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Abstract

Background: Large amounts of biological data have been generated over the last few decades, encouraging scientists to look
for connections between genes that cause various diseases. Clustering illustrates such a relationship between numerous species
and genes. Finding an appropriate distance-linkage metric to construct clusters from diverse biological data sets has thus become
critical. Pleiotropy is also important for a gene’s expression to vary and create varied consequences in living things. Finding the
pleiotropy of genes responsible for various diseases has become a major research challenge.

Objective: Our goal was to establish the optimal distance-linkage strategy for creating reliable clusters from diverse data sets
and identifying the common genes that cause various tumors to observe genes with pleiotropic effect.

Methods: We considered 4 linking methods—single, complete, average, and ward—and 3 distance metrics—Euclidean,
maximum, and Manhattan distance. For assessing the quality of different sets of clusters, we used a fitness function that combines
silhouette width and within-cluster distance.

Results: According to our findings, the maximum distance measure produces the highest-quality clusters. Moreover, for medium
data set, the average linkage method, and for large data set, the ward linkage method works best. The outcome is not improved
by using ensemble clustering. We also discovered genes that cause 3 different cancers and used gene enrichment to confirm our
findings.

Conclusions: Accuracy is crucial in clustering, and we investigated the accuracy of numerous clustering techniques in our
research. Other studies may aid related works if the data set is similar to ours.

(JMIR Bioinform Biotech 2022;3(1):e30890) doi: 10.2196/30890
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Introduction

A substantial amount of genetic data began to accumulate in
the hands of bioinformatics experts at the turn of the 21st
century. The process was sped by advances in technology
hardware and improved computer algorithms. Scientists began
storing all of this genomic information in sequential data [1]
and intensity matrix [2] formats. Different types of sequences,
such as protein, DNA, and RNA sequences, are kept in
sequential data format, and the intensity matrix preserves gene

behavior under various conditions. To record and analyze gene
behavior on sample individuals, these conditions can vary under
varied light intensities.

Microarray [3] is a type of intensity matrix in which each row
represents a single gene, and each column indicates that gene’s
behavior in a given situation. A microarray data set’s sample
structure is shown in Table 1. Four genes express themselves
at 3 different times or circumstances. Depending on the
normalization approach used, the values stored in a microarray
data set can be both positive and negative.
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Table 1. Sample microarray data.

Time 3Time 2Time 1Genes

0.650.220.25Gene 1

–0.631.25–0.75Gene 2

0.750.660.05Gene 3

0.15–0.521.25Gene 4

Researchers have been extracting valuable biological
information from microarray data. The construction of a
phylogenetic tree is one of the most extensively used
methodologies [4]. The evolutionary relationships between
numerous species are shown by the phylogenetic tree. In the
case of genes, it calculates gene similarity to create a gene tree
that depicts how particular genes have evolved [5]. Although
phylogenetic trees are based on sequence data because mutations
occur in any species’ genome sequence, genome sequences are
comparatively large and need a lot of computing power and
memory. Gene expression represents phenotypes of a gene, and
different genes exhibit variable levels of expression under the
same conditions [6]. As a result, we can employ phenotype,
which is a measurement of the genes’ reflection due to genotype
differences. The expression level of genes calculates how near
they are to one another using the microarray data set as an input,
because the transcriptional activity of similar genes should be
similar [7]. A tree is built by connecting all closely related genes
one by one, with each leaf representing a single gene and
branches separating one group of genes from another [8,9]. This
hierarchical tree can aid in the creation of more precise
groupings. It assists biologists in determining and
comprehending the function of an unknown gene. As a result,
developing appropriate metrics for clustering microarray data
is a significant scientific challenge.

Different clustering approaches have been presented to extract
information from the microarray data set [10]. Clustering
algorithms divide unclassified data into distinct classified groups
[11], with the most comparable data points grouped together.
As a result, if an unknown element belongs to a recognized
cluster, it becomes easier for the researcher to forecast its
properties. Clustering is a technique used in bioinformatics to
organize microarray data and predict properties of unknown
genes based on which cluster they belong to [11]. Furthermore,
bioinformatics workflow [12] and immune repertoire profiling
[13] are classified using hierarchical clustering, a sort of
clustering technique. It also has applications in the prediction
of nonsmall cell lung cancer metastasis [14], the high-confidence
identification of B cell clones [15], and the identification of cell
type from a single cell transcriptome [16]. It is also used to
create a phylogenetic tree using microarray data [15]. The
hierarchical clustering methodology uses a distance algorithm
to calculate the distance between distinct genes after inputting
microarray data. The distance is then used to connect closely
related genes in clusters using a linkage approach.

Various distance methods are employed depending on the data
set’s characteristics. The way the 2 distance methods determine
the difference between 2 distant data points is the fundamental
distinction between them. Euclidean [17], Chebyshev [18], and
other distance approaches are common. After applying the

distance approach, the hierarchical clustering technique connects
related genes using several types of linking methods to form a
cluster. single linkage method [19], complete linkage method
[20], average linkage method [20], and others are some of the
most used linkage methods. Linkage methods connect genes in
a bottom-up manner, eventually resulting in a hierarchical tree,
often known as a phylogenetic tree. As computational ability
and technology progress, it has become increasingly important
to establish reliable clusters of related genes to understand
unknown genes in sensitive domains such as health care and
disease prediction.

Pleiotropy is another key phenomenon identified in the
investigation of gene functions behind many diseases. Pleiotropy
occurs when a single gene influences many phenotypic features
[21]. There are numerous examples of multiple genes working
together to cause a single disease [22-24]. Furthermore, it
appears that a single gene is responsible for several disorders
[25]. Even though we can identify diseases caused by the same
gene, the gene’s impact on each disease is different. It may
appear to be more active in some disorders than in others. As
a result, we can visualize the impact of a gene on other diseases
if we can detect commonalities in their expressions for different
diseases and quantify the distance.

In this work, we used a variety of data sets to investigate
different distance-linkage combinations for hierarchical
clustering. These clusters have revealed which gene groupings
are closely connected to one another. We also assessed the
fitness of those groupings and attempted to determine which
distance-linkage combination produced the greatest results. We
validated our findings using 8 different data sets. Furthermore,
we used the best measure to identify common genes responsible
for various tumors. Gene enrichment scores about their influence
on various diseases were used to corroborate our findings.

Methods

This section goes over our proposed methodology. First, we
provided the proposed workflow for determining the optimum
clustering distance-linkage approach. Then we went over several
distance metrics, linkage methods, and our selection procedure
for comparing the performance of various combinations. Finally,
the pleiotropic gene observation methodology is discussed.

Identifying the Best Distance-Linkage Method
Our investigation begins with the import of a microarray data
set into our procedure. This microarray data set is typically a
2D array, with rows representing different genes and columns
representing their intensity at various time stamps. To minimize
the dimensionality of the data set, we will use Principal
Component Analysis. It is a sophisticated approach used by
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academics to remove irrelevant data from a data set while
keeping its integrity.

Then, in our data set, we run a distance metric. A distance
measure, in general, calculates the similarity of 2 genes and
determines how far apart they are. We employed the following
3 different distance metrics: Euclidean, Manhattan, and
maximum. We chose a linkage method to connect related genes
and generate a hierarchical tree after picking the distance metric.
We used the following 4 linkage methods: single, complete,
average, and ward linkage methods. We constructed a
hierarchical tree using the distance-linkage method, where each

leaf represents a gene, and the branches reflect the dissimilarity
among them. The tree was then cut to various heights, resulting
in several sets of genes for each cut point. Subsequently, we
identified the appropriate cut point for that hierarchical tree by
calculating how well those genes are clustered on different cut
points. We used “Average Silhouette Width” and “Distance
within Cluster” to calculate the fitness of the groups formed by
different cut locations. The optimal fitness value is calculated
using these fitness values. We determined the best combination
of distance and linkage methods for a single data set by repeating
this process with different combinations of distance and linkage
methods. Figure 1 depicts the algorithm.

Figure 1. Proposed algorithm for finding the best distance-linkage combination. Input: Microarray data set. Output: Distance-linkage combination.

For a particular data set, D, optimal fitness value can be
expressed by the following equations:

Where d distance methods and, I linkage methods.

Used Distance Methods
Euclidean distance uses Pythagorean formula to calculate the
distance between 2 genes. For n dimensional space, we can
write that formula as follows:

Unlike Euclidean distance, Manhattan distance takes the
modulus value of the subtraction. For n-dimensional space, the
equation of Manhattan Distance will be as follows:

Maximum distance, on the other hand, calculates the subtraction
value for each column before selecting the highest number. The
formula for n-dimensional space is as follows:

Used Linkage Methods
The single linkage approach connects 2 clusters by taking the
shortest distance between them. The equation for the single
linkage method to calculate the distance between any element
and another element in another group is as follows:

Where p is an element in cluster P and q is an element of cluster
Q.

To compute the distance, the complete technique uses the
farthest points in 2 clusters and connects the clusters with the
shortest distance. The equation for the entire linking approach
is as follows:

The average method determines the average value for each gene
inside the cluster, then connects them one by one on each layer
to form a hierarchical tree. Equation 7 is the average linkage
method update formula.
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Where m is all the instances of cluster a, and n is all the
instances of cluster b.

A centroid point is determined using Ward linkage (much like
the centroid method). The squared distance value of each point
in each cluster is then calculated using that centroid. It then
sums all the squared distance values obtained by the 2 clusters
together. It takes the smallest total value produced by a cluster
pair and merges them on that level after repeating the same
technique for every cluster on the same level. Equation 8 is the
Ward linkage method update formula.

Metrics Used to Calculate Fitness
The fitness of the clusters we acquired after cutting the
hierarchical tree at a specific height was calculated using the
following 2 metrics: average silhouette width (ASW) and
distance inside cluster. The following formula is used to
compute silhouette width:

Where a(i) is the average distance from object i and all the other
points of the cluster in which i belongs; b(i) is the distance of
the closest point in other cluster; and s(i) is the silhouette value
between 2 clusters.

ASW is the average of all the silhouette values. Generally, it
varies from –1 to 1, and the value closer to 1 is considered better.

The distance within a cluster is used to determine how close
the elements are. Each cluster’s centroid is chosen during this
process. The distance between each object in the cluster and the
centroid is then determined as an average. This calculation’s
formula is as follows:

Where dist(c,i) is the distance between centroid c and element
i in a cluster; E is the set of elements in the cluster; and |E| is
the number of elements in the cluster.

From the characteristics, we can understand that ASW measures
the quality of clusters. A greater ASW indicates good quality
of clusters, that is, for a data set D, distance metric d and linkage
method l,

Where Si is the ASW for cut point i.

However, distance within clusters measures how compact the
data points are in the clusters. Therefore, better-quality clusters
will have lower distance within clusters, that is,

Where Wi is the distance within clusters for cut point i.

Thus, to compare the quality of clusters we acquired at different
cut points i in the hierarchical tree, our fitness function combines

these 2 criteria. When these 2 relationships are combined, our
fitness function becomes as follows:

From this function, we can find out the optimal fitness for a
specific combination of metrics in a certain data set.

Cluster Ensemble
We will try ensemble clustering [26] to see if it works better
once we have tried different clustering combinations. Three
ensemble clustering techniques were employed, which are as
follows: (1) similarity partitioning based on clusters; (2)
hypergraph partitioning algorithm [27-29]; (3) meta-clustering
algorithm.

Cluster-Based Similarity Partitioning
It starts by creating an n×n binary matrix in which the input is
1 if two objects belong to the same cluster and 0 otherwise.
Every clustering approach is put through it. The final ensemble
cluster is then generated using an entry-wise average of all
clustering approaches.

Hypergraph Partitioning Algorithm
The data set is represented as a hypergraph by this algorithm.
The hypergraph is then partitioned to determine the smallest
number of edges. It produces the ensemble cluster based on the
smallest number of edges.

Metaclustering Algorithm
The metaclustering algorithm starts by creating numerous
clusters from a data set. The dissimilarity between those clusters
is then calculated, and a metacluster is generated as a result of
that measurement. In this approach, the ensemble is represented
by the final metacluster.

One of the most important characteristics of these algorithms
is that the number of clusters that the algorithm will build must
be declared at the start. For the specified data set, we used the
cluster number created by the best distance-linkage combination.

Observing Pleiotropy for Different Cancers
We identified the genes responsible for various cancer tumors
from the data sets and then evaluated their expression in
different patients with cancer to report their various phenotypes
in order to discover the pleiotropic behavior of distinct genes.
We built a secondary data set by extracting the expression data
for each gene from each data set after identifying the common
genes across these disorders. Every primary data set must
contain an equal number of time stamp values in order to build
a 2D microarray data set. The data sets, however, have different
numbers of columns. Central nervous system, for example,
includes 60 time stamps for a single gene, but the ALL-AML
(acute lymphoblastic leukemia-acute myeloid leukemia) data
set has 72 time stamps. We cannot modify or remove any
columns from the data set because doing so could compromise
the data’s integrity or result in the loss of valuable information.
To address this issue, we estimated the mean, median, standard
deviation, and variance, which may be used to summarize
numerical data [30], and we used these numbers to construct
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our secondary data set. We will design a hierarchical tree using
the perfect distance-linkage method found in the previously
presented method because we have a data set for each gene with
pleiotropic behavior. For that particular gene, the diseases that
are closest to each other share similar summarized statistics. As
a result, these trees will aid our understanding of how a single
gene exhibits various phenotypes in patients with cancer.
Furthermore, the gene enrichment scores of these common genes
for the disorders that are frequent will be used to corroborate
our findings.

Ethical Considerations
Since no human or animal trial was conducted during this
research, the authors did not apply for an ethical approval for
the study.

Results

We will discuss the experimental outcomes we discovered in
our research in this part. We started by explaining the data sets

we used. The findings for various distance-linkage method
combinations were then shown. We later presented our findings
in terms of pleiotropy for the shared genes.

Data Set
We obtained gene expression data for various cancers from a
publicly accessible database [31]. Every data set includes the
disease-causing genes as well as their expression in various
patients with the same condition. We also examined a data set
from a variety of disorders to confirm that our findings were
disease-agnostic. We used 7 data sets for various cancers. Table
2 lists the specifics of each data set.

The number of genes and patients, or the number of conditions
for each gene, differs among these data sets. We used a diverse
data set to discover the ideal metrics, which can be used to any
gene expression data set. Furthermore, these databases contain
certain genes that are widely used. We have created a secondary
data set to explore and analyze those genes further.

Table 2. Description of data sets.

Number of genesNumber of patientsData domainData set

712960Central nervous systemCNSa

712972Acute lymphocytic leukemiaALL-AMLb

12,533181Lung cancerLung cancer

15,154253Ovarian cancerOvarian cancer

402262LymphomaLymphoma

230883Small round blue cell tumorSRBCTc

aCNS: central nervous system.
bALL-AML: acute lymphoblastic leukemia-acute myeloid leukemia.
cSRBCT: small round blue cell tumor.

Result of Experiments for Identifying the Best
Distance-Linkage Method
In our experiment, we employed several combinations of
distance measurements and connection algorithms to generate
a hierarchical tree. To validate our founding, we used 3 distance
metrics and 4 linking methods. We combined these 3 distance
metrics and 4 linkage methods to build 12 hierarchical trees for
each data set. We cut each tree on numerous cut points after
building hierarchical trees. As a result, the tree has been
separated into several distinct groups. We assessed the fitness

value for each cut point and selected the highest as the ideal
value for that hierarchical tree given that particular distance
metric-linkage method combination.

A portion of a hierarchical tree of genes from the lung cancer
data set is shown in Figure 2. This tree was constructed using
the maximum-Ward combination. The full tree has a large
number of leaves due to the data set’s 12,533 genes. All the
values using Equation 13 are calculated, and the best values for
each combination of distance method and linkage metric are
shown in Table 3.
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Figure 2. Hierarchical tree created using the maximum-Ward method on lung cancer data set.
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Table 3. Fitness value for different combinations of distance and linkage metrics.

Maximum distanceEuclidean distanceManhattan distanceData set and linkage

CNSa

3.50×10-119.47×10-123.80×10-13Average

3.44×10-126.78×10-121.42×10-13Complete

2.16×10-115.72×10-122.59×10-13Single

3.09×10-123.22×10-134.49×10-14Ward

ALL-AMLb

3.39×10-51.45×10-51.20×10-6Average

1.51×10-52.11×10-58.89×10-7Complete

1.24×10-51.37×10-51.11×10-6Single

3.07×10-52.64×10-64.41×10-7Ward

Lung cancer

3.36×10-61.48×10-65.56×10-8Average

1.52×10-91.23×10-65.35×10-8Complete

5.86×10-76.47×10-75.33×10-8Single

6.71×10-61.19×10-63.03×10-8Ward

Ovarian

2.87×10-41.59×10-41.25×10-5Average

6.28×10-47.49×10-51.71×10-5Complete

1.28×10-43.12×10-42.88×10-6Single

9.31×10-43.44×10-52.49×10-4Ward

Lymphoma

9.66×10-62.81×10-61.29×10-7Average

6.00×10-62.34×10-62.21×10-8Complete

8.10×10-62.81×10-61.01×10-7Single

2.82×10-66.05×10-71.23×10-8Ward

SRBCTc

4.41×10-56.73×10-61.52×10-7Average

3.73×10-54.72×10-61.03×10-7Complete

3.00×10-54.34×10-68.24×10-8Single

2.67×10-68.55×10-83.88×10-9Ward

aCNS: Central Nervous System.
bALL-AML: acute lymphoblastic leukemia-acute myeloid leukemia.
cSRBCT: small round blue cell tumor.

Ensemble Result
We chose the data set (ALL-AML) for testing and ran these 4
ensemble clustering techniques. For this data set, the

maximum-average combination produced the best result, with
a cluster number of 135. Table 4 displays the fitness values. We
discovered that no ensemble clustering approach improves
fitness value in any way.
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Table 4. Fitness value for different ensemble techniques.

Fitness valueEnsemble techniques

4.32×10-6CSPAa

3.29×10-6HGPAb

1.53×10-5MCLAc

3.39×10-5Maximum-average

aCSPA: cluster-based similarity partitioning.
bHGPA: hyper graph partitioning algorithm.
cMCLA: metaclustering algorithm.

Result Analysis for Common Genes
Multiple tumors can be caused by a small number of genes. We
discovered 9 genes linked to the following 3 types of cancer:
central nervous system, lymphoma, and lung cancer.
AFFX-TrpnX-5 at, AFFX-ThrX-5 at, AFFX-ThrX-3 at,

AFFX-PheX-M at, AFFX-PheX-5 at, AFFX-PheX-3 at,
AFFX-LysX-M at, AFFX-LysX-3 at, and AFFX-LysX-5 at
were discovered to be common genes. We found the gene
enrichment score publicly available at [32] to confirm our
findings. Gene enrichment scores in various malignancies are
given in Figure 3 for the discovered common genes.

Figure 3. Gene enrichment score vs cancer type.

Discussion

Principal Findings
The maximum distance method combined with the average
linkage method produces better hierarchical trees in 4 data sets
(central nervous system, leukemia, lymphoma, and SRBCT),
according to the fitness values provided in Table 3. These data
sets are medium in size, with 60-80 rows and 2000-7000
columns, as shown in Table 2. In the Spellmen data set,
however, the maximum-average combination also excels. The
other 4 data sets reflect human genes that are responsible for
specific tumors, whereas Spellmen is a microarray data set of
bacteria. However, the maximum distance approach with ward

linkage method constructs a superior hierarchical tree compared
with the other methods in 2 of the largest data sets, lung and
ovarian. These 2 data sets are larger than the others, and they
share no genes with the others.

The maximum distance metric outperforms the other 2 distance
methods among the 3 most commonly used distance metrics.
Maximum distance considers only 1 column where those 2
genes have the most variance when calculating distance between
them. The Euclidean and Manhattan distance methods, on the
other hand, would have taken distances across all columns. As
a result, the dissimilarity values for the Euclidean and Manhattan
distances are approaching the maximum distance. As a result,
in clustering, the Euclidean and Manhattan distances place
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points slightly farther apart than the Maximum distance.
Furthermore, because all the columns indicate the same features
of a gene evaluated at different time stamps, we can analyze
the worst scenario (ie, the greatest differential in the expression
of 2 genes at a certain moment). This is the most significant
difference between these 2 genes. To put it another way,
maximum distance calculates only the difference that matters.
The Euclidean and Manhattan distances, on the other hand, are
becoming buried in the massive amount of data. The maximum
distance, on the other hand, may create undesirable clusters in
a different data set with uniform variation across all columns.

When the data set is small, the average linkage approach
performs well, and when the data set is huge, the ward method
performs well. The single linkage approach may be faster than
the average method for joining clusters, but it is not necessarily
better. When determining the proximity of 2 clusters, it always
considers only 2 points and ignores all others. The average
linkage approach, on the other hand, considers all the points in
the cluster when determining relatedness. When using the ward
technique, the sum square error is used to determine similarity.
When working with small or medium-sized data sets, the
average linkage approach outperforms the ward linkage method,
but as the data sets grow larger, the sum square error values
take over and produce superior results compared with the
average linkage method.

We tried to identify the optimal combination in our research
and found that the maximum distance method performs better
on hierarchical clustering when column variance is not uniform
across the data set. However, if the data set is medium in size,
with around 2000-7000 rows and 60-80 columns, the average
linkage technique will outperform other linkage methods, and
if the data set is very large, with 12,000-15,000 rows and
100-200 columns, the ward linkage approach will outperform
other linkage methods. Furthermore, it has been discovered that
ensemble clustering can improve performance by a very little
amount at the cost of extra work.

We discovered 9 common genes that cause the following 3
diseases: lymphoma, central nervous system cancer, and lung
cancer. We tried to figure out how these genes play a role in
these 3 diseases using the data provided in the data sets. The
maximum-average hierarchical clustering technique was chosen

since it performed the best in the first experiment. We used gene
enrichment score to confirm our findings on whether the 9 genes
discovered have an impact on these 3 conditions. Figure 3 shows
the gene enrichment scores for these genes. We can see that 8
of the 9 genes are important for all 3 cancers. Only 1 gene
(AFFX-PheX-3 at) is more important than the other 2 in lung
cancer. However, it is clear that our discovered genes have a
significant impact on these 3 cancer forms.

Bioinformatics is becoming more and more involved in health
sectors, such as disease detection and individualized medicine
recommendation, as computational technology advances.
Clustering techniques are becoming increasingly important in
these industries. We investigated several distance-linkage
combinations and attempted to find a solution. We hope that
other researchers who use hierarchical clustering will profit
from our findings and apply what they have learned to their
own study. We also discovered common genes with multiple
symptoms, which we confirmed using gene enrichment profiling.
Knowing the pleiotropic nature of these genes will help scientists
work on them to combat cancer.

Conclusion
In this study, we discovered a set of measures that will yield
higher-quality clusters for gene expression data. Pleiotropic
behavior of common genes for many disorders was also
discovered. To validate our findings, we used a variety of data
sets that varied in size and richness. We used a fitness function
to compare cluster quality between sets of clusters while
assessing cluster quality. For medium-sized data sets, we
discovered that the maximum distance metric combined with
average linkage works best. Ward linkage also works better
with huge data sets. Furthermore, due to data dimension
differences, we had to preprocess data while identifying common
genes for various disorders. It is critical to identify genes with
similar symptoms more precisely and to separate those genes
more effectively. Furthermore, detecting a gene by applying
the clustering technique to find comparable genes is a critical
work for researchers, and if done correctly, might save countless
lives. For all these reasons, correct clustering is becoming
increasingly important in bioinformatics. Therefore, if their data
set resembles our microarray data, researchers from other fields
can employ this technology.

Conflicts of Interest
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Abbreviations
ALL-AML: acute lymphoblastic leukemia-acute myeloid leukemia
ASW: average silhouette width
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