynamics, gene-specific phylogeny, and the emergence of the novel coevolving mutationsin 9 structural and nonstructural genes
among circulating SARS-CoV-2 strains across 12 different Indian states were analyzed.

Methods: A total of 95 SARS-CoV-2 nucleotide sequences submitted from Indiawere downloaded from the GISAID database.
Molecular Evolutionary Genetics Analysis, version X software was used to construct the 9 phylogenetic dendrograms based on
nucleotide sequences of the SARS-CoV-2 genes. Analyses of the coevol ving mutations were done in comparison to the prototype
SARS-CoV-2 from Wuhan, China. The secondary structure of the RNA-dependent RNA polymerase/nonstructural protein NSP12
was predicted with respect to the novel A97V mutation.

Results: Phylogenetic analysesrevealed the evolution of “ genome-type clusters’ and adaptive selection of “L"-type SARS-CoV-2
strains with genetic closeness to the bat severe acute respiratory syndrome-like coronaviruses. These strains were distant to
pangolin or Middle East respiratory syndrome-related coronavirus strains. With regard to the novel coevolving mutations, 2
groups have been seen circulating in India at present, the “major group” (66/95, 69.4%) and the “minor group” (21/95, 22.1%) ,
harboring 4 and 5 coexisting mutations, respectively. The “major group” mutations fall in the A2a clade. All the minor group
mutations, except 11083G>T (L 37F, NSP6 gene), were unigque to the Indian isolates.

Conclusions:  This study highlights the rapidly evolving SARS-CoV-2 virus and the cocirculation of multiple clades and
subclades. This comprehensive study is a potential resource for monitoring the novel mutations in the viral genome, interpreting
changesin viral pathogenesis, and designing vaccines or other therapeutics.

(JMIR Bioinformatics Biotechnol 2020;1(1):€20735) doi:10.2196/20735

KEYWORDS

SARS-CoV-2; Indian isolates; phylogeny; nucleotide homology; novel coevolving mutations; NSP12/RdRP secondary structure;
genetics; virus; evolution; mutation; COVID-19; genome; epidemiology; infectious disease
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Introduction

The COVID-19 pandemic caused by the novel SARS-CoV-2
was initially reported from Wuhan, Chinain December 2019,
but it spread across the world within 3 months [1]. As of July
21, 2020, more than 14.9 million people have been found to be
infected by SARS-CoV-2, with a death toll of approximately
615,939 in more than 210 countries. Phylogenetic analyses
reveal that SARS-CoV-2 clusters within the subgenus
Sarbecovirus under the genus Betacoronavirus and has probably
undergone zoonotic transmission from the bats through the
possible intermediate host Malayan pangolins, culminating
among humans [2]. The positive sense, single-stranded RNA
genome of SARS-CoV-2 is continuously mutating and
generating multiple clades within a short time span (December
2019 to June 2020). Hence, there is a need to dissect the
complex evolutionary characteristics of this novel coronavirus,
identifying the single nucleotide polymorphisms (SNPs) and
other mutations among strains circulating across different parts
of the world. Previous reports on the genetic and evolutionary
dynamics of the SARS-CoV-2 virus have tried to deduce the
mode of transmission that this virus made its way into humans
from bats during the early phase of the pandemic, but many
guestions remain unanswered even though more sequence data
has been made available. Therefore, studying the heterogeneous
genomic constellations within specific geographical settings
will help to understand its complex epidemiology and formulate
region specific strategiesto curb its spread and severity.

Thefirst 3 cases from Indiawith travel history to Wuhan were
reported in Kerala during January 2020 [3]; subsequently,
4,02,529 active cases, 724,577 recovered cases, and 28,084
deaths have been officially recorded in Indiaas of July 21, 2020,
8 AM India Standard Time GMT +5:30 [4]. India ranks third
worldwide according to the number of COVID-19 infections
and is geographically vulnerable to this novel virus, as it
accounts for amost 6% of global and 3.5% of
COVID-19-attributable mortality. In spite of high population
density, poor hygiene conditions, and an overburdened health
care system, the proportion of the total infected population is
much lower when compared to other western countries, that is,
0.05% in India versus 0.87% in the United States, 0.73% in
Brazil, 0.46% in Russia, and 0.4% in Italy. Though the average
death rate due to SARS-CoV-2 infection in India (2.46%) is
comparable to that of world (eg, the United States 3.88%,
Europe 6.6%), 50% of deathsin Indiaare attributableto the age
group 40-64 years [5]. Thus, to understand the phylodynamics
of circulating strainsin India, this study wasinitiated to analyze
the complete viral genome sequences submitted in the Global
Initiative on Sharing All Influenza Data (GISAID) [6] from 95
SARS-CoV-2 representative strains circulating across 12
differentially affected states within India. To elucidate the
possible ancestry, gene-wise phylogeny of these Indian strains
has been deciphered with respect to other isolates reported from
Europe, the United States, and China along with coronavirus
strains belonging to other genera infecting humans and other
animal hosts. The novel coevolving mutationsamong the Indian
SARS-CoV-2 strains have al so been analyzed.
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Through this genome analyses and phylogenetic approach, we
have attempted to focus on the natural evolution of
SARS-CoV-2 from its existing ancestors within the zoonotic
reservoir. Furthermore, analyzing the novel mutations
accumulated within the viral genome over the period with
reference to the Wuhan strains (clade O) will underscore their
impact on the structure and function of viral proteins.

Methods

Sequence Mining

A total of 95 SARS-CoV-2 nuclectide sequences submitted
from India from January to June 2020 were downloaded from
the GISAID database for phylogenetic analyses and screening
of novel mutations. Several other reference gene sequences of
SARS-CoV-2 as well as other types of coronaviruses were
downloaded from the GenBank database submitted from several
other countriesfor dendrogram construction and further lineage
analyses.

Phylogenetic Analyses and Screening of M utations

Nine phylogenetic dendrograms were constructed with respect
to 2 structural genes (spike and nucleocapsid) and 7
nonstructural genes (nonstructural protein [NSP]2, NSP3, NSP4,
NSP6, NSP7, NSP8, and NSP12). Multiple sequence alignment
for all the respective set of gene sequences was done using
MUSCLE v3.8.31 (drive5). Amino acid sequenceswere deduced
through TRANSEQ (EMBL-EBI). Phylogenetic dendrograms
were constructed by Molecular Evolutionary Genetics Analysis,
version X (MEGAX), using the maximum-likelihood statistical
method (at 1000 bootstrap replicates) and using the best fit
nucleotide substitution models for each dendrogram. The best
fit models were determined through model testing parameter
of MEGAX. Different novel coexisting mutationsin the Indian
strains were identified and analyzed in comparison to the
prototype SARS-CoV-2 strain from Wuhan
(MN908947.3/SARS-CoV-2 Wuhan-Hu-1).

Secondary Structure Prediction of RNA-Dependent
RNA Polymerase Having A97V Mutation

We used the Chou and Fasman Secondary Structure Prediction
(CFSSP) online server to predict the secondary structure of
RNA-dependent RNA polymerase (RARP)/NSP12 with novel
A97V mutation [7].

Results

Phylogenetic Analysis of the Structural and
Nonstructural Genes

Spike Gene

Among the 95 Indian study isolates, 93 strains clustered among
themselves within the same lineage of Betacoronavirus
SARS-CoV-2in 3 different subclusters (A=53, B=12, and C=28
strains), while 2 strains, 1 from Telangana (EPI_ISL_ 431101)
and the other from Maharashtra (EPI_ISL_ 479550), extruded
out separately, closeto subcluster C containing the clade-specific
strains Al, A3, B1, B2, B4-1, and B4-2 in the phylogenetic
dendrogram for the spike (S) gene. The prototype SARS-CoV-2
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strain belonging to the @) clade
(MN908947.3/SARS-CoV-2/HUMAN/CHN/Wuhan-Hu-1/2019)
was present in the same lineage with the Indian strains within
subcluster C (>99% identity). Subcluster A comprised of the
clade-specific A2 and A2astrains along with atiger strain from
the New York zoo and another carnivorous mammal, mink
SARS-CoV-2. No specific pattern of tempora distribution of
strains was observed among the 3 subclusters. All the
representative | ndian strains had 99%-100% nucl eotide sequence
homol ogy among themselves. The Indian strainshad 92.8%-93%
and 83.5% homology with Bat (EPI_ISL_402131 /COV /BAT
/YUNNAN /RATG13 /2013) and Pangolin coronavirus
(EPI_ISL_410540/COV /PANGOLIN /GUANGXI / P5L/2017),
respectively. Homology was much less (75.8%-76.7%) with
other bat severe acute respiratory syndrome (SARS)-ike
coronavirusstrains (eg, MG772933.1/ SARS-LIKE-COV/BAT/
BAT-SL-COVZC45 12017 and MG772934.1/
SARS-LIKE-COV/ BAT/ BAT-SL-COVZXC21 /2015), while
Middle East respiratory syndrome—related coronavirus
(MERS-CoV; KJ713299.1 /MERS-COV /CAMEL /SAU
/KSA-CAMEL-376 /2013 and KU308549./MERS-COV/
HUMAN/ KOR/ SEOUL-SNU1-035/ 2015) were distantly
related to the Indian SARS-CoV-2 strains (52.5%-52.9%
identity; Multimedia Appendix 1).

Nucleocapsid Gene

The phylogenetic dendrogram for the nucleocapsid (N) gene
revealed that out of 95 Indian study isolates, 92 strains clustered
within the same lineage of Betacoronavirus SARS-CoV-2in 3
different subclusters (A=33 strains, B=47 strains, and C=12
strains), while 3 strains from Tamil Nadu (EPI_ISL_ 458040),
Gujarat (EPI_ISL_ 458107), and Delhi (EPI_ISL_ 435111)
extruded out separately, closeto subcluster C strains. Subcluster
A comprised of strains from the earlier 3 months (January,
February, and March), while subcluster B contained strains
from the later 3 months. Subcluster C had mixed strains. The
clade-specific strains (A1, Ala, A2, A2a, A5, B1, and B4-1) as
well as the prototype SARS-CoV-2 stran O clade
(MN908947.3/SARS-CoV-2/HUMAN/CHN/Wuhan-Hu-1/2019)
clustered near subcluster B, while B4-2, A3, and B2 clade strains
were closeto subcluster C. All the representative Indian strains
had >99.8% nuclectide identity among themselves as well as
with the different clade-specific strains. The Indian strains had
91%-97% sequence identity with bat coronaviruses
(EPI_ISL_402131 /COV/BAT /YUNNAN /RATG13 /2013,
MG772933.1 /SARS-LIKE-COV /BAT /BAT-SL-COVZC45
/2017, and MG772934.1 /SARSLIKE-COV /BAT/
BAT-SL-COVZXC21/ 2015) and 91% similarity with pangolin
strains (EPI_ISL_410540/COV /PANGOLIN/GUANGXI/ P5L
/2017). In contrast to bat strains, the MERS-CoV strains
(KJ713299./MERS-COV/CAMEL /SAU /KSA-CAMEL-376
/2013 and KU308549./MERS-COV/HUMAN /KOR
/SEOUL-SNU1-035/2015) were genetically distant to the Indian
SARS-CoV-2 strains (56.9%-57.3% identity; Multimedia
Appendix 2).

RNA-Dependent RNA Polymerase Gene (RARP/NSP12)

The phylogenetic dendrogram for the RARP/NSP12 gene
depicted that, among the 95 Indian study isolates, 93 strains
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clustered within the same lineage of Betacoronavirus
SARS-CoV-2 into 3 subclusters (A=64 strains, B=22 strains,
and C=7 dtrains). Two strains, one from Kerala (EPI_ISL
413523) and the other from Delhi (EPI_ISL_ 435111), were
placed distant to these 3 subclustersin the dendrogram and were
closeto Ala A2,A3,A5,B1, B2, B4-1, B4-2, and the prototype
O clade strains. Subcluster A strains clustered with the A2a
clade-specific strain while subcluster C clustered with A1. No
temporal specificity was observed among the 3 subcluster strain
distributions. All the Indian strains had >99.8% nucleotide
identity among themselves aswell asthe different clade-specific
strains. The prototype SARS-CoV-2 dtrain O  clade
(MN908947.3 /SARS-COV-2 /[HUMAN /CHN /Wuhan-Hu-1
/2019) was distant to all the 3 subclusters. The Indian strains
had 97.8% sequence homology with bat coronavirus
(EPI_ISL_402131 /COV /BAT /YUNNAN /RATG13/2013)
and 86.7%-88.6% similarity with both  pangolin
(EPI_ISL_410540/COV /PANGOLIN /GUANGXI/ P5L/2017)
and other bat SARS-like coronavirus strains (MG772933.1
/SARS-LIKE-COV /BAT /BAT-SL-COVZC45 /2017 and
MG772934.1 /SARS-LIKE-COV IBAT
/BAT-SL-COVZXC21/2015). MERS-CoV strains (KJ713299.1
/MERS-COV /CAMEL /SAU/ KSA-CAMEL-376/2013 and
KU308549.1 IMERS-COV /HUMAN /KOR
/SEOUL-SNU1-035/2015) were distantly related to the Indian
SARS-CoV-2 strains (68.1% identity; Multimedia Appendix
2).

NSP2, NSP3, NSP4, NSP6, NSP7, and NSP8 Genes

The dendrograms of all these 6 genes showed a similar pattern.
All the 95 Indian strains clustered in 2 subclusters (A=39 and
B=56 strains) within the Betacoronavirus lineage of
SARS-CoV-2. Principally, subcluster A strains were from the
first 3 months, whereas B contained strains from the next 3
months of 2020. Strains of subcluster A and B had 99.9%-100%
DNA homology among themselves. All the clade-specific strains
(A1, Ala, A2, A2a, A3, A5, B1, B2, B4-1, and B4-2) along
with the prototype SARS-CoV-2 strain clade O
(MN908947.3/SARS-CoV-2 /[HUMAN /CHN /Wuhan-Hu-1
/2019) clustered close to subcluster A (99.9% identity), except
NSP7 and NSP8 wherethe prototype clade O strain was present
within subcluster B strains. SARS-CoV-2 strainsisolated from
carnivorous mammals like mink and tiger also grouped close
to the subcluster A strains in al the dendrograms (99.9%
identity). Subcluster A and B strains revealed 95.4%-98.1%
nucleotide sequence similarity with bat coronavirus
EPI_ISL_402131 /COV /BAT /YUNNAN /RATG13 /2013,
while the pangolin-derived strain
EPI_ISL_410540/COV/PANGOLIN/GUANGXI/P5L/2017
showed less identity (83%-87.5%). MERS-CoV strains
NC_019843.3/MERS-COV/HUMAN/NLD/HCOV-EMC/2012
and KU740200.1 /MERS-COV /CAMEL /EGYPT
INRCE-NC163/2014 exhibited a significant phylogenetic
distance (only 49.6%-60.8% homology) from the Indian isolates
(Multimedia Appendicies 4-9).

L- and S-Type of SARS-CoV-2

SNPs at positions 8782 (NSP4 gene) and 28,144 (open reading
frame [ORF]8) showed complete linkage among the Indian
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isolates under study. At these two sites, 93 strains showed a
“CT” haplotype (designated as“L"” type as 728,144 fallsin the
codon position which encodes amino acid leucine in the 84th
position of ORF8 protein), while only 2 strains (1 from Kerala,
EPI_ISL_413523, and 1 from Delhi, EPI_ISL_435111) revealed
a“TC” haplotype (called as “S’ type as C28,144 falls in the
codon encoding serine at the 84th position of the ORF8 protein).

Analyses of Synonymous and Nonsynonymous
Mutations

The Common Mutationsin SARS-CoV-2 I ndian | solates

To explore the mutations among the 95 SARS-CoV-2 strains,
we performed in-depth sequence analyses both at the genome
level and at the corresponding amino acid level in different
proteins, especialy S glycoprotein, N protein, NSP2, NSP3,
NSP4, NSP6, NSP7, NSP8, and RARP/NSP12 with reference
to the prototype SARS-CoV-2 strain
(MN908947.3/SARS-CoV-2/HUMAN/CHN/Wuhan-Hu-1/2019).
Out of 95 samples, 2 (2.1%) were found to have no significant
“L"-type mutations (EPI_ISL_435111 and EPI_ISL_413523).
Out of 93 “L"-type samples, 6 (6.3%; EPI_ISL 481156,
EPI_ISL_476840, EPI_ISL_476023, EPI_ISL_458080,
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EPI_ISL_ 431101, and EPI_ISL_413522) harbored none of the
mutations and were wild-type-like. Mutational analysis of the
remaining 87 strains revealed circulation of two predominant
“groups,” namely, the “major group” and the “minor group,”
across India. The “major group,” which, of 95 isolates, was
comprised of 66 (69.4%), revealed 4 coexisting SNPs: 241C>T
in the five prime untrandated region (5 UTR), 3037C>T
(F106F) in the NSP3 gene, 14408C>T (P323L) in the NSP12
gene, and 23403A>G (D614G) in the S gene (Table 1). This
“major group” of SARS-CoV-2 was predominantly found to
circulate in regions like Delhi, Maharashtra, West Bengal,
Odisha, Telangana, and Gujarat. The other 21 (22.1%) samples,
which represent the “minor group,” harbored 5 coexisting
mutations: 23929C>T (Y 789Y) inthe Sgene, 28311C>T (P13L)
in the N gene, 6312C>A (T1198K) in the NSP3 gene,
11083G>T (L37F) in the NSP6 gene, and 13730C>T (A97V)
in the NSP12/RdRP gene (Table 2). Needless to say, the 5
coexisting mutations of the “minor group” and the 4 coexisting
mutations of the* major group” did not overlap among the same
SARS-CoV-2 strains. The “minor group” of SARS-CoV-2
predominated across Tamil Nadu (South) and Uttar Pradesh
(Central/North).
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Table 1. Single nucleotide polymorphisms associated with the major group SARS-CoV-2 strains (n=66) across India from January to June 2020.2

State and acces-  Spikeglycoprotein (21,563-25384  RqrP®  NSPS3 protein (2720-8554 5’ NE protein (28,274-29,533 ntg/419 ~ NSP2

sion number nts/1273 amino acids) pro-  nts/1945 amino acids) UTRY  amino acids) pro-
tein (1-265 tein
(1342 o (806-
16,236 coding 2719
nts'932 /638
amino amino
acids) acids)

Q@R Dald® G D2oaD Pa3ll FloeK AgoD Kiak™ HCT gio4 " RGXKR’ R4AIRP T39319 T85!

Delhi (n=13)
EPI_ISL_ 0 0 0 0

435061,
EPI_ISL_

435062,
EPI_ISL_

482665
(n=3)

EPI_ISL_ 0 0 O O 0
482498
(n=1)

EPI_ISL_ O O a] O O 0
435065-

EPI_ISL_

435069

(n=5)

EPI_ISL_ 0 0 O O O
435070,

EPI_ISL_

435071

(n=2)

EPI_ISL_ O a] O O O
435063,

EPI_ISL_

435064

(n=2)

Tamil Nadu (n=4)

EPI_ISL_ O a] O O
458032,

EPI_ISL_

458033,

EPI_ISL_

458044,

EPI_ISL_

458040

(n=4)

Maharashtra (n=13)
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State and acces-  Spikeglycoprotein (21,563-25384  RqrP®  NSPS3 protein (2720-8554 - N protein (28,274-29,533 ntg419 ~ NSP2

sion number nts'1273 amino &cids) pro-  nts/1945 amino acids) UTRY  amino acids) pro-
tein (1-265 tein
(1342 ey (806-
16,236 coding 2719
92 nts’638
amino ami no
acids) acids)

QiR Dala® G DD P23l FloeA¢ AgD Kizdk™ ACT qo4 " REOKR R4IRP T39319 TS5l

EPI_ISL_ 0 0 O 0 O
479493,
EPI_ISL_
479510,
EPI_ISL_
479553,
EPI_ISL_
479533,
EPI_ISL_
479538,
EPI_ISL_
479497,
EPI_ISL_
479550,
EPI_ISL_
479554,
EPI_ISL_
479557,
EPI_ISL_
479560,
EPI_ISL_
479562,
EPI_ISL_
479571,
EPI_ISL_
479564
(N=13)

West Bengal (n=5)

EPI_ISL_ 0 0 O O
430466,

EPI_ISL_

430467

(n=2)

EPI_ISL_ O a] O O O
430465
(n=1)

EPI_ISL_ 0 0 0 O O O
430468,

EPI_ISL_

430464

(n=2)

Gujarat (n=11)

EPI_ISL_ 0 0 O O
458107,

EPI_ISL_

483878,

EPI_ISL_

4768609,

EPI_ISL_

469036,

MT576031

(n=5)
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State and acces-

sion number

Spikeglycoprotein (21,563-25,384  R4RP®  NSP°3 protein (2720-8554 S'- N protein (28,274-29,533 ntg419 ~ NSP2

nts/1273 amino acids)

iR Dala® G DD

pro-
tein
(13442
16,236
nts'932
amino
acids)

pP323Ll

nts/1945 amino acids)

F106F¢ AguD! KiaK™

UTRY  amino acids) pro-
(1-265 Egge
rgihon: -
coding 2719
nts'638

amino
acids)

2CT o4 REKR® R41RP T39319 T85I"

EPI_ISL_
461484,
EPI_ISL_
476864
(n=2)

EPI_ISL_
471637
(n=1)

EPI_ISL_
475058
(n=1)

EPI_ISL_
426414,
EPI_ISL_
426415
(n=2)

Odisha (n=7)

Madhya Pradesh (n=2)

Telangana (n=5)

EPI_ISL_
481154,
EPI_ISL_
481157
(n=2)

EPI_ISL_
481115,
EPI_ISL_
463078,
EPI_ISL_
481177,
EPI_ISL_
481180,
EPI_ISL_
481186
(n=5)

EPI_ISL_
476884,
EPI_ISL_
476842
(n=2)

EPI_ISL_
458080,
EPI_ISL_
431101
(n=2)

EPI_ISL_
431117
(n=1)

EPI_ISL_
471588
(n=1)

O

O

O

O

O

O g
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State and acces-  Spikeglycoprotein (21,563-25384  RqrP®  NSPS3 protein (2720-8554 - N protein (28,274-29,533 ntg419 ~ NSP2

sion number nts'1273 amino &cids) pro-  nts/1945 amino acids) UTRY  amino acids) pro-
tein (1-265 tein
R o (806-
16,236 coding 2719
nts'932 risl638
amino amino
acids) acids)

QiR Dala® G DD P23l FloeA¢ AgD Kizdk™ ACT qo4 " REOKR R4IRP T39319 TS5l

EPI_ISL_ 0 0 O O O
471629
(n=1)

Karnataka (n=5)

EPI_ISL_ 0 0 O O
477207,

EPI_ISL_

477250

(n=2)

EPI_ISL_ O O a] O O 0
477255,

EPI_ISL_

477237,

477239

(n=3)

Uttar Pradesh (n=1)

EPI_ISL_ 0 0 O O
435060
(n=1)

8\l utations were analyzed with compared to Wuhan-Hu-1 (MN908947.3).
PRARP: RNA-dependent RNA polymerase.
°NSP: nonstructural protein.

d5' UTR: five prime untranslated region.
N: nucleocapsid.

122374A>G.

923403A>G.

N24933G>T.

122444C>T.

114408C>T.

K3037C>T.

'5700C>A.

M6466A>G.

N28854C>T.

028881-28883 GGG>AAC.

P28396G>A.

929451C>T.

r1059C>T
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Table 2. Single nucleotide polymorphisms associated with the minor group SARS-CoV-2 strains (n=21) across | ndia during January to June 2020.2

State and accession number Spikeglycoprotein  RyrpPP protein NC protein NSPd3 protein (2720-8554 N_SPG pro-
(21563-25384  (13442-16236  (28,274-29533  nts/1945 amino acids) tein (10,973-
nty'1273amin0 ptg/932 amino nts/419 amino 11,842
acids) acids) acids) nts/290
amino acids)
Y 789Y A97V (13730C>T) P13L (28311C>T) S1197R T1198K L37F
(23929C>T) (6310C>A) (6312C>A) (11083G>T)
Tamil Nadu (n=8)
EPI_ISL_435093- O O O O O
EPI_1SL_435096,
EPI_ISL_435084,
EPI_ISL_435087 (n=6)
EPI_ISL_435091, O O O O O O
EPI_ISL_435092 (n=2)
Maharashtra (n=1)
EPI_ISL_435077 (n=1) a 0 0 a O
Odisha (n=2)
EPI_ISL_463017 (n=1) a 0 a O
EPI_ISL_463010 (n=1) O O
Madhya Pradesh (n=1)
EPI_ISL_476848 (n=1) O O O O O
Telangana (n=1)
EPI_ISL_431103 (n=1) O O O O O
Karnataka (n=4)
EPI_ISL_486399, O O O O O
EPI_ISL_486394,
EPI_ISL_486408,
EPI_ISL_MT396248 (n=4)
Uttar Pradesh (n=3)
EPI_ISL_435100, a 0 0 a O
EPI_ISL_435099,
EPI_ISL_435082 (n=3)
Bihar (n=1)
EPI_ISL_435112 (n=1) a 0 0 a O

@ utations were analyzed with compared to Wuhan-Hu-1 (MN908947.3).

PRARP: RNA-dependent RNA polymerase.
®N: nucleocapsid.
dNSP: nonstructural protein.

The Unigue Mutationsin SARS-CoV-2 Indian | solates

In addition to 23403A>G (D614G), 3 uncommon mutations,
23374A>G (Q271R), 24933G>T (G1124V), and 22444C>T
(D294D), were al so observed in the S gene of the “major group”
(Table 1). Out of the 67 isolates of the major group, 28 revealed
4 novel mutations; 28854C>T  (S194L; n=13),
28881-28883GGG>AAC (R203K and G204R; n=13), and
coevolving mutation 29451C>T (T3931) and 28395G>A (R41R;
n=2) inthe N gene (Table 1). Intriguingly, 28854C>T (S194L)
in the N gene was found to coevolve with the 22444C>T
(D294D) mutation in the S gene of 11 samples in the major
group (Table 1). We also observed 1059T>A (T85I) change
within the NSP2 gene (n=2) and 6466A>G (K1249K) change

http://bioinform.jmir.org/2020/1/€20735/

inthe NSP3 gene (n=2). With the 3 samples of the minor group,
6310C>A (S1197R) was found to be associated. No mutations
were found within the NSP7 and NSP8 genes.

Effect of Missense Mutation A97V on the Secondary
Structure of NSP12/RdRP

RdRPisthe crucial enzyme for both viral RNA replication and
maintenance of genomic fidelity. Thus, any significant change
in RARP structure could affect its functions, leading to an
increase in the rate of mutagenesis in the genome. We have
identified 2 missense mutations in the RARP protein: P323L
associated with the “major group” isolatesand A97V associated
with the “minor group” isolates. The effect of P323L on the
secondary structure of RARP has already been described [8].
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Therefore, we analyzed the effect of novel mutation A97V on
the secondary structure of RARP by using the CFSSP server.
The A97V mutation resulted in substitution of a-helixes at
positions 94, 95, and 96 within the B-sheets in the RARP
secondary structure, which may alter its tertiary conformation
and affect functionality (Multimedia Appendix 10).

Discussion

Principal Findings

The molecular and genetic characterization of SARS-CoV-2
pandemic strains worldwide has been studied by severa
scientific groups based on whole-genome sequencing [9,10].
Through this comprehensive analysis, we aimed to closely
investigate the ancestry, evolutionary dynamics, accumulation
of rapid mutations, and cross-genetic trangation among the
emerging SARS-CoV-2 gtrainsacross India. Rapid accumulation
of saveral point mutations across the genome of SARS-CoV-2
sinceitsorigin isaprime driving force behind the evolution of
different monophyletic clades. Asdepicted through the different
phylogenetic dendrograms in our study, a monophyletic clade
of all SARS-CoV-2 strains was seen with the prototype strain
(Wuhan IME-WH01/2019). Clustering of al the Indian isolates
with other SARS-CoV-2 strains reported worldwide
(99.8%-100% nucleotide sequence identity) suggests the
introduction of this virus in India was from several countries.
The clustering pattern of the prototype strain from Wuhan in
the phylogenetic dendrogram underscores the fact that China
might have served as the origin of this zoonotic virus, which
was eventually transmitted worldwide [11-13].

The origin of SARS-CoV-2 is sdtill undetermined, but
identification of itsintermediate host is much needed to prevent
further dissemination and interspecies transmission in the near
future. Hence, we initiated this study as one of thefirst in India
to decipher the gene-wise phylogenetics of SARS-CoV-2 strains
circulating in this endemic setting. The results depicted
genome-type clusters of the 95 Indian isolates, for the structural
genes S and N, and the nonstructural gene RARP/NSP12.
Clustering of the study isolates with different clade-specific
strains for different genes established the development of
genome-type clustering. Though variationsin DNA homology
exists with respect to each gene, a recent bifurcation of these
SARS-CoV-2 strains from the bat- and Malayan
pangolin—derived SARS-like coronavirusesis supposed to have
occurred, with a subsequent zoonatic transmission to humans,
as depicted through all 9 dendrograms. Moreover, the
SARS-CoV-2 strains were distant to MERS-CoV and other
human coronaviruses. This conclusion goes at par with other
phylogenetic studies establishing bat and pangolins as the
proximal origin of SARS-CoV-2 [14-16].

Our study highlighted the low sequence similarity of the Sgene
of the Indian study isolates with some bat-derived strains like
bat-SL-CoVZC45 and bat-SL-CoVZXC21, while maximum
homology was noticed with bat SARS-like coronavirus
(SARSr-CoV/RaT G13). This observation was consistent with
a report where the S gene of SARS-CoV-2 gtrains circulating
within China revealed the lowest sequence homology (nearly
70%) with bat strains (like SL-CoVZC45 and SL-CoVZXC21),
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in comparison to 96.2% identity to bat SARS-related coronavirus
(SARSr-CoV/RaT G13). The RNA-binding domain within the
S1 subunit of the S gene of al Indian SARS-CoV-2 and
pangolin-derived strains were found to be evolutionarily
conserved and phylogenetically much closer than bat RaTG13,
underscoring the familiar mode of pathogenesis between the
two. The Indian SARS-CoV-2 isolates too possess a polybasic
cleavage site (RRAR; amino acid position 682-685) at the
junction of S1 and S2 subunits of the S protein as reported by
Andersen et a [14]. SARS-CoV-2 strains have been categorized
into two major groups or types characterized by two SNPs at
positions 8782 (NSP4 gene) and 28,144 (ORF8) that reveal
complete linkage [17]. Among our Indian study isolates,
frequency of the L-type (CT haplotype) was much higher (93/95,
97.9%) to the S-type (TC haplotype; 2/95, 2.1%), indicating
the predominance of L-type over S-type in this geographical
region.

Convoluted mutational analysis also revealed cocirculation of
2 groups of mutated SARS-CoV-2 strainsin India. The “major
group” of SARS-CoV-2 strains (66/95, 69.4%) represents the
AZ2a clade reported previously from Africa, South America,
Oceania, and South and West Asia, comprising of strains with
coevolving mutations like 241 C>T (5 UTR), 3037 C>T
(F106F, NSP3), 14403 C>T (P323L, RARP/NSP12), and 23403
A>G (D614G, S glycoprotein) [18-20]. Certain strains in the
“major group” displayed 22374A>G (Q271R), 24933G>T
(G1124V), and 22444C>T (D294D) changes in the S gene,
which were unique to India. Missense mutations, Q271R and
G1124V in the S protein, were found to reside around the
N-linked glycosylation sites 282 and 1134, respectively, and
these might affect the protein function [21]. It was not surprising
to observe the triple site mutation 28881-28883 GGG>AAC
(R203K and G204R) in the N gene of 13 SARS-CoV-2 strains
of the “major group.” This has previously been reported from
Mexico, South America, Australia, New Zealand, and a few
Asian countries [22]. The 203/204 region is part of the SR
dipeptide domain of the N protein
(SRNSSRNSTPGSSRGTSPARMA) and changesin arginine at
position 203 to lysine; and glycine at position 204 to arginine
resulted in the insertion of alysine residue between serine and
arginine (SRNSSRNSTPGSSKRTSPARMA), which might
interfere with the phosphorylation at serine residue required for
normal functioning of the N protein [23]. Thismutation demands
particular attention as reduced pathogenicity has been observed
previously in SARS-related coronavirus on deletion of the SR
domain [24]. Mutations observed in the NSP3 gene at positions
6310 C>A (S1197R), 7392 C>T (P1558L), and 6466 A>G
(K1249K) were completely unique to Indian strains. Few
infrequent mutations at position 1059 T>A (T85l) in NSP2 and
8782 C>T (S76S) in NSP4 observed here have aso been
reported to be prevalent in other countries [19,22,25].

The“minor group” of Indian SARS-CoV-2 (21/95, 22.1%) was
comprised of strains with 5 coevolving mutations; 13730C>T
(A97V, RARP/NSP12), 23929C>T (Y789Y, S), 28311C>T
(P13L, N), 6312C>A (T1198K, NSP3), and 11083G>T (L37F,
NSP6). All the “minor group” mutations were novel among the
Indian isolates, except 11083G>T (L37F, NSP6), which was
previously reported as an infrequent mutation from Australia,
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Japan, Netherlands, and some other European countries[18,26].
The L37F mutation strongly implies positive selection toward
evolution of Betacoronaviruses, indicating a possible origin of
the“minor group” out of this positive selection, with subsequent
acquisition of mutations among the strains already harboring
the 11083G>T change [25,26]. The interaction of NSP6 with
NSP3 and NSP4 has been described to be essential for the
formation of double membrane vesicles [25,26]. Hence, it is
interesting to note the presence of a coexisting mutation 6312
C>A (T1198K) in NSP3 of the “minor group” strains, though
the significance of this coexistence (L37F and T1198K) in
context to the NSP6-NSP3 interaction can only be confirmed
through association studies. The functional accuracy of RARP
is challenged due to the presence of the 13730 C>T (A97V)
change, which was predicted to have significant effect on the
secondary structure of RARP[8]. In addition, A97V wasfound
to be located in the nidovirus RdRP-associated nucleotidyl
transferase domain whose function remains unknown [27]. The
P13L mutation islocated in the intrinsically disordered region
of the N protein and might affect RND-binding activity of the
N-terminal domain and C-terminal domain of the N protein
[28,29].

Any significant mutation in the RARP/NSP12 protein might
alter replication machinery, thereby compromising the fidelity
of virah RNA replication and subsequent accumulation of
plausible novel mutations. The missense mutation 14408C>T
(P323L) in RARP was first observed in Italy (Lombardy) in
February 2020. Few strains from Europe and North America
since February 2020 have shown the emergence of mutations
like 3037C>T (F106F, NSP3), 23403A>G (D614G), and
28881-28883GGG>AAC (R203K and G204R, N) in the
SARS-CoV-2 genome harboring the 14408C>T (P323L)
mutation within the RARP gene, suggesting a probable
association or coexistence of 14408C>T (P323L) and the
emerging higher number of novel point mutations compared to
viral genomes from Asia [30]. Therefore, we can assume that
two mutations, 14408C>T (P323L) and 13730C>T (A97V),
which were found to have significant influence on the secondary
structure of RARP, could play key roles in the simultaneous
establishment of “two groups’ of SARS-CoV-2 with several
characteristic“ co-evolving mutations’ in India (Asia). However,
this needs to be validated experimentally. A recent study
reported that the frequency of mutations within the
SARS-CoV-2 genome varies in different geographical areas,
as SARS-CoV-2 gene sequences from Europe and North
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Americapresent an overwhel ming mutation frequency compared
to that of Asia. Their study identified few recurrent mutations
among isolates from Europe that were not detected among the
viruses circulating within Asian countries, such as 3037C>T
(F106F/NSP3 gene), 14408C>T (P323L/RdRP gene),
28881-28883GGG>AAC (R203K and G204R/N gene), and
23403A>G (D614G/S gene) [30]. In contrast, our analyses
revealed that all these mutations accumulated over time beyond
Europe and were profoundly seen among the “major group” of
SARS-CoV-2 strains circulating across India (Asia).

The free availability of genome sequences in the publicly
avalable servers like National Center for Biotechnology
Information and GISAID hasrevolutionized the genome studies,
resulting in continuous monitoring of mutations, recombination
events, devel opment of molecular diagnostics, identification of
vaccine strains, etc. The ongoing deadly pandemic requires
recording the compl ete patient metadata along with full genome
sequences of the SARS-CoV-2 strains for better understanding
of the epidemiology and virulence of this virus. Exploiting
newer technologies that could help in recording additional
information such as specific disease traits (comorbidity,
respiratory scores, essential blood parameters), treatment,
requirement of hospitalization or outpatient treatment, treatment
outcome, life-threatening complication, or mortality in addition
to the full viral genome sequences. This would also help in
geographical region-based decisions regarding treatment
modalities as well as inclusion of highly virulent subtypes of
strains in vaccine formulations.

Conclusion

India harbors a greater risk of community transmission of
COVID-19 due to high population density, a large population
below the poverty line, and overburdened health care facilities.
Hence, stringent surveillance and monitoring of the vira
epidemiology and genetic diversity of a novel virus can pave
way for better health care strategies and vaccine designing. This
study provides comprehensive anaysis of the ancestry,
evolutionary dynamics, clade-specific genetic variations, as
well as development of unique coevolving mutations among
SARS-CoV-2 dtrains circulating across different regions in
India. Owing to the lack of patient metadata, theimpact of novel
mutations on the clinical outcome or the differencein virulence
of the two distinct groups of circulating strains in India could
not be determined.
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Multimedia Appendix 1

Molecular phylogenetic analysis by the maximum likelihood method. Phylogenetic dendrogram based on nucleotide sequences
of S gene of SARS-CoV-2 strains circulating in India during early 2020, with other known strains of respective genotype. The
representative Indian strains have been marked with asolid circle. The scale - bar was set at 0.1 nucleotide substitutions per site.
Bootstrap values of lessthan 70% are not shown. The best fit model, which was used for constructing the phylogenetic dendrogram,
was the general time reversible model with gamma distribution having invariant sites (GTR+G+l). S: spike.
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Multimedia Appendix 2

Molecular phylogenetic analysis by maximum likelihood method. Phylogenetic dendrogram based on nucleotide sequences of
N gene of SARS-CoV-2 strains circulating in India during early 2020, with other known strains of respective genotype. The
representative Indian strains have been marked with a solid circle. Scale - bar was set at 0.1 nucleotide substitutions per site.
Bootstrap values of lessthan 70% are not shown. The best fit model, which was used for constructing the phylogenetic dendrogram,
was the general time reversible model with gamma distribution having invariant sites (GTR+G+l). N: nucleocapsid.
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Multimedia Appendix 3

Molecular phylogenetic analysis by maximum likelihood method. Phylogenetic dendrogram based on nucleotide sequences of
RARP/NSP12 gene of SARS-CoV-2 strainscirculating in Indiaduring early 2020, with other known strains of respective genotype.
The representative Indian strains have been marked with asolid circle. Scale - bar was set at 0.1 nucleotide substitutions per site.
Bootstrap values of lessthan 70% are not shown. The best fit model, which was used for constructing the phylogenetic dendrogram,
wasthe general timereversible model with gammadistribution (GTR+G). NSP12: nonstructural protein 12; RARP: RNA-dependent
RNA polymerase.
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Multimedia Appendix 4

Molecular phylogenetic analysis by maximum likelihood method. Phylogenetic dendrogram based on nucleotide sequences of
the NSP2 gene of SARS-CoV-2 strains circulating in India during early 2020, with other known strains of respective genotype.
The representative Indian strains have been marked with asolid circle. Scale - bar was set at 0.1 nucleotide substitutions per site.
Bootstrap values of lessthan 70% are not shown. The best fit model, which was used for constructing the phylogenetic dendrogram,
was the general time reversible model with gamma distribution (GTR+G). NSP2; nonstructural protein 2.
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Multimedia Appendix 5

Molecular phylogenetic analysis by maximum likelihood method. Phylogenetic dendrogram based on nucleotide sequences of
the NSP3 gene of SARS-CoV-2 strains circulating in India during early 2020, with other known strains of respective genotype.
The representative Indian strains have been marked with asolid circle. Scale - bar was set at 0.1 nucleotide substitutions per site.
Bootstrap values of lessthan 70% are not shown. The best fit model, which was used for constructing the phylogenetic dendrogram,
was the General Time Reversible model (GTR). NSP3: nonstructural protein 3.
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Multimedia Appendix 6

Molecular phylogenetic analysis by maximum likelihood method. Phylogenetic dendrogram based on nucleotide sequences of
NSP4 gene of SARS-CoV-2 strains circulating in India during early 2020, with other known strains of respective genotype. The
representative Indian strains have been marked with a solid circle. Scale - bar was set at 0.1 nucleotide substitutions per site.
Bootstrap values of lessthan 70% are not shown. The best fit model, which was used for constructing the phylogenetic dendrogram,
was the general time reversible model having invariant sites (GTR+1). NSP4: nonstructural protein 4.
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Multimedia Appendix 7

Molecular phylogenetic analysis by maximum likelihood method. Phylogenetic dendrogram based on nucleotide sequences of
the NSP6 gene of SARS-CoV-2 strains circulating in India during early 2020, with other known strains of respective genotype.
The representative Indian strains have been marked with asolid circle. Scale - bar was set at 0.1 nucleotide substitutions per site.
Bootstrap values of lessthan 70% are not shown. The best fit model, which was used for constructing the phylogenetic dendrogram,
was the Tamura-3 model having invariant sites (T92+1). NSP6: nonstructural protein 6.
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Multimedia Appendix 8

Molecular phylogenetic analysis by maximum likelihood method. Phylogenetic dendrogram based on nucleotide sequences of
NSP7 gene of SARS-CoV-2 strains circulating in India during early 2020, with other known strains of respective genotype. The
representative Indian strains have been marked with a solid circle. Scale - bar was set at 0.1 nucleotide substitutions per site.
Bootstrap values of lessthan 70% are not shown. The best fit model, which was used for constructing the phylogenetic dendrogram,
was the Tamura-3 model with gamma distribution (T92+G). NSP7: nonstructural protein 8.

[PNG File, 4812 KB - bioinform_v1i1e20735_app8.png |

Multimedia Appendix 9

Molecular phylogenetic analysis by maximum likelihood method. Phylogenetic dendrogram based on nucleotide sequences of
NSP8 gene of SARS-CoV-2 strains circulating in India during early 2020, with other known strains of respective genotype. The
representative Indian strains have been marked with a solid circle. Scale - bar was set at 0.1 nucleotide substitutions per site.
Bootstrap values of lessthan 70% are not shown. The best fit model, which was used for constructing the phylogenetic dendrogram,
was the general time reversible model with gamma distribution having invariant sites (GTR+G+l). NSP8: nonstructural protein
8.
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Multimedia Appendix 10

Effect of A97V mutation on the secondary structure of RARP/NSP12 protein. (A) Secondary structure of RARP around 97th A
(Alanine) residue of Wuhan isolate of SARS-CoV-2. (B) Secondary structure of RARP around 97th V (Valine) residue of Indian
isolate of SARS-CoV-2. NSP12: nonstructural protein 12; RARP: RNA-dependent RNA polymerase.
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