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Abstract

Background: Femoral neck fracture (FNF) accounts for approximately 3.58% of all fractures in the entire body, exhibiting an
increasing trend each year. According to a survey, in 1990, the total number of hip fractures in men and women worldwide was
approximately 338,000 and 917,000, respectively. In China, FNFs account for 48.22% of hip fractures. Currently, many studies
have been conducted on postdischarge mortality and mortality risk in patients with FNF. However, there have been no definitive
studies on in-hospital mortality or its influencing factors in patients with severe FNF admitted to the intensive care unit.

Objective: In this paper, 3 machine learning methods were used to construct a nosocomial death prediction model for patients
admitted to intensive care units to assist clinicians in early clinical decision-making.

Methods: A retrospective analysis was conducted using information of a patient with FNF from the Medical Information Mart
for Intensive Care III. After balancing the data set using the Synthetic Minority Oversampling Technique algorithm, patients
were randomly separated into a 70% training set and a 30% testing set for the development and validation, respectively, of the
prediction model. Random forest, extreme gradient boosting, and backpropagation neural network prediction models were
constructed with nosocomial death as the outcome. Model performance was assessed using the area under the receiver operating
characteristic curve, accuracy, precision, sensitivity, and specificity. The predictive value of the models was verified in comparison
to the traditional logistic model.

Results: A total of 366 patients with FNFs were selected, including 48 cases (13.1%) of in-hospital death. Data from 636 patients
were obtained by balancing the data set with the in-hospital death group to survival group as 1:1. The 3 machine learning models
exhibited high predictive accuracy, and the area under the receiver operating characteristic curve of the random forest, extreme
gradient boosting, and backpropagation neural network were 0.98, 0.97, and 0.95, respectively, all with higher predictive
performance than the traditional logistic regression model. Ranking the importance of the feature variables, the top 10 feature
variables that were meaningful for predicting the risk of in-hospital death of patients were the Simplified Acute Physiology Score
II, lactate, creatinine, gender, vitamin D, calcium, creatine kinase, creatine kinase isoenzyme, white blood cell, and age.

Conclusions: Death risk assessment models constructed using machine learning have positive significance for predicting the
in-hospital mortality of patients with severe disease and provide a valid basis for reducing in-hospital mortality and improving
patient prognosis.

(JMIR Bioinform Biotech 2022;3(1):e38226) doi: 10.2196/38226
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Introduction

Femoral neck fracture (FNF) accounts for approximately 3.58%
of all fractures in the entire body [1], exhibiting an increasing
trend each year. According to a survey, in 1990, the total number
of hip fractures in men and women worldwide was
approximately 338,000 and 917,000, respectively [2]. In China,
FNFs account for 48.22% of hip fractures [3].

The Medical Information Mart for Intensive Care (MIMIC) III
database is a publicly available database commonly used in
clinical research [4], which contains medical data on
approximately 60,000 patients in the intensive care unit (ICU)
at Beth Israel Deaconess Medical Center from 2001 to 2012.
The ICU database is more dimensional, dense, and valuable in
the field of medicine than the general patient electronic medical
record database [5]. The large amount of data recorded from
these treatments and examinations is conducive to the close
observation of ICU patients to detect physiological changes
associated with deterioration and to provide more valuable data
for clinical research [6].

Currently, many studies have been conducted on postdischarge
mortality and mortality risk in patients with FNF [7-9]. Sheikh
et al [8] used backward stepwise likelihood ratio Cox regression
model to comprehensively analyze the causes of death in patients
with FNF fracture 30 days after surgery, and found that age,
admission hemoglobin, and history of myocardial infarction
were important influencing factors to increase mortality. Dhingra
et al [9] retrospectively analyzed the influencing factors of
1-year postoperative mortality in patients older than 60 years
with FNF, and found that smoking, hypertension, diabetes, low
hemoglobin, elevated white blood cell count, and surgical delay
(>1 week) were significantly associated with higher 1-year
postoperative mortality. Frost et al [7] used logistic regression
model to determine the risk factors of postoperative nosocomial
death in patients with FNF and used a nomogram model to
predict the risk of death in a short period of time. Studies showed
that age, gender, and complications were the main risk factors
for nosocomial death in patients with femoral neck fracture.

However, there have been no definitive studies on in-hospital
mortality or its influencing factors in such patients with severe
FNF admitted to the ICU. Therefore, in this study, we used the
electronic case information of FNF patients recorded in the
MIMIC database to examine the factors of in-hospital mortality
in patients with FNF using a machine learning model to identify
indicators that are meaningful for predicting in-hospital mortality
and to provide preventive measures to reduce in-hospital
mortality in patients as early as possible.

Methods

Data Source
Patient data from MIMIC-III were used for this study, which
is a database commonly used in critical care big data studies;
it contains clinical information such as demographics, vital
signs, laboratory tests, treatment protocols, and diagnostic codes
for 46,520 patients in ICU.

Ethical Considerations
The MIMIC-III database was approved by the Massachusetts
Institute of Technology (Cambridge, MA) and Beth Israel
Deaconess Medical Center (Boston, MA). The authors have
obtained the database download and use right through Protecting
Human Research Participants Exam (No. 38335409). Therefore,
the ethical approval statement and the need for informed consent
were waived for this manuscript.

Inclusion and Exclusion Criteria
In this study, patients admitted to the ICU for FNFs were
extracted from the MIMIC-III database according to their
diagnosis codes. The case information included in this study
was based on the first admission, and data from patients with
the first diagnosis code of FNF, including rotator fracture and
intertrochanteric fracture, were selected according to the order
of diagnosis codes. Patients aged ≤18 years or with ICU length
of stay <24 hours were excluded, as were patients with grossly
incomplete medical data records (>50% numbers missing). The
case screening process is shown in Figure 1.
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Figure 1. Case screening flowchart. ICU: intensive care unit; MIMIC: Medical Information Mart for Intensive Care.

Data Collection
Data were collected based on clinical experience, published
literature, and data recorded in the MIMIC III database. Data
collection for patients with FNFs was performed in the following
3 main areas: (1) demographic information—sex, age, BMI,
length of ICU stay, history of previous illness, and Simplified
Acute Physiology Score II (SAPS II); (2) physiological and
biochemical indices within 24 hours after admission to the
ICU—serum calcium, hemoglobin, hematocrit, lactate, cardiac
troponin T level, creatine kinase (CK), creatine kinase
isoenzyme (CKMB), vitamin D, red blood cells, white blood
cells, and creatinine; and (3) outcome—whether in-hospital
death occurred after admission to the ICU in patients with
critical FNFs.

Data Preprocessing
The variables included in the study were screened to exclude
cases with more than 50% missing values. For cases with no
more than 50% missing data, random forest (RF) algorithm was
used to impute variables containing missing values sequentially
in a loop [10]. The common methods for filling missing data
are the mean, plurality, median, and fixed value methods, and
the RF algorithm is a promising method for filling missing data.
The missing values are used as new labels, and the model is
built to obtain predicted values for filling. The RF algorithm
for filling in missing data is capable of handling mixed types
of missing data and has the potential to scale up to big data
environments.

Since the outcome labels extracted in this study are unbalanced
(48/366, 13.1% cases in the death group and 318/366, 86.9%
cases in the survival group), the prediction results of the model
trained by the machine learning algorithm are prone to bias for
the unbalanced data set; therefore, the original data set needs
to be balanced. In this study, the synthetic minority
oversampling technique (SMOTE) function in the “imblearn”
library of Python (Python Software Foundation) is used to

achieve the balanced processing of the data set. The SMOTE
algorithm is implemented by randomly selecting a sample y
from their k-nearest neighbors for each sample x in a relatively
small number of mortality sample sets, and randomly
synthesizing a new mortality sample on the x, y line. A total of
48 samples from the original mortality group were analyzed,
and then 270 new mortality samples were randomly synthesized
and added to the data set to finally obtain a new balanced data
set (mortality group: survival group = 1:1).

The linear function normalization method was used in this study
to normalize the newly balanced data set. Commonly used
methods are linear function normalization (min-max scaling)
and 0-mean normalization (z-score standardization). The
normalization process is used to eliminate the computational
errors caused by different data levels and normalize the data to
the range of 0-1 to ensure that each feature is treated equally
by the classifier.

The normalized data set was randomly assigned to the test set
and the training set at a ratio of 7:3. Finally, 445 cases were
obtained for training the prediction model, and 191 cases were
used to verify the predictive performance of the model.

Model Construction
Currently, logistic regression is one of the commonly used
methods for identifying risk factors that predict the occurrence
of complications [11,12]. In an open calcaneal fracture study,
compared to the traditional logistic regression model, machine
learning methods have 30% higher accuracy and are more
suitable for clinical applications [13].

RF is an integrated learning algorithm consisting of multiple
decision trees formed by randomly adding back resampled
samples, which is suitable for problems where the number of
samples is much smaller than the number of features [14]. It
also has the advantages of robust effect, fast learning speed,
strong generalization ability, and good classification
performance for missing data and imbalanced data [15].
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Backpropagation neural network (BPNN) is a feed-forward,
and the most widely used, neural network [16]. The algorithm
has high self-learning and self-adaptive ability, strong
generalization ability, and good prediction performance for
untrained data. At the same time, the BPNN has high fault
tolerance; that is, even if the system is damaged locally, it can
still work normally [17].

Extreme gradient boosting (XGBoost) algorithm is a mainstream
machine learning algorithm based on tree model boosting [18].
It continuously updates the error or residual of the model by
adding tree models and then adjusts the weight of the
misclassification results so that the model can select samples
more intelligently and reduce the errors generated by the model.
The XGBoost algorithm has been widely used in clinical studies
for predicting the occurrence of diseases and predicting adverse
patient outcomes and has been shown to be more effective than
other machine learning models in several studies [19-21].

Therefore, in this study, 3 algorithms, namely RF, BPNN, and
XGBoost, were used to construct machine learning prediction
models (Multimedia Appendix 1).

Statistical Analysis and Model Evaluation
The PostgreSQL database system was used to extract the data.
Statistical analysis was performed using SPSS 22.0 (IBM Corp),

and data cleaning, model construction, and performance
evaluation were performed using Python 3.8. All continuous
variables are expressed as medians (quartiles), and count data
are expressed as the number of cases (percentages). The
Mann-Whitney U test was used for univariate analysis of
continuous variables, and Fisher exact test was used for

univariate analysis of categorical variables. The Pearson 2 test
was used for the analysis of variance of the machine learning
model results. P<.05 was considered to be a statistically
significant difference.

The model evaluation indices were the area under the receiver
operating characteristic curve (AUROC), accuracy, precision,
sensitivity, specificity, and F1-score.

Results

Basic Characteristics of Patients With Severe FNFs
A total of 366 eligible patients with FNF with a mean age of
78 (SD 20.4) years were screened. Compared with surviving
patients, in-hospital death occurred in older patients with a mean
age of 83 (SD 17.8) years (P<.05). The SAPS II score, lactate
dehydrogenase level, and creatinine level of patients in the death
group were all significantly higher than those in the surviving
group (P<.05) (Table 1).
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Table 1. Baseline data of patients in the intensive care unit (ICU) with a femoral neck fracture.

P valueDeath patients (n=48)Survival patients (n=318)Patients included (n=366)Characteristics

.1821 (43.8)172 (54.1)193 (52.7)Male, n (%)

.1827 (56.2)146 (45.9)173 (47.3)Female, n (%)

.477 (14.6)60 (18.9)67 (18.3)Diabetes, n (%)

.8719 (39.6)130 (40.9)149 (40.7)Hypertension, n (%)

.0916 (33.3)70 (22.0)86 (23.5)Coronary, n (%)

.943.0 (1.2-6.1)2.6 (1.4-4.7)2.7 (1.3-4.9)LOSa (h) in ICU (IQR)

.1723.9 (20.6-28.6)25.6 (21.1-31.5)25.1 (21.0-31.3)BMI (IQR)

.00283.0 (74.5-90.0)76.5 (57.0-86.0)78.0 (58.0-87.0)Age (years; IQR)

<.00152.0 (39.5-65.8)36.0 (27.0-45.0)39.0 (27.8-40.0)SAPS IIb score (IQR)

.411.094 (1.1-1.1)1.092 (1.1-1.1)1.092 (1.1-1.1)Calcium (IQR)

.4122.25 (22.0-25.1)22.35 (22.1-22.6)22.33 (22.1-22.6)Hematocrit (IQR)

.387.579 (7.5-8.4)7.612 (7.5-7.9)7.610 (7.5-7.9)Hemoglobin (IQR)

.0012.678 (2.0-4.7)2.095 (1.8-2.8)2.127 (1.8-2.9)Lactate (IQR)

.690.038 (0.0-0.1)0.041 (0.0-0.1)0.040 (0.0-0.1)TnTc (IQR)

.60133.0 (77.4-445.5)171.0 (63.7-601.3)156.5 (64-584.3)CK (IQR)

.694.925 (3.5-12.6)5.000 (3.3-12.0)5.000 (3.3-12.0)CKMB (IQR)

.73216.1 (189.4-252.7)218.7 (191.6-246.0)218.7 (191.1-246.5)Vitamin D (IQR)

.773.470 (3.0-3.9)3.425 (3.0-3.9)3.435 (3.0-3.9)Red blood cell (IQR)

.6711.01 (7.6-14.0)10.25 (7.4-13.7)10.30 (7.4-13.7)White blood cell (IQR)

.011.25 (0.7-1.6)0.90 (0.7-1.2)0.90 (0.7-1.3)Creatinine (IQR)

aLOS: length of stay.
bSAPS II: Simplified Acute Physiology Score II.
cTnT: troponin T.

Ranking of the Importance of Characteristic Variables
The RF model was used to rank the importance of characteristic
variables, and the top 10 variables of characteristic importance

(Figure 2) were SAPS II, lactate, creatinine, gender, vitamin D,
calcium, CK, CKMB, white blood cell, and age. All biochemical
indices were measured within 2 hours after admission to the
ICU.
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Figure 2. Ranking of important features in the model. CK: creatine kinase; CKMB: creatine kinase isoenzyme; los: length of stay; SAPII: Simplified
Acute Physiology Score II; TnT: troponin T.

Model Evaluation

Receiver Operating Characteristic Curve
Three machine learning models and a traditional logistic model
were constructed on the training set and verified on the test set.
The 3 machine learning models are RF, BPNN, and XGBoost.
The receiver operating characteristic curves of the 4 prediction
models were obtained, as shown in Figure 3. The AUROCs of
the 4 models on the training set were 1.0, 0.99, 1.00, and 0.85,

and the AUROCs on the test set were 0.99, 0.95, 0.98, and 0.86,
respectively. Among them, the best results observed for the RF
and XGBoost models, and the second-best for the BPNN, but
the AUROCs of the machine learning models were all above
0.95. The prediction results of the 4 prediction models are
analyzed for differences, and the results are shown in Table 2.
The prediction accuracy of the three machine learning models
on the test set is better than that of the traditional Logistic
regression model, but the significant difference is not statistically
significant (P>.05).
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Figure 3. Receiver operating characteristic (ROC) curves of 4 prediction models: (a) random forest; (b) backpropagation neural network; (c) extreme
gradient boosting; and (d) logistic regression.

Table 2. Significance analysis of the prediction results of 4 models.

P valueχ² (df)Outcome, n (%)Prediction models

SurvivalIn-hospital death

.522.240 (3)88 (46.07)103 (53.93)RFa

.522.240 (3)87 (45.55)104 (54.45)BPNNb

.522.240 (3)90 (47.12)101 (52.88)XGBoostc

.522.240 (3)100 (52.36)91 (47.64)Logistic regression

aRF: random forest.
bBPNN: backpropagation neural network.
cXGBoost: extreme gradient boosting.

Confusion Matrix
The predictive performance of the 4 models was evaluated using
accuracy, precision, sensitivity, specificity, and F1-score. The
RF model had the best overall prediction with accuracy,
precision, sensitivity, specificity, and F1-scores of 0.96, 0.97,

0.96, 0.97, and 0.92, respectively. The F1-score of both the
XGBoost and BPNN was 0.89, but the accuracy, precision,
sensitivity, and specificity of XGBoost were higher than those
of the BPNN. All 3 machine learning models outperformed the
traditional logistic regression model (Figure 4) in terms of
prediction performance (Table 3).
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Figure 4. Confusion matrices for 4 prediction models; label 1 for the in-hospital death group and label 0 for the survival group: (a) random forest; (b)
backpropagation neural network; (c) extreme gradient boosting; and (d) logistic regression.

Table 3. The prediction performance evaluation of four models.

F1-scoreSpecificitySensitivityPrecisionAccuracyAUROCaPrediction model

0.920.970.960.970.960.99RFb

0.890.890.900.900.900.95BPNNc

0.890.940.920.950.930.98XGBoostd

0.790.790.700.800.740.86Logistic regression

aAUROC: area under the receiving operating characteristic curve.
bRF: random forest.
cBPNN: backpropagation neural network.
dXGBoost: extreme gradient boosting.

Discussion

Principal Findings
In this study, 3 high-performing machine learning algorithms
were selected to develop in-hospital mortality risk prediction
models for patients with severe FNFs, including an RF model,
a BPNN model, and an XGBoost model. The 3 machine learning
models exhibited excellent performance on both the training

and validation sets, with AUROC of the test set being 0.99,
0.95, and 0.98, respectively, and with better predictive
performance compared to the traditional statistical logistic
model. Meanwhile, the RF model was used in this study to rank
the common predictors by calculating the importance of the
feature variables. SAPS II, lactate, creatinine, gender, vitamin
D, calcium, CK, CKMB, white blood cell, and age were further
identified as significant predictors of death in patients with
FNFs.
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Comparison With Prior Work
The logistic model, a traditional statistical prediction model,
has been more widely used in the prediction of morbidity and
mortality in FNF [22]. However, logistic regression is more
sensitive to multiple covariance data; it is difficult to deal with
the problem of data imbalance; the accuracy of the model is
low; and the ability to fit the true distribution of the data is poor.
In recent years, machine learning has been continuously applied
to the prediction of disease occurrence and adverse outcomes
in medicine. For example, the risk of acute kidney injury in
patients in ICU was predicted using logistic regression, RF, and
LightGBM algorithms by Gao [23]. The 3 models predicted the
risk of acute kidney injury after 24 hours with increasing
sensitivity, and the model efficacy of the RF and LightGBM
algorithms was significantly better than that of logistic
regression. Huan et al [24] used machine learning to construct
models to predict and analyze the risk factors of femoral head
necrosis after internal fixation in patients with FNF, and the
results proved that there was a good consistency between the
predicted probability of machine learning and the actual risk of
necrosis. In this study, the prediction effect of machine learning
models was compared with that of the traditional logistic
regression model, and it was confirmed that machine learning
models had good performance in predicting in-hospital mortality
of patients with severe FNF, which was consistent with the
above conclusion.

Meanwhile, the RF model was used in this study to rank the
common predictors by calculating the importance of the feature
variables. SAPS II, lactate, creatinine, gender, vitamin D,
calcium, CK, CKMB, white blood cell, and age were further
identified as significant predictors of death in patients with
FNFs. In a previous study, Seitz et al [25] found that defective
bone mineralization and a decrease in 25-hydroxy vitamin D
were associated with increased mortality in FNFs. 25-hydroxy
vitamin D is the primary form of vitamin D present in the blood.
Vitamin D and serum calcium were important, influential factors
affecting in-hospital mortality in patients with FNFs in this
study, which validated this finding, suggesting that balancing
serum 25-hydroxy vitamin D levels through calcium
supplementation and other measures in clinical treatment may
reduce mortality in FNFs. In a prospective controlled study by
Paccou et al [26], lactate dehydrogenase levels and creatinine
levels were significant predictors of bone mineral density
(BMD) loss; this is while BMD was associated with mortality,
and faster BMD loss was associated with a higher risk of death
[27], which is consistent with the results of this study. In
addition, compared to previous studies regarding the prediction
of mortality in FNFs [28-30], this study found that the SAPS II

score was also significant for predicting mortality in patients.
SAPS II consists of 12 physiological variables, age, type of
hospitalization, and 3 types of chronic disease, and the
measurement of SAPS II daily after admission to the ICU can
predict the risk of death [31]. However, in existing prediction
studies [32-34], the SAPS II score is commonly used in
prognostic studies of patients with neurological diseases,
abdominal infections, and respiratory distress, though there are
fewer studies on the predictive ability of the SAPS II critical
score in FNFs. The results of this study are important for further
refining the prediction of morbidity and mortality in patients
with FNFs.

Limitations
This study also has some limitations. First, this was a
single-center study based on the MIMIC III database without
external database validation, and the performance of the model
needs to be further validated by prospective studies. Second,
the interpretability of the machine learning model was poor,
and although feature importance ranking was performed, the
causal relationship between these features and in-hospital
mortality in patients with FNFs could not be evaluated from a
statistical perspective. Finally, some imaging metrics could not
be included in the model due to limitations in the available data
types in the MIMIC III database. Next, we will further integrate
the existing model with the domestic database to validate the
model performance, adjust the parameters to improve the model
performance, and better adapt the model to the domestic
database. Furthermore, we will extend the study timeline to
establish a clinically applicable in-hospital mortality risk
prediction model for patients with severe FNFs.

Conclusions
In summary, we used patients’ clinical data to develop 3
machine learning models for predicting the risk of in-hospital
death in patients with severe FNFs. The prediction performance
of all 3 machine learning models was better than that of the
traditional logistic model, and the RF model displayed the best
prediction performance among the 3 models. In the future, after
validating the domestic database and adjusting the model
parameters, this model can be applied to clinical practice to
better assist clinicians in decision-making, adjust treatment
plans for patients with severe FNFs, better allocate medical
supplies, and reduce the occurrence of adverse outcomes.
Considering that MIMIC is a foreign database with fewer Asian
patients, which is not universal for domestic FNF cases, more
domestic patient data will be included in future work to adjust
the model to make it more compatible with the characteristics
of the domestic FNF population.
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Multimedia Appendix 1
Paper code.
[PDF File (Adobe PDF File), 253 KB-Multimedia Appendix 1]

References

1. Zhang Y. Selection strategy and progress on the treatment of femoral neck fractures. Zhongguo Gu Shang 2015;28(9):781-783.
[doi: 10.1093/med/9780199550647.003.012051]

2. Thorngren K, Hommel A, Norrman P, Thorngren J, Wingstrand H. Epidemiology of femoral neck fractures. Injury 2002
Dec;33:1-7. [doi: 10.1016/s0020-1383(02)00324-8]

3. Sun X, Zeng R, Hu Z. Femoral head necrosis after treatment of femoral neck fractures with compressive hollow screws.
Chin J Orthop Trauma 2012;14(6):477-479.

4. Johnson AE, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care
database. Sci Data 2016 May 24;3(1):160035 [FREE Full text] [doi: 10.1038/sdata.2016.35] [Medline: 27219127]

5. Zhang Y. Prediction of mortality in intensive care patients based on machine learning. University of Electronic Science
and Technology of China 2018.

6. Anthony Celi L, Mark RG, Stone DJ, Montgomery RA. “Big Data” in the Intensive Care Unit. Closing the Data Loop. Am
J Respir Crit Care Med 2013 Jun 01;187(11):1157-1160. [doi: 10.1164/rccm.201212-2311ed]

7. Frost SA, Nguyen ND, Black DA, Eisman JA, Nguyen TV. Risk factors for in-hospital post-hip fracture mortality. Bone
2011 Sep;49(3):553-558. [doi: 10.1016/j.bone.2011.06.002] [Medline: 21689802]

8. Sheikh HQ, Hossain FS, Aqil A, Akinbamijo B, Mushtaq V, Kapoor H. A Comprehensive Analysis of the Causes and
Predictors of 30-Day Mortality Following Hip Fracture Surgery. Clin Orthop Surg 2017 Mar;9(1):10-18 [FREE Full text]
[doi: 10.4055/cios.2017.9.1.10] [Medline: 28261422]

9. Dhingra M, Goyal T, Yadav A, Choudhury A. One-year mortality rates and factors affecting mortality after surgery for
fracture neck of femur in the elderly. J Midlife Health 2021;12(4):276-280 [FREE Full text] [doi: 10.4103/jmh.jmh_208_20]
[Medline: 35264833]

10. Tang F, Ishwaran H. Random Forest Missing Data Algorithms. Stat Anal Data Min 2017 Dec 13;10(6):363-377. [doi:
10.1002/sam.11348] [Medline: 29403567]

11. Yin W, Xu Z, Sheng J, Zhang C, Zhu Z. Logistic regression analysis of risk factors for femoral head osteonecrosis after
healed intertrochanteric fractures. Hip Int 2016 May 16;26(3):215-219. [doi: 10.5301/hipint.5000346] [Medline: 27013487]

12. Pavlou M, Ambler G, Seaman S, Guttmann O, Elliott P, King M, et al. How to develop a more accurate risk prediction
model when there are few events. BMJ 2015 Aug 11;351:h3868 [FREE Full text] [doi: 10.1136/bmj.h3868] [Medline:
26264962]

13. Bevevino A, Dickens J, Potter B, Dworak T, Gordon W, Forsberg J. A model to predict limb salvage in severe combat-related
open calcaneus fractures. Clin Orthop Relat Res 2014 Oct;472(10):3002-3009 [FREE Full text] [doi:
10.1007/s11999-013-3382-z] [Medline: 24249536]

14. Breiman L. Random forests. Machine Learning 2001;45:5-32. [doi: 10.1023/A:1010933404324]
15. Khoshgoftaar T, Golawala M, Van HJ. An empirical study of learning from imbalanced data using random forest. 2007

Presented at: 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI); Jan 04, 2008; Patras,
Greece. [doi: 10.1109/ictai.2007.46]

16. Wang L, Zeng Y, Zhang J, Huang W, Bao Y. The criticality of spare parts evaluating model using artificial neural network
approach. 2006 Presented at: International Conference on Computational Science; May 28-31, 2006; Reading, UK p.
728-735. [doi: 10.1007/11758501_97]

17. Li H, Li H. Game design of self-automation based on artificial neural nets and genetic algorithms. 2009 Presented at: Second
International Conference on Intelligent Computation Technology and Automation; October 10-11, 2009; Changsha, China.
[doi: 10.1109/icicta.2009.86]

18. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. ACM Digital Library. 2016. URL: https://dl.acm.org/doi/
pdf/10.1145/2939672.2939785 [accessed 2022-08-12]

19. Ogunleye A, Wang Q. XGBoost Model for Chronic Kidney Disease Diagnosis. IEEE/ACM Trans. Comput. Biol. and
Bioinf 2020 Nov 1;17(6):2131-2140. [doi: 10.1109/tcbb.2019.2911071]

20. Wang L, Wang X, Chen A, Jin X, Che H. Prediction of Type 2 Diabetes Risk and Its Effect Evaluation Based on the
XGBoost Model. Healthcare (Basel) 2020 Jul 31;8(3):247 [FREE Full text] [doi: 10.3390/healthcare8030247] [Medline:
32751894]

21. Torlay L, Perrone-Bertolotti M, Thomas E, Baciu M. Machine learning-XGBoost analysis of language networks to classify
patients with epilepsy. Brain Inform 2017 Sep 22;4(3):159-169 [FREE Full text] [doi: 10.1007/s40708-017-0065-7] [Medline:
28434153]

22. Zheng JQ, Wang H, Gao YS, Ai ZS. Establishment and initial validation of the prediction model for postoperative
complications of femoral neck fracture. Journal of TONGJI University (Medical Science) 2020;41(06):739-746. [doi:
10.16118/j.1008-0392.2020.06.010]

JMIR Bioinform Biotech 2022 | vol. 3 | iss. 1 | e38226 | p. 10https://bioinform.jmir.org/2022/1/e38226
(page number not for citation purposes)

Xu et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=bioinform_v3i1e38226_app1.pdf&filename=ed17a94f1ad6c62067078e4505c0296e.pdf
https://jmir.org/api/download?alt_name=bioinform_v3i1e38226_app1.pdf&filename=ed17a94f1ad6c62067078e4505c0296e.pdf
http://dx.doi.org/10.1093/med/9780199550647.003.012051
http://dx.doi.org/10.1016/s0020-1383(02)00324-8
https://doi.org/10.1038/sdata.2016.35
http://dx.doi.org/10.1038/sdata.2016.35
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27219127&dopt=Abstract
http://dx.doi.org/10.1164/rccm.201212-2311ed
http://dx.doi.org/10.1016/j.bone.2011.06.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21689802&dopt=Abstract
https://www.ecios.org/DOIx.php?id=10.4055/cios.2017.9.1.10
http://dx.doi.org/10.4055/cios.2017.9.1.10
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28261422&dopt=Abstract
https://europepmc.org/abstract/MED/35264833
http://dx.doi.org/10.4103/jmh.jmh_208_20
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35264833&dopt=Abstract
http://dx.doi.org/10.1002/sam.11348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29403567&dopt=Abstract
http://dx.doi.org/10.5301/hipint.5000346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27013487&dopt=Abstract
http://www.bmj.com/lookup/pmidlookup?view=long&pmid=26264962
http://dx.doi.org/10.1136/bmj.h3868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26264962&dopt=Abstract
https://europepmc.org/abstract/MED/24249536
http://dx.doi.org/10.1007/s11999-013-3382-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24249536&dopt=Abstract
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/ictai.2007.46
http://dx.doi.org/10.1007/11758501_97
http://dx.doi.org/10.1109/icicta.2009.86
https://dl.acm.org/doi/pdf/10.1145/2939672.2939785
https://dl.acm.org/doi/pdf/10.1145/2939672.2939785
http://dx.doi.org/10.1109/tcbb.2019.2911071
https://www.mdpi.com/resolver?pii=healthcare8030247
http://dx.doi.org/10.3390/healthcare8030247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32751894&dopt=Abstract
https://link.springer.com/article/10.1007/s40708-017-0065-7
http://dx.doi.org/10.1007/s40708-017-0065-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28434153&dopt=Abstract
http://dx.doi.org/10.16118/j.1008-0392.2020.06.010
http://www.w3.org/Style/XSL
http://www.renderx.com/


23. Gao WP, Lv HJ, Zhou L, Guo SW. Decision tree algorithm applied to MIMIC-lll database for the prediction of acute kidney
injury in ICU patients. Beijing Biomedical Engineering 2021;40(06):609-617. [doi: 10.3969/j.issn.1002-3208.2021.06.010]

24. Wang H, Wu W, Han C, Zheng J, Cai X, Chang S, et al. Prediction Model of Osteonecrosis of the Femoral Head After
Femoral Neck Fracture: Machine Learning-Based Development and Validation Study. JMIR Med Inform 2021 Nov
19;9(11):e30079 [FREE Full text] [doi: 10.2196/30079] [Medline: 34806984]

25. Seitz S, Koehne T, Ries C, De Novo Oliveira A, Barvencik F, Busse B, et al. Impaired bone mineralization accompanied
by low vitamin D and secondary hyperparathyroidism in patients with femoral neck fracture. Osteoporos Int 2013 Feb
12;24(2):641-649. [doi: 10.1007/s00198-012-2011-0] [Medline: 22581296]

26. Paccou J, Merlusca L, Henry-Desailly I, Parcelier A, Gruson B, Royer B, et al. Alterations in bone mineral density and
bone turnover markers in newly diagnosed adults with lymphoma receiving chemotherapy: a 1-year prospective pilot study.
Ann Oncol 2014 Feb;25(2):481-486 [FREE Full text] [doi: 10.1093/annonc/mdt560] [Medline: 24401926]

27. Marques EA, Elbejjani M, Gudnason V, Sigurdsson G, Lang T, Sigurdsson S, et al. Proximal Femur Volumetric Bone
Mineral Density and Mortality: 13 Years of Follow-Up of the AGES-Reykjavik Study. J Bone Miner Res 2017 Jun
20;32(6):1237-1242 [FREE Full text] [doi: 10.1002/jbmr.3104] [Medline: 28276125]

28. Bokshan SL, Marcaccio SE, Blood TD, Hayda RA. Factors influencing survival following hip fracture among octogenarians
and nonagenarians in the United States. Injury 2018 Mar;49(3):685-690. [doi: 10.1016/j.injury.2018.02.004] [Medline:
29426609]

29. Fakler JK, Grafe A, Dinger J, Josten C, Aust G. Perioperative risk factors in patients with a femoral neck fracture - influence
of 25-hydroxyvitamin D and C-reactive protein on postoperative medical complications and 1-year mortality. BMC
Musculoskelet Disord 2016 Feb 01;17(1):51 [FREE Full text] [doi: 10.1186/s12891-016-0906-1] [Medline: 26833068]

30. Sebestyén A, Boncz I, Sándor J, Nyárády J. Effect of surgical delay on early mortality in patients with femoral neck fracture.
Int Orthop 2008 Jun 24;32(3):375-379 [FREE Full text] [doi: 10.1007/s00264-007-0331-z] [Medline: 17323093]

31. Le Gall J. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study.
JAMA 1993 Dec 22;270(24):2957. [doi: 10.1001/jama.1993.03510240069035]

32. Ma LS, Su YY, Li X. Application of simplified acute physiological score II to predict the probability of death in patients
with critical neurological diseases. Chinese Journal of Neurology 2010;11:774-777. [doi:
10.3760/cma.j.issn.1006-7876.2010.11.009]

33. Kuang G, Chen Y, Wei XS. The role of 24h LCR, SOFA score and SAPS II score in the prognosis evaluation of
sepsis-induced by abdominal infection. J Hunan Normal Univ (Med Sci) 2020;17(01):26-29.

34. Liu H, Xiao J, Hu X, Wang I, Zhou F. The role of simplified acute physiological score-3 in selecting cortisol hormone
therapy in patients with moderate to severe acute respiratory distress syndrome. Journal of Capital Medical University
2021;42(06):915-922. [doi: 10.3969/j.issn.1006-7795.2021.06.003]

Abbreviations
AUROC: area under the receiving operating characteristic curve
BMD: bone mineral density
BPNN: backpropagation neural network
CK: creatine kinase
CKMB: creatine kinase isoenzyme
FNF: femoral neck fracture
ICU: intensive care unit
MIMIC: Medical Information Mart for Intensive Care
RF: random forest
SAPS II: Simplified Acute Physiology Score II
SMOTE: synthetic minority oversampling technique
XGBoost: extreme gradient boosting

Edited by A Mavragani; submitted 24.03.22; peer-reviewed by O Fajarda Oliveira, DZ Pan; comments to author 29.06.22; revised
version received 13.07.22; accepted 09.08.22; published 19.08.22

Please cite as:
Xu L, Liu J, Han C, Ai Z
The Application of Machine Learning in Predicting Mortality Risk in Patients With Severe Femoral Neck Fractures: Prediction Model
Development Study
JMIR Bioinform Biotech 2022;3(1):e38226
URL: https://bioinform.jmir.org/2022/1/e38226
doi: 10.2196/38226
PMID:

JMIR Bioinform Biotech 2022 | vol. 3 | iss. 1 | e38226 | p. 11https://bioinform.jmir.org/2022/1/e38226
(page number not for citation purposes)

Xu et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.3969/j.issn.1002-3208.2021.06.010
https://medinform.jmir.org/2021/11/e30079/
http://dx.doi.org/10.2196/30079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34806984&dopt=Abstract
http://dx.doi.org/10.1007/s00198-012-2011-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22581296&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0923-7534(19)36473-7
http://dx.doi.org/10.1093/annonc/mdt560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24401926&dopt=Abstract
https://doi.org/10.1002/jbmr.3104
http://dx.doi.org/10.1002/jbmr.3104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28276125&dopt=Abstract
http://dx.doi.org/10.1016/j.injury.2018.02.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29426609&dopt=Abstract
https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/s12891-016-0906-1
http://dx.doi.org/10.1186/s12891-016-0906-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26833068&dopt=Abstract
https://europepmc.org/abstract/MED/17323093
http://dx.doi.org/10.1007/s00264-007-0331-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17323093&dopt=Abstract
http://dx.doi.org/10.1001/jama.1993.03510240069035
http://dx.doi.org/10.3760/cma.j.issn.1006-7876.2010.11.009
http://dx.doi.org/10.3969/j.issn.1006-7795.2021.06.003
https://bioinform.jmir.org/2022/1/e38226
http://dx.doi.org/10.2196/38226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


©Lingxiao Xu, Jun Liu, Chunxia Han, Zisheng Ai. Originally published in JMIR Bioinformatics and Biotechnology
(https://bioinform.jmir.org), 19.08.2022. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Bioinformatics and Biotechnology, is properly cited. The
complete bibliographic information, a link to the original publication on https://bioinform.jmir.org/, as well as this copyright and
license information must be included.

JMIR Bioinform Biotech 2022 | vol. 3 | iss. 1 | e38226 | p. 12https://bioinform.jmir.org/2022/1/e38226
(page number not for citation purposes)

Xu et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

