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Abstract

Background: Type 2 diabetes mellitus (T2DM) is a metabolic disorder with severe comorbidities. A multiomics approach can
facilitate the identification of novel therapeutic targets and biomarkers with proper validation of potential microRNA (miRNA)
interactions.

Objective: The aim of this study was to identify significant differentially expressed common target genes in various tissues and
their regulating miRNAs from publicly available Gene Expression Omnibus (GEO) data sets of patients with T2DM using in
silico analysis.

Methods: Using differentially expressed genes (DEGs) identified from 5 publicly available T2DM data sets, we performed
functional enrichment, coexpression, and network analyses to identify pathways, protein-protein interactions, and miRNA-mRNA
interactions involved in T2DM.

Results: We extracted 2852, 8631, 5501, 3662, and 3753 DEGs from the expression profiles of GEO data sets GSE38642,
GSE25724, GSE20966, GSE26887, and GSE23343, respectively. DEG analysis showed that 16 common genes were enriched
in insulin secretion, endocrine resistance, and other T2DM-related pathways. Four DEGs, MAML3, EEF1D, NRG1, and CDK5RAP2,
were important in the cluster network regulated by commonly targeted miRNAs (hsa-let-7b-5p, hsa-mir-155-5p, hsa-mir-124-3p,
hsa-mir-1-3p), which are involved in the advanced glycation end products (AGE)-receptor for advanced glycation end products
(RAGE) signaling pathway, culminating in diabetic complications and endocrine resistance.

Conclusions: This study identified tissue-specific DEGs in T2DM, especially pertaining to the heart, liver, and pancreas. We
identified a total of 16 common DEGs and the top four common targeting miRNAs (hsa-let-7b-5p, hsa-miR-124-3p, hsa-miR-1-3p,
and has-miR-155-5p). The miRNAs identified are involved in regulating various pathways, including the
phosphatidylinositol-3-kinase-protein kinase B, endocrine resistance, and AGE-RAGE signaling pathways.

(JMIR Bioinform Biotech 2022;3(1):e32437) doi: 10.2196/32437
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Introduction

Interactions among DNA, RNA, and proteins regulate their
functions and have an immense effect on the underlying
mechanistic processes in the pathophysiology of many diseases.

Owing to the advent of newer technologies such as microarray
and genome sequencing, it is now possible to investigate and
analyze an enormous amount of genomic and proteomic data
to predict disease pathology, outcome, and possible therapeutic
targets [1]. Diabetes is a metabolic disorder characterized by
hyperglycemia and glycosuria, which, if left untreated, leads to
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an array of complications and associated comorbidities [2].
These can include obesity, cardiomyopathy, nephropathy,
retinopathy, neuropathy, and peripheral vascular disease, which
have a lasting adverse effect on the quality of the patient’s life.
To date, diabetes has affected almost half a billion individuals
worldwide [3]. The absence of effective treatment strategies for
this disease makes it a challenge to manage. The obligatory
lifestyle changes and multiple treatment modalities, along with
lifelong disease monitoring, depict an urgent and unmet need
to develop newer and specific preventive and treatment
strategies. Mortality rates in patients with type 2 diabetes
mellitus (T2DM) are higher than those of individuals without
diabetes and are linked to increased cardiovascular,
renovascular, and neuropathic risks [4,5]. Thus, to reduce the
morbidity and mortality associated with T2DM, it is important
to gain a better understanding of its pathogenic pathways and
regulation mechanisms. There is accumulating evidence that
microRNAs (miRNAs) play an essential role in diabetes by
reducing the expression of their various target genes [6,7]. It is
also crucial to select the right target for disease treatment
strategies in the early discovery phases, thus maximizing the
drug’s success rates in the latter phases [8].

Currently, there is a vast amount of genomic data on diabetes
and its complications. However, from its detection to the
management of its late-stage complications, many areas still
need to be explored and lacunae need to be filled. The role of
molecular integration networks regulating the pathogenesis of
T2DM in specific tissues is unknown. In this study, we have
undertaken an in silico approach with existing tissue-specific

microarray data of patients with diabetes to address this
particular area by detecting novel diabetes-associated genes,
their regulatory miRNAs, and their interactions to predict the
pivotal pathways in tissues that are associated with disease onset
and progression.

We selected five data sets from the Gene Expression Omnibus
(GEO) database comprising the expression profiles of patients
with diabetes and corresponding controls, and identified 16
differentially expressed genes (DEGs) overlapping the three
preassigned groups. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were further used to classify the DEGs into
cellular component (CC), biological process (BP), and molecular
function (MF) classes. We selected four clusters from the
protein-protein interaction (PPI) network and identified the seed
genes. We further investigated the miRNA and hub gene
network. Finally, we explored the 16 hub genes for biological
pathway enrichment and their targeting miRNAs.

Methods

Data Collection
We searched several keywords, including “type 2 diabetes
mellitus,” “tissue,” “pancreas,” “liver,” “heart,” “expression
profiling by array,” and “Homo sapiens,” in the GEO data sets,
among which five were selected for this study: GSE38642
[9-11], GSE25724 [12], GSE20966 [13], GSE26887 [14], and
GSE23343 [15] (Table 1).

Table 1. Description of Gene Expression Omnibus data sets for three groups of organs.

YearCountryPlatformControlT2DMaSample organ

Mean age
(years)

Sex
(M/F)

Samples,
n

Mean age
(years)

Sex (M/F)Samples,
n

Pancreas

2010ItalyAffymetrix Human Genome
U133A Array

70.54/3758.13/36GSE25724 [12]

2010United
States

Affymetrix Human X3P Ar-
ray

67.36/41060.37/310GSE20966 [13]

2012SwedenAffymetrix Human Gene 1.0
ST Array

56.631/235457.05/49GSE38642 [9-11]

2012ItalyAffymetrix Human Gene 1.0
ST Array

48.42/3565.16/17Heart (GSE26887) [14]

2010JapanAffymetrix Human Genome
U133 Plus 2.0 Array

—4/37—b4/610Liver (GSE23343) [15]

aT2DM: Type 2 diabetes mellitus.
bInformation not available.

Inclusion and Exclusion Criteria
Data were restricted to human (Homo sapiens) samples, data
set as the data type, expression profiling by array, tissue samples,
and T2DM compared to controls (without diabetes). Thus, data
from other organisms (Mus musculus, Rattus norvegicus,
Xenopus laevis); series data; expression profiling by other
methods (eg, massively parallel signature sequencing, reverse

transcription-polymerase chain reaction, serial analysis of gene
expression, genome variation or occupancy profiling by
single-nucleotide polymorphism array, genome tiling array);
nontissue samples (eg, blood, serum, semen, saliva, urine, body
fluid); and data from patients with type 1 diabetes, gestational
diabetes, or prediabetes were excluded.

The data collection process is summarized in Figure 1.
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Figure 1. Flow diagram illustrating the process of data collection and number of data sets considered for inclusion.

Identification and Assortment of Differentially
Expressed mRNAs
The DEGs were obtained from the five data sets using the online
interactive tool GEO2R [16]. The cutoff for the selection was
kept at the default of P<.05. The relaxed P-value cutoff was
fixed for the initial selection because (1) we were subjecting
the selected genes for a repeated analysis using ImaGEO
software with a cutoff adjusted P<.05, and (2) the application
of a stringent P-value cutoff in the initial selection did not enable
obtaining an adequate number of genes from each data set for
undertaking a meta-analysis. The overlapping DEGs among the
three data sets of pancreatic tissues from patients with T2DM
and controls (GSE38642, GSE25724, and GSE20966) were
identified using the Venn diagram tool [17,18]. Subsequently,
the common DEGs of these three data sets (GSE38642,

GSE25724, and GSE20966) with those of the other two data
sets for heart (GSE26887) and liver (GSE23343) samples were
identified separately. The fold change expression distribution
was visualized by heat maps and violin plots using the R limma
(linear models for microarray data) package and Orange Data
Mining software [19,20].

To check the quality of the data, quality control plots were
assessed in the form of volcano plots, mean difference plots,
and mean-variance trends. A volcano plot visualizes the DEGs
by plotting the statistical significance against the magnitude of
change, whereas the mean difference plot displays the log2 fold
change against the average log2 expression level. The
mean-variance trend, generated using the R packages plotSA
and vooma, assesses the variance of the data. The workflow for
the data processing and analysis is portrayed in Figure 2.
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Figure 2. Flowchart of data processing and analysis. GEO: Gene Expression Omnibus; KEGG: Kyoto Encyclopedia of Genes and Genomes; T2DM:
type 2 diabetes mellitus.

Functional Enrichment and KEGG Pathway Analysis
The DEGs were divided into three groups according to the tissue
(Figure 2). The functional enrichment of each group related to
T2DM was analyzed with the Database for Annotation,
Visualization and Integrated Discovery (DAVID) tool for
significant MF, CC, and BP GO terms. KEGG pathway analysis
was performed with piNET, a versatile tool that integrates
protein signatures with transcriptomic and proteomic signatures
[21-23]. DAVID includes an analysis of KEGG pathways and
enrichment significance of GO terms from the three categories

(MF, CC, BP). We defined P<.05 as significantly enriched. The
nonsignificant findings were manually removed.

PPI Network Construction and Identification of Hub
Genes
The DEGs in the three groups were used to construct the PPI
network using Search Tool for the Retrieval of Interacting
Genes/Protein (STRING) [24]. We established the PPI network
using only the overlapping DEGs with greater than 0.4
confidence score cutoffs. The “combined scores” were computed
by integrating the probabilities from the various different types
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of evidence (by evidence channels), while correcting for the
probability of randomly observing an interaction [25]. The
number of interactions (by confidence level) were divided into
four groups: (1) highest confidence (score≥0.90), (2) high
confidence or better (score≥0.70), (3) medium confidence or
better (score≥0.40), (4) low confidence links (score≥0.15). We
chose medium confidence as the default setting given in
STRING.

The interaction networks for each group were constructed by
Cytoscape [26,27]. The Molecular Complex Detection
(MCODE) [28] plugin of Cytoscape was employed to visualize
significant genes in all three groups with a degree cutoff=2,
node score cutoff=0.2, k-score=2, and maximum depth=100.
The criteria for selecting the top 3 clusters were set as MCODE
score≥3 and number of nodes≥3.

Integrative Gene Expression Meta-analysis
ImaGEO is a web tool for gene expression meta-analysis that
was used to perform a comprehensive meta-analysis from all
five data sets. For the retrieval and preprocessing of the data,
the GEOquery package in R was used, followed by quality
control, gene filtering expression, meta-analysis, and functional
analysis. The meta-analysis was based on the functional modules
with the MetaDE R package. For this study, we used the “effect
size” parameter estimation with a fixed-effects model and an
adjusted P value threshold of .05. The allowable missing values
was kept at the default of 10%.

Target Prediction, Validation, and miRNA–Hub Gene
Interaction
The top 10 targeting miRNAs of the hub genes were predicted
by the well-established miRNA target prediction database
miRNet 2.0 [29] with H. sapiens (human) as the selected
organism. Default values for the degree of interaction and
betweenness were retained. Common miRNAs and targeted
mRNAs of all groups were sorted by the Venn diagram tool
[30]. The network of all targeting miRNAs and the coexpressed
mRNAs was created with FunRich and Cytoscape software. To
validate the targeting miRNAs, we further sorted miRNA data
sets in T2DM for comparison of differentially expressed
miRNAs.

Functional Enrichment and KEGG Pathway Analysis
for MiRNAs
All common miRNAs were enriched by MicroRNA Enrichment
Turned Network (MIENTURNET) and KEGG pathway analysis
[31]. MIENTURNET is a web tool based on the shiny package
in R studio for both statistical and network-based analyses of
miRNA-target enrichment. Functional enrichment was retrieved
for the input list of genes, with the minimum interaction
threshold set at 2 and an adjusted P value of .05. The input list
infers possible experimental or computational evidence of
miRNA-based regulation.

Results

Identification of DEGs in all Combined Groups
The five mRNA expression profiles of the GSE38642,
GSE25724, GSE20966, GSE26887, and GSE23343 data sets,
including 125 samples of the pancreas, heart, and liver tissues
of patients with T2DM and controls without diabetes, were
included in this study. We extracted 2852, 8631, 5501, 4210,
and 3754 DEGs, respectively. The following sections describe
the analysis of the DEGs derived from the datasets, and shown
in Figures 3-14. In the pancreas data sets (GSE38642,
GSE25724, GSE20966), a total of 321 common mRNAs were
identified, 69 of which were upregulated and 95 were
downregulated (Figure 3A-H and Supplementary Tables S1-S3
in Multimedia Appendix 1). The quality control plots for the
DEGs are shown in Figure S1 and Figure S2 of Multimedia
Appendix 1.

These Group 1 (pancreas) DEGs were then overlapped with the
heart expression profile data set GSE26887, revealing a total
of 70 common differentially expressed mRNAs, 5 of which
were downregulated and 5 were upregulated. A total of 28
mRNAs with regulation in the opposite direction were identified
(Group 2) (Figure 5A-K, Tables S4-S7 in Multimedia Appendix
1). Further, the Group 1 DEGs were overlapped with the liver
data set GSE23343, and a total of 82 common differentially
expressed mRNAs were obtained, out of which 8 were
upregulated, 1 was downregulated, and 27 were regulated in
opposite directions (Figure 7A-I, Tables S8-S11 in Multimedia
Appendix 1).

DEGs for all three groups were used to establish the PPI
networks (Figure 6E, Figure 8E, Figure 9A).
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Figure 3. Differential mRNA expression of all three data sets (GSE38642, GSE25724, GSE20966) for Group 1 (pancreas tissues) in type 2 diabetes
mellitus. (A-C) Heat maps of all, downregulated and upregulated differentially expressed genes (DEGs). Fold change expression (FCE) levels are
displayed in ascending order from blue to yellow. (D-F) Venn diagrams of the total downregulated and upregulated DEGs of the three data sets. (G, H)
Violin plots showing the entire FCE distribution of all three data sets for upregulated and downregulated common DEGs.
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Figure 4. Differential mRNA expression of all three data sets (GSE38642, GSE25724, GSE20966) for Group 1 (pancreas tissues) in type 2 diabetes
mellitus. (A-D) Enrichment analysis of common DEGs. (A) Kyoto Enclyclopedia of Genes and Genomes (KEGG) pathway enrichment: the connections
are shown using red nodes (pathways) or brown nodes (DEGs) through the brown edges in a circle. The larger the size of the grey node, the more
connected it is within the network. The density of red color indicates the number of connecting DEGs. (B) Gene Ontology cellular component terms.
(C) Gene Ontology biological process terms. (D) Gene Ontology molecular function terms. Significant pathways represent adjusted P<.05 (false discovery
rate).
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Figure 5. (A-D) Heat maps of mRNA expression for the three data sets (GSE38642, GSE25724, GSE20966) of Group 1 (pancreas) and the GSE26887
(heart) data set showing all differentially expressed genes (DEGs), DEGs regulated in opposite directions, upregulated DEGs, and downregulated DEGs.
(E-G) Venn diagrams of complete, upregulated, and downregulated common DEGs. The upper part of the heat map shows fold change expression (FCE)
values represented by varying color densities. (H-K) Violin plots showing the entire FCE distribution of all four data sets of Group 1 (pancreas) and
the heart data set.
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Figure 6. (A) Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The connections are shown using red nodes (pathways) or
brown nodes (DEGs) through the brown edges in a circle. The larger the size of the grey node, the more connected it is within the network. The density
of red color indicates the number of connecting DEGs. (B-D) Gene Ontology enrichment for (B) cellular component, (C) biological process, and (D)
molecular function terms. Significant pathways represent adjusted P<.05 (false discovery rate). (E) Top hub genes in the network. (F, G) Clusters using
MCODE.
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Figure 7. mRNA expression of three data sets (GSE38642, GSE25724, and GSE20966) of Group 1 (pancreas) and the GSE23343 data set (liver).
(A-C) Venn diagrams of complete, upregulated, and downregulated common differentially expressed genes (DEGs). (D-F) Heat maps of common,
oppositely regulated, and common upregulated DEGs. The upper part of the heat map shows the fold change in expression values reflected by respective
color densities. (G-I) Violin plots showing the entire fold change expression (FCE) distribution of all four data sets for complete common DEGs,
oppositely regulated DEGs, and common upregulated DEGs.
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Figure 8. (A-D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology functional enrichment analysis of common DEGs.
The connections are shown using red nodes (pathways) or brown nodes (DEGs) through the brown edges in a circle. The larger the size of the grey
node, the more connected it is within the network. The density of red color indicates the number of connecting DEGs. (E) Protein-protein interaction
networks of 82 overlapping DEGs of GSE23343 and co-expressed genes of Group 1 (321 DEGs) composed of 82 nodes and 56 edges. (F, G) Clusters
from the network. Significant pathways represent adjusted P<.05 (false discovery rate).
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Figure 9. (A) Common and the top hub genes (green) in the protein-protein interaction network. (B-D) Clusters of the network.

Figure 10. (A) Heat map of 16 common seed genes from the five data sets (pancreas, heart, and liver). The fold change expression levels are displayed
in ascending order from blue to yellow. (B) Violin plot showing the entire fold change expression (FCE) distribution of all 16 common seed genes. (C)
Venn diagram of common differentially expressed genes (DEGs). (D) Disease-gene interaction network. (E) Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways.
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Figure 11. (A) Fold change expression levels of 16 common DEGs. (B) Top hub genes in the network (green) according to the criterion. (C, D, E, F)
Clusters determined using MCODE.
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Figure 12. Protein-microRNAs interactions (top 10 ranked) for (A) pancreas data sets, (B) heart data set, (C) liver data set, and (D) 16 common
differentially expressed genes (DEGs) of all five data sets.
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Figure 13. (A-E) Venn diagrams for (A) all microRNAs, (B) hsa-miR-1-3p, (C) hsa-miR-1-5p, (D) hsa-miR-155-5p, and (E) hsa-let-7b-5p with 16
common differentially expressed genes of the five data sets. (F) MicroRNA enrichment analysis of top four common targeted microRNAs.
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Figure 14. Flow diagram for the process of microRNA data collection with the number of data sets considered for inclusion.

Functional Enrichment and KEGG Pathway Analysis
The enrichments for the three GO classes (BP, CC, and MF) of
the 321 DEGs of Group 1 are shown in Figure 4B-D (also see
Tables S12-S14 of Multimedia Appendix 1). KEGG pathway
analysis showed that these genes were enriched in maturity-onset
diabetes of the young, malaria, lysosome, insulin secretion,
adrenergic signaling in cardiomyocytes, cell adhesion molecules,
and T2DM pathways (Figure 4A, Table S15 of Multimedia
Appendix 1).

The enrichments for the three GO classes of the 70 DEGs of
Group 2 are shown in Figure 6B-D (also see Tables S16-S18
in Multimedia Appendix 1). The genes were mainly enriched
in gap junction, melanoma, calcium signaling pathway, and
GnRH signaling pathway (Figure 6A and Table S19 of
Multimedia Appendix 1).

The enrichment terms for the three GO classes for the 82 DEGs
in Group 3 are shown in Figure 8B-D (also see Tables S20-S22
in Multimedia Appendix 1). These genes were enriched in axon
guidance (Figure 8A and Table S23 in Multimedia Appendix
1).

PPI Network and Hub Gene Identification

Group 1
The 321 overlapping DEGs of the GSE38642, GSE25724,
GSE20966 pancreas data sets were used to establish the PPI
network, which constituted 321 nodes, 737 edges, and a PPI
enrichment P value <.001 at medium confidence (0.4) (Figure
9A). The top three significant clusters within the PPI were
selected.

Cluster 1 (MCODE Score=9.556, 10 nodes, 43 edges) included
the genes POLR1E, DDX10, URB1, HEATR1, DDX18,
PDCD11, RSL1D1, RRP12, MAK16, and RRP15, which are
mainly associated with insulin pathway, transforming growth
factor (TGF)-β receptor signaling, and the mammalian target
of rapamycin (mTOR) signaling pathway (Figure 9B).

Cluster 2 (MCODE score=8.000, 8 nodes, 28 edges) included
the genes TRIM37, BTBD1, RNF19B, ASB4, KLHL22, SMURF1,
FBXO7, and RNF6, which are mainly associated with insulin
pathway, insulin-like growth factor 1 (IGF1) pathway, class I
phosphatidylinositol-3-kinase (PI3K) signaling events mediated
by protein kinase B (AKT), TGF-β receptor signaling, mTOR
signaling pathway, platelet-derived growth factor receptor-beta
signaling pathway, and epidermal growth factor (EGF) receptor
(ERBB1) signaling pathway (Figure 9C).
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Cluster 3 (MCODE score=4.000, 14 nodes, 26 edges) included
the genes CD2, CD48, EDN3, GNAS, ITGAX, PDPN, GNRHR,
RAC2, MADCAM1, WASL, GNAQ, PLEK, LAPTM5, and DVL2,
which are associated with platelet activation, signaling, and
aggregation; hemostasis, cell surface interactions at the vascular
wall; integrin family cell surface; and IGF1 pathway (Figure
9D).

Group 2
The 70 overlapping DEGs of GSE26887 and coexpressed genes
with Group 1 (321 genes) were used to establish the PPI network
composed of 70 nodes, 32 edges, and a PPI enrichment P value
of .05 at medium confidence (0.4). The top two significant
clusters within the PPI were selected using the MCODE plugin
of Cytoscape software (Figure 6E).

Cluster 1 (MCODE score=3.333, 4 nodes, 5 edges) included
the genes RRP12, PDCD11, RRP15, and MRPL3 (Figure 6F).
Cluster 2 (MCODE score=3.000, 3 nodes, 3 edges) included
the genes PLEK, GNAQ, and IQSEC1, which are mainly
associated with platelet activation, signaling, and aggregation;
hemostasis; class I PI3K signaling events mediated by AKT;
insulin pathway; mTOR signaling pathway; IGF1 pathway; and
EGF receptor (ERBB1) signaling pathway (Figure 6G).

Group 3
The 82 overlapping DEGs of GSE23343 and the coexpressed
genes of Group 1 (321 DEGs) were used to establish the PPI
network composed of 82 nodes, 56 edges, and a PPI enrichment
P value of .02 at medium confidence (0.4). The top two
significant clusters are shown in Figure 8E.

Cluster 1 (MCODE score=03, 3 nodes, 3 edges) included the
genes BTBD1, ASB4, and KLHL22, which were mainly
associated with PI3K/AKT signaling in cancer (Figure 8F).

Cluster 2 (MCODE score=03, 3 nodes, 3 edges) included the
genes DDX18, MAK16, and RRP15, which were mainly
associated with insulin pathway, mTOR signaling pathway,
IGF1 pathway, and EGF receptor (ERBB1) signaling pathway
(Figure 8G).

Common Genes Among All Groups
A total of 16 overlapping DEGs were identified in all three
groups. The hub genes of all data sets were ARHGEF9,
CBFA2T2, CDK5RAP2, EEF1D, FGD6, FRMD4B, GNAQ,
MAML3, NPC1, NRG1, OXR1, PCDH7, PFKFB2, PSIP1,
SLC1A2, and TRAK1 (Table S24 in Multimedia Appendix 1).
All 16 hub genes belonging to the five data sets were analyzed
with the help of an expression heat map, violin plot, and Venn
diagram, and their fold change expression levels were compared
by bar plots and analyzed by the disease-gene interaction
network and KEGG pathway (Figure 10A-E and Figure 10F;
Table S25 in Multimedia Appendix 1).

The PPI network of the 16 hub genes and their related genes
was established by protein STRING analysis. We selected 4
clusters from the PPI network using MCODE (Figure 11B).
Cluster 1 (MCODE score=10, 10 nodes, 45 edges) included the
genes MAML1, HEY2, NOTCH3, MAML3, NOTCH2, MAML2,
NOTCH1, HEY1, RBPJ, and NOTCH4. The analysis also

showed that cluster 1 contains MAML3 as a seed gene (Figure
11D). Cluster 2 (MCODE score=6.667, 7 nodes, 20 edges)
included the genes EEF1A1, EEF1B2, EEF1G, RPLP0, RPS2,
CARS, and EEF1D, with EEF1D as a seed gene (Figure 11E).
Cluster 3 (MCODE score=5.714, 8 nodes, 20 edges) included
the genes AKT1, NUMB, EGFR, ERBB3, GRB2, CDC42,
PSEN1, and NRG1, with NRG1 as a seed gene (Figure 11C).
Cluster 4 (MCODE score=4, 4 nodes, 6 edges) included the
genes CDK5RAP2, CEP152, CENPJ, and PCNT, with
CDK5RAP2 as the seed gene (Figure 11F).

Integrative Gene Expression and Meta-analysis
The number of genes with an adjusted P value <.05 for each
data set revealed 4, 0, 3533, 171, and 1 significant genes from
the meta-analysis, including ARHGEF9, SAMSN1, SLC1A2,
RABGAP1L, OXR1, GNAQ, CBFA2T2, and RRP15. The 16 hub
genes obtained from the gene expression meta-analysis are
shown in Table S26 of Multimedia Appendix 1.

MicroRNA and Hub Gene Network
To investigate the regulatory relationship of the identified hub
genes, their targeting miRNAs, and coexpressed network, the
top 10 ranked DEG-targeting miRNAs were selected based on
degree and betweenness values. The top 10 targeting miRNAs
for the three groups were hsa-let-7b-5p, hsa-mir-107,
hsa-mir-124-3p, hsa-mir-129-2-3p, hsa-mir-1-3p,
hsa-mir-155-5p, hsa-mir-16-5p, hsa-mir-23b-3p, hsa-mir-27a-3p,
and hsa-mir-34a-5p in Group 1 (pancreas); hsa-mir-16-5p,
hsa-mir-124-3p, hsa-mir-1-3p, hsa-mir-27a-3p, hsa-let-7b-5p,
hsa-mir-155-5p, hsa-mir-20a-5p, hsa-mir-26b-5p,
hsa-mir-27b-3p, and hsa-mir-147a in Group 2 (heart); and
hsa-mir-1-3p, hsa-mir-155-5p, hsa-mir-124-3p, hsa-let-7b-5p,
hsa-mir-34a-5p, hsa-mir-101-3p, hsa-mir-15a-5p,
hsa-mir-26a-5p, hsa-mir-181a-5p, and hsa-let-7a-5p in Group
3 (liver). The common hub genes were targeted by
hsa-mir-16-5p, hsa-mir-27a-3p, hsa-let-7a-5p, hsa-let-7b-5p,
hsa-mir-101-3p, hsa-mir-1-3p, hsa-mir-124-3p, hsa-mir-103a-3p,
hsa-mir-122-5p, and hsa-mir-155-5p.

Four common miRNAs (hsa-let-7b-5p, hsa-mir-155-5p,
hsa-mir-124-3p, hsa-mir-1-3p) were found in all three groups,
targeting the 16 hub DEGs. The miRNAs and PPI networks
representing multiple targeted nodes (DEGs) of particular
miRNAs for all groups are shown in Figure 12A-D.

The common DEGs found in all three groups are targeted by
hsa-miR-1-3p (GNAQ, PCDH7, CDK5RAP2, NPC1),
hsa-let-7b-5p (OXR1), hsa-mir-155-5p (TRAK1, PSIP1), and
hsa-mir-124-3p (NRG1). The common targeting important
miRNAs (hsa-let-7b-5p, hsa-mir-155-5p, hsa-mir-124-3p,
hsa-mir-1-3p) were mainly involved in the advanced glycation
end products (AGE)-receptor for advanced glycation end
products (RAGE) signaling pathway in diabetic complication
and endocrine resistance (Figure 13A-F, Tables S27-S40 in
Multimedia Appendix 1).

Target MiRNA Validation from Available Data Sets
To validate our miRNA prediction, we searched the database
again and performed a thorough review of available miRNA
data sets for T2DM. Our search yielded two miRNA data sets
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from renal tissue (GSE51674) and serum (GSE26168) samples.
The flow diagram for the miRNA data set search is shown in
Figure 14. However, we were not able to find any miRNA data
set pertaining to the heart, pancreas, or liver tissue. Interestingly,
on analysis of the data sets obtained from the renal tissue and
serum, we observed a significant alteration for our predicted
miRNAs in the renal tissue, which was conspicuously absent
in the serum (Table 2). We assessed the expression of our

predicted miRNAs in the renal tissue and serum by comparing
the adjusted P values for both sample types. This analysis
revealed that although the expression of miRNAs was
significantly altered in renal tissues from patients with T2DM,
the same was not observed in serum when compared with
healthy controls. Our analysis highlights a paradoxical difference
in the alteration of miRNAs in tissue and serum in T2DM.

Table 2. Validation of the fold change in expression levels of common microRNAs in the GSE51674 (kidney) and GSE26168 (serum) data sets.

logFCFCaBtP valueAdjusted P valueMicroRNA

GSE51674 (kidney)

–1.000.50–0.85–4.83<.001<.001hsa-miR-124*b

4.2819.420.926.06<.001<.001hsa-miR-1

6.2274.5612.1220.96<.001<.001hsa-miR-155

1.352.55–1.204.60<.001<.001hsa-let-7b

GSE26168 (serum)

0.021.01–6.221.23.23.46hsa-miR-124*

0.001.00–6.950.23.82.86hsa-miR-1

0.051.04–5.331.86.08.46hsa-miR-155

7.89237.61–5.941.45.16.46hsa-let-7b

aFC: fold change.
b*indicates the star strand for miR-124.

Functional Enrichment of MiRNAs
The functional enrichment and pathway analysis by
MIENTURNET revealed the top significant pathways for
hsa-let-7b-5p, hsa-miR-124-3p, hsa-miR-1-3p, and
hsa-miR-155-5p, including the PI3K-AKT signaling pathway
(hsa-let-7b-5p, hsa-miR-124-3p, hsa-miR-1-3p,
hsa-miR-155-5p), endocrine resistance (hsa-let-7b-5p,
hsa-miR-124-3p, hsa-miR-1-3p, hsa-miR-155-5p), AGE-RAGE
signaling pathway in diabetic complications (hsa-let-7b-5p,
hsa-miR-124-3p, hsa-miR-1-3p, hsa-miR-155-5p), lipid and
atherosclerosis (hsa-let-7b-5p, hsa-miR-1-3p, hsa-miR-155-5p),
insulin signaling pathway (hsa-let-7b-5p, hsa-miR-124-3p,
hsa-miR-1-3p), mitogen-activated protein kinase (MAPK)
signaling pathway (hsa-let-7b-5p, hsa-miR-124-3p,
hsa-miR-155-5p), fluid sheer stress and atherosclerosis
(hsa-miR-124-3p, hsa-miR-1-3p), adipocytokine signaling
pathway (hsa-miR-124-3p), diabetic cardiomyopathy
(hsa-miR-124-3p, hsa-miR-1-3p), insulin resistance
(hsa-miR-124-3p), carbohydrate digestion and absorption
(hsa-miR-124-3p), regulation of lipolysis in adipocytes
(hsa-miR-124-3p), glucagon signaling pathway
(hsa-miR-124-3p), and TGF-β signaling pathway
(hsa-miR-155-5p) (see Figure 13 and Table S41 of Multimedia
Appendix 1).

Discussion

Principal Findings
Diabetes develops because of dysregulated β-cell and
adipose-tissue responses to chronic fuel excess, which result in
so-called nutrient spillover, insulin resistance, and metabolic
stress. The latter causes multiple organ damage. However,
insulin resistance, while forcing β-cells to work harder, may
also have an important defensive role against nutrient-related
toxic effects in tissues such as the heart [32]. The liver, which
primarily regulates glucose homeostasis in the body, has a strong
association with diabetes. Liver disease in diabetes can further
be classified into liver disease related to diabetes, hepatogenous
diabetes, and liver disease occurring coincidentally with diabetes
mellitus [33]. Recently, knowledge on the pathogenesis and
management of diabetes mellitus has been expanding; however,
the disease is far from being effectively managed in a large
proportion of patients. In silico analysis of disease pathways
and exploration of various disease-related genes and their
regulatory molecules have revealed unforeseen vistas. In this
study, we analyzed tissue-specific microarray gene expression
data sets from publicly available repositories employing a
network-based bioinformatics pipeline. We identified DEGs
common to different tissues of patients with T2DM and
constructed diseasome networks to provide insights into the
interactions of the genes. These DEGs enabled the identification
of associated dysregulated molecular pathways in tissues and
related GO terms. A large number of pathways and GO
categories were reduced by manual curation after filtering using
a P value threshold of .05.
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Our analysis supports that diabetes is a multifactorial disease
caused by multiple complex systems, with an abundant crossover
between signaling pathways. For each data set included in the
study, comprehensive analysis focusing on biological function
and interaction of T2DM-related genes provided valuable
information to understand the pathogenic effect of DEGs in
various organs, including the heart, liver, and pancreas, of
patients with diabetes. In this study, five mRNA expression
profile data sets (GSE38642, GSE25724, GSE20966,
GSE26887, and GSE23343), including 125 samples of the
pancreas, heart, and liver tissues of patients with T2DM and
controls without diabetes, were analyzed. A total of 16 seed
genes were obtained after the final analysis. Some of these genes
have been reported to play significant roles in T2DM and its
related comorbidities. In a similar study that included DEG
screening from a genome-wide association study (GWAS)
catalog, Gupta and Vadde [34] identified four hub gene
candidates, related signaling pathways, target miRNAs, and
transcription factors. However, their selection criteria of the
data sets chosen for analysis were different than those adopted
in this study, which possibly accounts for the difference in
results.

Neuregulin 1 (NRG1) and ERBB receptors are involved in
glucose homeostasis. NRG1-ERBB pathway activation affects
glucose metabolism in the liver. Mice with chronic NRG1
treatment showed increased p38 phosphorylation in the liver
and improved glucose tolerance [35]. Myocardial NRG1/ERBB
is altered during postmyocardial infarction heart failure
associated with diabetes. NRG1 can improve the antioxidative
function of the mitochondria, and thereby increase the
proliferation and decrease the apoptosis of cardiomyocytes via
ERBB/AKT signaling. This can explain the upregulated
expression of NRG1 found in the cardiac tissue of patients with
T2DM in our study. Moreover, the dysregulated insulin
signaling pathway modifies titin-based cardiomyocyte tension,
modulates diastolic function, impairs cyclic guanosine
monophosphate (cGMP)–cGMP-dependent protein kinase
signaling, and elevates protein kinase C-α activity, thereby
causing titin-based cardiomyocyte stiffening in diabetic hearts.
Chronic NRG1 application has shown promising results in the
modulation of titin properties in T2DM-associated heart failure
with a preserved ejection fraction [36]. Further, there are reports
showing that hyperglycemia impairs NRG1/ERBB2 signaling
by disrupting the balance between NRG1 isoforms, decreasing
the expression of erbin, and correspondingly activating the
MAPK pathway, ultimately aiding in the development of
diabetic peripheral neuropathy [37]. Again, the downregulation
of NRG1 expression in the liver found in this study points toward
dysregulated glucose homeostasis.

PFKFB2 encodes 6-phosphofructo-2-kinase/fructose
2,6-bisphosphatase (PFK2/FBPase-2) isoform 2, a bifunctional
enzyme involved in the synthesis and degradation of fructose
2,6-bisphosphate. Enhanced hepatic glycolysis in mice achieved
by overexpressing PFK2/FBPase-2 in the liver resulted in
reduced body weight and visceral fat content. PFK2/FBPase-2
is also a binding partner for glucokinase, which plays a pivotal
role in the rate-limiting step of glucose-stimulated insulin
secretion in pancreatic β-cells, and regulates obesity, insulin

secretory dysfunction, and T2DM [38,39]. The loss of PFK2
content as a result of reduced insulin signaling impairs its
regulatory function of glycolysis and elevates the levels of early
glycolytic intermediates. Although this may be beneficial in the
fasting state to conserve systemic glucose, it represents a
pathological impairment in diabetes mellitus [40]. Interestingly,
PFKFB2, among a few other genes, showed opposing expression
changes in the pancreas (downregulation) and heart
(upregulation). This is likely due to the impaired insulin
secretion pathway in pancreatic β-cells, in which PFKFB2 plays
an important role [39]. Moreover, PFKFB2 is known to alleviate
myocardial injury; hence, the increased expression level in the
heart is possibly a protective mechanism [41].

CDK5 regulatory subunit associated protein (CDK5RAP) 1, 2,
and 3 were all found to be differentially upregulated in four data
sets, except GSE23343 in which these genes were
downregulated. These genes have been associated with neuronal
development and spindle checkpoint function [42]. FRMD4B
plays a vital role in cardiac activity regulation. However, the
effect varies in different populations due to polymorphisms.
FRMD4B has shown to be associated with ischemic heart failure
in a European population but not in other populations [43]. The
G-protein Gq, encoded by GNAQ, is a crucial key regulator of
the insulin secretion pathway that is involved in glucose
metabolism, and a functional GNAQ promoter haplotype was
associated with altered Gq expression and with insulin resistance
and obesity in women with polycystic ovary syndrome [44].
The Niemann-Pick type C1 (NPC1) protein regulates the
transport of cholesterol and fatty acids from late
endosomes/lysosomes and has a central role in maintaining lipid
homeostasis. In humans, GWAS and post-GWAS highlighted
the implication of common variants in NPC1 in adult-onset
obesity, body fat mass, and T2DM. Heterozygous human carriers
of rare loss-of-function coding variants in NPC1 display an
increased risk of morbid adult obesity [45]. Another significant
DEG pair was orexin A and B, which regulate a variety of
physiological functions. The biological effects of these
neuropeptides occur through OXR1, a G-protein coupled
receptor. There is growing evidence that orexins regulate body
weight, glucose homeostasis, and insulin sensitivity, and
promote energy expenditure, thus protecting against obesity by
interacting with brown adipocytes. Further, orexins control
brown and white adipocytes as well as pancreatic α- and β-cell
functions [46,47]. Single-cell RNA sequencing from samples
of patients with gestational diabetes mellitus revealed SLC1A2
as a novel marker for syncytiotrophoblasts [48]. Such
cell-type-specific marker genes in particular disease states can
open new avenues of tissue-targeted therapeutic intervention.
Among the other DEGs, EEF1D regulates lipid synthesis via
the PI3K/AKT, PPAR, and AMPK pathways [49]. CBFA2T2
is a key regulator of adipogenic differentiation through CEBPA
[50]. Further, these seed genes were analyzed as possible
miRNA targets in silico, which revealed the top 10 miRNAs
for each of the pancreas, liver, and heart tissues, as well as for
the 16 seed genes. The role of miRNAs in the regulation of the
underlying pathogenic mechanisms of diabetes and diabetic
complications is well established [7,51] Several of the target
miRNAs for the seed genes have already been explored in
T2DM, and our in silico analysis further confirms their
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candidature as potential biomarkers as well as therapeutic
targets. In fact, miR-124-3p was interconnected to 7 of the 16
seed genes. Pan et al [52] studied mouse primary hepatocytes
and observed that regulation of miR-124-3p plays an important
role in turning the hepatocytes into insulin-producing cells. A
recent analysis of weighted genes in diabetic retinopathy
concluded miR-124-3p to be a pivotal regulatory molecule in
the underlying pathogenesis [6]. Furthermore, in isolated
myocardial cells, NRG1 expression was observed to be
downregulated while miR-124-3p expression was upregulated
in ischemia/reperfusion injury [53], which also supports our
finding of this miRNA-mRNA target interaction. The miRNA
hsa-miR-124-3p affects the immune status of patients with
T2DM through its interaction with the obesity-related immune
cytokines [54].

Three other miRNAs, namely miR-155-5p, miR-1-3p, and
let-7b-5p, were also commonly identified in all three groups.
Likewise, the role of miR-155-5p in diabetes has been widely
studied, especially as a marker in diabetic kidney disease (DKD)
[55-57]. The expression of miR-155-5p is positively associated
with urinary microalbumin and has good diagnostic and
prognostic value in patients with DKD [56]. Further,
dihydromyricetin attenuates renal interstitial fibrosis by
regulating PTEN signaling, a critical element in the pathogenesis
of DKD, through miR-155-5p [58,59]. Recently, Zhou and
colleagues [60] showed that metformin can relieve inflammation
and fibrosis in patients with DKD by acting through an
inflammation axis involving miR-155-5p. Some recent studies
have also shown that miR-155-5p interferes with immune
dysregulation in COVID-19 patients with diabetes or other
comorbidities [61,62]. Further, all four miRNAs were found to
be involved in regulating the endocrine resistance and
AGE-RAGE pathways, which is in line with recent findings
[63].

The differing trend in miRNA expression observed in our
comparison of miRNA data sets from serum and renal tissue in
T2DM highlights the necessity to further explore the
tissue-specific alterations in T2DM to better comprehend its
role in various tissues.

Limitations
The main limitation of this study is that it was based on an in
silico analysis; therefore, further validation of the identified
novel hub genes and miRNAs is still required based on
laboratory experiments with human T2DM samples. The data
sets were compiled using different arrays on the Affymetrix
platform, and the patient populations belong to multiple ethnic
groups, which may account for some of the variability in the
results. Furthermore, the predicted miRNAs in this study could
not be validated within the same tissue data sets. However, the
functional enrichment for the miRNAs highlighted some
significant pathways related to T2DM, its complications, and
its pathogenic mechanisms.

Conclusion
The aim of this study was to identify the tissue-specific
differential expression of genes, especially pertaining to the
heart, liver, and pancreas, in T2DM. From Group 1 (pancreas:
374 DEGs), Group 2 (heart: 86 DEGs), and Group 3 (liver: 97
DEGs), we identified a total of 16 common DEGS (ARHGEF9,
CBFA2T2, CDK5RAP2, EEF1D, FGD6, FRMD4B, GNAQ,
MAML3, NPC1, NRG1, OXR1, PCDH7, PFKFB2, PSIP1,
SLC1A2, and TRAK1) in the selected data sets. Further, we
identified the top four common miRNAs (hsa-let-7b-5p,
hsa-miR-124-3p, hsa-miR-1-3p, has-miR-155-5p) targeting the
16 common DEGs. Although we were not able to find any
miRNA data set pertaining to the heart, pancreas, or liver tissue,
we observed significant alterations of our predicted miRNAs
in renal tissue. Interestingly, this significant alteration was
conspicuously absent in the serum. The miRNAs identified in
this study are involved in regulating various pathways, including
the PI3K-AKT signaling pathway, endocrine resistance, and
the AGE-RAGE signaling pathway. Moreover, the differing
trend in miRNA expression observed in our comparison of
miRNA data sets from the serum and renal tissue in T2DM
highlights the necessity to further explore the tissue-specific
alteration in T2DM to better comprehend its role in various
tissues.
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AKT: protein kinase B
BP: biological process
CC: cellular component
CDK5RAP: CDK5 regulatory subunit associated protein
cGMP: cyclic guanosine monophosphate
DAVID: Database for Annotation, Visualization and Integrated Discovery
DEG: differentially expressed gene
DKD: diabetic kidney disease
EGF: epidermal growth factor
ERBB1: epidermal growth factor receptor
GEO: Gene Expression Omnibus
GO: Gene Ontology
GWAS: genome-wide association study
IGF1: insulin-like growth factor 1
KEGG: Kyoto Encyclopedia of Genes and Genomes
limma: linear models for microarray data
MAPK: mitogen-activated protein kinase
MCODE: Molecular Complex Detection
MF: molecular function
MIENTURNET: MicroRNA Enrichment Turned Network
miRNA: microRNA
mTOR: mammalian target of rapamycin
NPC1: Niemann-Pick type C1
NRG1: neuregulin 1
PFK2: 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase isoform 2
PI3K: phosphoinositide 3-kinase
PPI: protein-protein interaction
RAGE: receptor of advanced glycation end products
STRING: Search Tool for the Retrieval of Interacting Genes/Proteins
T2DM: type 2 diabetes mellitus
TGF: transforming growth factor
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