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Abstract

Background: Treatment discontinuation (TD) is one of the major prognostic issues in diabetes care, and several models have
been proposed to predict a missed appointment that may lead to TD in patients with diabetes by using binary classification models
for the early detection of TD and for providing intervention support for patients. However, as binary classification models output
the probability of a missed appointment occurring within a predetermined period, they are limited in their ability to estimate the
magnitude of TD risk in patients with inconsistent intervals between appointments, making it difficult to prioritize patients for
whom intervention support should be provided.

Objective: This study aimed to develop a machine-learned prediction model that can output a TD risk score defined by the
length of time until TD and prioritize patients for intervention according to their TD risk.

Methods: This model included patients with diagnostic codes indicative of diabetes at the University of Tokyo Hospital between
September 3, 2012, and May 17, 2014. The model was internally validated with patients from the same hospital from May 18,
2014, to January 29, 2016. The data used in this study included 7551 patients who visited the hospital after January 1, 2004, and
had diagnostic codes indicative of diabetes. In particular, data that were recorded in the electronic medical records between
September 3, 2012, and January 29, 2016, were used. The main outcome was the TD of a patient, which was defined as missing
a scheduled clinical appointment and having no hospital visits within 3 times the average number of days between the visits of
the patient and within 60 days. The TD risk score was calculated by using the parameters derived from the machine-learned
ranking model. The prediction capacity was evaluated by using test data with the C-index for the performance of ranking patients,
area under the receiver operating characteristic curve, and area under the precision-recall curve for discrimination, in addition to
a calibration plot.

Results: The means (95% confidence limits) of the C-index, area under the receiver operating characteristic curve, and area
under the precision-recall curve for the TD risk score were 0.749 (0.655, 0.823), 0.758 (0.649, 0.857), and 0.713 (0.554, 0.841),
respectively. The observed and predicted probabilities were correlated with the calibration plots.

Conclusions: A TD risk score was developed for patients with diabetes by combining a machine-learned method with electronic
medical records. The score calculation can be integrated into medical records to identify patients at high risk of TD, which would
be useful in supporting diabetes care and preventing TD.
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Introduction

Background
Diabetes is a chronic disease requiring both self-management
and long-term management. Poor glycemic control increases
the risk of complications, including cardiovascular and
cerebrovascular diseases as well as macrovascular and
microvascular diseases, such as nephropathy, retinopathy, and
neuropathy [1-4]. To prevent the progression of these
complications, adherence to dietary, exercise, and medication
regimens is necessary [5]. Nonadherence has been shown to
increase the risk of morbidity [4] and all-cause mortality [6].

Treatment discontinuation (TD), defined as dropping out of
regular medical care, is likely to result in the worsening of
glycemic control and progression of complications [3,4]. TD
rates in patients with diabetes are rather high, ranging from 4%
to 19% in the United Kingdom [3,4], 12% to 50% in the United
States [7,8], and 13.5% to 56.9% in Japan [9,10]. Furthermore,
patients who have previously discontinued treatment have been
shown to have a 3-fold higher risk of repeated TD than those
who have never done so [11].

Prior Work
Preventing TD is crucial in the management of diabetes, and
several studies have statistically analyzed the factors associated
with TD [6-8,12]. Previously identified factors include younger
age [6,13], smoking [6,14], poor glycemic control [6,13,15,16],
high blood pressure [13], obesity [9], medications [12,16],
employment status [8,17], region [18], transportation barriers
[7,19,20], clinical appointments [20], and complications [21].
The most commonly used statistical hypothesis tests are t test
and chi-square test. However, a review [22] pointed out a variety
of multilevel factors in association with TD with inconsistent
findings. It has remained difficult for clinicians to carefully
discern each patient’s risk of TD.

Machine learning (ML) may be useful for predicting each
patient’s risk of TD by taking into account a wide variety of
factors. Statistics focus on explaining outcomes with data,
whereas ML focuses on predicting outcomes with data [23].
Although ML cannot identify consistent factors, it can inform
clinicians about who is a high-risk patient for TD. It could help
clinicians shift their time spent on identifying high-risk patients
to encouraging them to continue treatment. According to a
systematic review by Carreras-García et al [24], most studies
designed their model as a binary classification problem [25]
that classified scheduled appointments based on whether they
were kept or missed. Furthermore, the most commonly used
model was logistic regression, and the most frequently used
metric was the area under the receiver operating characteristic
curve (AUROC). However, as a binary classification outputs
the probability of a missed appointment (MA) occurring after
a predetermined period, it is limited in its ability to estimate the

magnitude of TD risk in patients with inconsistent intervals
between appointments. Even if a patient missed an appointment,
if the frequency of visits was maintained such that their
condition did not worsen thereafter, the TD risk of the patient
would be low. An MA is a necessary but not sufficient condition
for TD.

Goal of This Study
In this study, we aimed to develop a novel method of calculating
TD risk via ML. We designed a prediction model of TD as a
ranking problem with imbalanced data to compare patients by
length of time until TD. The ranking problem [26] is an
application of survival time analysis [27]. Cox regression [28]
is generally used in statistical analysis, whereas the ranking
model is used in ML [29-31]. Cox regression is a model of the
hazard function in which the effects of the explanatory variables
on outcomes are predetermined, requiring an assumption that
they remain constant over time [28]. In contrast, the ranking
model does not require this assumption and makes flexible use
of the variables. Furthermore, because there was a concern that
the learning model would have a heavier bias toward TD cases
than treatment continuation (TC) cases, the sampling was
devised on the basis of the findings of the imbalanced data.

The contributions of this work are as follows:

1. This study designed a prediction model of TD as a ranking
problem with imbalanced data, which allows for a
comparison of patients’ risk of TD with the time remaining
before TD. This is the first study to use a machine-learned
ranking model to predict TD.

2. The mean (95% confidence limits) of the C-index for the
TD risk score obtained with the model was 0.749 (0.655,
0.823). This was higher than 0.662 (0.574, 0.748), which
was obtained with the Cox regression model; the results
for the AUROC and area under the precision-recall curve
(AUPRC) were similar.

Methods

Ethics Approval
This study was approved by the research ethics committees of
the Graduate School of Medicine and Faculty of Medicine at
the University of Tokyo (approval number: 10705) and was
conducted in accordance with the Declaration of Helsinki.
Informed consent was obtained, and an opportunity to opt out
of participation was provided.

Study Population
All data were collected from electronic health records (EHRs)
at the University of Tokyo Hospital, which included 7551
patients who visited the hospital after January 1, 2004, and had
diagnostic codes indicative of diabetes. Characteristics of patient
in the training and test data are shown in Table 1.

JMIR Bioinform Biotech 2022 | vol. 3 | iss. 1 | e37951 | p. 2https://bioinform.jmir.org/2022/1/e37951
(page number not for citation purposes)

Kurasawa et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.2196/37951
http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Characteristics of patients in the training and test data.

Test data (n=1042)Training data (n=6509)Characteristics

TC (n=1004, 96.35%)TD (n=38, 3.65%)TCb (n=6305, 96.86%)TDa (n=204, 3.13%)Group

5.8 (4.1)3.1 (2.6)10.4 (5.0)4.8 (3.3)Number of appointments, mean (SD)

1.3 (0.7)1.2 (0.5)1.6 (1.2)1.6 (1.2)Number of missed appointments, mean
(SD)

61.1 (14.1)59.9 (15.0)66.0 (12.6)62.6 (15.9)Age (years), mean (SD)

1 (0.10)0 (0)3 (0.05)0 (0)<20, n (%)

25 (2.49)1 (3)45 (0.71)5 (2.50)20-30, n (%)

63 (6.27)4 (11)204 (3.24)14 (6.90)30-40, n (%)

117 (11.65)6 (16)452 (7.17)28 (13.70)40-50, n (%)

188 (18.73)6 (16)883 (14)31 (15.20)50-60, n (%)

310 (30.88)8 (21)1950 (30.93)47 (23)60-70, n (%)

300 (29.88)13 (34)2768 (43.90)79 (38.70)≥70, n (%)

Sex, n (%)

594 (59.16)25 (66)3777 (59.90)127 (63.30)Male

410 (40.84)13 (34)2528 (40.10)77 (37.70)Female

49.0 (21.0)56.2 (65.5)57.3 (23.9)65.9 (33.1)Hospital visit interval in days, mean
(SD)

127 (12.65)7 (18)283 (4.49)4 (2)<30, n (%)

511 (50.90)15 (39)3237 (51.34)72 (35.30)30-60, n (%)

177 (17.63)3 (8)2140 (33.94)66 (32.30)60-90, n (%)

39 (3.88)2 (5)415 (6.58)26 (12.80)≥90, n (%)

150 (14.94)11 (29)230 (3.65)36 (17.70)First visit, n (%)

7.0 (1.1)7.0 (1.1)7.0 (1.0)7.1 (1.2)HbA1c
c (NGSPd),%, mean (SD)

118 (11.75)6 (16)770 (12.21)31 (15.20)<6, n (%)

382 (38.05)12 (32)2281 (36.18)64 (31.40)6-7, n (%)

285 (28.39)9 (24)1788 (28.36)48 (23.50)7-8, n (%)

148 (14.74)4 (11)632 (10.02)33 (16.20)≥8, n (%)

71 (7.07)7 (18)834 (13.23)28 (13.70)Missing value, n (%)

160.5 (120.9)199.0 (239.1)143.5 (96.5)182.2 (167.4)TGe, mg/dL, mean (SD)

0 (0)0 (0)4 (0.06)0 (0)<30, n (%)

550 (54.78)15 (39)3601 (57.11)91 (44.60)30-150, n (%)

291 (28.98)10 (26)1631 (25.87)65 (31.90)150-300, n (%)

72 (7.17)3 (8)213 (3.38)16 (7.80)300-750, n (%)

6 (0.60)1 (3)11 (0.17)3 (1.50)≥750, n (%)

85 (8.47)9 (24)845 (13.40)29 (14.20)Missing value, n (%)

56.6 (16.8)54.4 (20.3)60.6 (16.9)58.6 (15)HDLf, mg/dL, mean (SD)

0 (0)0 (0)2 (0.03)0 (0)<20, n (%)

130 (12.95)8 (21)387 (6.14)15 (7.40)20 to <40, n (%)

759 (75.60)20 (52)4882 (77.43)159 (77.90)40 to <100, n (%)

15 (1.49)1 (3)126 (2)3 (1.50)≥100, n (%)

100 (9.96)9 (24)908 (14.40)27 (13.20)Missing value, n (%)
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Test data (n=1042)Training data (n=6509)Characteristics

TC (n=1004, 96.35%)TD (n=38, 3.65%)TCb (n=6305, 96.86%)TDa (n=204, 3.13%)Group

113.0 (35.0)119.9 (33.7)111.6 (26.8)121.6 (31.3)LDLg, mg/dL, mean (SD)

26 (2.59)1 (3)107 (1.70)2 (1)<60, n (%)

338 (33.67)7 (18)2700 (42.82)64 (31.40)60-120, n (%)

125 (12.45)2 (5)988 (15.67)36 (17.70)120-140, n (%)

120 (11.95)5 (13)532 (8.44)32 (15.70)≥140, n (%)

395 (39.34)23 (61)1978 (31.37)70 (34.30)Missing value, n (%)

192.9 (43.4)193.3 (36.6)189.5 (32.8)201.6 (44.5)TChoh, mg/dL, mean (SD)

50 (4.98)1 (3)152 (2.41)2 (1)<130, n (%)

650 (64.74)20 (53)4202 (66.65)111 (54.40)130-220, n (%)

97 (9.66)6 (16)516 (8.18)23 (11.30)220-240, n (%)

77 (7.67)1 (3)246 (3.90)15 (7.40)240-280, n (%)

29 (2.89)0 (0)43 (0.68)5 (2.50)≥280, n (%)

101 (10.06)10 (26)1146 (18.18)48 (23.50)Missing value, n (%)

aTD: treatment discontinuation.
bTC: treatment continuation.
cHbA1c: hemoglobin A1c.
dNGSP: National Glycohemoglobin Standardization Program.
eTG: triglyceride.
fHDL: high-density lipoprotein.
gLDL: low-density lipoprotein.
hTCho: total choline.

The data were recorded in the EHRs between September 3,
2012, and January 29, 2016. As illustrated in Figure 1, based
on the calendar date, two-thirds of the data (days: 828/1243,
66.6%) were used for training (between September 3, 2012, and
May 17, 2014) and the remaining one-third (days: 415/1243,
33.4%) was used for testing (between May 18, 2014, and

January 29, 2016). The records used for training were not used
for testing to ensure that the same patients were not included
in both groups. A total of 6509 patients (204 cases of TD) were
included in the training group, and 1042 patients (38 cases of
TD) were included in the testing group.
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Figure 1. Illustration of patient selection and data preprocessing. TD: treatment discontinuation.

Definition of TD
The TD of a patient was defined as missing a scheduled clinical
appointment and having no hospital visits within 3 times the
average number of days between the visits of the patient and
within 60 days. Each patient’s average number of days between
visits was calculated from the last 3 visit days. In other words,
if 3 times the average number of days between visits was greater
than 60 days, then 60 days was used as the threshold. Otherwise,
3 times the average number of days between visits was used as
the threshold.

Other studies have defined TD as the lack of hospital visits over
a particular threshold of time (between 1 day and 6 months)
[6-8,12-21]. When the threshold was set at 60 days, 336 cases
of TD were detected in the training data and 65 cases of TD
were detected in the test data, but there was a trend that patients
with longer visit intervals were more likely to be judged as TD
cases. It is not easy to set appropriate thresholds for outpatients
whose hospital visits are at inconsistent intervals. Next, when
the threshold was set to 3 times the average number of days
between visits, 218 cases of TD were detected in the training
data and 54 cases of TD were detected in the test data, but

patients with shorter visit intervals tended to be more likely to
be judged as TD cases or judged as having a risk of TD.
Therefore, we included both conditions in the definition.

To ensure accurate TD detection, a physician, one of the
coauthors, verified that the above definition was met and
excluded cases of patient death or changes in care setting.

Length of Treatment Until Discontinuation
Length of treatment was measured in 2 ways. First, TD (pm, tm)
was defined as the number of days from the date tm to the missed
scheduled clinical appointment associated with TD for the
patient pm who had TD (or possible TD). In the second way,
TC (pn, tn) was defined as the number of days from the date tn
to the most recently recorded visit for the patient pn who had
no TD.

For example, as shown in Figure 2, in the case of patient A,
there were 30 days from tA to the most recently recorded visit,
so TC (pA, tA) was set to 30 days. In the case of patient C, there
were 60 days from tC to the missed scheduled clinical
appointment associated with TD, so TD (pC, tC) was set to 60
days.
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Figure 2. Examples of the value of the treatment discontinuation (TD) risk. TC: treatment continuation; W: weight vector; X: feature vector.

Class Design
The classification ym,n was based on the difference between a
pair of treatment lengths. Here, ym,n=+1 for the pair of TD (pm,
tm) for the patient pm and the date tm and TD (pn, tn) for the
patient pn and the date tn if TD (pm, tm) is shorter than TD (pn,
tn) and the pair of TD (pm, tm) and TC (pn, tn) if TD (pm, tm) is
shorter than TC (pn, tn). ym,n=–1 for the pair of TD (pm, tm) and
TD (pn, tn) if TD (pm, tm) is longer than TD (pn, tn) and for the
pair of TC (pm, tm) and TD (pn, tn) if TC (pm, tm) is longer than
TD (pn, tn).

The classification was performed only when the patients had
different times until TD, or when one patient had TD and the
other had TC, where TC (pn, tn) was longer than TD (pm, tm).
The classification was not performed on other occasions because
the difference in time until TD between the 2 patients could not
be compared. For the examples shown in Figure 2, the classes
of the pair of TC (pA, tA) and TD (pD, tD) and that of TC (pB, tB)
and TD (pD, tD), TC (pB, tB) and TD (pC, tC), and TD (pC, tC)
and TD (pD, tD) were all set to −1.

Feature Design
To ensure that the factors related to TD were included, we
designed a feature vector xn for patient pn at time tn, representing
the clinical conditions beginning with the initial visit and lasting
until just before tn. In total, 149,699 features, 51,778 qualitative

features and 97,921 quantitative features, were used. Table 2
describes the features used for the prediction.

We designed the features using 3 classes of representation. The
first included detailed demographic and clinical conditions (sex,
age, previously consulted medical departments, diagnosed
diseases, and prescribed medications). These had numerous
features, most of which had a 0 value, leading to a very sparse
representation.

The second class included changes occurring during the
treatment of a patient to identify the risk of TD at each hospital
visit. For example, we used the accumulated number of hospital
visits, length of prescription time, number of medications
prescribed, laboratory results, day of the week an appointment
was scheduled, the interval between the date on which a clinical
appointment was made and the scheduled appointment date,
and the weather conditions on the appointment day. Detailed
histories of hospital visits were included because features related
to when and how appointments were made influenced the
accuracy of the predicted MAs in our previous work [25].

The third class included data from public databases beyond the
EHR. For instance, to represent the distance from a patient’s
home to the hospital, we used a geographic information system
and measured the distance and travel time. We also used
information regarding patient occupations. The observed values
of each quantitative variable, for example, blood test results,
were linearly transformed (normalized) to make the variance
of each variable equal to 1. The transformed variable was then
assigned to the vector.
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Table 2. Description of explanatory variables used for prediction.

Characteristic feature (reference)Quantitative variables
(n=97,921), n (%)

Qualitative variables
(n=51,778), n (%)

Primary and secondary categories

Attribute

Sex and age5 (0.01)4 (0.01)Sex and age

Distance and time duration from the house
to the hospital by public transport (geograph-
ic information system)

492 (0.50)492 (0.95)Address

Business-type category (health insurance
societies of companies)

3 (0)67 (0.13)Insurance

Consultation

Previously and recently consulted medical
departments

514 (0.52)267 (0.52)Medical department, outpatient, and inpatient

Subject categories of consultation assigned
by each medical department

13,108 (13.39)8021 (15.49)Subject

Late arrival for an appointment105 (0.11)33 (0.06)Time

Interval between the date on which a clinical
appointment was made and scheduled ap-
pointment date

197 (0.20)74 (0.14)Appointment (intervals and changes)

Medicine

How many times a day medication is taken17,678 (18.05)10,346 (19.98)Directions of each medicine

Total amount of medication per day33,403 (34.11)4570 (8.83)Doses of each medicine

Component (medicine code defined by the
Ministry of Health, Labor and Welfare)

5082 (5.19)2332 (4.50)Component

Medication for outpatient to the department
of Diabetes and Metabolic Diseases

678 (0.69)324 (0.63)Medical department, outpatient, and inpatient

Disease category under care and recovered

(ICD-10a)

22,012 (22.48)21,977 (42.44)Disease (recovered from and under treatment)

Laboratory tests

HbA1c
b, HDL-Cc, LDL-Cd, TGe, TChof,

etc

357 (0.36)170 (0.33)Medical department, outpatient, and inpatient

Interval between tests462 (0.47)219 (0.42)Order, exam and intervals

Categorized result according to the criteria
(Diabetes Medical Guideline)

658 (0.67)297 (0.57)Results

Interval between tests2801 (2.86)2237 (4.32)Physiological tests (order, exam, and intervals)

Procedure name338 (0.35)336 (0.65)Surgery (procedure)

Guidance for inpatient to the department of
Diabetes and Metabolic Diseases

28 (0.03)12 (0.05)Nutritional guidance (medical department, out-
patient, and inpatient)

aICD-10: International Classification of Diseases, Tenth Revision.
bHbA1c: hemoglobin A1c.
cHDL-C: high-density lipoprotein.
dLDL-C: low-density lipoprotein.
eTG: triglycerides.
fTCho: total choline.

All the features were generated by processing variables obtained
from the EHRs. The category with the highest number of
variables was medicine. Raw categorical variables such as
medicine name, component, units, inpatient and outpatient
category, and department that prescribed the medicine were
extracted. Raw numerical variables such as amount, dosage,
and number of days or times were extracted. In addition, new

numerical variables were generated by combining categorical
and numeric variables such as pairs of medicine name and
amount, pairs of medicine name and dosage, and pairs of
medicine name and number of days or times. New categorical
variables such as pairs of medicine name and inpatient and
outpatient category and pairs of medicine name and department
were also generated. The category with the second highest
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number of features was disease. Raw categorical variables such
as disease name; disease category defined by International
Classification of Diseases, Tenth Revision; treatment status
(under treatment and recovering); and disease type (primary
disease and secondary disease) were extracted. In addition, new
categorical variables such as pairs of disease name and treatment
status and pairs of disease name and disease type were
generated. New numerical variables were also generated by
counting the number of diseases that were under treatment and
recovered for each disease category. The variables of the other
categories were as follows. From the attribute category,
categorical variables such as sex, names of regions and cities,
insurance categories, and business-type categories were
extracted. Numerical variables such as age and copayment rates
were extracted. Distance and travel time were generated as new
numerical variables using geographic information system from
region and city names, as described in the third representation
class. From the consultation category, categorical variables such
as department, inpatient and outpatient category, and subject
name of the reservation slot were extracted. Numerical variables
such as time of arrival, appointment, clinic start, and clinic end
were extracted. These time intervals were generated as new
numerical variables. From the appointment category, categorical
variables such as department and appointment status (new,
change, and cancellation) were extracted. Numerical variables
such as time of registration and reservation were extracted. The
new numerical variables were generated, as described in the
second representation class. From the laboratory and
physiological tests categories, categorical variables such as test
name, department, and inpatient and outpatient category were
extracted. Numerical variables such as test values were
extracted. From the surgery category, categorical variables such
as operative name were extracted. From the nutritional guidance
category, categorical variables such as department and inpatient
and outpatient categories were extracted.

Most features were generated using the following 3-step
procedure. First, raw variables were extracted from each
category, tied to their recorded times, and classified into
categorical variables (eg, names of diagnosed diseases) and
numeric variables (eg, number of medicines prescribed). Second,
Categorical variables were further classified into raw categorical
variables and frequency-transformed categorical variables.
Third, the combinations of the raw categorical variables and
the statistics of the frequency-transformed categorical variables
were computed with varying window sizes to generate
qualitative features and quantitative features, respectively.
Numeric variables were transformed to linear and logarithmic
scales, and their statistics were computed with varying window
sizes to generate quantitative features. 4 statistics were used for
feature generation: minimum, maximum, mean, and SD. To
relate the most recent trends in circumstances to the TD risk
score, periods of 3 months, 6 months, and 1 year before the
target time were used as window sizes. A categorical variable
was also added to indicate missing data if a feature was present
for a shorter time than the window size.

For example, from the attribute category, the features sex, age,
address, and insurance were extracted to express demographic
conditions. The features of sex consisted of 1 qualitative variable

representing male or female, 3 quantitative variables
representing its frequencies with the 3 window sizes, and 3
qualitative variables representing their missing values. The
frequencies of the sex variable itself have no meaning, but
because it is a variable that is always listed in each EHR, it was
used to represent the number of EHRs in the window size. The
features of age consisted of 2 quantitative variables of linear
and logarithmic scales. The features of address consisted of 48
quantitative variables of the 4 statistics of the 2 scales of the
distance and travel time from a patient’s home to the hospital
with 3 window sizes, 48 qualitative variables representing their
missing values, and 444 quantitative and qualitative variables
representing the names of regions and cities and their
frequencies. The features of insurance consisted of 67 qualitative
variables representing insurance categories and business-type
categories and 3 quantitative variables representing copayment
rates.

Model Design
We established a TD risk prediction method based on the
parameters of the machine-learned ranking model. There are
several objective function designs for ranking models [32,33].
In particular, pointwise [26], pairwise [34-36], and listwise
[37,38] approaches have been proposed. Furthermore, several
learning algorithms have been developed, including ones that
use logistic regression, neural networks [39], and boosting [40].

We designed the model on the basis of the pairwise approach
and used logistic regression. The pairwise approach was
appropriate as the only rating scale for learning was the TD risk
score. Logistic regression was selected because it was the most
frequently used approach in related work [24] and because it
was used in our previous work [25].

We hypothesized that the risk of TD of patient pm can be
calculated from a feature vector xm that incorporates a variety
of patient information up to time tm. Therefore, we assumed
that the scalar TD risk can be represented by the inner product
of a weight vector and the feature vector, that is, w ⋅ xm. To
obtain the weight vector w, we modeled the probability that
patient pm at time tm would discontinue treatment earlier than
pn at tn, with xm and xn attributed to ym,n with the logistic
regression:

P (ym,n | xm,xn;w) = 1 / {1 + exp [– ym,nw (xm – xn)]}

The notation w (xm-xn) denotes the scalar product of w and xm-xn.

ML Design
The ranking method, based on the pairwise approach, requires
pairs of data for optimizing the parameters of the model. In
general, n(n-1)/2 pairs can be generated for n records with no
censoring. As this study included censored data that were TCs,
all pairs for optimization must satisfy the abovementioned
combination rule. There was also a concern that the model would
have a heavier bias toward TD cases than toward TC cases.
According to survey papers [41-43] on biased data, sampling
has often been attempted as a way to solve this problem [44,45].
We took the means of sampling 1 record from each patient to
prevent biased learning on a small number of patients. When
the w estimate was computed, we randomly selected 1 recorded
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date of a hospital visit for each patient and used the date tm or
tn as the starting point of TD or TC to calculate TD (pm, tm) or
TC (pn, tn). The number of all pairs satisfying the
abovementioned combination rule with the sampling was
867,574 in the training data and 17,038 in the test data. The
computational complexity of pairwise-based ranking learning

is O(n2). The sampling results in a slightly reduced
computational cost.

When the training data size, N, is smaller than the dimension
of the feature vectors, or when sampling of the training data is
biased, a maximum-likelihood estimation often overfits a logistic
regression model to the training data, leading the model to rank
many new patients inaccurately. We used an L2-norm
regularization method [23] to mitigate overfitting and improve
the generalizability of the model, as we did in our previous
study [25].

Using training data [(x1, x2, y1,2),..., (x1, xN, y1, N),..., (x2, x3,
y2,3),..., (xm, xn, ym,n),..., (xN–1, xN, yN–1,N)], we estimated w as
follows:

where the squared L2-norm of w, , is an L2-norm
regularizer that acts as a mitigating penalty to provide large
absolute weight values only to frequently occurring features in
the training data.

The symbol λ is a hyperparameter for regularization and was
tuned as follows: the training data were randomly split into 2
sets of data and used in a 2-fold cross-validation test; for each
test, the prediction accuracy was evaluated with one set of data
for training and the other set of data for testing, with λ set to
0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, and 100. The value of λ at which

the average prediction accuracy of the 2 tests was highest was
chosen.

TD Risk Score Design
The TD risk score of patient pm at time tm is represented by the
logit value w ⋅ xm. The higher the value of the TD risk, the earlier
TD is predicted to occur. Figure 2 shows an example of the TD
risk value.

Statistical Analysis
We implemented the model and ML optimization in-house in
C and Python 3.7 and used it in all the experiments.

Results

Distribution of TD and TC
The detailed demographic data are shown in Table 1. The
average numbers of appointments by patients with TD and TC
were 4.8 and 10.4, respectively, in the training group and 3.1
and 5.8, respectively, in the testing group. The difference in
distribution was because of the training and test data were
classified according to whether or not they had a history of
hospital visits before May 17, 2014, and the duration of the
training data (828 days) was approximately twice that of the
test data (415 days). Furthermore, as shown in Figure 3, the
training data included patients who had been attending the
hospital since before September 3, 2012, which was the starting
point for the experiment; thus, patients with TC in the training
data tended to have more appointments. In contrast, patients
with TC in the test data tended to have fewer appointments, as
these data were limited to patients who had attended the hospital
since May 17, 2014. However, the number of appointments for
patients with TD was low for both training and test data as
patients with TD generally had shorter hospital visits. The
average numbers of MAs by patients with TD and TC were 1.6
and 1.6, respectively, in the training group and 1.2 and 1.3,
respectively, in the testing group.
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Figure 3. Example of distribution of visit and appointment dates. TC: treatment continuation; TD: treatment discontinuation.

Predictive Performance Against TD
The hyperparameter λ of the machine-learned ranking model
was tuned with 2 cross-validations, and it was set to 10 in the
testing stage. The C-index of the predicted ranking was
calculated as the number of correctly ranked pairs divided by
the total number of comparable pairs. During testing, the TD
risk score generated by the algorithm performed well, with a
C-index (95% confidence limits) of 0.749 (0.655, 0.823), and
outperformed the Cox regression model, with a C-index (95%
confidence limits) of 0.662 (0.574, 0.748). As shown by the
Kaplan-Meier curve in Figure 4, it was able to correctly model
the population at high risk for TD. 10.3% (36/349) of the
patients whose calibrated risk scores were ≥0.5 discontinued
treatment within 100 days, whereas 93.9% (651/693) of the
patients whose scores were <0.5 continued treatment for over
1 year.

The number of TD cases was much smaller in the data used in
this study than the number of patients who did not interrupt
their visits. As validation with the C-index alone might not be

sufficient to evaluate the performance in the case of imbalanced
data [45,46], the AUPRC was used in addition to the AUROC
to evaluate whether the risk score could predict TD in a specific
period, as shown in Table 3. Both the AUROC and AUPRC of
the TD risk score were higher than those of the Cox regression
model.

TD prediction within 6 months showed an AUROC (95%
confidence limits) of 0.741 (0.641, 0.833) and an AUPRC (95%
confidence limits) of 0.335 (0.193, 0.499). These values at 1
year were 0.758 (0.649, 0.857) and 0.713 (0.554, 0.841),
respectively.

Subsequently, the TD risk score was converted to a range of 0
to 1 to validate the performance of risk stratification. As shown
in the calibration plot using the test data in Figure 5, the
observed and predicted TD rates were relatively correlated.
These results indicate that the TD risk score can provide
clinicians with information about the risk of TD in advance with
favorable predictive performance and improve patient outcomes
by providing room for interventions to avoid interruptions.

JMIR Bioinform Biotech 2022 | vol. 3 | iss. 1 | e37951 | p. 10https://bioinform.jmir.org/2022/1/e37951
(page number not for citation purposes)

Kurasawa et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Kaplan-Meier curves displaying the probability of treatment discontinuation (TD) for the 2 groups of test data divided by the median TD
risk scores obtained from the training data.

Table 3. Predictive performance against TDa.

AUPRCc, mean (95% confidence limits)AUROCb, mean (95% confidence limits)Months

Cox modelRanking modelCox modelRanking model

0.035 (0.016, 0.071)0.081 (0.024, 0.299)0.668 (0.544, 0.787)0.747 (0.607, 0.868)2

0.136 (0.052, 0.262)0.228 (0.090, 0.412)0.691 (0.581, 0.793)0.776 (0.666, 0.870)3

0.156 (0.072, 0.278)0.290 (0.139, 0.470)0.641 (0.531, 0.746)0.748 (0.637, 0.844)4

0.215 (0.107, 0.360)0.309 (0.163, 0.483)0.666 (0.557, 0.768)0.751 (0.651, 0.843)5

0.236 (0.127, 0.379)0.335 (0.193, 0.499)0.645 (0.533, 0.751)0.741 (0.641, 0.833)6

0.308 (0.172, 0.468)0.414 (0.254, 0.576)0.660 (0.547, 0.764)0.746 (0.645, 0.841)7

0.384 (0.227, 0.544)0.478 (0.311, 0.635)0.677 (0.565, 0.781)0.752 (0.650, 0.846)8

0.438 (0.269, 0.601)0.510 (0.337, 0.670)0.675 (0.561, 0.785)0.756 (0.654, 0.850)9

0.562 (0.389, 0.708)0.570 (0.402, 0.726)0.691 (0.569, 0.800)0.750 (0.646, 0.846)10

0.597 (0.426, 0.742)0.609 (0.442, 0.757)0.680 (0.561, 0.793)0.732 (0.625, 0.830)11

0.645 (0.485, 0.784)0.713 (0.554, 0.841)0.687 (0.569, 0.798)0.758 (0.649, 0.857)12

aTD: treatment discontinuation.
bAUROC: area under the receiver operating characteristic curve.
cAUPRC: area under the precision-recall curve.
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Figure 5. The distribution of the predicted probability and observed probability of treatment discontinuation is shown in a line chart. Each point
represents the observed and predicted probabilities for each of the 20 segments of the test population.

Items With the Largest Coefficient Values
The items with the largest coefficient values were examined to
check for leakage, wherein unintended information is used for
prediction and degrades the performance of the model. The 5

highest and the 5 lowest items are shown in Table 4. The specific
mechanism by which each item contributes to the prediction is
difficult to discuss at this time, but there were no items among
the top 5 that suggested obvious leakage.

Table 4. Top 5 and bottom 5 explanatory variables obtained from the training set.

FeatureWeight sizeCategory

Frequency of visits with the reservation at the department of cardiovascular medicine within 3 months8.1Top 1

Frequency of visits with no letter of reference within 6 months5.2Top 2

Frequency of visits with no letter of reference within 3 months5.2Top 3

Frequency of visits with the reservation before an operation in the department of cardiovascular medicine5.2Top 4

Frequency of laboratory tests of protein in urine within 6 months5.2Top 5

Frequency of blood pressure tests within 3 months−28Bottom 1

Frequency of appointments of carotid artery ultrasound examination within 3 months−25Bottom 2

Frequency of carotid echo tests within 3 months−16Bottom 3

Frequency of laboratory tests of HbA1c
a within 6 months−15Bottom 4

Frequency of laboratory tests of HbA1c within 1 year−15Bottom 5

aHbA1c: hemoglobin A1c.

Discussion

Principal Findings
In this study, we generated a prediction model for the risk of
TD using approximately 150,000 explanatory variables extracted
from EHRs and advanced machine-learned techniques. The
accuracy of the model’s prediction was validated.

Comparison With Prior Work
ML has been used in almost all aspects of diabetic research,
especially in biomarker identification and diagnosis prediction
[47-50]. The prediction of interruptions in medical visits requires
the use of survival time analysis to build a model. However,
there are few studies that have used ML for this purpose. In our
study, to avoid the proportional hazard assumption of the Cox

regression model and learning difficulties because of imbalanced
data, we implemented a ranking method and showed that the
scores calculated for each patient using the parameters obtained
from the training data were useful for predicting TD, as shown
in Table 3.

Our method is a novel way of constructing a survival regression
model, and our experimental evaluation showed that it
outperformed the existing Cox model in terms of the C-index
and AUROC and AUPRC measures and that it would be a useful
option for imbalanced data such as TD. The obtained level of
performance was not significantly superior to that of the Cox
regression model with regard to CIs. Nonetheless, it was not
inferior. Many prediction tasks in the clinical domain require
that imbalanced data be addressed by prediction models using
survival time analysis. Our modeling method does not require
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the proportional hazard assumption of the Cox regression model
and avoids the problem of learning from imbalanced data. It
has no variable assumptions, which allowed us to use
approximately 150,000 features. Therefore, we believe that our
method is a new option for survival regression models in the
clinical field.

Limitations
Our study had several important limitations that must be
mentioned. First, the data were obtained from just one hospital.
In addition, the test data were obtained by splitting up the data
from just one hospital. They may not be entirely representative
of other regions because of the different implementations and
degrees of diabetes care. Consequently, the results of this study
are not sufficient to assess the generalizability of our method;
a study using more data from different hospitals will be required.

Second, the participants with a history of TD in this study
represented only 1 subgroup of patients. Some could have
discontinued treatment temporarily, and we were unable to
capture these patients in this study. Moreover, if a patient
changed clinics without notice and continued treatment
elsewhere without any evidence in the EHR, their case would
have been judged as TD cases, even if that would not have been
accurate. Nonetheless, because this study relied on EHR
information, the findings serve the purpose of evaluating the
accuracy of the model using real-world data.

Third, our method used a large number of features and optimized
them with the L2-norm regularizer, which made it difficult to
find features of high importance that contribute to the prediction.
In the future, we intend to investigate ways to improve

interpretability, such as by using explainable artificial
intelligence and Lasso regularization.

Fourth, a large number of features were generated in the
predefined procedure, and the inherent trends and meanings of
each feature in itself are not adequately considered. The features
need to be designed more appropriately to improve the
interpretability of the results.

Fifth, our method was superior to the binary classification model
in that it could compare a patient’s risk of TD with the time

remaining until TD. However, it requires O(n2) pairs to learn
the model parameters, whereas a binary classification requires
only O(n) records for n training data. We need to reduce the
computational cost.

Finally, it should be noted that as ML generally reflects the
characteristics of the majority, our results suggest that the
predictive performance obtained in this study cannot be applied
to a minority of clusters in the population, such as pediatric
patients.

Conclusions
We developed a novel prediction model for calculating the TD
risk score by applying a machine-learned ranking model to EHR
data. This score showed high prediction performance and
outperformed the Cox regression model. Our model can alert
clinicians about the risk of TD in advance and would be useful
in improving patient outcomes by providing room for
interventions to avoid interruptions and support diabetes care.
In addition to estimating the TD risk score, we are studying
ways to predict glycemic control in patients with diabetes to
further improve their care.
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