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Abstract

Background: The mammalian immune system is able to generate antibodies against a huge variety of antigens, including
bacteria, viruses, and toxins. The ultradeep DNA sequencing of rearranged immunoglobulin genes has considerable potential in
furthering our understanding of the immune response, but it is limited by the lack of a high-throughput, sequence-based method
for predicting the antigen(s) that a given immunoglobulin recognizes.

Objective: As a step toward the prediction of antibody-antigen binding from sequence data alone, we aimed to compare a range
of machine learning approaches that were applied to a collated data set of antibody-antigen pairs in order to predict antibody-antigen
binding from sequence data.

Methods: Data for training and testing were extracted from the Protein Data Bank and the Coronavirus Antibody Database,
and additional antibody-antigen pair data were generated by using a molecular docking protocol. Several machine learning
methods, including the weighted nearest neighbor method, the nearest neighbor method with the BLOSUM62 matrix, and the
random forest method, were applied to the problem.

Results: The final data set contained 1157 antibodies and 57 antigens that were combined in 5041 antibody-antigen pairs. The
best performance for the prediction of interactions was obtained by using the nearest neighbor method with the BLOSUM62
matrix, which resulted in around 82% accuracy on the full data set. These results provide a useful frame of reference, as well as
protocols and considerations, for machine learning and data set creation in the prediction of antibody-antigen binding.

Conclusions: Several machine learning approaches were compared to predict antibody-antigen interaction from protein sequences.
Both the data set (in CSV format) and the machine learning program (coded in Python) are freely available for download on
GitHub.

(JMIR Bioinform Biotech 2022;3(1):e29404) doi: 10.2196/29404
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Introduction

DNA sequencing technologies are providing new insights into
the immune response by allowing for the large-scale sequencing
of rearranged immunoglobulin genes that are present in an

individual [1,2]. However, the applications of this approach are
limited by the lack of methods for determining the antigen(s)
to which a specific immunoglobulin (ie, one encoded by a given
sequence) binds. Individual immunoglobulins can be tested
experimentally at significant cost; however, the large-scale
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characterization of binding properties based on sequence data
is currently impossible.

A n t i g e n  b i n d i n g  i s  m e d i a t e d  b y  t h e
complementarity-determining regions (CDRs) of an antibody,
which are shared between heavy and light immunoglobulin
chains. Computational methods for predicting antibody-antigen
interactions that leverage structure prediction and docking have
been proposed [3]. However, the use of these methods requires
knowledge of the 3D structures of antibodies and antigens. The
direct prediction of antibody-antigen interactions from protein
sequences remains an open problem.

Machine learning–based tools, such as mCSM-AB [4] and
ADAPT (Assisted Design of Antibody and Protein Therapeutics)
[5], have had some success in predicting antibody interactions
in other contexts. mCSM-AB is a web server for predicting
changes in antibody-antigen affinity upon mutation, using
graph-based signatures. ADAPT is an affinity maturation
platform that interleaves predictions and testing, and it has been
previously validated on monoclonal antibodies.

A more general method for predicting whether an antibody will
bind to a protein antigen based on the antibody and antigen
sequences remains elusive, in part due to the lack of
comprehensive training data for the development of machine
learning models. This study is intended as a first step toward
this goal and aims to assemble a training data set from a range
of sources and evaluate the feasibility of applying machine
learning algorithms to identify the binding of antibody-antigen
pairs in this data set.

Methods

Data Set
Due to the scarcity of suitable antibody-antigen pairs,
computational docking was used to generate some of the data
in the training and testing data set. The ClusPro (Boston
University) [6-9] and Rosetta (RosettaCommons) [10-12] web
servers were used to create a data set of paired antibody-antigen
complexes for machine learning. Both ClusPro and Rosetta
were used for protein-protein molecular docking. Rosetta uses
the SnugDock (RosettaCommons) algorithm [10]. The
Swiss-PdbViewer (Swiss Institute of Bioinformatics) [13] was
used to examine the resulting protein complex structures.

A total of 50 antibody-antigen complexes were selected
randomly from the Protein Data Bank (PDB) [14]. The
antibody-antigen complexes were separated by using a Perl
script to produce PDB-formatted files as well as sequences for
antibodies and antigens. CDRs were located by using the Rosetta
antibody modeling web server. Antigens were docked with a
range of antibodies by using ClusPro (used only to determine
orientation), followed by Rosetta’s antibody docking program,
SnugDock. In order to keep computation times manageable,
not all antibodies were docked. Instead, 10 to 14 antibodies
were randomly selected to be docked with each antigen in order
to find the best orientation. The resulting complexes were
submitted to the Rosetta SnugDock web server in order to
calculate the best interface score. This produced structures for
between 10 and 14 complexes per antigen, which, when added
together with the original antibody-antigen complex, totaled 11
to 15 complexes per antigen. Altogether, 50 antigens were
docked with 600 antibodies. An example of a resulting complex
is shown in Figure 1.

Figure 1. Example of a docking output. The 3s35 complex was generated by using the ClusPro server (docking results: "YES"; best docking interface
score: −0.876).
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The Rosetta interface scores were used as estimates of binding
affinity in order to identify cognate antibody-antigen pairs to
be used as input for machine learning. Complexes with interface
scores of higher than −8.0 were classified outright as complexes
with poor binding, and those with interface scores of lower than
−9.0 were classified outright as complexes with good binding.
For complexes with scores that ranged between −8.0 and −9.0,
the docking clusters and positions were examined visually by
using SwissDock (Swiss Institute of Bioinformatics). If the top
10 models had their antibodies and antigens in similar relative
positions and the structures showed sensible interaction patterns,
the pairs were classified as having a good binding affinity.

Rosetta interface scores have been used previously as classifiers
to determine binding affinity based on docking results (eg, in
an antibody-antigen cross reactivity study [15]).

Additional data were extracted from the Coronavirus Antibody
Database (CoV-AbDab) [16]—a database of antibodies against
coronaviruses, including SARS-CoV-2, SARS-CoV-1, and
MERS-CoV (Middle East respiratory syndrome–related
coronavirus). Data (2674 rows) were extracted from the
CoV-AbDab on February 14, 2021. After filtering out
incomplete data, 2031 rows remained, with each row
corresponding to an antibody. The information extracted
comprised the antibody names, their binding antigens, and their
heavy and light variable region sequences, including the
locations of the third CDRs (CDR3s). Each of the variable
region sequences were searched against the international
ImMunoGeneTics information system database [17] in order
to identify the locations of the first CDRs (CDR1s) and second
CDRs (CDR2s) from the heavy and light chains. Since a row
may contain information about an antibody's interactions with
multiple antigens, the data were further split into multiple rows,
with each row containing information about the interaction
between 1 antibody and 1 antigen.

Additional features were calculated for the sequences, as
follows. The isoelectric point for each CDR was calculated by
using the Bachem peptide calculator analysis tool (Bachem
Holding AG) [18]. The average hydrophilicity of each CDR
was also calculated by using the Bachem peptide calculator.

B cell epitopes were predicted by using the IEDB (Immune
Epitope Database) antibody epitope prediction analysis tool
[19].

The resulting data set can be downloaded from GitHub [20] and
is structured with the following column headings: H chain CDR1
sequence, H chain CDR2 sequence, H chain CDR3 sequence,
L chain CDR1 sequence, L chain CDR2 sequence, L chain
CDR3 sequence, Hydrophilicity of L CDR1, pI of L CDR1,
Hydrophilicity of L CDR2, pI of L CDR2, Hydrophilicity of L
CDR3, pI of L CDR3, Hydrophilicity of H CDR1, pI of H CDR1,
Hydrophilicity of H CDR2, pI of H CDR2, Hydrophilicity of H
CDR3, pI of H CDR3, Antigen Epitope, Rosetta Docking score,
Antigen, and Docking result.

Machine Learning
A weighted K-nearest neighbor (K-NN) classification algorithm
[21] for predicting antibody-antigen binding affinity was

implemented in Python. The program can be downloaded from
GitHub [20].

For each antigen, the 11 to 15 antibodies that were docked were
labeled as “good affinity” or “low affinity,” on the basis of the
docking results. Machine learning was then performed, using
the sequences of both antigens and antibodies.

Neighbors were determined by using the string distances
between the CDR1, CDR2, and CDR3 amino acid sequences
of different antibodies. Weights were calculated from distances,
so that nearer neighbors were considered to have more weight,
as detailed below.

For every antigen, the class (good affinity or low affinity) was
learned by using the K-NN method, using a training subset (N
− 1) of the labeled antigen-antibody sequence pairs and using
the CDR string distances as features. The model performance
was then evaluated on the remaining antigen-antibody sequence
pair that was not used for training (leave-one-out
cross-validation).

In order to ensure that the K-NN pairs only included pairs with
the same antigen, a fixed penalty of 1000 was added to the
distances between antibody-antigen pairs involving different
antigens.

The similarity between antibodies was measured via a
comparison of their CDRs. Each antibody has a heavy chain
and a light chain, and each chain contains 3 CDRs. The distance
between 2 antibodies was calculated as the Euclidean distance
between their CDR distance vectors, as shown in the following
equation (equation 1):

where (qi – pi) represents the string distance between the CDRi

of antibody q and the CDRi of antibody p.

The Python code is given in Multimedia Appendix 1.

Two different CDR distance calculation methods were tested
and compared; one was based on sequence identity, and the
other used the BLOSUM62 matrix, as detailed below.

For the identity-based distance measure, pairs of equivalent
CDRs were compared with each other based on their
Levenshtein string distances [22], as shown in the following
equation (equation 2):

Cost=0 for ai=bi, Cost=1 for ai≠bi

The Levenshtein distance only accounts for amino acid identity
when it is used for comparing sequences. A more biologically
significant distance measure needs to take into account the
different properties of amino acids, which means that some
amino acid substitutions are more likely to be accepted in an
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interaction than others. The BLOSUM62 substitution matrix
[23] was used as a proxy for amino acid similarity in the
Levenshtein distance calculation. Although the BLOSUM
matrices were designed to reflect evolutionary conservation,
they can provide an estimate of similarity in interaction potential
[24].

The Levenshtein distance was calculated as per equation 2,
using the following cost function:

For ai=bi, Cost=0

where Sij, Sii, and Sjj are obtained from the BLOSUM62 matrix.

The following columns from the data set were used to train the
model for leave-one-out cross-validation: H chain CDR1
sequence, H chain CDR2 sequence, H chain CDR3 sequence,
L chain CDR1 sequence, L chain CDR2 sequence, L chain
CDR3 sequence, Antigen, and Docking result. The trained model
was then evaluated on its ability to predict the docking results
from the other columns.

A random forest machine learning algorithm incorporating the
previous K-NN results was also used for predicting
antibody-antigen binding classification. The isoelectric point
and net charge at neutral pH (7.0) for each CDR were used as
additional features, in addition to the BLOSUM62-derived CDR
distances, for training the random forest. Binding was predicted
by combining the votes from each of the features, and each
individual feature contributed 1 vote, according to the nearest
neighbor predictions based on each feature.

The following columns from the data set were used for training
the random forest: String distance (calculate by KNN method),
Hydrophilicity of L CDR1, pI of L CDR1, Hydrophilicity of L
CDR2, pI of L CDR2, Hydrophilicity of L CDR3, pI of L CDR3,
Hydrophilicity of H CDR1, pI of H CDR1, Hydrophilicity of H

CDR2, pI of H CDR2, Hydrophilicity of H CDR3, pI of H CDR3,
Antigen, and Docking result. The trained model was then
evaluated on its ability to predict the docking results from the
other columns.

Each feature was considered as an individual decision tree and
contributed 1 vote. For example, the isoelectric point of the
CDR1 of an antibody’s heavy chain was considered as 1 feature,
and the K-NN method was used, as previously described, to
find the results of this decision tree. Altogether, there were 13
decision trees, and each tree used the K-NN method to determine
its vote, for a total of 13 votes. The final decision was
determined based on a simple majority vote. The best results
were obtained when the whole forest (all 13 decision trees) took
part in the vote.

The performance of the K-NN and random forest learners was
evaluated by using leave-one-out cross-validation on an antigen
basis. For each of the 57 antigens, a training data set was
constructed by removing 1 row, that is, 1 antibody-antigen pair,
from the data set. After training with the remaining antibodies
that bound to this antigen, model performance was evaluated
based on the removed antibody. The process was repeated until
all 5041 antibody-antigen pairs were tested. Model accuracy
was calculated as the ratio of the number of correctly predicted
antibody-antigen pairs over the total number of pairs in the data
set.

Results

Data Set
A total of 600 antibody-antigen complexes were generated via
the computational docking of 50 antibody structures with 50
antigen structures. In addition, a total of 4441 antibody-antigen
pairs were extracted from the Cov-AbDab. The composition of
this section of the data set is shown in Table 1.

In total, the data set contained 5041 antibody-antigen pairs
comprising 1157 antibodies and 57 antigens.

Table 1. Number of antibodies and positive and negative antibody-antigen pairs extracted from the Coronavirus Antibody Database.

Negative samples, nPositive samples, nNumber of antibodiesAntigen

3119121943SARS-CoV-2

6445971241SARS-CoV-1

145119264MERS-CoVa

23621257HCoV-OC43b

17084254HCoV-HKU1c

20751258HCoV-NL63d

15849207HCoV-229Ee

aMERS-CoV: Middle East respiratory syndrome–related coronavirus.
bHCoV-OC43: human coronavirus OC43.
cHCoV-HKU1: human coronavirus HKU1.
dHCoV-NL63: human coronavirus NL63.
eHCoV-229E: human coronavirus 229E.
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Machine Learning
The antigen-antibody binding classification methods were
evaluated by using leave-one-out cross-validation. For a K value
of 2 nearest neighbors, the K-NN method, when the Levenshtein
distance was calculated based on sequence identity, achieved
an accuracy of 81%. A slight improvement (accuracy of 82%)
was observed when using the BLOSUM62 matrix to calculate
the Levenshtein string distance.

Different K values were also evaluated when the Levenshtein
distance was calculated based on the BLOSUM62 matrix. A K
value of 2 provided the best accuracy. For a K value of 1 nearest
neighbor, the accuracy was 80%. For a K value of 3,
classification accuracy dropped to 79%.

For the random forest predictions, votes were used as the
classification prediction results. The accuracy was highest when
the whole forest was considered, in which case each feature
contributed to the classification results. The performance of the
random forest method was best (accuracy of 80%) when all 13
features—the Levenshtein string distance and the isoelectric
point and net charge at neutral pH (7.0) for each CDR—took
part in the final votes.

Discussion

We created a training and test data set of 5041 antibody-antigen
complexes by using a combination of structure modeling and
computational docking via Rosetta, together with
antibody-antigen pairs extracted from the CoV-AbDab.

We also developed weighted nearest neighbor and random forest
approaches to predict antibody-antigen binding based on
sequence data. These machine learning procedures can perform
classifications to identify antigens that are likely to bind to a
given antibody.

Leave-one-out cross-validation testing yielded an accuracy of
82% for classification results that were based on 2 nearest
neighbors. The prediction accuracy ranged from around 77%
to 82% when varying the number of nearest neighbors. The best
prediction results (accuracy of 82%) were obtained with 2
nearest neighbors, using string distance and BLOSUM62
matrices.

This study demonstrates that the interaction between an antibody
and a protein antigen can be predicted from the amino acid
sequences of both the antibody’s variable regions and the antigen
by using a relatively simple machine learning approach.
Compared to the docking prediction method, which is based on
the spatial protein structure, the method proposed in this project
does not require a 3D structure and is more suitable for
antibodies for which a 3D structure is unavailable.

In the absence of large amounts of experimental data on
antibody-antigen binding affinities, the Rosetta interface scores,
along with the top 10 binding positions, were used to determine
the classification for binding affinity. Although this method
was unlikely to provide a full representation of the problem, it

provided a data set suitable for comparing a range of approaches.
This method will certainly improve as larger data sets become
available. The docking data set contained 600 rows of
antibody-antigen pairs. Subsets of this data set (200, 300, 400,
and 500 rows) were tested during the data collection process.
Classification accuracy was quite consistent across all of these
subsets. This indicates that while the data set is limited, it
provides a good starting point for the development of our
approach for the prediction of antibody-antigen binding affinity,
which can be further validated as more data become available.
The K-NN method was chosen as the initial machine learning
method. The best prediction results were obtained with 2 nearest
neighbors (K=2). Random forests were also used that
incorporated sequence distance as well as the chemical
properties of CDRs (isoelectric point and hydrophobicity). The
best prediction results (accuracy of 82%) were obtained with
the nearest neighbor method when the Levenshtein distance
was calculated based on BLOSUM62 matrices. The additional
features included in the random forest did not improve
classification accuracy, and this was probably due to these
features’ dependence on the amino acid sequences.

Around 20% (907/5041, 18%) of our method’s predictions were
inaccurate. These errors mostly occurred with some large
antigens. The docking results for these antigens were further
examined. The decreased accuracy was likely the result of
conformational flexibility in the larger antigens, the presence
of multiple epitopes, and the higher number of discontinuous
epitopes in larger antigens relative to the number of such
epitopes in smaller antigens.

As a step toward the development of a machine learning method
suitable for predicting antibody-antigen binding affinities from
sequence data, the weighted nearest neighbor and random forest
machine learning approaches were applied to the problem. The
basic hypothesis was that antibodies with similar sequences
may be similar in terms of their ability to bind to a given antigen.
A prediction program was coded in Python and evaluated via
cross-validation on a data set containing 1157 antibodies and
57 antigens that were combined in 5041 antibody-antigen pairs.
The best classification prediction accuracy was around 82% for
this data set.

These results provide a useful frame of reference, as well as
protocols and considerations, for machine learning and data set
creation in the prediction of antibody-antigen binding. Our
method is still limited due to the scarcity of training data, but
its usefulness for large-scale prediction should increase as more
antibody-antigen binding data become available. The ability to
predict antibody-antigen binding will allow for a more informed
use of data from large-scale immune receptor sequencing. This,
in turn, will increase our understanding of the variation in
antigen recognition in an organism over time, under a range of
conditions and between individuals and populations.

Both the data set (in CSV format) and the machine learning
program (coded in Python) are freely available for download
on GitHub [20].
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