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Abstract

Background: Physical activity is emerging as an outcome measure. Accelerometers have become an important tool in monitoring
physical behavior, and newer analytical approaches of recognition methods increase the degree of details. Many studies have
achieved high performance in the classification of physical behaviors through the use of multiple wearable sensors; however,
multiple wearables can be impractical and lower compliance.

Objective: The aim of this study was to develop and validate an algorithm for classifying several daily physical behaviors using
a single thigh-mounted accelerometer and a supervised machine-learning scheme.

Methods: We collected training data by adding the behavior classes—running, cycling, stair climbing, wheelchair ambulation,
and vehicle driving—to an existing algorithm with the classes of sitting, lying, standing, walking, and transitioning. After
combining the training data, we used a random forest learning scheme for model development. We validated the algorithm through
a simulated free-living procedure using chest-mounted cameras for establishing the ground truth. Furthermore, we adjusted our
algorithm and compared the performance with an existing algorithm based on vector thresholds.

Results: We developed an algorithm to classify 11 physical behaviors relevant for rehabilitation. In the simulated free-living
validation, the performance of the algorithm decreased to 57% as an average for the 11 classes (F-measure). After merging classes
into sedentary behavior, standing, walking, running, and cycling, the result revealed high performance in comparison to both the
ground truth and the existing algorithm.

Conclusions: Using a single thigh-mounted accelerometer, we obtained high classification levels within specific behaviors.
The behaviors classified with high levels of performance mostly occur in populations with higher levels of functioning. Further
development should aim at describing behaviors within populations with lower levels of functioning.

(JMIR Bioinform Biotech 2022;3(1):e38512) doi: 10.2196/38512
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Introduction

Physical behavior (PB) includes both physical activity (PA) and
inactivity, which are both topics of increasing interest in health
care. The health benefits associated with PA are well-established
[1], which has resulted in the use of PA as prevention and a part
of treatment and rehabilitation [2]. The prescription of PA has
evolved within a wide range of diseases with long-term health
impacts such as diabetes, cardiovascular diseases, obstructive
pulmonary diseases, and rheumatoid arthritis [2-6]. Many such
subgroups in our societies will continue to need rehabilitation
to promote functional recovery, reduce the risk of comorbidities,
and prevent the secondary effects of disease [7,8].

In the field of physical and rehabilitation medicine (PRM),
functional outcomes and capabilities are of great interest. Today,
the International Classification of Functioning, Disability and
Health (ICF) is the conceptual foundation of physical and
rehabilitation medicine as a biopsychosocial framework for
clinicians, researchers, and policy makers [9]. Rehabilitation
interventions often target functional abilities and limitations to
promote physical and cognitive functioning, participation, and
the modification of personal and environmental factors [9,10].
These functional aims in daily living require measurement
properties that can identify such factors in a meaningful way.
Outcome measures used in rehabilitation research are often
subjective or self-reported measures [11], which are associated
with various limitations such as information bias, intrusiveness,
and timeliness [12-14], and more objective measures are
warranted. The use of wearable technologies offers an objective
and complementary insight to subjective measures. The
objective classification and quantification of activities such as
standing, sitting, wheelchair ambulation, walking, or running
can provide information on changes in functional disability.
Additionally, it can indicate changes in more holistic measures,
referred to as ICF-related items on activity and participation
levels, contextual factors, or transport options such as stair
climbing, cycling, and vehicle driving. The development of

wearable sensor technologies, such as accelerometers, has added
the possibility of monitoring PB continuously for longer periods,
making it opportune to investigate the changes and habitual
patterns of PB [15,16].

The emerging analytical approaches of raw signal processing
use pattern recognition to classify functional activities.
Threshold-based algorithms have contributed beneficial
frameworks with high accuracies [17]. However,
machine-learning techniques have proven useful [18], and many
studies have achieved high performance in the classification of
physical behaviors through the use of multiple wearable sensors
[19-22]. Multiple wearables can be impractical and lead to low
compliance [23]; it is necessary to investigate classification
potentials that only use 1 sensor device [21,22]. Therefore, the
purpose of this study was to further develop and validate a
machine learning–based algorithm for thigh-mounted
accelerometers. We specifically intended to add the following
classes of PB to an existing algorithm: running, cycling, stair
climbing, wheelchair ambulation, and vehicle driving.

Methods

Design
This study was a development and validation study in 2 phases.
For a study overview, see Figure 1.

The application of our algorithm was aimed at patients
undergoing neurorehabilitation, and the training data collected
in the development phase of this study were combined with the
training data from a previous study [24], collected in a
population of both healthy people and patients with acquired
brain injury. The following method section only describes the
data collected in this study. The validation phase describes the
algorithm developed based on the combined training data from
both studies. Due to ethical considerations, the algorithm was
validated in a new cohort of healthy individuals, and
performance was compared to another algorithm based on vector
thresholds [17].
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Figure 1. Study overview.

Instrumentation
A triaxial accelerometer (AX3; Axivity) was mounted on the
dominant leg, on the lateral part of the thigh approximately 10
cm above the apex patella. The x-axis was oriented toward the
floor in the standing position, as implied by the downward
position of the USB port and stated by the visible written
information on the device. The accelerometers were
programmed with a sampling frequency at 100 Hz, consistent
with the method of Honoré et al [24].

Development Phase
A pragmatic data collection method was applied. A protocol
described the positioning, direction, and attachment of the

accelerometer. We used 3 taps directly on the accelerometer as
a data marker for the start and stop of the recording of behaviors.
The participants were asked to perform a minimum of 10
minutes of continuous activity for each PB with the exception
of stair climbing. Whenever possible, the behaviors were
performed at locations of the participants’ choosing or
alternatively, at locations proposed by FS. Instructions were
given immediately before each performed behavior, and data
were extracted immediately after. Participants contributed the
behaviors of convenience and provided information on gender,
age, and height (Table 1).

Table 1. Description and characteristics of the participants (N=9) contributing training data. The total amount of training data for all participants and
the distribution within each activity are reported.

Total durationa (h, min)Height (cm), mean (SD)Age (year), mean (SD)Gender (male, female), nClass

21, 27176.7 (5.7)36.1 (13.4)4, 5All participants

4, 52179.8 (4.5)30.8 (13.0)4, 2Running

6, 10179.5 (5.2)42.8 (14.6)4, 2Cycling

Stair climbing

0, 10178.8 (4.7)31.4 (12.6)3, 2Ascending

0, 9178.8 (4.7)31.4 (12.6)3, 2Descending

5, 53179.2 (5.3)40 (16.7)2, 2Driving

4, 13176.8 (5.0)33 (7.7)3, 2Wheelchair ambulation

aTotal duration describes the total amount of training data.
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Data Preprocessing and Learning Scheme
Each activity sequence containing 1 PB was manually identified
by the data markers and extracted from the original data file
using OMGUI configuration and analysis tool (V43 ; Open
Movement). The raw accelerometer data was processed in a
custom-made MATLAB script (R2020b; MathWorks) for the
manual label annotation of each sample period of 1 second with

a sample overlap of 0.5 seconds. All manual annotation and
classification were done by FS. For all accelerometer axes, we
extracted the features of 1-second samples. Based on the
findings of Yan et al [25], a preselected subset of features was
used (Textbox 1). To model baseline PB classifications, we
used the nonlinear classifier random forest with default
hyperparameters in Weka software (version 3.8.4; University
of Waikato) [26,27].

Textbox 1. Features used.

Features

• Mean values

• SDs

• Root mean square values

• Maximum number of peaks

• Highest value of axes

• Lowest value of axes

• Number of distinctive points

• Pearson correlation between axes

Validation Phase
The validation phase consisted of a k-fold cross-validation, an
external validation, and an algorithm comparison procedure.
To evaluate the potential of the algorithm, we initially performed
a stratified 10-fold cross-validation on the training data collected
from 9 healthy individuals and the data from Honoré et al [24]
from 11 healthy individuals and 25 patients, and the subsets
were randomly split. In the external validation, 10 healthy
individuals who did not contribute to the training data were
asked to participate in the external validation protocol. The
protocol consisted of a semistandardized session, where the
participants were instructed to carry out a protocol of PBs at a
self-determined level of pace, duration, and order, in a setup
that enabled the performance of all behaviors. Throughout the
session, the participants wore an accelerometer on the thigh and
a chest-mounted GoPro camera was used to identify the ground
truth of the PBs performed. The video recording was
time-synchronized with the accelerometer data using ELAN
tool (version 6.4; Max Planck Institute for Psycholinguistics)
[28] and was then manually labeled by FS as a criterion measure.
Data collected through the external validation protocol were
then used as a test set and a second-by-second analysis was
conducted by testing the performance of the algorithm in the
validation data.

The algorithm for comparison was chosen based on previous
use by research institutions in the central regions of Jutland,
Denmark [29-33]. We compared the performance of the
algorithm by Lipperts et al [17] and our algorithm by analyzing
the data collected in the external validation protocol with both
algorithms. We reported the results on a total time basis
compared to the ground truth and through confusion matrices
for both algorithms. In accounting for differences in the
available classes between the algorithms, we adjusted our
algorithm to only include classes comparable to the classes by

Lipperts et al [17]. Therefore, we excluded the implemented
wheelchair ambulation and vehicle driving classes, and similarly,
we excluded the data parts containing wheelchair ambulation
and vehicle driving from the validation sessions. To create a
fair basis for comparison, we merged the relevant classes, sitting
and lying, to account for sedentary behavior. Additionally, we
merged walking, stair climbing, and transitioning under the
walking class, corresponding to the walking class by Lipperts
et al [17].

Statistics
For evaluating the performance of the algorithm, we presented
confusion matrices for the developed models. We
interchangeably used the term performance to refer to the main
evaluation metric: F-measure [34,35]. We calculated the
F-measure as the harmonic mean between the positive predictive
value and sensitivity [36]. In the algorithm comparison, we

reported mean errors in durations as calculated by (|durationAlg

– durationGT|) / durationGT, where durationAlg is the total
duration of all correctly classified seconds of either algorithm

and durationGT is the duration of the ground truth.

Ethical Considerations
The study was conducted in accordance with the Helsinki
Declaration of 2008 [37], and the General Data Protection
Regulation was followed. This study did not require approval
from the regional ethics committee, as noninterventional studies
do not need approval by the Region Committee on Biomedical
Research Ethics in Denmark. We only recruited healthy
participants, and written informed consent was obtained from
all participants.
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Results

Participants and Training Data
The data gathering and preprocessing resulted in no missing or
exclusion of data. In total, 9 healthy participants contributed
data for training the algorithm. Participants of various ages,
heights, and gender were included. We strived to accumulate
>4 hours of running, cycling, driving, and wheelchair ambulation
and 10 sessions of ascending and descending stair climbing
(Table 1).

K-fold Cross-validation
By combining data from Honoré et al [24] with the training data
in this study, the algorithm constituted 11 classes of PBs. The
initial evaluation by a stratified 10-fold cross-validation (Table

2) showed strong agreement between the labels and the
classifications performed by the algorithm, with an average
F-measure of 92.8% for all classified PBs—a performance
strong enough to be tested in simulated free-living conditions.
The performance in classifying running and cycling showed
high agreement by reaching F-measures of 100 and 99.6%,
respectively. The classification of stair climbing likewise
showed promising results by reaching F-measures of 91.4%
and 90.2% for ascending and descending stairs, respectively.
In discriminating between the 4 behaviors involving similar
inactive lower extremity postures, the algorithm showed an
F-measure of 92.7% for sitting and 92.3% for lying, whereas
driving and wheelchair ambulation reached 99.4% and 98.9%,
respectively. Walking and standing yielded F-measures of 89%
and 96.3%, respectively. Transitioning resulted in the lowest
F-measure of 72.5%.

Table 2. Confusion matrix from stratified 10-fold cross-validation. Correctly and incorrectly classified seconds of physical behavior by the algorithm
(columns) and the ground truth (rows). Seconds overlap by 0.5 second.

AlgorithmGround truth

Wheelchair
ambulation

DrivingRunningDescend-
ing stairs

CyclingAscend-
ing stairs

LyingStandingWalkingTransi-
tioning

Sitting

1066400206800592236Sitting

163920510453246286168327Transitioning

00015151302131032200Walking

000030516884480Standing

516400001935004817Lying

00624311060006370Ascending stairs

5310744,280190120360Cycling

00797912300010500Descending stairs

0034,98581100700Running

10942,14800302000444Driving

30,13480002801900525Wheelchair ambula-
tion

External Validation
The external validation protocol resulted in 10 sessions of PB
monitoring, which included all the behaviors of interest
performed by 10 healthy participants recruited at Hammel
Neurorehabilitation Center and University Research Clinic,
Denmark. Participant characteristics are described in Table 3.
The performance of the algorithm in the validation data showed
moderate agreement between the ground truth and the
classifications by the algorithm with 57% as the average
F-measure for all classifications (Table 4). The performance in

classifying running and cycling remained high by reaching
88.7% and 87.1%, respectively. The classification of stair
climbing decreased to an F-measure of 44.8% for ascending
and 25.5% for descending stair climbing. In discriminating
between the 4 behaviors involving inactive lower extremity
postures, the algorithm showed an F-measure of 63.7% for
sitting, 66.8% for lying, 77.1% for driving, and 31% for
wheelchair ambulation. Walking, standing, and transitioning
were classified with F-measures of 55%, 67.1%, and 20%,
respectively.
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Table 3. Characteristics of participants contributing data from the external validation.

ValueCharacteristic

10Participants, n

5, 5Gender (male, female), n

43.6Age (year), mean

174.4Height (cm), mean

12, 58Durationa (min, sec), mean

aDuration describes the average time taken to complete the validation session.

Table 4. Confusion matrix from the external validation. Correctly and incorrectly classified seconds of physical behavior by the algorithm (columns)
and the ground truth (rows). Seconds overlap by 0.5 second.

AlgorithmGround truth

Wheelchair
ambulation

DrivingRunningDescend-
ing stairs

CyclingAscend-
ing stairs

LyingStandingWalkingTransi-
tioning

Sitting

1511630510223601528746Sitting

3035714664100641311Transitioning

6950891911086007211782535Walking

381623473115891181901Standing

1365400007460458208Lying

0042384018402914380Ascending stairs

18512131673190657570Cycling

0012162730026520170Descending stairs

00101418540728130Running

542312441540340315023Driving

45383021623400521401Wheelchair ambula-
tion

Algorithm Comparison
To compare the performance of the 2 algorithms, noncomparable
classes were excluded. The validation sessions subsequently
averaged 7.21 minutes and included the behaviors lying, sitting,
standing, transitioning, walking, stair climbing, running, and
cycling. The results of the merged algorithm showed high
performance by reaching an averaging F-measure of 85.3% for
all classes in the external validation data (Table 5). In
comparison, Lipperts et al’s [17] algorithm showed an average
F-measure of 81.1% (Table 6). Table 7 shows the mean error
by the algorithms for each behavior class across the 10

validation sessions. The results indicated high agreement
between the ground truth and both algorithms when classifying
sedentary behavior, walking, running, and cycling, whereas
both algorithms showed poor performance in classifying
standing. The mean error for Lipperts et al’s [17] algorithm
varied between 13.6% to 72.8%, consequently overestimating
sedentary and standing behavior, and was hardly influenced by
not detecting running and cycling in 2 and 1 sessions of
validation, respectively. The mean error for our algorithm varied
between 7.9% to 41.7%, consequently underestimating all
classes.

Table 5. Confusion matrix from the adjusted algorithm in external validation data. Correctly and incorrectly classified seconds of physical behavior
by the algorithm (columns) and the ground truth (rows). Seconds overlap by 0.5 second.

AlgorithmGround truth

RunningCyclingStandingWalkingSedentary

01101432046Sedentary

9512295238110Walking

16405683590Standing

8163161910Cycling

101067660Running

JMIR Bioinform Biotech 2022 | vol. 3 | iss. 1 | e38512 | p. 6https://bioinform.jmir.org/2022/1/e38512
(page number not for citation purposes)

Skovbjerg et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 6. Confusion matrix for Lipperts et al’s [17] algorithm in the external validation data. Correctly and incorrectly classified seconds of physical
behavior by the algorithm (columns) and the ground truth (rows). Seconds overlap by 0.5 second.

AlgorithmGround truth

RunningCyclingStandingWalkingSedentary

007242124Sedentary

30124431999219Walking

111277615628Standing

714912051220Cycling

8340432030Running

Table 7. Mean error, SD, and range of output duration parameters for analyzing the external validation data by the 2 algorithms. We calculated the
mean error, SD, and minimum and maximum error percentage across the 10 validation sessions within each activity class.

ActivitiesAlgorithm, parameter

Cycling Running WalkingStandingSedentary

Lipperts et al [17]

21.827.214.572.813.6Mean error (%)

29.840.96.272.87.2SD (%)

1.31.62.922.26.4Minimum error (%)

10010022.226728.6Maximum error (%)

Skovbjerg et al

8.11012.441.77.9Mean error (%)

5.315.6714.14SD (%)

002.8192.4Minimum error (%)

16.651.523 59.113.9Maximum error (%)

Discussion

Principal Findings
We developed an algorithm to classify 11 PBs related to daily
living in rehabilitation. The cross-validation demonstrated high
performance (93%), and the validation of the algorithm in a
free-living setting was reasonable. The algorithm showed
moderate performance (57%) when applied to simulated
free-living data. The algorithm performed well in classifying
cycling and running, whereas an acceptable level of performance
was found in classifying driving. In classifying the remaining
behaviors, the algorithm showed low to moderate performance
ranging from 20% to 67%. In comparison to a validated
algorithm by Lipperts et al [17], our adjusted algorithm showed
equally strong performance and high agreement with ground
truth annotations after merging relevant classes. The significant
performance decrease between cross-validation and external
validation may be explained by the fact that in the
cross-validation, different samples from the same individual
were included in both training and test splits. In the external
validation, the individuals and their specific motion pattern were
not included in the training data.

Discriminating Rehabilitation Relevant Physical
Behaviors
The behaviors classifiable by the algorithm were based on the
rationale and aims of rehabilitation. Our results showed lower

performance in discriminating behaviors performed in sitting
postures, which can be explained by their similar body
positioning and behavioral characteristics. Although
discriminating these behaviors is important when considering
activity and participation from an ICF perspective, the
differences within sitting, wheelchair ambulation, and driving
might be clinically irrelevant from a perspective of monitoring
PA and energy expenditure at a body function and anatomy
level. In a visual inspection of accelerometer data, signals from
the 3 behaviors revealed only insignificant differences. Likewise,
the algorithm had difficulties discriminating between the PBs
by the accessible features. Overall, the algorithm performed
better in discriminating behaviors with larger variations in body
position and movement trajectories, mostly occurring in patients
with higher levels of functioning.

Comparison to Existing Literature
Pavey et al [38] achieved a 93% overall accuracy for classifying
the PBs—sedentary, stationary, walking, and running—using
a wrist-worn accelerometer with the random forest classifier in
laboratory settings among 21 healthy participants, evaluated
using leave-one-subject-out cross-validation. A back validation
in free-living using activPAL as a reference standard for
stepping versus nonstepping showed high agreement. Alber et
al [39] used a waist-worn accelerometer for classifying lying,
standing, sitting, walking, wheelchair ambulation, and stair
climbing among 13 subjects with incomplete spinal cord injury,
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using a support vector machine (SVM) classifier. Their
laboratory-based algorithm decreased from 92% to 55% when
tested on home-based data, whereas their home-based algorithm
reached 86%, evaluated using within-subject cross-validation.

When focusing on single thigh-mounted accelerometry, Awais
et al [20] reached a mean F-measure ranging from 68% to 76%
with different combinations of features, using SVM classifier
in identifying sitting, lying, standing, and walking among 20
older people in free-living conditions evaluated using
leave-one-subject-out cross-validation. Likewise, Tang et al
[22] investigated the number of sensors and found a mean
F-measure of 76% using a single thigh-worn accelerometer and
SVM classifier in identifying sitting, lying, and standing among
42 healthy participants in semistandardized laboratory settings,
evaluated using leave-one-subject-out cross-validation. In
comparison to Tang et al [22] and Awais et al [20], we reached
an F-measure of 57%, evaluated using simulated free-living
conditions with 11 classes of PB. For the abovementioned
studies, they all use fewer classes of activities, which expectedly
will increase the performance of an algorithm and might explain
why our algorithm does not reach their level. As indicated in
the algorithm comparison, the level of performance required
for valid estimation can be obtained by merging relevant classes.
It will compromise the degree of details but simultaneously add
the possibility of adjusting the measures of PB in relation to the
aims.

Algorithm for Patients With Acquired Brain Injury
Our algorithm was aimed at patients undergoing
neurorehabilitation. Classifying behaviors within subgroups
potentially exposed to characteristic movement patterns, the
behavior classes—sitting, lying, standing, walking, and
transitioning—were partly based on training data from the
population of interest [24]. Some specific PBs or movement
patterns such as transitioning and walking may be more
influenced by disease-specific characteristics than others.
Similarly, some PBs can be less prone to disease-specific
characteristics depending on functional level or disease severity.
Using healthy individuals for training the algorithm relies on
the rationale that a higher functional level is required to perform
PB, such as running, and hence is associated with a movement
pattern comparable to movement patterns in healthy individuals.
Adversely, PBs, such as wheelchair ambulation, may be
independent of specific movement characteristics. In principle,
the training data should be gathered in the target population to
capture complex movements influenced by disabilities, although
it can be argued that activities less prone to disease-specific
characteristics can be gathered in healthy populations due to
ethical considerations.

Limitations
The training data for this study was collected in a setup similar
to a laboratory setting. Although the PBs were performed in a
free-living setting, only 1 PB was recorded in each session, and

therefore, the composition of PBs in free-living was not reflected
in the training data. Our training data were probably influenced
by a severe class imbalance between the newly gathered classes
and the classes gathered in Honoré et al [24], which might have
affected the performance of the algorithm in the validation data.
Less available training data decrease the performance by
reducing the ability of a classifier to generalize patterns not seen
before. Balancing minority classes through supplementary data
gathering might be advantageous in future work. We did not
include a free-living validation but designed a semistandardized
session aimed at simulating free-living. All validation sessions
were conducted in the same environment—they only lasted
10-20 minutes, and the participants were enforced to perform
PBs corresponding to the classes of the algorithm. Variation
between sessions consisted of the order and duration of the
behaviors. We used video recordings as a criterion measure for
labeling accelerometer signals and further merged annotation
definitions with Honoré et al [24] to align the labeling protocol,
thus the ground truth labeling was only performed by FS and
the reliability was not evaluated. The algorithm comparison
procedure might have been influenced by differences in
annotation definitions, leading to an underestimation of the
performance by Lipperts et al’s [17] algorithm. Likewise, the
cropping procedure have introduced minor differences in the
data analyzed by each algorithm.

Clinical Implications
The algorithm comparison revealed that our merged algorithm,
constituting 5 classes, reached an acceptable level of agreement
with both the algorithm of Lipperts et al [17] and the ground
truth. However, the 11-class algorithm did not show acceptable
levels of performance within all classes, indicating that the
number of behavior classes and similarities between classes
may influence the obtainable level of performance. To monitor
physical behavior within various functional levels of patients
undergoing neurorehabilitation, further research and changes
in the monitor setup are required to attain the desired levels,
especially within wheelchair ambulation. Furthermore, this
study provided an external validation performed in a simulated
free-living setting, which constitutes an estimate of the
algorithm’s performance in clinical settings.

Conclusion
We developed an algorithm for classifying
rehabilitation-relevant physical behaviors. We successfully
added the classes of running and cycling, which were classified
with high performance in a simulated free-living setting.
Furthermore, we added stair climbing, wheelchair ambulation,
and vehicle driving, which showed high performance in the
10-fold cross-validation on training data, but low to moderate
performance in the free-living setting for new individuals.
Increasing the implications for rehabilitation use might be done
by focusing on the performance in classifying behaviors within
populations with lower levels of functioning and within transport
ambulation and the use of assistive devices.
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