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Abstract

Background: In recent years, thanks to the rapid development of next-generation sequencing (NGS) technology, an entire
human genome can be sequenced in a short period. As aresult, NGS technology is now being widely introduced into clinical
diagnosis practice, especialy for diagnosis of hereditary disorders. Although the exome data of single-nucleotide variant (SNV)
can be generated using these approaches, processing the DNA sequence data of a patient requires multiple tools and complex
bioinformatics pipelines.

Objective: Thisstudy aims to assist physicians to automatically interpret the genetic variation information generated by NGS
in ashort period. To determine the true causal variants of a patient with genetic disease, currently, physicians often need to view
numerous features on every variant manually and search for literature in different databases to understand the effect of genetic
variation.

Methods: We constructed a machine learning model for predicting disease-causing variants in exome data. We collected
seguencing data from whole-exome segquencing (WES) and gene panel as training set, and then integrated variant annotations
from multiple genetic databases for model training. The model built ranked SNV's and output the most possible disease-causing
candidates. For model testing, we collected WES datafrom 108 patientswith rare genetic disordersin National Taiwan University
Hospital. We applied sequencing data and phenotypic information automatically extracted by a keyword extraction tool from
patient’s el ectronic medical records into our machine learning model.

Results: We succeeded in locating 92.5% (124/134) of the causative variant in the top 10 ranking list among an average of 741
candidate variants per person after filtering. Al Variant Prioritizer was able to assign the target gene to the top rank for around
61.1% (66/108) of the patients, followed by Variant Prioritizer, which assigned it for 44.4% (48/108) of the patients. The cumulative
rank result revealed that our Al Variant Prioritizer has the highest accuracy at ranks 1, 5, 10, and 20. It also showsthat Al Variant
Prioritizer presents better performance than other tools. After adopting the Human Phenotype Ontology (HPO) terms by looking
up the databases, the top 10 ranking list can be increased to 93.5% (101/108).

Conclusions:  We successfully applied sequencing data from WES and free-text phenotypic information of patient’s disease
automatically extracted by the keyword extraction tool for model training and testing. By interpreting our model, we identified
which features of variants are important. Besides, we achieved a satisfactory result on finding the target variant in our testing
data set. After adopting the HPO terms by looking up the databases, the top 10 ranking list can be increased to 93.5% (101/108).
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The performance of the model is similar to that of manual analysis, and it has been used to help National Taiwan University

Hospital with a genetic diagnosis.

(JMIR Bioinform Biotech 2022;3(1):e€37701) doi: 10.2196/37701
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Introduction

Background

Modern next-genome sequencing (NGS) technology makes
rapid human genome sequencing within a day possible [1,2].
Because of its speed and low cost in comparison with the
traditional Sanger sequencing method [3], NGSisbeing rapidly
introduced into clinical and public health laboratory practice,
especially for the diagnosis of hereditary disorders.

Although NGS has extremely high throughput and could
generate huge amounts of genomic data in a short time,
interpreting these data and finding the disease-causing
candidates among thousands of variants remain achallenge. To
determine the true causal variants of a patient with genetic
disease, physicians often need to view numerous features on
every variant manually and search for literature in different
databasesto understand the effect of agenetic variation. Another
challenge is in finding the genetic variants that have a strong
correlation with patient’s phenotype. Physicians often select
useful keywords from patient’s electronic medical records
(EMRs) manually to search for articles in several genetic
databases such as Online Mendelian Inheritancein Man (OMIM)
[4] and GeneReviews [5] to decide whether a variant is
correlated with a genetic disease. It is thus a burden for
physicians to go through these laborious and time-consuming
processes case-by-case, especially when the number of inherited
disease—-associated germline mutations published per year has
increased exponentialy in the last decade [6].

Nowadays, many studies use machinelearning methodsto solve
numerous problems in genomics and genetics. The field of
machine learning promisesto enable computersto assist humans
in making sense of large, complex data sets. After variant
annotation, thereisavariant list with hundreds of columns that
humans are not capabl e of interpreting one-by-one. Asmachine
learning significantly surpasses human-level performance,
especially with structured data, we consider using a machine
learning method to analyze variants from NGS and find the
target gene.

To addressthese problems, it isimportant and necessary to have
a high-performance method to filter candidate variants from
NGS results and immediately find target variants related to a
patient’s disease. Recently, many tools such as Exomiser [7],
DeepPVP[8], Xrare[9], VarSight [ 10], Phenolyzer [11], Fabric
GEM [12], MOON [2], CADD [13], and MetaSVM [14] have
been developed to identify potentially causative variants that
are relevant to patient’'s phenotype in rare disease diagnosis.
Exomiser integrates information including calculated
gene-specific phenotype score, variant allele frequency
(Multimedia Appendix 1), and predicted pathogenicity of several
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allelesto prioritize disease-causative variants/interactions. Fabric
GEM utilizes Bayesfactor to prioritize variants with the support
of agene-phenotype score calculated by Phevor [15] and variant
prioritization result of several tools including ANNOVAR,
VAAST, and Phen-Gen. MOON integrates the result of
annotation of several variantsand prioritization toolsto achieve
variant prioritization using several kinds of machine learning
models. Gene-phenotype scores calculated by Phevor using
Human Phenotype Ontology (HPO) terms extracted from
electronic health records (EHRS) of patients are also considered
by MOON. CADD utilizes logistic regression to integrate
information including context of surrounding sequence,
biological constraints, epigenetic measurements, and result of
several variant annotation tools to build a predictive model for
variant deleteriousness. MetaSVM [14] gathers result of 9
deleteriousness prediction scores including PolyPhen-2 [16],
SIFT [17], MutationTaster [18] to build a support vector
machine (SVM) deleteriousness predictive model. Although
these tools adopt different approaches, including logistic
regression and deep neural networks, to prioritize variants, most
can only recognize the phenotypes defined in the HPO term
[19]. In this work, we developed the Al Variant Prioritizer
module based on a machine learning approach that can output
the rank of single-nucleotide variants (SNVs) and small
insertions/deletions (indels) from whole-exome sequencing
(WES) data with the input of free-text phenotypic description
or EHR.

In this research, we aimed to implement a website, Al Variant
Prioritizer, that uses data from NGS bioinformatics pipelines
with machine learning to make a prediction about the most
possible disease-causing variants among SNVs and patient’s
phenotype. The data generated from NGS pipelines are all
structured with annotations from several tools including
ANNOVAR, Nirvana, Variant Effect Predictor (VEP), and
InterVar and additional information from multiple databases
queried by MViewer (Mutation Viewer) [20]. To simplify the
interpretation process, we integrate the keyword extraction tool
to generate the phenotype from EMRsautomatically. Our system
takes candidate variants filtered by MViewer and patient’s
EMRs as its input and outputs a list of SNVs with rank and
probability of being disease causing. Instead of checking every
variant manually, this system can assist researchers and
physicians in focusing on those with higher disease-causing
probability and save a lot of time. Moreover, we implement a
web application programming interface (API) for our system
so that the ranking function could be integrated into M Viewer.
Thus, physicians are able to interpret the results of genetic
variation with asingle application instead of adopting numerous
services.
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Data Description

In our research, we focus on patients who have been diagnosed
with rare Mendelian diseases. Our data are collected mainly
from the rapid exome project of Department of Medical
Genetics, National Taiwan University Hospital (NTUH). To
build the model with more data, we also applied for several
WES data that are deposited in the dbGaP database (project 1D
20911). The data we use are the dbGaP accession
phs000711.v5.pl by Baylor Hopkins Center for Mendelian
Genomics.

The conditions under which we collect patients’ sequencing
data to meet the requirements of this research are as follows:

«  Patients who were diagnosed with genetic disorders.

« Patients who received WES or targeted panel sequencing
and diagnosed with at least one disease-causing variant.

«  Patients whose phenotype information is available.

Our data from NTUH include patient demographics, variant
cal format (VCF) file output by the NGS bioinformatics
pipeline, and phenotype information from electrical medical
records. Data from dbGaP also include patient demographics,
VCFfile, and clinical conditions. All data are deidentified and
will not invade patients' privacy. We include sex in patient
demographic information as a feature in our model because
some human genetic disorders are sex linked. Sex-linked
diseases are caused by mutations in genes on X or Y
chromosomes and passed down through families.

Variant Call Format File

Astheend product of the NGS bioinformatics pipeline, the VCF
is a generic format for storing DNA polymorphism data such
as SNPs, insertions, deletions, and structural variants. The
format was developed for the 1000 Genomes Project and has
also been widely adopted by other projects. Every VCF file
consists of 2 two parts: header section and data section. The
header contains metadata about the tags and annotations in the
data part. It can be also used to provide information related to
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the history of the data and file. The last line in the header
containsthe column headingsfor the data part. The datasection
istab separated into 9 columns and reports a mutation for each
row. Columns include CHROM, POS, ID, REF, ALT, QUAL,
FILTER, INFO, and FORMAT.

Phenotype I nformation

For the data from NTUH, we extract patient’s phenotypic
information from clinicians' history summary. It mainly records
abrief summary of patient’sillness, clinical diagnosis, and the
reason(s) why each patient was admitted. We also collect the
phenotype keywords provided by doctors based on the symptom
of each patient for model validation. For the data from dbGaP,
because EHRs are not available, we will use the clinica
condition of the patient instead. For the clinical condition that
can be found in OMIM databases, we will extract the
corresponding description of phenotypes as the phenotypic
information to be used in our research.

Methods
Wor kflow

Overview

Figure 1 shows the workflow of our research. We collected
V CF of each patient from WES and panel sequencing and then
annotated the variants using several tools. After variant
annotation, we used our in-house software (MViewer [20]) to
guery additional external databases and filter for candidate
variants. We then used the gene name of these candidate variants
and keywords extracted by keyword extraction toolsfrom EMRs
to query Variant Prioritizer [21]. The gene similarity scores
generated by Variant Prioritizer and columns of annotated
variantswere used asfeaturesto train amachine learning model .
Thismodel ranks each variant that representsits disease-causing
probability. We will demonstrate the details of each step in the
following sections.
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Figure 1. The workflow of research. EMR: electronic medical record; indel: insertion/deletion; MViewer: Mutation Viewer; SNV: single-nucleotide
variant; VCF: variant call format.
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. . not provide, we used software to import some public data
Variant Annotation sources, including ClinVar [26], Human Genome Mutation
We collected each patient’s NGS sequencing datain the VCF  Database (HGMD) [27], and Taiwan Biobank [28]. A detailed
file and got annotations from several tools, including description of these annotation fieldsis summarized in Textbox
ANNOVAR [22], VEP [23], Nirvana [24], and InterVar [25]. 1.

For additional information that the aforementioned tools will
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Textbox 1. Description of annotation fields.

Allele Frequency

This describes the fraction of gene copies of aparticular allelein adefined population. Allele frequency is calculated by dividing the number of copies
of aparticular alelein apopulation by the total number of all allelesfor that genein apopulation. It refersto how common an aleleisin apopulation.

Functional Prediction Score

A range of scoring algorithms with capability to predict the potential deleteriousness of variants based on different information in them, such astheir
sequence homology, protein structure, and evolutionary conservation. These scoring methods include function prediction scores, conservation scores,
and ensembl e scores.

Pathogenicity

Clinical significance variants reported in 2 public databases, ClinVar and Human Gene Mutation Database (HGMD), that store information on gene
mutation(s) related to human-inherited disease. Both classify variants as disease causing or disease associated by manual curation.

Clinical Interpretation

The American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published standards and
guidelines for the clinical interpretation of sequence variants with respect to human diseases on the basis of 28 criteria [29]. These criteria are as
follows: the criteria (16 overall) for classifying variants as pathogenic or likely pathogenic are very strong (PVS1), strong (PS1-PS4), moderate
(PM1-PM®6), or supporting (PP1-PP5), whereasthe criteria (12 overall) for classifying variants as benign or likely benign are standalone (BA 1), strong
(BS1-B$4), or supporting (BP1-BP7).

Gene-Level Constraint

Constraint on gene expression levels has been shown to influence patterns of genetic variation within humans [30]. For example, some genes are
unusually depleted for loss of function and are thought to be constraint with respect to their expression. The Genome Aggregation Database (gnomA D)
provides predicted constraint metrics track set that contains metrics of pathogenicity per gene as predicted and identifies genes subject to strong
selection against various classes of mutation. Theseinclude several subtracks of constraint metrics calculated at gene, transcript, and transcript region
levels.

Disease | nheritance

Patterns of inheritance that atrait or disorder associated with a variant can be passed down through families, such as autosomal dominant, autosomal
recessive, X-linked, and mitochondrial inheritance. We used the patterns defined in OMIM (Online Mendelian Inheritance in Man) as our data.

Others

Additional information about genetic variants such as the gene name, genotype, and the functional consequence on the different transcripts for agene
or in proximal regulatory regions.

reducing the number of variants and focusing on the variants

Variant Filtering that are more likely to be responsible for the disease are
There are on average 40,000 variants per proband in WESdata.  necessary.

However, most of them are benign and not related to the
symptoms. Only a small number of these variants are likely to
be deleterious or relevant to the patient’s disease. In a standard
clinical analysis process, physicians only focus on variants that
might be pathogenic or unknown. As our model aims to assist
researchers and physicians with their clinical exome reading,

For the purpose of generating candidate variants, we used the
filter provided by MViewer to remove the variants that are not
likely to be deleterious. Thefiltersand criteriaarelistedin Table
1. For filtersthat contain morethan 1 column, if avariant meets
any of their criterion, it will remain in the data. We got
approximately 700 SNV s per patient after variant filtering.
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Filter Column

Criteria

Max allele frequency « Max Allele Frequency

Nonsynonymousmissense «  ExonicFunc.refgene

mutation
Stop gain «  Consequence

«  ExonicFunc.refgene
Splice «  Consequence

«  Func.refgene
Frameshift «  Consequence

«  ExonicFunc.refgene
Initial codon «  Consequence
Deletion « Type

«  Consequence

«  ExonicFunc.refgene
Insertion o« Type

«  Conseguence

«  ExonicFunc.refgene
Inframe deletion .  Consequence

«  ExonicFunc.refgene
Exon/splice site «  Func.refgene

. Consequence

e  <0.01 (include no data)

“nonsynonymous’

“stop_gained”
“stopgain”

“splice_region_variant”
“splice_acceptor_variant”
“splice_donor_variant”
“splicing”

“frameshift_variant”
“feature_truncation”
“feature_elongation”
“frameshift”

“start_|ost”

“deletion”

“insertion”

“inframe_deletion”
“nonframeshift deletion”

“exonic”

“splicing”
“coding_sequence variant”
“frameshift_variant”
“incomplete_terminal_codon_variant”
“inframe_deletion”
“inframe_insertion”
“missense_variant”
“splice_acceptor_variant”
“splice_donor_variant”
“splice_region_variant”

Phenotype Extraction

Overview

The phenotype information used in this research is from
clinicians history summary. The records were all free text and
the length of texts varied from less than 10 to more than 300
words. Inthe clinical analysis process, it istime consuming for
physicians to go through the medical records and identify the
phenotype keywords manually. To solve this problem, we used
several keyword extraction tools to automatically generate
keywords related to phenotype from free-text medical records.
The keyword extraction tools applied in our research are listed
in the following sections.

MetaM ap

MetaMap [31] isawidely used application providing access to
the conceptsin the Unified Medical Language System (UMLYS)
Metathesaurus[32]. The UML S Metathesaurusisacompilation
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of names, relationships, and associated information from a
variety of biomedical naming systems representing different
views of biomedical practice or research. It comprises over 1
million biomedical conceptsand 5 million concept names[33].
MetaMap is able to map every word in the texts to UMLS
concepts, but we just wanted to focus on those associated with
phenotypes and diseases. Thus, we extracted the words that are
classified as the semantic types of the following: (1) injury or
poisoning, (2) cell or molecular dysfunction, (3) genetic
function, (4) disease or syndrome, (5) sign or symptom, (6)
tissue.

Doc2Hpo

Doc2Hpo [34] is a web application using natural language
processing (NLP) techniques to parse clinical note and get the
phenotype concept curation asthe HPO term. Thereisaparsing
enginethat will automatically recognize the phenotype concepts
from the input. Doc2Hpo applies an algorithm called NegBio
for negation detection in the input data. After that, there are
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several NLP engines responsible for HPO concept extraction.
We used 3 of these engines and compared the performance of
each of them. The first NLP engine is a string-based method
that leverages the algorithm for concept extraction. The second
engineisthe online NCBO Annotator [35] API for HPO concept
recognition. The last engine we adopt is MetaMap Lite, which
isafast version of MetaMap that provides near—real-time named
entity recognition. The MetaMap Lite engine first identifies
clinical terms in the texts and maps them to standard UMLS
concepts. The UMLS concepts will then be further mapped to
HPO concepts. Results generated by Doc2Hpo are HPO terms,
whereas keywords extracted by MetaMap are nonHPO terms.

Phenotype-Gene Similarity Score

Another method to construct the connections between genes
and keywordsis using the Okapi BM 25 ranking function. Okapi
BM25 is usually used by search engines, such as Google and
Bing, to rank matching documents according to their relevance
to a given search. One of the most prominent instantiations of
the function is as the following equation:

Score(D, Q) = £, 1DF(qi)-f(qi, D)-(k1+ 1)/{f(qi, D) + k1-(1 - b+ b-| D] /avgdl)}

where score(D, Q) represents the Okapi BM25 score of a
document D when given a query Q, containing keywords g1,
g2,...,an; f(qi, D) isgi’sterm frequency in the document D; |D|
is the length of document D in words; avgdl is the average
document length among all documents; k1 and b are constants
(=1.2and 0.8, respectively); and I DF(qji) istheinverse document
frequency (IDF) weight of the query term qi and is usualy
defined as:

IDF(qgi) = In[(N = n(qi) + 0.5)/[n(qi) + 0.5 + 1]
where N is the number of documents and n is the number
containing the keywords.

In thisresearch, we propose an idea using gene description from
OMIM and GeneReviews as documents and keywords as query
to implement the Okapi BM 25 ranking function. Therefore, we
can use the Okapi BM25 score to represent the relationship
between gene description and keywords. The higher score that
gene description gets from keywords indicates stronger
connection between that gene and keywords. Rank valueswere
based on the Okapi BM25 ranking function mentioned before
with some other parameters. Compared with the Okapi BM25
regular formula, rank value replaces the IDF function with
Robertson-Sparck-Jones weight [36]. The IDF function is a
measure of how much information the word provides, that is,
whether the word is common or rare across al documents. For
example, theterm “the” isvery common in every document, so
term frequency will be inclined to falsely highlight the
documents that happen to use the word “the” more frequently.
Hence, the IDF function is dedicated to reducing the weight of
words that appear very frequently among all documents. In
contrast to the regular IDF function, the Robertson-Spérck-Jones
weight adds relevant parameters of documents and increases
the precision of rank score.

We get the phenotype-gene similarity score of each SNV from
Variant Prioritizer, atext mining tool that outputs the rank and
score of genes by entering symptoms as keywords. Variant
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Prioritizer uses the Okapi BM25 ranking function [37] to
construct the connections between genes and keywords. Gene
descriptionsfrom OMIM, GeneReviews, Entrez Gene[38], and
PubTator [39] serve as data sources and keywords as query to
implement the Okapi BM25 score using the full-text search
method. It returnsacolumn called RANK that includes ordinal
value from O to 1000. The RANK score is based on the
following formula:

RANK score = Z w [U‘.;,:_ lt}.rf] [(k;;_lf:;:f

where w is the Robertson-Spérck-Jones weight [36], which is
definedasw =log [(r + 0.5)(N-n—-R+r + 05)]/[(R-r +
0.5):(n—r + 0.5)], in which Ris the number of known relevant
documents and r is the number of these containing the term; tf
is the frequency of the word in the property queried within an
article; gtf is the frequency of the term in the query; and K is
defined as follows:

K = ky[(1 —b) + b(dl/avgdl)]

where dl is the property length, in word occurrence; avgdl is
the average length of the property being queried, in word
occurrence; and ky, b, and k5 are constants (=1.2, 0.75, and 8.0,

respectively).

We employed the Variant Prioritizer API to get the RANK value
from each data source as gene similarity score to represent the
association between each SNV's and extracted keywords. We
kept the maximum and minimum scores of rank values (4
overall) as 2 separate features for model building.

Ethical Considerations

Thisretrospective cohort study was approved by the I nstitutional
Review Board (IRB) of the National Taiwan University Hospital
(IRB number: 201710066RINB). We confirm that all
experiments were performed in accordance with relevant
guidelines and regulations. The dataretrieved from EHRswere
deidentified and could not be linked to the patients' identity by
the research team. The need for written informed consent was
waived and confirmed by the National Taiwan University
Hospital IRB (201710066RINB) because thiswas aretrospective
cohort study with deidentified data. This regulation complies
to Health Insurance Portability and Accountability Act (HIPAA)
that there are no restrictions on the use or disclosure of
deidentified health information.

Data Preprocessing

Overview of Steps

After variant annotation of the VCF file, we preprocessed our
data into a model-acceptable format. Data preprocessing is an
extremely important step in machinelearning becausethe quality
of data can directly affect the ability of a model to learn. It
includes various operations and each operation aims to help
machine learning build better predictive models. The data
preprocessing operations used in this research are explained in
the following sections.
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Missing Value Handling

In real world, the data usually have missing values. AsFor
example, in the genotype variable most machine learning
methods cannot deal with null value, itispivotal to identify and
correctly handle the missing values. Basically, the missing
values can be handled using various techniques such asdeletion
or imputation [40]. Deletion removes al datafor an observation
that has 1 or more missing values. However, if there are many
columns with missing values, then deletion will result in the
lack of data. Therefore, for some columns we used imputation
by substituting the missing valuesin our data set with mean and
for some columns we just simply replaced the missing value
with avalid value such as 0.

OneHot Encoding

Many machinelearning algorithms cannot operate on categorical
data directly. They require all input features to be numeric.
Basically, categorical data contain label values rather than
numeric values. As a consequence, categorical data must be
converted into a numerical form so that they can be used in the
machine leaning model. One hot encoding is a widespread
approach for dealing with categorical data. One hot encoding
transforms a categorical column to a multidimensional vector.
It creates new columns, indicating the presence of each possible
value from the original data.

For example, in the genotype variable, there are 3 categories:
homozygous (hom), heterozygous (het), and hemizygous (hem).
Therefore, 3 binary variables [hom, het, hem] are needed. If
genotype of avariant is heterozygous, we use[0,1,0] to represent
it.

Data Normalization

For continuous data, there are a few with different ranges. If
we apply features in very different ranges to some machine
learning models such as logistic regression, the feature with
broader range will intrinsically influence the result more owing
toitslarger value. However, this does not necessarily mean that
thisfeatureis moreimportant asapredictor. Therefore, we used
normalization techniques as a sol ution to overcome this problem.
Normalizationistherescaling of the datafrom the original range
so that all values are within the range of 0 and 1. Werescaeall
continuous values by min-max normalization. The general
formulaisasfollows:

Xnorm = (X — Xmin)/(Xmax — Xmin)

where Xistheoriginal value and Xnorm isthe normalized value.
This will make the maximal value map to 1 and the minimal
value map to 0. In addition to the aforesaid data preprocessing
techniques, we handled different data types in different ways
and created some new features for model building. In the
following sections, we el aborate on each datatype preprocessing
and combine them in the end.

Functional Prediction Score

Functional prediction scores including SIFT [17], PolyPhen2
HDIV [16], PolyPhen2 HVAR [16], LRT [41], MutationTaster
[18], MutationAssessor [42], FATHMM [43], PROVEAN [44],
MetaSVM [14], MetaLR [14], M-CAP [45], CADD [13],
GERP++ [46], DANN [47], fathmm-MKL [48], GenoCanyon
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[49], fitCons[50], PhyloP[51], PhastCons[52], and SiPhy [53]
werefrom ANNOVAR. We used converted rank scores provided
by ANNOVAR instead of the original score because all these
scoresare alwayswithin therange of 0 and 1. Besides, converted
rank scores from different algorithms are monotonic in the same
direction. That is, a higher score indicates that the variant is
more likely to be damaging [54]. For splice site prediction, we
imported the MaxEntScan score using the VEP plugin. We
defined a new column called MaxEntScan significance. The
value is 1 when the value of MaxEntScan alt is smaller than 3
and MaxEntScan variation is smaller than 30%; otherwise the
value is 0. We used clinical significance reported in ClinVar
and computed rank score from the HGMD. The HGMD
computed rank scoreis a probability of pathogenicity between
0 and 1, with 1 being most likely disease causing compared
with other HGMD entries.

Clinical Interpretation

We employed clinical interpretation of each genetic variant
based on the American College of Medical Genetics and
Genomics/Association for Molecular Pathology (ACMG/AMP)
2015 guideline, which is generated by InterVar. We calculated
the ACMG score developed by Xrare to represent its overall
pathogenicity. The ACMG scoreisaweighted sum score based
on multiple evidence (n=14) with the following weights for
each term: PVSL:6, PS1:4, PM1:2, PM2:2, PM4:2, PM5:2,
PP2:1, PP3:1, BA1:9, BS1:3, BS2:3, BP3:1, BP4:1, BP7:2[9].
We collected gene-level constraint featuresincluding pLI, pRec,
syn_z, and mis z from the Genome Aggregation Database
(gnomAD). We used the patterns of inheritance defined in
OMIM as our data. For variants that contain multiple patterns,
we cal culated the occurrences of each pattern and stored it asa
feature. We also get some additional information about each
variant from ANNOVAR such as genotype, regions that a
variant hits, and read depths. The quality of each variant isalso
collected from the VCF file. As the genotype annotated by
ANNOVAR does not contain hemizygous aleles, we replaced
the genotype feature of all male patients’ chromosome X with
hemizygous alleles. In addition, we collected functional
consequence on the different transcripts for a gene or in
proximal regulatory regions using Nirvana.

Labels

The goal of our research was to identify the disease-causing
variantswith SNVs (ie, we classify avariant as disease causing
or not). As machine learning algorithms learn how to assign a
classlabel to atest casefrom examples, it isnecessary to assign
aclass label to all input training sets. We used the 0/1 label to
represent whether avariant isdisease causing or not. If avariant
is causative, we assigned label 1 to it; otherwise the label is 0.
Details about al the features used in our model are presented
in Multimedia Appendix 2.

Feature Selection

After data preprocessing, we got 94 features for each variant.
To reduce the high dimension of the input data set while
retaining the discriminatory information for classification
problems, we applied univariate feature selection techniques
from scikit-learn [ 55] packagesto identify therelevant variables
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inadataset and eliminatethe useless variables. Feature selection
helpsto reduce the noisein the data set and letsthe model focus
on the relevant signals.

There are several scoring functions provided by scikit-learn
univariate feature selection modules. We used mutual
information classifier to select the most relevant variables.
Mutual information [56] between 2 random variables is a
nonnegative value, which measures the general dependence of
variables without making any assumptions about the nature of
their underlying relationships [57]. The mutua information
between 2 discrete random variables X and Y is defined as
follows:

IX, ) = Xxex Lyey P(x, y)log [p(x, y)ip(x) * p(y)]

where p(x, y) is the joint probability density function of X and
Y, and p(x) and p(y) are the margina density function. The
mutual information determines the similarity between thejoint
distribution p(x, y) and the products of the factored marginal
distributions. The larger the value means the greater the
relationship between the 2 variables. The calculated value is
equal to 0 if and only if the 2 variables are independent.

We performed the feature selection process using only the
training set to determine the relevant variable. Further, the
number of features we selected is based on model evaluation
with 10fold cross validation

Building Mod€

To construct a model by machine learning algorithm, we split
the data into 2 groups. As our model aims to assist physicians
with their clinical exome datainterpretation process, the exome
data from the dbGaP database and the targeted gene panel
sequencing data from NTUH were set as training set, and the
WES datafrom NTUH were set astesting data. which can only
be used on model evaluation. The external validation set
consisted of 90 most recent NTUH WES data, which help to
make surethat our model can make predictionsin future clinical

Table 2. Thetraining, testing, and external validation sets used in this study.
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use. Detail s about the training and testing setsarelisted in Table
2.

To build the machine learning model, we implemented the
random forests algorithm [58] provided by scikitlearn packages.
The selection of hyperparametersisbased on agrid search with
10fold cross validation. Random forest was first proposed by
Leo Breiman in 2001 [58]. It is an ensemble classifier that
evolves from decision trees. Actually, random forests are a
combination of decision trees such that each tree depends on
the values of arandom vector sampled independently, with the
samedistribution for al treesintheforest [59]. A forest of trees
isgrown asfollows:

- The training set is a bootstrap sample from the original
training set.

«  The number of trees to build and the number of variables
randomly sampled as candidates at each split m-try are set
by the user, where m-try is less than the total number of
variables.

- At each node, m-try variables are selected at random, and
the node is split on the best split point among m-try. This
process iterates until the tree grows to its maximal depth.

«  For test case prediction, as a test vector x is put down at
each tree, it is assigned the average of y values at the node
it stops at. The average of these overall trees in the forest
is the predicted value for x. The predicted value for
classification is the class getting the plurality of the forest
votes..

The function we used to measure the quality of a split is Gini
impurity. Gini impurity is the probability of incorrectly
classifying arandomly chosen element in the data set if it were
randomly labeled according to the class distribution in the data
set [60]. In decision tree learning it is defined as

1G(n) = iz, p(iin * [L=PUN] | where cisthe number of classesand
p(i[t) is the probability of randomly picking an object of class
i a nodet. The optimal split from aroot node when training a
decision tree is chosen by maximizing the Gini gain, which is
calculated by subtracting the weighted impurities of the branches
from the original impurity.

Data Training set Testing set External validation set
Source dbGaP?, NTUHP panel NTUH WES® New NTUH WES
Patients, n 381 108 90

Filtered variants, n 125,693 80,083 109,857

Causative variants, n 478 134 100

%dbGaP; Database of Genotypes and Phenotypes.
PNTUH: National Taiwan University Hospital.
SWES: whole-exome sequencing.

Perfor mance Evaluation

To evaluate our model performance of true causative variant
prioritization, we used the ranking statistics mentioned in
VarSight. After we applied the binary classification process to
all variants, we got aprobability for each variant that represents

https://biocinform.jmir.org/2022/1/e37701

the probability of thisvariant to be disease causing. We ranked
the variants for each patient from the highest to lowest
probability and quantified the percentage of the target variants
that were ranked in thetop 1, 5, 10, 20.
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Results

Feature Selection

For the feature selection, we used univariate feature selection
based on the SelectPercentile method in scikitlearn package.
The classifier we chose is the mutual information classifier.
Only the training set was used for selecting the most relevant

Huang et a

features. Further, we applied 10fold cross validation to decide
the number of features for model training. In Figure 2, we
present the top 10 accuracy on 10fold cross validation using
different percentages of features. As using 60% of features
achieves the highest accuracy, 56 features (60% of total 94
features) with the highest estimated mutual information were
selected for the final model building.

Figure 2. Thetop 10 accuracy on 10-fold cross validation using different percentage of features.
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M odel Performance

We evaluated the model with our testing set. As mentioned in
Table 2, the testing set comprised 108 patients who received
WES with at least one disease-causing variant diagnosed by
doctors. Multimedia Appendix 3 presents detailed information
about their causative variants, keywords, and the corresponding
HPO term. The keywords and HPO term are determined by
doctors based on the phenotype of each patient.

Prediction With Different Keyword Extraction Tools

Figure 3 shows the percentage distribution of the ranking of
target variants and Figure 4 shows the cumulative rank result
of modelsusing different keyword extraction tools. When using
toolsto extract phenotypes from abstracts, our model can assign
thetarget variantsto the top rank for over 40% (60/134, 44.8%)
of thetotal variants. Thetop 10 accuracies of modelsare around
90% (124/134, 92.5%), irrespective of the keyword extraction
tool used. Compared with the keywords provided by professional
doctors, applying tools to extract keywords had lower top 1
accuracy but comparable top 10 accuracy. This indicated that
in most cases our model can successfully rank the true causative
variants in the front of the variant lists and the rank is dightly
influenced by the input keywords.

https://biocinform.jmir.org/2022/1/e37701
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We built arandom forest model based on the method described
inthe previous section and evaluated it with our testing set based
on different keyword extraction tools. We succeeded in locating
92.5% (124/134) of the causative variant in the top 10 ranking
list among an average of 741 candidate variants per person after
filtering. The performance of the model is similar to that of
manual analysis, and it has been used to help National Taiwan
University Hospital with a genetic diagnosis.

Figures 3 and 4 show the percentage distribution of the ranking
of target variants and the cumulative rank result of modelsusing
different keyword extraction tools, respectively. When using
toolsto extract phenotypes from abstracts, our model can assign
thetarget variantsto the top rank for over 40% (60/134, 44.8%)
of thetotal variants. Thetop 10 accuracies of modelsare around
90% (124/134, 92.5%), irrespective of the keyword extraction
tool used. Compared with the keywords provided by professional
doctors, applying tools to extract keywords has lower top 1
accuracy but comparable top 10 accuracy. It represents that in
most cases our model can successfully rank the true causative
variants in the front of the variant lists and the rank is dightly
influenced by the input keywords.
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Figure 3. Percentage distribution of ranks.
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Other Machine L earning M ethods

We aso evaluated other machine learning methods and
compared their performance with random forest. These methods
include logistic regression, Gaussian naive Bayes, SVM with
RBF kernel, and gradient boosted decision trees. The selection
of hyperparametersfor each algorithm was based on grid search
with 10-fold crossvalidation. We used MetaM ap asthe keyword
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extraction tool and our testing data to test the performance of
each method. The percentage distribution of the ranking of target
variants by each machine learning method and the cumulative
rank result of each model are shown in Figures 5 and 6,
respectively. Asrandom forest got the highest top 10 accuracy,
we finally chose random forest as our machine learning
algorithm.
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Figure5. Percentage distribution of ranks. GBDT: gradient boosting decision tree; SVM: support vector machine.
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Discussion
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learning to make a prediction about most possible
disease-causing variants among SNV s and patient’s phenotype

Principal Findings

data. This system can assist researchers and physicians by
focusing on those with higher disease-causing probability and

We have implemented awebsite, Al Variant Prioritizer, which  eq6ing the average turnaround time (by 1 day) of the entire
uses data from NGS bioinformatics pipelines with machine \ygg pipeline, from DNA extraction to clinical diagnosis.
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Moreover, we have implemented aweb API for our system so
that the ranking function could be integrated into MViewer.
Thus, physicians can interpret the results of genetic variation
with asingle application instead of adopting numerous services.

For comparison, we used our testing data to run severa
prioritization tools including AMELIE [61], VarElect [62],
Exomiser, Phenolyzer, and Variant Prioritizer. As AMELIE
and Exomiser can only accept phenotypes defined in HPO terms,
we entered HPO terms determined by doctors as their input.
Phenolyzer can identify both disease terms and HPO terms.
However, if the terms do not match in their databases, it will
not return any record. Hence, we also used HPO terms as input
for Phenolyzer. VarElect, Variant Prioritizer, and our model
can identify free-text descriptions. Therefore, we imputed the
keywords provided by doctors as input for testing. AMELIE,
VarElect, and Variant Prioritizer only prioritize the gene list
instead of the variant list. Hence, we evaluated the result for
gene-based prioritization instead of variant-based prioritization.
That is, for each patient, if thetools prioritize target genein the
top 1, 5, 10, 20, 50, and 100 of our filtered genelists, this patient
will be counted. All the tools use the default settings provided
in their websitesto run.

Figures 7 and 8 show the percentage and cumul ative percentage
distribution of the target gene ranking for each tool, respectively.
From Figure 8, we can see that Al Variant Prioritizer is able to
assign the target gene to the top rank for 61.1% (66/108) of the
patients, followed by Variant Prioritizer (48/108, 44.4%). It
also shows the cumulative rank result, which reveals that our
Al Variant Prioritizer hasthe highest accuracy at ranks 1, 5, 10,
and 20. Further, Al Variant Prioritizer shows better performance
than other tools. After adopting the HPO terms by looking up
the databases, the top 10 ranking list can be increased to 93.5%
(101/108).

https://biocinform.jmir.org/2022/1/e37701
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In comparison with extraction of phenotypic features from
SNOMED through manual mapping of HPO termsto SNOMED
Clinical Terms (SNOMED CT) [63], our automation approach
explores various phenotypic feature extraction tool s and focuses
on rare disease interpretation. We have also looked into several
Al-driven variant prioritization approaches published in thelast
3years, including Fabric GEM [12], MOON [2], and Exomiser.
There are several differences between our approach and each
of these approaches, including the algorithms used to build the
prioritization model, the features considered, and databases
integrated. However, the major difference of our approach from
othersisthe method used to turn the rel ationshi ps between genes
and phenotypes into numerical values, which makes way for
later prediction. Fabric GEM and MOON utilize Phevor [15]
to turn phenotype-gene relationship into numerical values,
whereas Exomiser uses PhenoDigm [64] to achieve this goal.

Both Phevor and PhenoDigm construct new methodsthat bridge
HPO and other ontologies to discover more gene-disease
associations. Phevor gathersall correlation of diseases and genes
provided by HPO and Gene Ontology (GO) and constructs
several networks (graphs) and distributes decreasing weights
along the paths found. The sum of weights on the specific gene
node represents the correlation score of the gene with the
corresponding HPO term. PhenoDigm utilizes OWLSim [65]
to calculate the similarity among different phenotypes in
different ontologies and uses similarity to estimate the
magnitude of correlation of given HPO terms and different
genes. By contrast, Variant Prioritizer used in our approach
extracts the phenotype-gene relationship from a different kind
of knowledge source: free text of database. We make asimple
comparison of these approachesin Tables 3 and 4.
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Figure 7. Percentage distribution of ranks. Al: artificial intelligence.
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Figure 8. Cumulative percentage distribution of ranks. Al: artificial intelligence.
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Table 3. The comparison among Al Variant Prioritizer, Fabric GEM, MOON, and Exomiser.

Tool Al Variant Prioritizer Fabric GEM MOON Exomiser
Variant scoring algorithm Random forest Bayes factor Decision trees, Bayesian Rule based
models, neural networks
Phenotype-gene score Variant Prioritizer Phevor Phevor PhenoDigm
Phenotype input format Plain texts HPOP terms HPO terms extracted from  HPO terms
electronic health record
8Al: artificial intelligence.
bHPO: Human Phenotype Ontology.
Table 4. The comparison among Variant Prioritizer, Phevor, and PhenoDigm.
Tool Variant Prioritizer Phevor PhenoDigm
Algorithm Okapi BM25 Graph algorithm OWLSIm
Phenotype input format Plain texts HPO?® terms HPO terms
Knowledge base OMIMP, GeneReviews, Entrez HPO and GO° OMIM (HPO), Sanger-MGP [66],

Gene and PubTator

MGD [67], and ZFIN [68]

34PO: Human Phenotype Ontol ogy.
POMIM: Online Mendelian Inheritance in Man.
¢GO: Gene Ontology.

Feature Importance

For interpreting model predictions, we used the feature
importance method provided by scikit-learn to identify which
feature has the most predictive power. Figure 9 shows the top
20 important features. According to clinical experience, the
connection between a variant and phenotype of a patient is a
key factor that influences the physician to decide whether to
report a variant or not. Similarly, from the figure we can see

https://biocinform.jmir.org/2022/1/e37701
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that the most important feature is the max bm25 score, which
refers to the similarity score between the given variant and
keywords. Another important factor that influencesthereporting
decision during clinical analysisisthe severity of avariant. The
corresponding feature we use is the ACMG score, whichisin
the second place of feature importance. By contrast, the result
of featureimportance might provideinformation for physicians
or researchers about the features that they can consider when
finding causative variant.

JMIR Bioinform Biotech 2022 | vol. 3 | iss. 1 | €37701 | p. 15
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR BIOINFORMATICS AND BIOTECHNOLOGY

Figure 9. Featureimportance.
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External Validation

We compared the cumulative percentage distribution of ranks
from the testing set and the external validation set. The result
isshownin Figures10 and 11. Their percentage values are close

Figure 10. Percentage distribution of ranks.
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to each other in different regions such astop 10 and top 5. The
percentage of top 1 rank of the external validation set is even
higher than that of the testing set. With this result, we believe
that our approach has shown its potential for robust clinical

usage.
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Figure 11. Cumulative percentage distribution of ranks.
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Limitations

The study has several potential limitations. First, we could not
find massive datafor training and testing. Thisnot only restricts
the amount of teaching material for the machinelearning model,
but al so restricts avail able measurementsto eval uate the trained
model. Second, the gene-phenotype score used in this study did
not have enough power to detect small or moderate associations
because it relies on how frequently the gene-phenotype
relationship is reported to the databases it utilizes. Finally, the
study did not adjust for potential confounders, such as diet and
physical activity. This could cause potential bias because the
way in which genes are expressed can be impacted by lifestyle
of patients.

Overdll, this study could have potential bias resulting from the
lack of sufficient data, lack of reported gene-phenotype
relationship, and lack of observation of lifestyle. The impact
from the first and the second can be reduced if there are more
data and reports available in the future. On the other side, the
influence of lifestyle and environment remains an issue that
needs more dedicated studies.

Conclusions

In this research, we proposed a machine learning model, Al
Variant Prioritizer, to predict whether a variant is disease
causing for patients with rare Mendelian disorder. We have
successfully applied sequencing data from WES and free-text
phenotypic information of patient's disease automatically
extracted by keyword extraction tools for model training and
testing. By interpreting our model, weidentified which features
of variants are important. Besides, we achieved a satisfactory
result on finding the target variant in our testing data set. After
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86.00%
92.54%

Huang et a

Variant Prioritizer

Over 100
1
1

6-10 11-20
89.00%

95.52%

21-50
93.00%
95.52%

51-100
95.00%
95.52%

Rank category

testing 108 patients WES data, we succeeded in 93.5% (n=101)
of the casesto locate the causative variant in the top 10 ranking
list among an average of 741 candidate variants per person after
the filtering process. The performance of the model is similar
to that of manual analysis by the physiciansin the Department
of Medical Genetics, NTUH, andit hasbeen usedtohelpNTUH
with agenetic diagnosis.

As the physicians are very busy amost all the time in taking
care of their patients, the search time spent for an accurate
genetic diagnosis is extremely important. Our Al predicting
model can provide the top 10 hit list with a high probability of
93.5% (101/108), thus hel ping them save weeks of time if they
have to do it manually to search beyond the top 10 list very
often.

It is not an easy work to fully interpret the causative variations
of agenetic disease. Asthe precision of the keywords extracted
by tools influence the performance of our model, for the future
work, wewill adopt some NL P techniques such as Bidirectional
Encoder Representations from Transformers (BERT) to extract
keywords more properly. In addition, the Al Variant Prioritizer
model has been built to analyze SNV's and small indels from
WES data, but we have not dealt with copy number variations
(CNVs) yet. CNVs have been recognized as critical genetic
variations, which are associated with both common and complex
diseases, and thus have alarge influence on several Mendelian
and somatic genetic disorders. Therefore, we will collect data
on CNVs and extend the capability of our system to annotate
and filter CNVs. Furthermore, we will enlarge our data set by
adding CNVs as our training data to enable the Al Variant
Prioritizer model to predict any kind of causative genetic
variations. Before implementation of Al Variant Prioritizer, the
mean turnaround time of the entire WES pipeling, from DNA
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extraction to clinical diagnosis, was 5.8 (SD 1.1) days using Prioritizer, the mean turnaround time was reduced to 4.8 (SD
Variant Prioritizer. However, after implementation of Al Variant  1.2) days for rapid trio exome sequencing analysisin NTUH.
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