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Abstract

Background: In recent years, thanks to the rapid development of next-generation sequencing (NGS) technology, an entire
human genome can be sequenced in a short period. As a result, NGS technology is now being widely introduced into clinical
diagnosis practice, especially for diagnosis of hereditary disorders. Although the exome data of single-nucleotide variant (SNV)
can be generated using these approaches, processing the DNA sequence data of a patient requires multiple tools and complex
bioinformatics pipelines.

Objective: This study aims to assist physicians to automatically interpret the genetic variation information generated by NGS
in a short period. To determine the true causal variants of a patient with genetic disease, currently, physicians often need to view
numerous features on every variant manually and search for literature in different databases to understand the effect of genetic
variation.

Methods: We constructed a machine learning model for predicting disease-causing variants in exome data. We collected
sequencing data from whole-exome sequencing (WES) and gene panel as training set, and then integrated variant annotations
from multiple genetic databases for model training. The model built ranked SNVs and output the most possible disease-causing
candidates. For model testing, we collected WES data from 108 patients with rare genetic disorders in National Taiwan University
Hospital. We applied sequencing data and phenotypic information automatically extracted by a keyword extraction tool from
patient’s electronic medical records into our machine learning model.

Results: We succeeded in locating 92.5% (124/134) of the causative variant in the top 10 ranking list among an average of 741
candidate variants per person after filtering. AI Variant Prioritizer was able to assign the target gene to the top rank for around
61.1% (66/108) of the patients, followed by Variant Prioritizer, which assigned it for 44.4% (48/108) of the patients. The cumulative
rank result revealed that our AI Variant Prioritizer has the highest accuracy at ranks 1, 5, 10, and 20. It also shows that AI Variant
Prioritizer presents better performance than other tools. After adopting the Human Phenotype Ontology (HPO) terms by looking
up the databases, the top 10 ranking list can be increased to 93.5% (101/108).

Conclusions: We successfully applied sequencing data from WES and free-text phenotypic information of patient’s disease
automatically extracted by the keyword extraction tool for model training and testing. By interpreting our model, we identified
which features of variants are important. Besides, we achieved a satisfactory result on finding the target variant in our testing
data set. After adopting the HPO terms by looking up the databases, the top 10 ranking list can be increased to 93.5% (101/108).
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The performance of the model is similar to that of manual analysis, and it has been used to help National Taiwan University
Hospital with a genetic diagnosis.

(JMIR Bioinform Biotech 2022;3(1):e37701) doi: 10.2196/37701
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Introduction

Background
Modern next-genome sequencing (NGS) technology makes
rapid human genome sequencing within a day possible [1,2].
Because of its speed and low cost in comparison with the
traditional Sanger sequencing method [3], NGS is being rapidly
introduced into clinical and public health laboratory practice,
especially for the diagnosis of hereditary disorders.

Although NGS has extremely high throughput and could
generate huge amounts of genomic data in a short time,
interpreting these data and finding the disease-causing
candidates among thousands of variants remain a challenge. To
determine the true causal variants of a patient with genetic
disease, physicians often need to view numerous features on
every variant manually and search for literature in different
databases to understand the effect of a genetic variation. Another
challenge is in finding the genetic variants that have a strong
correlation with patient’s phenotype. Physicians often select
useful keywords from patient’s electronic medical records
(EMRs) manually to search for articles in several genetic
databases such as Online Mendelian Inheritance in Man (OMIM)
[4] and GeneReviews [5] to decide whether a variant is
correlated with a genetic disease. It is thus a burden for
physicians to go through these laborious and time-consuming
processes case-by-case, especially when the number of inherited
disease–associated germline mutations published per year has
increased exponentially in the last decade [6].

Nowadays, many studies use machine learning methods to solve
numerous problems in genomics and genetics. The field of
machine learning promises to enable computers to assist humans
in making sense of large, complex data sets. After variant
annotation, there is a variant list with hundreds of columns that
humans are not capable of interpreting one-by-one. As machine
learning significantly surpasses human-level performance,
especially with structured data, we consider using a machine
learning method to analyze variants from NGS and find the
target gene.

To address these problems, it is important and necessary to have
a high-performance method to filter candidate variants from
NGS results and immediately find target variants related to a
patient’s disease. Recently, many tools such as Exomiser [7],
DeepPVP [8], Xrare [9], VarSight [10], Phenolyzer [11], Fabric
GEM [12], MOON [2], CADD [13], and MetaSVM [14] have
been developed to identify potentially causative variants that
are relevant to patient’s phenotype in rare disease diagnosis.
Exomiser integrates information including calculated
gene-specific phenotype score, variant allele frequency
(Multimedia Appendix 1), and predicted pathogenicity of several

alleles to prioritize disease-causative variants/interactions. Fabric
GEM utilizes Bayes factor to prioritize variants with the support
of a gene-phenotype score calculated by Phevor [15] and variant
prioritization result of several tools including ANNOVAR,
VAAST, and Phen-Gen. MOON integrates the result of
annotation of several variants and prioritization tools to achieve
variant prioritization using several kinds of machine learning
models. Gene-phenotype scores calculated by Phevor using
Human Phenotype Ontology (HPO) terms extracted from
electronic health records (EHRs) of patients are also considered
by MOON. CADD utilizes logistic regression to integrate
information including context of surrounding sequence,
biological constraints, epigenetic measurements, and result of
several variant annotation tools to build a predictive model for
variant deleteriousness. MetaSVM [14] gathers result of 9
deleteriousness prediction scores including PolyPhen-2 [16],
SIFT [17], MutationTaster [18] to build a support vector
machine (SVM) deleteriousness predictive model. Although
these tools adopt different approaches, including logistic
regression and deep neural networks, to prioritize variants, most
can only recognize the phenotypes defined in the HPO term
[19]. In this work, we developed the AI Variant Prioritizer
module based on a machine learning approach that can output
the rank of single-nucleotide variants (SNVs) and small
insertions/deletions (indels) from whole-exome sequencing
(WES) data with the input of free-text phenotypic description
or EHR.

In this research, we aimed to implement a website, AI Variant
Prioritizer, that uses data from NGS bioinformatics pipelines
with machine learning to make a prediction about the most
possible disease-causing variants among SNVs and patient’s
phenotype. The data generated from NGS pipelines are all
structured with annotations from several tools including
ANNOVAR, Nirvana, Variant Effect Predictor (VEP), and
InterVar and additional information from multiple databases
queried by MViewer (Mutation Viewer) [20]. To simplify the
interpretation process, we integrate the keyword extraction tool
to generate the phenotype from EMRs automatically. Our system
takes candidate variants filtered by MViewer and patient’s
EMRs as its input and outputs a list of SNVs with rank and
probability of being disease causing. Instead of checking every
variant manually, this system can assist researchers and
physicians in focusing on those with higher disease-causing
probability and save a lot of time. Moreover, we implement a
web application programming interface (API) for our system
so that the ranking function could be integrated into MViewer.
Thus, physicians are able to interpret the results of genetic
variation with a single application instead of adopting numerous
services.

JMIR Bioinform Biotech 2022 | vol. 3 | iss. 1 | e37701 | p. 2https://bioinform.jmir.org/2022/1/e37701
(page number not for citation purposes)

Huang et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.2196/37701
http://www.w3.org/Style/XSL
http://www.renderx.com/


Data Description
In our research, we focus on patients who have been diagnosed
with rare Mendelian diseases. Our data are collected mainly
from the rapid exome project of Department of Medical
Genetics, National Taiwan University Hospital (NTUH). To
build the model with more data, we also applied for several
WES data that are deposited in the dbGaP database (project ID
20911). The data we use are the dbGaP accession
phs000711.v5.p1 by Baylor Hopkins Center for Mendelian
Genomics.

The conditions under which we collect patients’ sequencing
data to meet the requirements of this research are as follows:

• Patients who were diagnosed with genetic disorders.
• Patients who received WES or targeted panel sequencing

and diagnosed with at least one disease-causing variant.
• Patients whose phenotype information is available.

Our data from NTUH include patient demographics, variant
call format (VCF) file output by the NGS bioinformatics
pipeline, and phenotype information from electrical medical
records. Data from dbGaP also include patient demographics,
VCF file, and clinical conditions. All data are deidentified and
will not invade patients’ privacy. We include sex in patient
demographic information as a feature in our model because
some human genetic disorders are sex linked. Sex-linked
diseases are caused by mutations in genes on X or Y
chromosomes and passed down through families.

Variant Call Format File
As the end product of the NGS bioinformatics pipeline, the VCF
is a generic format for storing DNA polymorphism data such
as SNPs, insertions, deletions, and structural variants. The
format was developed for the 1000 Genomes Project and has
also been widely adopted by other projects. Every VCF file
consists of 2 two parts: header section and data section. The
header contains metadata about the tags and annotations in the
data part. It can be also used to provide information related to

the history of the data and file. The last line in the header
contains the column headings for the data part. The data section
is tab separated into 9 columns and reports a mutation for each
row. Columns include CHROM, POS, ID, REF, ALT, QUAL,
FILTER, INFO, and FORMAT.

Phenotype Information
For the data from NTUH, we extract patient’s phenotypic
information from clinicians’history summary. It mainly records
a brief summary of patient’s illness, clinical diagnosis, and the
reason(s) why each patient was admitted. We also collect the
phenotype keywords provided by doctors based on the symptom
of each patient for model validation. For the data from dbGaP,
because EHRs are not available, we will use the clinical
condition of the patient instead. For the clinical condition that
can be found in OMIM databases, we will extract the
corresponding description of phenotypes as the phenotypic
information to be used in our research.

Methods

Workflow

Overview
Figure 1 shows the workflow of our research. We collected
VCF of each patient from WES and panel sequencing and then
annotated the variants using several tools. After variant
annotation, we used our in-house software (MViewer [20]) to
query additional external databases and filter for candidate
variants. We then used the gene name of these candidate variants
and keywords extracted by keyword extraction tools from EMRs
to query Variant Prioritizer [21]. The gene similarity scores
generated by Variant Prioritizer and columns of annotated
variants were used as features to train a machine learning model.
This model ranks each variant that represents its disease-causing
probability. We will demonstrate the details of each step in the
following sections.
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Figure 1. The workflow of research. EMR: electronic medical record; indel: insertion/deletion; MViewer: Mutation Viewer; SNV: single-nucleotide
variant; VCF: variant call format.

Variant Annotation
We collected each patient’s NGS sequencing data in the VCF
file and got annotations from several tools, including
ANNOVAR [22], VEP [23], Nirvana [24], and InterVar [25].
For additional information that the aforementioned tools will

not provide, we used software to import some public data
sources, including ClinVar [26], Human Genome Mutation
Database (HGMD) [27], and Taiwan Biobank [28]. A detailed
description of these annotation fields is summarized in Textbox
1.
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Textbox 1. Description of annotation fields.

Allele Frequency

This describes the fraction of gene copies of a particular allele in a defined population. Allele frequency is calculated by dividing the number of copies
of a particular allele in a population by the total number of all alleles for that gene in a population. It refers to how common an allele is in a population.

Functional Prediction Score

A range of scoring algorithms with capability to predict the potential deleteriousness of variants based on different information in them, such as their
sequence homology, protein structure, and evolutionary conservation. These scoring methods include function prediction scores, conservation scores,
and ensemble scores.

Pathogenicity

Clinical significance variants reported in 2 public databases, ClinVar and Human Gene Mutation Database (HGMD), that store information on gene
mutation(s) related to human-inherited disease. Both classify variants as disease causing or disease associated by manual curation.

Clinical Interpretation

The American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published standards and
guidelines for the clinical interpretation of sequence variants with respect to human diseases on the basis of 28 criteria [29]. These criteria are as
follows: the criteria (16 overall) for classifying variants as pathogenic or likely pathogenic are very strong (PVS1), strong (PS1-PS4), moderate
(PM1-PM6), or supporting (PP1-PP5), whereas the criteria (12 overall) for classifying variants as benign or likely benign are standalone (BA1), strong
(BS1-BS4), or supporting (BP1-BP7).

Gene-Level Constraint

Constraint on gene expression levels has been shown to influence patterns of genetic variation within humans [30]. For example, some genes are
unusually depleted for loss of function and are thought to be constraint with respect to their expression. The Genome Aggregation Database (gnomAD)
provides predicted constraint metrics track set that contains metrics of pathogenicity per gene as predicted and identifies genes subject to strong
selection against various classes of mutation. These include several subtracks of constraint metrics calculated at gene, transcript, and transcript region
levels.

Disease Inheritance

Patterns of inheritance that a trait or disorder associated with a variant can be passed down through families, such as autosomal dominant, autosomal
recessive, X-linked, and mitochondrial inheritance. We used the patterns defined in OMIM (Online Mendelian Inheritance in Man) as our data.

Others

Additional information about genetic variants such as the gene name, genotype, and the functional consequence on the different transcripts for a gene
or in proximal regulatory regions.

Variant Filtering
There are on average 40,000 variants per proband in WES data.
However, most of them are benign and not related to the
symptoms. Only a small number of these variants are likely to
be deleterious or relevant to the patient’s disease. In a standard
clinical analysis process, physicians only focus on variants that
might be pathogenic or unknown. As our model aims to assist
researchers and physicians with their clinical exome reading,

reducing the number of variants and focusing on the variants
that are more likely to be responsible for the disease are
necessary.

For the purpose of generating candidate variants, we used the
filter provided by MViewer to remove the variants that are not
likely to be deleterious. The filters and criteria are listed in Table
1. For filters that contain more than 1 column, if a variant meets
any of their criterion, it will remain in the data. We got
approximately 700 SNVs per patient after variant filtering.
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Table 1. Filter criteria.

CriteriaColumnFilter

Max allele frequency •• ≤0.01 (include no data)Max Allele Frequency

Nonsynonymous missense
mutation

•• “nonsynonymous”ExonicFunc.refgene

Stop gain •• “stop_gained”Consequence
• •ExonicFunc.refgene “stopgain”

Splice •• “splice_region_variant”Consequence
• •Func.refgene “splice_acceptor_variant”

• “splice_donor_variant”
• “splicing”

Frameshift •• “frameshift_variant”Consequence
• •ExonicFunc.refgene “feature_truncation”

• “feature_elongation”
• “frameshift”

Initial codon •• “start_lost”Consequence

Deletion •• “deletion”Type
• Consequence
• ExonicFunc.refgene

Insertion •• “insertion”Type
• Consequence
• ExonicFunc.refgene

Inframe deletion •• “inframe_deletion”Consequence
• •ExonicFunc.refgene “nonframeshift deletion”

Exon/splice site •• “exonic”Func.refgene
• •Consequence “splicing”

• “coding_sequence_variant”
• “frameshift_variant”
• “incomplete_terminal_codon_variant”
• “inframe_deletion”
• “inframe_insertion”
• “missense_variant”
• “splice_acceptor_variant”
• “splice_donor_variant”
• “splice_region_variant”

Phenotype Extraction

Overview

The phenotype information used in this research is from
clinicians’ history summary. The records were all free text and
the length of texts varied from less than 10 to more than 300
words. In the clinical analysis process, it is time consuming for
physicians to go through the medical records and identify the
phenotype keywords manually. To solve this problem, we used
several keyword extraction tools to automatically generate
keywords related to phenotype from free-text medical records.
The keyword extraction tools applied in our research are listed
in the following sections.

MetaMap

MetaMap [31] is a widely used application providing access to
the concepts in the Unified Medical Language System (UMLS)
Metathesaurus [32]. The UMLS Metathesaurus is a compilation

of names, relationships, and associated information from a
variety of biomedical naming systems representing different
views of biomedical practice or research. It comprises over 1
million biomedical concepts and 5 million concept names [33].
MetaMap is able to map every word in the texts to UMLS
concepts, but we just wanted to focus on those associated with
phenotypes and diseases. Thus, we extracted the words that are
classified as the semantic types of the following: (1) injury or
poisoning, (2) cell or molecular dysfunction, (3) genetic
function, (4) disease or syndrome, (5) sign or symptom, (6)
tissue.

Doc2Hpo

Doc2Hpo [34] is a web application using natural language
processing (NLP) techniques to parse clinical note and get the
phenotype concept curation as the HPO term. There is a parsing
engine that will automatically recognize the phenotype concepts
from the input. Doc2Hpo applies an algorithm called NegBio
for negation detection in the input data. After that, there are
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several NLP engines responsible for HPO concept extraction.
We used 3 of these engines and compared the performance of
each of them. The first NLP engine is a string-based method
that leverages the algorithm for concept extraction. The second
engine is the online NCBO Annotator [35] API for HPO concept
recognition. The last engine we adopt is MetaMap Lite, which
is a fast version of MetaMap that provides near–real-time named
entity recognition. The MetaMap Lite engine first identifies
clinical terms in the texts and maps them to standard UMLS
concepts. The UMLS concepts will then be further mapped to
HPO concepts. Results generated by Doc2Hpo are HPO terms,
whereas keywords extracted by MetaMap are nonHPO terms.

Phenotype-Gene Similarity Score
Another method to construct the connections between genes
and keywords is using the Okapi BM25 ranking function. Okapi
BM25 is usually used by search engines, such as Google and
Bing, to rank matching documents according to their relevance
to a given search. One of the most prominent instantiations of
the function is as the following equation:

where score(D, Q) represents the Okapi BM25 score of a
document D when given a query Q, containing keywords q1,
q2,...,qn; f(qi, D) is qi’s term frequency in the document D; |D|
is the length of document D in words; avgdl is the average
document length among all documents; k1 and b are constants
(=1.2 and 0.8, respectively); and IDF(qi) is the inverse document
frequency (IDF) weight of the query term qi and is usually
defined as:

IDF(qi) = ln [(N – n(qi) + 0.5]/[n(qi) + 0.5 + 1]

where N is the number of documents and n is the number
containing the keywords.

In this research, we propose an idea using gene description from
OMIM and GeneReviews as documents and keywords as query
to implement the Okapi BM25 ranking function. Therefore, we
can use the Okapi BM25 score to represent the relationship
between gene description and keywords. The higher score that
gene description gets from keywords indicates stronger
connection between that gene and keywords. Rank values were
based on the Okapi BM25 ranking function mentioned before
with some other parameters. Compared with the Okapi BM25
regular formula, rank value replaces the IDF function with
Robertson-Spärck-Jones weight [36]. The IDF function is a
measure of how much information the word provides, that is,
whether the word is common or rare across all documents. For
example, the term “the” is very common in every document, so
term frequency will be inclined to falsely highlight the
documents that happen to use the word “the” more frequently.
Hence, the IDF function is dedicated to reducing the weight of
words that appear very frequently among all documents. In
contrast to the regular IDF function, the Robertson-Spärck-Jones
weight adds relevant parameters of documents and increases
the precision of rank score.

We get the phenotype-gene similarity score of each SNV from
Variant Prioritizer, a text mining tool that outputs the rank and
score of genes by entering symptoms as keywords. Variant

Prioritizer uses the Okapi BM25 ranking function [37] to
construct the connections between genes and keywords. Gene
descriptions from OMIM, GeneReviews, Entrez Gene [38], and
PubTator [39] serve as data sources and keywords as query to
implement the Okapi BM25 score using the full-text search
method. It returns a column called RANK that includes ordinal
value from 0 to 1000. The RANK score is based on the
following formula:

where ω is the Robertson-Spärck-Jones weight [36], which is
defined as ω = log [(r + 0.5)∙(N – n – R + r + 0.5)]/[(R – r +
0.5)∙(n – r + 0.5)], in which R is the number of known relevant
documents and r is the number of these containing the term; tf
is the frequency of the word in the property queried within an
article; qtf is the frequency of the term in the query; and K is
defined as follows:

K = k1[(1 – b) + b(dl/avgdl)]

where dl is the property length, in word occurrence; avgdl is
the average length of the property being queried, in word
occurrence; and k1, b, and k3 are constants (=1.2, 0.75, and 8.0,
respectively).

We employed the Variant Prioritizer API to get the RANK value
from each data source as gene similarity score to represent the
association between each SNVs and extracted keywords. We
kept the maximum and minimum scores of rank values (4
overall) as 2 separate features for model building.

Ethical Considerations
This retrospective cohort study was approved by the Institutional
Review Board (IRB) of the National Taiwan University Hospital
(IRB number: 201710066RINB). We confirm that all
experiments were performed in accordance with relevant
guidelines and regulations. The data retrieved from EHRs were
deidentified and could not be linked to the patients’ identity by
the research team. The need for written informed consent was
waived and confirmed by the National Taiwan University
Hospital IRB (201710066RINB) because this was a retrospective
cohort study with deidentified data. This regulation complies
to Health Insurance Portability and Accountability Act (HIPAA)
that there are no restrictions on the use or disclosure of
deidentified health information.

Data Preprocessing

Overview of Steps
After variant annotation of the VCF file, we preprocessed our
data into a model-acceptable format. Data preprocessing is an
extremely important step in machine learning because the quality
of data can directly affect the ability of a model to learn. It
includes various operations and each operation aims to help
machine learning build better predictive models. The data
preprocessing operations used in this research are explained in
the following sections.
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Missing Value Handling
In real world, the data usually have missing values. AsFor
example, in the genotype variable most machine learning
methods cannot deal with null value, it is pivotal to identify and
correctly handle the missing values. Basically, the missing
values can be handled using various techniques such as deletion
or imputation [40]. Deletion removes all data for an observation
that has 1 or more missing values. However, if there are many
columns with missing values, then deletion will result in the
lack of data. Therefore, for some columns we used imputation
by substituting the missing values in our data set with mean and
for some columns we just simply replaced the missing value
with a valid value such as 0.

One Hot Encoding
Many machine learning algorithms cannot operate on categorical
data directly. They require all input features to be numeric.
Basically, categorical data contain label values rather than
numeric values. As a consequence, categorical data must be
converted into a numerical form so that they can be used in the
machine leaning model. One hot encoding is a widespread
approach for dealing with categorical data. One hot encoding
transforms a categorical column to a multidimensional vector.
It creates new columns, indicating the presence of each possible
value from the original data.

For example, in the genotype variable, there are 3 categories:
homozygous (hom), heterozygous (het), and hemizygous (hem).
Therefore, 3 binary variables [hom, het, hem] are needed. If
genotype of a variant is heterozygous, we use [0,1,0] to represent
it.

Data Normalization
For continuous data, there are a few with different ranges. If
we apply features in very different ranges to some machine
learning models such as logistic regression, the feature with
broader range will intrinsically influence the result more owing
to its larger value. However, this does not necessarily mean that
this feature is more important as a predictor. Therefore, we used
normalization techniques as a solution to overcome this problem.
Normalization is the rescaling of the data from the original range
so that all values are within the range of 0 and 1. We rescale all
continuous values by min-max normalization. The general
formula is as follows:

Xnorm = (X – Xmin)/(Xmax – Xmin)

where X is the original value and Xnorm is the normalized value.
This will make the maximal value map to 1 and the minimal
value map to 0. In addition to the aforesaid data preprocessing
techniques, we handled different data types in different ways
and created some new features for model building. In the
following sections, we elaborate on each data type preprocessing
and combine them in the end.

Functional Prediction Score
Functional prediction scores including SIFT [17], PolyPhen2
HDIV [16], PolyPhen2 HVAR [16], LRT [41], MutationTaster
[18], MutationAssessor [42], FATHMM [43], PROVEAN [44],
MetaSVM [14], MetaLR [14], M-CAP [45], CADD [13],
GERP++ [46], DANN [47], fathmm-MKL [48], GenoCanyon

[49], fitCons [50], PhyloP [51], PhastCons [52], and SiPhy [53]
were from ANNOVAR. We used converted rank scores provided
by ANNOVAR instead of the original score because all these
scores are always within the range of 0 and 1. Besides, converted
rank scores from different algorithms are monotonic in the same
direction. That is, a higher score indicates that the variant is
more likely to be damaging [54]. For splice site prediction, we
imported the MaxEntScan score using the VEP plugin. We
defined a new column called MaxEntScan significance. The
value is 1 when the value of MaxEntScan alt is smaller than 3
and MaxEntScan variation is smaller than 30%; otherwise the
value is 0. We used clinical significance reported in ClinVar
and computed rank score from the HGMD. The HGMD
computed rank score is a probability of pathogenicity between
0 and 1, with 1 being most likely disease causing compared
with other HGMD entries.

Clinical Interpretation
We employed clinical interpretation of each genetic variant
based on the American College of Medical Genetics and
Genomics/Association for Molecular Pathology (ACMG/AMP)
2015 guideline, which is generated by InterVar. We calculated
the ACMG score developed by Xrare to represent its overall
pathogenicity. The ACMG score is a weighted sum score based
on multiple evidence (n=14) with the following weights for
each term: PVS1:6, PS1:4, PM1:2, PM2:2, PM4:2, PM5:2,
PP2:1, PP3:1, BA1:9, BS1:3, BS2:3, BP3:1, BP4:1, BP7:2 [9].
We collected gene-level constraint features including pLI, pRec,
syn_z, and mis_z from the Genome Aggregation Database
(gnomAD). We used the patterns of inheritance defined in
OMIM as our data. For variants that contain multiple patterns,
we calculated the occurrences of each pattern and stored it as a
feature. We also get some additional information about each
variant from ANNOVAR such as genotype, regions that a
variant hits, and read depths. The quality of each variant is also
collected from the VCF file. As the genotype annotated by
ANNOVAR does not contain hemizygous alleles, we replaced
the genotype feature of all male patients’ chromosome X with
hemizygous alleles. In addition, we collected functional
consequence on the different transcripts for a gene or in
proximal regulatory regions using Nirvana.

Labels
The goal of our research was to identify the disease-causing
variants with SNVs (ie, we classify a variant as disease causing
or not). As machine learning algorithms learn how to assign a
class label to a test case from examples, it is necessary to assign
a class label to all input training sets. We used the 0/1 label to
represent whether a variant is disease causing or not. If a variant
is causative, we assigned label 1 to it; otherwise the label is 0.
Details about all the features used in our model are presented
in Multimedia Appendix 2.

Feature Selection
After data preprocessing, we got 94 features for each variant.
To reduce the high dimension of the input data set while
retaining the discriminatory information for classification
problems, we applied univariate feature selection techniques
from scikit-learn [55] packages to identify the relevant variables
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in a data set and eliminate the useless variables. Feature selection
helps to reduce the noise in the data set and lets the model focus
on the relevant signals.

There are several scoring functions provided by scikit-learn
univariate feature selection modules. We used mutual
information classifier to select the most relevant variables.
Mutual information [56] between 2 random variables is a
nonnegative value, which measures the general dependence of
variables without making any assumptions about the nature of
their underlying relationships [57]. The mutual information
between 2 discrete random variables X and Y is defined as
follows:

where p(x, y) is the joint probability density function of X and
Y, and p(x) and p(y) are the marginal density function. The
mutual information determines the similarity between the joint
distribution p(x, y) and the products of the factored marginal
distributions. The larger the value means the greater the
relationship between the 2 variables. The calculated value is
equal to 0 if and only if the 2 variables are independent.

We performed the feature selection process using only the
training set to determine the relevant variable. Further, the
number of features we selected is based on model evaluation
with 10fold cross validation

Building Model
To construct a model by machine learning algorithm, we split
the data into 2 groups. As our model aims to assist physicians
with their clinical exome data interpretation process, the exome
data from the dbGaP database and the targeted gene panel
sequencing data from NTUH were set as training set, and the
WES data from NTUH were set as testing data. which can only
be used on model evaluation. The external validation set
consisted of 90 most recent NTUH WES data, which help to
make sure that our model can make predictions in future clinical

use. Details about the training and testing sets are listed in Table
2.

To build the machine learning model, we implemented the
random forests algorithm [58] provided by scikitlearn packages.
The selection of hyperparameters is based on a grid search with
10fold cross validation. Random forest was first proposed by
Leo Breiman in 2001 [58]. It is an ensemble classifier that
evolves from decision trees. Actually, random forests are a
combination of decision trees such that each tree depends on
the values of a random vector sampled independently, with the
same distribution for all trees in the forest [59]. A forest of trees
is grown as follows:

• The training set is a bootstrap sample from the original
training set.

• The number of trees to build and the number of variables
randomly sampled as candidates at each split m-try are set
by the user, where m-try is less than the total number of
variables.

• At each node, m-try variables are selected at random, and
the node is split on the best split point among m-try. This
process iterates until the tree grows to its maximal depth.

• For test case prediction, as a test vector x is put down at
each tree, it is assigned the average of y values at the node
it stops at. The average of these overall trees in the forest
is the predicted value for x. The predicted value for
classification is the class getting the plurality of the forest
votes..

The function we used to measure the quality of a split is Gini
impurity. Gini impurity is the probability of incorrectly
classifying a randomly chosen element in the data set if it were
randomly labeled according to the class distribution in the data
set [60]. In decision tree learning it is defined as

, where c is the number of classes and
p(i|t) is the probability of randomly picking an object of class
i at node t. The optimal split from a root node when training a
decision tree is chosen by maximizing the Gini gain, which is
calculated by subtracting the weighted impurities of the branches
from the original impurity.

Table 2. The training, testing, and external validation sets used in this study.

External validation setTesting setTraining setData

New NTUH WESNTUH WEScdbGaPa, NTUHb panelSource

90108381Patients, n

109,85780,083125,693Filtered variants, n

100134478Causative variants, n

adbGaP: Database of Genotypes and Phenotypes.
bNTUH: National Taiwan University Hospital.
cWES: whole-exome sequencing.

Performance Evaluation
To evaluate our model performance of true causative variant
prioritization, we used the ranking statistics mentioned in
VarSight. After we applied the binary classification process to
all variants, we got a probability for each variant that represents

the probability of this variant to be disease causing. We ranked
the variants for each patient from the highest to lowest
probability and quantified the percentage of the target variants
that were ranked in the top 1, 5, 10, 20.
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Results

Feature Selection
For the feature selection, we used univariate feature selection
based on the SelectPercentile method in scikitlearn package.
The classifier we chose is the mutual information classifier.
Only the training set was used for selecting the most relevant

features. Further, we applied 10fold cross validation to decide
the number of features for model training. In Figure 2, we
present the top 10 accuracy on 10fold cross validation using
different percentages of features. As using 60% of features
achieves the highest accuracy, 56 features (60% of total 94
features) with the highest estimated mutual information were
selected for the final model building.

Figure 2. The top 10 accuracy on 10-fold cross validation using different percentage of features.

Model Performance
We evaluated the model with our testing set. As mentioned in
Table 2, the testing set comprised 108 patients who received
WES with at least one disease-causing variant diagnosed by
doctors. Multimedia Appendix 3 presents detailed information
about their causative variants, keywords, and the corresponding
HPO term. The keywords and HPO term are determined by
doctors based on the phenotype of each patient.

Prediction With Different Keyword Extraction Tools
Figure 3 shows the percentage distribution of the ranking of
target variants and Figure 4 shows the cumulative rank result
of models using different keyword extraction tools. When using
tools to extract phenotypes from abstracts, our model can assign
the target variants to the top rank for over 40% (60/134, 44.8%)
of the total variants. The top 10 accuracies of models are around
90% (124/134, 92.5%), irrespective of the keyword extraction
tool used. Compared with the keywords provided by professional
doctors, applying tools to extract keywords had lower top 1
accuracy but comparable top 10 accuracy. This indicated that
in most cases our model can successfully rank the true causative
variants in the front of the variant lists and the rank is slightly
influenced by the input keywords.

We built a random forest model based on the method described
in the previous section and evaluated it with our testing set based
on different keyword extraction tools. We succeeded in locating
92.5% (124/134) of the causative variant in the top 10 ranking
list among an average of 741 candidate variants per person after
filtering. The performance of the model is similar to that of
manual analysis, and it has been used to help National Taiwan
University Hospital with a genetic diagnosis.

Figures 3 and 4 show the percentage distribution of the ranking
of target variants and the cumulative rank result of models using
different keyword extraction tools, respectively. When using
tools to extract phenotypes from abstracts, our model can assign
the target variants to the top rank for over 40% (60/134, 44.8%)
of the total variants. The top 10 accuracies of models are around
90% (124/134, 92.5%), irrespective of the keyword extraction
tool used. Compared with the keywords provided by professional
doctors, applying tools to extract keywords has lower top 1
accuracy but comparable top 10 accuracy. It represents that in
most cases our model can successfully rank the true causative
variants in the front of the variant lists and the rank is slightly
influenced by the input keywords.
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Figure 3. Percentage distribution of ranks.

Figure 4. Cumulative percentage distribution of ranks. NCBO: National Center for Biomedical Ontology.

Other Machine Learning Methods
We also evaluated other machine learning methods and
compared their performance with random forest. These methods
include logistic regression, Gaussian naive Bayes, SVM with
RBF kernel, and gradient boosted decision trees. The selection
of hyperparameters for each algorithm was based on grid search
with 10-fold cross validation. We used MetaMap as the keyword

extraction tool and our testing data to test the performance of
each method. The percentage distribution of the ranking of target
variants by each machine learning method and the cumulative
rank result of each model are shown in Figures 5 and 6,
respectively. As random forest got the highest top 10 accuracy,
we finally chose random forest as our machine learning
algorithm.
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Figure 5. Percentage distribution of ranks. GBDT: gradient boosting decision tree; SVM: support vector machine.

Figure 6. Cumulative percentage distribution of ranks. GBDT: gradient boosting decision tree; SVM: support vector machine.

Discussion

Principal Findings
We have implemented a website, AI Variant Prioritizer, which
uses data from NGS bioinformatics pipelines with machine

learning to make a prediction about most possible
disease-causing variants among SNVs and patient’s phenotype
data. This system can assist researchers and physicians by
focusing on those with higher disease-causing probability and
reducing the average turnaround time (by 1 day) of the entire
WES pipeline, from DNA extraction to clinical diagnosis.
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Moreover, we have implemented a web API for our system so
that the ranking function could be integrated into MViewer.
Thus, physicians can interpret the results of genetic variation
with a single application instead of adopting numerous services.

For comparison, we used our testing data to run several
prioritization tools including AMELIE [61], VarElect [62],
Exomiser, Phenolyzer, and Variant Prioritizer. As AMELIE
and Exomiser can only accept phenotypes defined in HPO terms,
we entered HPO terms determined by doctors as their input.
Phenolyzer can identify both disease terms and HPO terms.
However, if the terms do not match in their databases, it will
not return any record. Hence, we also used HPO terms as input
for Phenolyzer. VarElect, Variant Prioritizer, and our model
can identify free-text descriptions. Therefore, we imputed the
keywords provided by doctors as input for testing. AMELIE,
VarElect, and Variant Prioritizer only prioritize the gene list
instead of the variant list. Hence, we evaluated the result for
gene-based prioritization instead of variant-based prioritization.
That is, for each patient, if the tools prioritize target gene in the
top 1, 5, 10, 20, 50, and 100 of our filtered gene lists, this patient
will be counted. All the tools use the default settings provided
in their websites to run.

Figures 7 and 8 show the percentage and cumulative percentage
distribution of the target gene ranking for each tool, respectively.
From Figure 8, we can see that AI Variant Prioritizer is able to
assign the target gene to the top rank for 61.1% (66/108) of the
patients, followed by Variant Prioritizer (48/108, 44.4%). It
also shows the cumulative rank result, which reveals that our
AI Variant Prioritizer has the highest accuracy at ranks 1, 5, 10,
and 20. Further, AI Variant Prioritizer shows better performance
than other tools. After adopting the HPO terms by looking up
the databases, the top 10 ranking list can be increased to 93.5%
(101/108).

In comparison with extraction of phenotypic features from
SNOMED through manual mapping of HPO terms to SNOMED
Clinical Terms (SNOMED CT) [63], our automation approach
explores various phenotypic feature extraction tools and focuses
on rare disease interpretation. We have also looked into several
AI-driven variant prioritization approaches published in the last
3 years, including Fabric GEM [12], MOON [2], and Exomiser.
There are several differences between our approach and each
of these approaches, including the algorithms used to build the
prioritization model, the features considered, and databases
integrated. However, the major difference of our approach from
others is the method used to turn the relationships between genes
and phenotypes into numerical values, which makes way for
later prediction. Fabric GEM and MOON utilize Phevor [15]
to turn phenotype-gene relationship into numerical values,
whereas Exomiser uses PhenoDigm [64] to achieve this goal.

Both Phevor and PhenoDigm construct new methods that bridge
HPO and other ontologies to discover more gene-disease
associations. Phevor gathers all correlation of diseases and genes
provided by HPO and Gene Ontology (GO) and constructs
several networks (graphs) and distributes decreasing weights
along the paths found. The sum of weights on the specific gene
node represents the correlation score of the gene with the
corresponding HPO term. PhenoDigm utilizes OWLSim [65]
to calculate the similarity among different phenotypes in
different ontologies and uses similarity to estimate the
magnitude of correlation of given HPO terms and different
genes. By contrast, Variant Prioritizer used in our approach
extracts the phenotype-gene relationship from a different kind
of knowledge source: free text of database. We make a simple
comparison of these approaches in Tables 3 and 4.
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Figure 7. Percentage distribution of ranks. AI: artificial intelligence.

Figure 8. Cumulative percentage distribution of ranks. AI: artificial intelligence.
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Table 3. The comparison among AI Variant Prioritizer, Fabric GEM, MOON, and Exomiser.

ExomiserMOONFabric GEMAIa Variant PrioritizerTool

Rule basedDecision trees, Bayesian
models, neural networks

Bayes factorRandom forestVariant scoring algorithm

PhenoDigmPhevorPhevorVariant PrioritizerPhenotype-gene score

HPO termsHPO terms extracted from
electronic health record

HPOb termsPlain textsPhenotype input format

aAI: artificial intelligence.
bHPO: Human Phenotype Ontology.

Table 4. The comparison among Variant Prioritizer, Phevor, and PhenoDigm.

PhenoDigmPhevorVariant PrioritizerTool

OWLSimGraph algorithmOkapi BM25Algorithm

HPO termsHPOa termsPlain textsPhenotype input format

OMIM (HPO), Sanger-MGP [66],
MGD [67], and ZFIN [68]

HPO and GOcOMIMb, GeneReviews, Entrez
Gene and PubTator

Knowledge base

aHPO: Human Phenotype Ontology.
bOMIM: Online Mendelian Inheritance in Man.
cGO: Gene Ontology.

Feature Importance
For interpreting model predictions, we used the feature
importance method provided by scikit-learn to identify which
feature has the most predictive power. Figure 9 shows the top
20 important features. According to clinical experience, the
connection between a variant and phenotype of a patient is a
key factor that influences the physician to decide whether to
report a variant or not. Similarly, from the figure we can see

that the most important feature is the max bm25 score, which
refers to the similarity score between the given variant and
keywords. Another important factor that influences the reporting
decision during clinical analysis is the severity of a variant. The
corresponding feature we use is the ACMG score, which is in
the second place of feature importance. By contrast, the result
of feature importance might provide information for physicians
or researchers about the features that they can consider when
finding causative variant.
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Figure 9. Feature importance.

External Validation
We compared the cumulative percentage distribution of ranks
from the testing set and the external validation set. The result
is shown in Figures 10 and 11. Their percentage values are close

to each other in different regions such as top 10 and top 5. The
percentage of top 1 rank of the external validation set is even
higher than that of the testing set. With this result, we believe
that our approach has shown its potential for robust clinical
usage.

Figure 10. Percentage distribution of ranks.
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Figure 11. Cumulative percentage distribution of ranks.

Limitations
The study has several potential limitations. First, we could not
find massive data for training and testing. This not only restricts
the amount of teaching material for the machine learning model,
but also restricts available measurements to evaluate the trained
model. Second, the gene-phenotype score used in this study did
not have enough power to detect small or moderate associations
because it relies on how frequently the gene-phenotype
relationship is reported to the databases it utilizes. Finally, the
study did not adjust for potential confounders, such as diet and
physical activity. This could cause potential bias because the
way in which genes are expressed can be impacted by lifestyle
of patients.

Overall, this study could have potential bias resulting from the
lack of sufficient data, lack of reported gene-phenotype
relationship, and lack of observation of lifestyle. The impact
from the first and the second can be reduced if there are more
data and reports available in the future. On the other side, the
influence of lifestyle and environment remains an issue that
needs more dedicated studies.

Conclusions
In this research, we proposed a machine learning model, AI
Variant Prioritizer, to predict whether a variant is disease
causing for patients with rare Mendelian disorder. We have
successfully applied sequencing data from WES and free-text
phenotypic information of patient’s disease automatically
extracted by keyword extraction tools for model training and
testing. By interpreting our model, we identified which features
of variants are important. Besides, we achieved a satisfactory
result on finding the target variant in our testing data set. After

testing 108 patients’WES data, we succeeded in 93.5% (n=101)
of the cases to locate the causative variant in the top 10 ranking
list among an average of 741 candidate variants per person after
the filtering process. The performance of the model is similar
to that of manual analysis by the physicians in the Department
of Medical Genetics, NTUH, and it has been used to help NTUH
with a genetic diagnosis.

As the physicians are very busy almost all the time in taking
care of their patients, the search time spent for an accurate
genetic diagnosis is extremely important. Our AI predicting
model can provide the top 10 hit list with a high probability of
93.5% (101/108), thus helping them save weeks of time if they
have to do it manually to search beyond the top 10 list very
often.

It is not an easy work to fully interpret the causative variations
of a genetic disease. As the precision of the keywords extracted
by tools influence the performance of our model, for the future
work, we will adopt some NLP techniques such as Bidirectional
Encoder Representations from Transformers (BERT) to extract
keywords more properly. In addition, the AI Variant Prioritizer
model has been built to analyze SNVs and small indels from
WES data, but we have not dealt with copy number variations
(CNVs) yet. CNVs have been recognized as critical genetic
variations, which are associated with both common and complex
diseases, and thus have a large influence on several Mendelian
and somatic genetic disorders. Therefore, we will collect data
on CNVs and extend the capability of our system to annotate
and filter CNVs. Furthermore, we will enlarge our data set by
adding CNVs as our training data to enable the AI Variant
Prioritizer model to predict any kind of causative genetic
variations. Before implementation of AI Variant Prioritizer, the
mean turnaround time of the entire WES pipeline, from DNA

JMIR Bioinform Biotech 2022 | vol. 3 | iss. 1 | e37701 | p. 17https://bioinform.jmir.org/2022/1/e37701
(page number not for citation purposes)

Huang et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


extraction to clinical diagnosis, was 5.8 (SD 1.1) days using
Variant Prioritizer. However, after implementation of AI Variant

Prioritizer, the mean turnaround time was reduced to 4.8 (SD
1.2) days for rapid trio exome sequencing analysis in NTUH.
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