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Abstract

Background: Digital phenotyping is the real-time collection of individual-level active and passive data from users in naturalistic
and free-living settings via personal digital devices, such as mobile phones and wearable devices. Given the novelty of research
in this field, there is heterogeneity in the clinical use cases, types of data collected, modes of data collection, data analysis methods,
and outcomes measured.

Objective: The primary aim of this scoping review was to map the published research on digital phenotyping and to outline
study characteristics, data collection and analysis methods, machine learning approaches, and future implications.

Methods: We utilized an a priori approach for the literature search and data extraction and charting process, guided by the
PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-analyses Extension for Scoping Reviews). We
identified relevant studies published in 2020, 2021, and 2022 on PubMed and Google Scholar using search terms related to digital
phenotyping. The titles, abstracts, and keywords were screened during the first stage of the screening process, and the second
stage involved screening the full texts of the shortlisted articles. We extracted and charted the descriptive characteristics of the
final studies, which were countries of origin, study design, clinical areas, active and/or passive data collected, modes of data
collection, data analysis approaches, and limitations.

Results: A total of 454 articles on PubMed and Google Scholar were identified through search terms associated with digital
phenotyping, and 46 articles were deemed eligible for inclusion in this scoping review. Most studies evaluated wearable data and
originated from North America. The most dominant study design was observational, followed by randomized trials, and most
studies focused on psychiatric disorders, mental health disorders, and neurological diseases. A total of 7 studies used machine
learning approaches for data analysis, with random forest, logistic regression, and support vector machines being the most
common.

Conclusions: Our review provides foundational as well as application-oriented approaches toward digital phenotyping in health.
Future work should focus on more prospective, longitudinal studies that include larger data sets from diverse populations, address
privacy and ethical concerns around data collection from consumer technologies, and build “digital phenotypes” to personalize
digital health interventions and treatment plans.

(JMIR Bioinform Biotech 2022;3(1):e39618) doi: 10.2196/39618

KEYWORDS

digital phenotyping; machine learning; personal device data; passive data; active data; wearable device; wearable sensor; mobile
application; digital health

Introduction

Patient engagement is a significant challenge that health care
organizations face, as consumers expect and demand a more

personalized approach when they seek health care services [1].
Artificial intelligence (AI)–led smart health care services are
emerging as promising tools to improve the efficiency and
effectiveness of health care service delivery [2]. Among these
is digital phenotyping, which is the real-time collection of
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individual-level active and passive data from users in naturalistic
and free-living settings via personal digital devices, such as
mobile phones and wearable devices [3]. Personal digital devices
and platforms, such as smartphones, wearable devices, and
social media, offer a wealth of information about an individual’s
behavior and health status. These are valuable sources of several
active and passive data points, such as phone utilization metrics,
GPS information, search histories, linguistic nuances in text
messages, duration of sleep, step counts, calories burned, and
heart rate variability. These data points can be leveraged to gain
a nuanced understanding of individual behaviors to predict
disease exacerbation or relapse, design a more targeted
intervention, and improve decision making in clinical settings
[2,3].

Digital phenotyping is an emerging field that intersects data
analysis, engineering, and clinical practice, bringing about
unique challenges in reporting and reproducibility. Although
the advantages of a multidisciplinary approach are evident, these
multidisciplinary domains have yet to be brought together
efficiently to ensure standardized reporting and easier
replicability [4].

The techniques and methodologies used to collect, process, and
classify active and passive data in digital phenotyping vary
across the literature. AI and machine learning have already
driven developments in wearable sensing and mobile health;
they have helped enhance human activity recognition models,
improve the accuracy of predicting human behaviors, and deliver
more personalized lifestyle recommendations [5]. Research
points to trust, perceived usefulness, and personalization directly
influencing the frequency of use of digital health care services
[2].

Given the plethora of data points that smartphones and wearable
sensors and devices yield, AI and machine learning can be used
to process and analyze these large data sets [6]. The purpose of
passive data is to improve patient monitoring and outcomes
across a variety of clinical applications [7]. In a systematic
review of machine learning studies on digital phenotyping across
psychosis spectrum illnesses, the machine learning approaches
used included random forests, support vector machines, neural
nets, k-nearest neighbors, and naive Bayes classifiers [8].
Machine learning algorithms used to analyze these
multidimensional data can also be used to predict risks and
probabilities and make binary decisions, such as discharge
versus no discharge [9]. Other computational tools that have
been used for digital phenotyping include data mining and
statistical methods [10].

The immense potential of digital phenotyping in the clinical
landscape is gaining increasing attention, leading to a
measurable increase in related published research in the past 5
years. This trend has also been observed for health and clinical
research related to analyzing active and passive data from
smartphones and wearable devices. Digital phenotyping perhaps
demonstrates the greatest potential for precision digital health
interventions. Assigning a digital phenotype can help build
predictive models around user behavior, providing insights into
their engagement levels and the means to optimize the efficacy
of digital health interventions. This method of segmentation

offers further opportunities to enhance diagnosis, risk prediction,
treatment effectiveness, and patient monitoring [11]. Given the
nascency of research in the digital phenotyping field, there is
heterogeneity in the clinical use cases, types of data collected,
modes of data collection, data analysis methods, and outcomes
measured.

Thus, the primary aim of this scoping review was to map the
published research on digital phenotyping and to outline study
characteristics, methods of active and passive data collection,
data analysis approaches used (specifically machine learning
techniques, if any), and future implications. The desired
outcomes of this review are to provide a broad overview of
ongoing research on digital phenotyping and identify gaps and
opportunities in future research and practice, especially
regarding leveraging machine learning techniques for digital
phenotyping.

Methods

Overview
We conducted this scoping review to examine the breadth of
published evidence related to digital phenotyping in health care.
We utilized an a priori approach for the literature search and
data extraction process to ensure the search protocol was
replicable. The PRISMA-ScR (Preferred Reporting Items for
Systematic Reviews and Meta-analyses Extension for Scoping
Reviews) checklist guided the methodology and reporting of
this scoping review (Multimedia Appendix 1) [12].

Search Terms
As the term “digital phenotype” is relatively nascent in the
research landscape, we conducted a preliminary scoping of
literature on PubMed and Google Scholar to identify different
search terms associated with digital phenotyping. This ensured
that our literature search would capture all published research
related to digital phenotyping, even if the term was not explicitly
mentioned anywhere in the text. These were the search terms
finally used to conduct the literature search: “digital phenotyp*”
OR “active data” OR “passive data” OR “digital biomarker*”
OR “digital footprint” OR “mobile data” OR “mobile phone
data” OR “digital sensing” OR “digital fingerprint*” OR
“smartphone data” OR “wearable*” OR “wearable device*”
OR “wearable data” OR “precision data.”

Eligibility Criteria
We included peer-reviewed original research articles in English,
as our aim was to explore the gaps and opportunities in scientific
research on digital phenotyping. Furthermore, in line with the
breakdown of the definition of digital phenotyping by Onnela
[3], studies were deemed eligible if they included the following
characteristics: (1) if any types of active or passive data were
collected. For this review, active data referred to data that
required direct input from users in response to prompts, and
passive data referred to data generated and collected without
inputs from the user [13]; (2) if a wearable device or mobile
phone was used to collect the active and/or passive data; (3) if
the terms “digital phenotype” or “digital phenotyping” were in
the title, abstract, or keywords; and (4) if the active and/or
passive data were classified in some ways (ie, if any
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“phenotypes” were established or if the data were used to make
predictions regarding diagnosis, symptom exacerbation, or
relapse).

We limited the years of publication to 2020, 2021, and 2022
because from our preliminary search, we conjectured that these
years witnessed a sharp increase in the number of publications
related to digital health, active and passive data collection, and
wearable devices. Moreover, focusing on these years would
provide the most recent snapshot of digital phenotyping research,
as the field is rapidly and continually evolving. Table 1 shows

the uptick in digital phenotyping research published in the last
5 years. This timeline was the result of using the search terms
and article type filters that were part of our eligibility criteria.

We excluded reviews, meta-analyses, opinion pieces, grey
literature, letters to the editor, commentaries, study protocols,
articles describing phenotyping in the context of genetics, and
articles not in English. We also excluded studies that solely
focused on the feasibility and acceptability of interventions
using digital phenotyping.

Table 1. PubMed timeline of digital phenotyping research published from 2017 to 2022. The timeline indicates a sharp increase in published literature
from 2019 onward.

Research articles published, nYear

1292017

1732018

2572019

2462020

2322021

1142022

Sources of Evidence
We used PubMed and Google Scholar to identify relevant
literature. We chose PubMed due to its focus on clinical and
health-related research and Google Scholar to surface literature
that intersected multiple disciplines.

We utilized additional filters on PubMed to exclude the
following articles that did not meet our study type and year of
publication criteria: (1) study type: clinical study, clinical trial,
comparative study, controlled clinical trial, multicenter study,
observational study, randomized controlled trial (RCT); and (2)
results by year: from January 1, 2020, to January 18, 2022.

In Google Scholar, we filtered the results according to the date
of publication. We used the custom range of 2020-2022.

Screening Process
After applying the search terms and filters on PubMed and
Google Scholar to identify relevant articles, the citations were
imported into the Rayyan.ai system (Rayyan Systems Inc), a
free online tool to create and manage systematic reviews. Author
SDD conducted the final search and imported the citations on
January 18, 2022. Then, authors SDD and SS independently
screened the titles, abstracts, and keywords using the
predetermined eligibility criteria. Any discrepancies regarding
which articles should be shortlisted were resolved by discussions
between SDD and SS. The next step of the screening process
involved screening the full texts of these shortlisted articles; all
reviewers were randomly assigned articles to screen for
concordance with the eligibility criteria. The reviewers had
regular discussions to resolve any disagreements on studies to
include in the final analysis.

Data Extraction and Charting
After the authors screened the full-text articles for inclusion in
the scoping review, a Google Sheet was created to extract

descriptive characteristics of the final articles. Details recorded
in the Google Sheet included study title, author(s), year of
publication, country of origin, study design, clinical area, active
and/or passive data collected, mode of data collection, data
analysis approaches, and limitations of the study.

The reviewers independently conducted the data extraction and
charting of the final articles. SDD and SS were consulted for
any queries regarding the data extraction and charting process
that the other reviewers had. The results of the data extraction
and charting process are presented in Multimedia Appendix 2.

We did not conduct a formal critical appraisal of the final articles
because the primary aim of our scoping review was to describe
the breadth of evidence and map the characteristics of the
literature on digital phenotyping.

Synthesis of Results
We summarized the studies for the following characteristics:
countries of origin, study designs, clinical areas, active and/or
passive data collected, modes of data collection, data analysis
approaches, and limitations. The World Health Organization’s
region classification was used to group the countries of origin
[14]. The study designs were grouped as follows: observational
studies, randomized trials, post hoc analyses of observational
studies, and post hoc analyses of RCTs.

In this scoping review, we mapped the types of data collected
in the studies into the following categories: wearable/activity
(passive data), mobile phone (passive data), clinical/biometric
(passive data), and active. The passive data categories were
based on the Activity-Biometrics-Communication framework
by Jayakumar and colleagues [15]. Wearable/activity data
included those generated by and collected from wearable
devices, mobile phone data included those passively collected
from a mobile app or from the mobile device itself (such as the
microphone), and clinical/biometric data included passively
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collected biological data such as blood pressure, body
temperature, heart rate, and so on. Active data included
patient-reported outcome measurements on a mobile app, as
well as responses to survey questions on a mobile app. We
tabulated all the passive and active data points collected in the
included studies.

The following categories were used to map how active and
passive data were collected in the included studies: wearable
device, mobile app, wearable device + mobile app, wearable
device + other, and other. We tabulated the wearable devices
and mobile apps used in the studies. We used the following
broad categories to map the data analysis approaches: regression,
statistical methods, machine learning techniques, and latent
growth analysis.

Results

Search Results
Figure 1 depicts the PRISMA flowchart of the study selection
process. A total of 454 articles were identified from PubMed
and Google Scholar after removal of duplicates. Following the
screening of the titles, abstracts, and keywords, 80 articles were
eligible for full-text review. After reviewing the full-text articles,
we excluded 30 that did not meet our eligibility criteria and 4
whose full texts were unavailable. Thus, 46 articles were deemed
eligible for inclusion in this scoping review. Detailed
characteristics of these 46 articles are presented in Multimedia
Appendix 2.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) flowchart of the process of study identification, screening
for eligibility, and final inclusion in this scoping review.

Countries of Origin
Most studies (n=26, 56.5%) originated from North America,
including the United States (n=24) [16-39] and Canada (n=2)
[40,41]. Twelve studies (26.1%) were conducted in European
countries, such as France [42,43], Germany [44,45], Italy
[46,47], Luxembourg [43], Spain [48,49], Switzerland [50], the

Netherlands [48,49], and the United Kingdom [47-49,51-53].
Six studies (13%) originated from countries in the Western
Pacific region, including Australia [54,55], Japan [56,57], and
South Korea [58,59]. Only 1 study (2.2%) came from the
Southeast Asian (China) [60] and Eastern Mediterranean (Qatar)
[61] regions. Table 2 summarizes the studies’ regions of origin.

Table 2. Summary of the number of studies by the World Health Organization’s region classification.

Studies, n (%)Countries of originWorld Health Organization’s region classification

1 (2.2)QatarEastern Mediterranean

12 (26.1)France, Germany, Italy, Luxembourg, Spain, Switzerland, the
Netherlands, and the United Kingdom

Europe

1 (2.2)ChinaSoutheast Asia

26 (56.5)Canada, the United StatesNorth America

6 (13)Australia, Japan, South KoreaWestern Pacific
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Study Designs
The most dominant study design was observational (n=28,
60.9%) [17, 20, 21, 23-25, 27, 28, 31, 32, 34, 36-40, 42-47,
49-51, 57, 58, 60], followed by randomized trials (n=10, 21.7%)
[19,22,26,30,35,41,52-55], post hoc analyses of RCTs (n=5,
10.9%) [18,29,56,59,61], and post hoc analyses of observational
studies (n=3, 6.5%) [16,33,48].

Clinical Areas
The clinical areas investigated in the included studies were
heterogeneous. Most (n=15, 32.6%) studies focused on
psychiatric disorders, mental health disorders, and neurological
diseases, including Parkinson disease [44,51]. Psychiatric and
mental health disorders included body dysmorphic disorder
[37], disordered eating [54], cognitive impairment [61],
substance use disorder [17,31], depression [40,46,48,49,53,60],
anxiety disorders [40,53], schizophrenia [23], and stress [26].

A total of 7 (15.2%) studies focused on cardiovascular diseases,
which included hypertension [19,21,45], hypercholesterolemia
[56], heart failure [24], and general cardiovascular health
[32,47]. Five studies (10.9%) focused on cancer, including skin
cancer [28], melanoma [34,35], breast cancer [55], and

monitoring patients undergoing chemotherapy [27]. Moreover,
3 (6.5%) focused on diabetes [30,38,52], and 7 (15.2%) focused
on participants who were overweight or obese
[16,18,30,33,36,43,59]. Meanwhile, 4 (8.7%) studies assessed
hospital-related outcomes, including postoperative recovery
[20], posthospital discharge [22,29], and in-hospital admission
of geriatric patients [50]. Three studies (6.5%) included patients
undergoing hemodialysis [25,46,61]. Other clinical areas
investigated included circadian rhythms [42], cough [57],
sarcopenia [58], physical training [39], and rheumatoid arthritis
and lupus erythematosus [41].

Types of Active and Passive Data Collected
We categorized the types of data collected in the studies as
follows: wearable/activity (passive data), mobile phone (passive
data), clinical/biometric (passive data), and active.

Regarding passively collected data, 37 (80.4%) studies evaluated
wearable/activity data, 3 (6.5%) studies evaluated mobile phone
data, and 13 (28.3%) studies evaluated clinical/biometric data.
Nine (19.6%) studies assessed active data. Table 3 summarizes
the wearable/activity, mobile phone, clinical/biometric, and
active data points collected in the studies.
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Table 3. List of the active and passive data points collected in the studies included in this scoping review.

Active dataPassive data

Clinical/biometricMobile phoneWearable/activity

Exercise amount [54,59]Heart rate [17, 19-21, 32, 39,
43, 45, 48, 53, 60]

Frequency of app use [37]Mobility pattern [37]

Body satisfaction [54]Skin conductance [17]Quantity of app use [36]Ultraviolet radiation exposure [28,34,35]

Fitness/health motives for exercise [54]Skin temperature [17]Number of days activity moni-
tor data were uploaded to the
web-based app [52]

Step count [18-22, 26, 27, 29, 30, 39, 43,
46, 56, 59-61]

Engagement in binge eating [54]Blood pressure [19,21,43]Call logs [60]Gait parameters [44,51,58]

Engagement in dietary restraint [54]Movements in epigastric region
[57]

Text message logs [60]Anticipatory postural adjustments [51]

Immediate mood [60]Expansion of throat skin [57]App usage logs [60]Sit-to-stand duration [51]

Patient Health Questionnaire-9 in an
app [60]

Weight [38,43]GPS location [40,60]Energy expenditure [39,52]

Liebowitz Social Anxiety Scale [40]Blood glucose levels [38]Screen on-and-off status
[40,60]

Sleep duration [19, 26, 39, 48, 49, 53, 56,
60]

Generalized Anxiety Disorder 7-Item
Scale [40]

N/AaAmbient audio [40]Sleep efficiency [19,48,49,53,56]

Patient Health Questionnaire 8-item
scale [40,48,49]

N/ALight sensor data [40]Sleep stage [56]

Sheehan Disability Scale [40]N/ATelephone call recipient [42]Distance walked [45,56]

Responses to daily assessment [59]N/AMoment in time of telephone
call [42]

Daytime nap duration [24]

Meals logged [59]N/ATelephone call duration [42]Daytime nap frequency [24]

Intake of green foods logged [59]N/AArticles read [59]Repositioning events [36]

Rosenberg Self-Esteem Scale [48]N/AComments posted [59]Three-dimensional acceleration [17]

Weigh-ins logged [59]N/ANumber of posts [59]Number of activity monitor wear days
across the intervention [52]

Self-reported location [31]N/AMessages sent to coaches [59]Number of interactions with wearable
sensor [17]

Self-reported social context [31]N/ANumber of likes [59]Physical activity [16, 33, 38, 41, 45, 47,
48, 50, 52]

Self-reported cannabis use [31]N/AScreen time metrics [24]Number of postural transitions [61]

Mental and physical 5-point scale [39]N/AN/AExercise time [59]

Self-reported sleep, hydration, and nu-
trition [39]

N/AN/AStep speed [19]

Confidence in instructors and gradua-
tion [39]

N/AN/ATime spent walking [16]

Speech patterns [48]N/AN/ADurations of postural transitions [61]

Cognitive function [23,48]N/AN/AN/A

aN/A: not applicable.

Modes of Data Collection
The categories used to map how active and passive data were
collected in the included studies were as follows: wearable
device, mobile app, wearable device + mobile app, wearable
device + other, and other. Most (n=25, 54.3%) studies fell under
the wearable device category [16-20, 22, 24, 25, 32-34, 36, 38,
43, 44, 46, 47, 49-51, 55-58, 61]. Many (n=14, 30.4%) studies
also collected data using a combination of wearable devices and

a mobile app and thus fell under the wearable device + mobile
app category [21,23,26-30,35,39,45,48,53,54,60]. Of the studies,
8.7% (n=4) fell under the mobile app category [31,37,40,59],
4.4% (n=2) under the wearable device + other category [41,52],
and 2.2% (n=1) under the other category [42], which included
data collection through web-based applications. Textbox 1 lists
the types of wearable devices and mobile apps used in the
studies.
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Textbox 1. List of wearable devices and mobile apps used to collect active and passive data in the studies included in this scoping review.

Wearable devices:

• Activity monitor (Actical, Philips Respironics) [24]

• activPAL (PAL Technologies Limited) [55]

• Apple Watch Series 2, 3, or 4 smartwatches [21,39,45]

• Biobeam wearable device [53]

• Body weighing scale (Withings) [43]

• BP-800 blood pressure monitor (Withings) [43]

• Cellular-enabled scale [38]

• E4 wearable sensor (Empatica) [17]

• FitBit [16,20,25,26,32,33,38,41,48,49,54,56]

• Garmin Vivofit2 activity monitor [55]

• Inertial SHIMMER sensors (Shimmer Research Limited) [44]

• Mi Band 2 (Xiaomi Corporation) [60]

• Microsoft Band 2 [27]

• Omron Evolv Wireless Blood Pressure Monitor [19,21]

• Phone-tethered glucometer [38]

• Withings pulse activity tracker [43]

• Samsung Galaxy Watch [19]

• SenseWear Mini (BodyMedia) multisensory monitor [41]

• SenseWear Armband [46]

• Shade wearable ultraviolet radiation sensor [28]

• Smartwatch (unspecified) [23]

• Ultraviolet radiation exposure sensor [28,34]

• Validated pendant sensor (PAMSysTM, BioSensics LLC) [61]

• Waist-worn activity tracker (ActiGraph wGT3X-BT) [34]

• Wearable smart belt (WELT) [58]

• Wearable triaxial accelerometer sensor [36]

• Wrist-worn ActiGraph GT3X+ [55]

• Wrist-worn ultraviolet dosimeter [35]

• Wrist-worn wearable device (Withings Activite Steel) [18,22,29,30]

Mobile apps:

• Apple Health app [21]

• Beiwe app [23]

• BreeConnect App [45]

• InstantSurvey smartphone app [54]

• iOS Biobase app [53]

• MApp [31]

• mindLAMP app [23]

• Mood Mirror app [60]

• Noom app (for food diaries) [59]

• Patient-reported outcomes app [27]

• Perspectives app on iOS [37]
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Withings HealthMate app [29]•

Data Analysis Approaches
Regarding the data analysis techniques, 22 (47.8%) studies used
reg re s s ion -based  s t a t i s t i c a l  me thods
[16,20,22,23,28,30,33,35,37,40,41,43,45,48-50,53,54,56,58,61],
2 (4.3%) used latent growth analysis [18,38], and 14 (30.4%)
used other statist ical  analysis methods
[21,24-26,29,31,32,34,42,44,46,47,52,55]. One (2.2%) study
did not perform any statistical analyses because it was a case
report [36]. Only 7 (15.2%) studies used machine learning
approaches to build predictive models [17,19,39,51,57,59,60],
while 1 study used logistic regression and random forest
classifiers [51]. Another study tested 25 classification models
from the following categories: decision trees, discriminant
analysis, logistic regression, naive Bayes classifiers, support
vector machines, nearest neighbor classifiers, and ensemble
classifiers [17]. One study used 6 different machine learning
models: support vector machines, k-nearest neighbors, decision
trees, naive Bayes, random forest, and logistic regression [60].
A study conducted in Japan used a deep learning–based machine
learning algorithm called variational autoencoder for feature
extraction and k-means clustering algorithm for classification
[57]. Another study used random forest, support vector machine,
gradient boosting decision trees, long short-term memory, and
autoregressive integrated moving average techniques [19]. A
study from South Korea used an elastic net machine learning
approach [59], and 1 from the United States used a random
forest approach [39].

Limitations of the Included Studies
The limitations put forward by the authors of the studies in this
review were heterogenous. Most studies reported low
generalizability of their findings due to small sample size,
single-center study designs, short study durations, and narrow
population segments included in the studies. Due to the
observational nature of the studies, causal relationships between
the passive and active data collected and outcome measures
could not be confirmed. Some studies also reported device- and
app-related limitations, including short battery life of
smartwatches (leading to underestimation of physical activity)
[21], challenges in keeping the app running 24/7 [60], no
measurements of users’ interactions with mobile phone
notifications [26], missing data [23,30,48,49], and drawbacks
in the algorithms tested [16,32,45,57,58]. Another limitation
reported was reliance on self-reported data, which included
active data collected and those collected for outcome
measurements.

Discussion

Principal Findings
Our scoping review provides an insight into the breadth of
research on digital phenotyping published in the last 3 years.
Most studies originated from North America, had observational
study designs, and used wearable devices to collect passive
and/or active data. The studies spanned various clinical

indications, but psychiatric disorders, mental health disorders,
and neurological diseases were the most common areas. Only
7 (15.2%) studies used machine learning–based approaches for
data analysis, while the rest predominantly used statistical
methods. Most studies had low sample sizes, limiting their
generalizability to other populations and clinical settings.

Digital maturity and uptake of wearables vary significantly
across regions; however, the onset of the COVID-19 pandemic
has generally led to an increase in the use of digital health tools
for remote monitoring [62]. In our scoping review, 56.5% (n=26)
of the studies were conducted in North America. Market
research trends from 2021 indicated that North America is
currently leading the global digital health market, and this
market is poised to accelerate even faster than the global average
between 2021 and 2025 [63]. There is also a significant impact
on the pace of transformation from the aftereffects of large-scale
enterprise systems implementations. Consumers from this region
reported an increase in wearable use from 9% to 33% over the
last 4 years, while the number of smartwatch users grew from
42 million to 45.2 million users from 2020 to 2021 and is
expected to reach 51.9 million by 2024 [64]. These trends point
to greater personalization and innovation in the use of health
monitoring tools and wearables in North America. In Europe,
the adoption of digital health tools among patients increased
from 85% in 2015 to 87% in 2017, with patients increasingly
adopting technologies such as wearables and remote patient
monitoring tools [65]. The increase in the uptake of digital tools
in Europe is attributed to the growing geriatric population
coupled with the rising preference for remote patient monitoring.
Increasing government initiatives for the development of digital
health in the region and growing digital infrastructure will drive
market growth [66].

The types of studies in this review were primarily observational
(n=28, 60.9%), most of which were cohort-based prospective
observational studies. Since wearable device–related studies
are relatively new, the rigor and complexity of the study
protocols varied significantly, from randomized trials to simple
observational studies. We found that digital phenotyping
research has been primarily explored in clinical indications
related to mental illnesses and psychiatric disorders, but several
studies also focused on chronic conditions such as
cardiovascular diseases, obesity, and cancer. This points toward
growing attention on the real-time monitoring of chronic,
long-term conditions, as the patient journeys of these conditions
largely occur outside clinical settings.

We observed that the most common data collection tool used
across the studies was commercial wearable devices, in line
with other reviews conducted in this area [15,67]. Wearable
devices have immense potential in both research and disease
management due to their ability to collect vast amounts of
lifestyle data with high granularity and continuity [19]. While
such devices provide a lower barrier to entry, some challenges
regarding commercial wearable device use were reported in the
studies. For example, one study in our scoping review reported
that the short battery lives of smartwatches may have
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underestimated physical activity levels [21], and another
shortlisted study reported that the Apple Watch could only
collect a limited range of heart rate data [39]. Moreover, these
devices are associated with data privacy concerns [39]. The
“black box” algorithms typically used by most of these devices
do not provide clarity on their data collection and analysis
practices, leading to inherent biases and subsequent ethical
drawbacks when collecting passive data [68].

Although less commonly used in the included studies,
smartphone apps are useful in ecological momentary
assessments through user-reported, real-time active data. This
can help in self-monitoring of behaviors, symptoms, and
treatment compliance, as well as in providing
information/education and feedback [31]. In their review,
Coghlan and D’Alfonso [13] describe a third type of data for
digital phenotyping, called interactive data. These can be
content-free interactions (such as swiping, tapping, and web
searching) or content-rich interactions (such as social media
use) [9]. For example, one of the shortlisted studies used
interactive data, such as articles read per week, group posts per
week, and likes per week, on an app to identify digital behavioral
phenotypes of patients with obesity [59]. Such data from a
smartphone can provide valuable insights into a user’s health
status and behaviors, but they are also prone to data privacy
concerns and inherent biases.

The use and adoption of newer analytical and machine learning
methods for longitudinal data typically collected using wearables
are gaining traction in digital health. We found 2 (4.3%) studies
using latent class analysis [18,38], which is a statistical
procedure used to identify qualitatively different subgroups
within populations that share certain outward characteristics.
Random forest was most common machine learning technique
used [19,39,51,60], followed by logistic regression [17,51,60]
and support vector machines [17,19,60]. Random forests work
by combining many small, weak decisions for a single strong
prediction [6]. This machine learning approach is gaining
traction in noncomputational fields and is becoming a standard
classification approach in many scientific fields [69]. Random
forest algorithms are robust to overfitting, can deal with highly
nonlinear data, and remain stable when outliers are present [70].
As 1 of our shortlisted studies reported, although neural
network–based approaches outperform in unstructured data such
as image and language, tree-based ensemble machine learning
models such as random forests have the best performance in
structured data that are essentially in tabular form [19]. One
study included in our scoping review used and compared a
variety of machine learning approaches, including support vector
machines, k-nearest neighbors, decision trees, naive Bayes,
random forest, and logistic regression; in most cases, the authors
found that the random forest method worked the best [60].

Using novel machine learning approaches, passive and active
data collected from wearable devices and mobile phones can
be used to build “digital phenotypes,” enabling the
personalization of digital health interventions and treatment
plans. These digital phenotypes can be likened to customer
segmentation models used by other industries. Better
segmentation of health consumer behaviors can play a critical
role in our ability to deliver precision digital health

interventions. Some studies included in this scoping review
established digital phenotypes using the digital data they
collected, but these categories were not explicitly called digital
phenotypes. For example, 1 study used FitBit data to classify
participants into the following physical activity groups: stable
active (ie, meeting physical activity recommendations for 2
weeks), stable insufficiently active, stable nonvalid wear,
favorable transition (ie, improvements in the physical activity
category), and unfavorable transition [33]. Another study used
clinical/biometric data from a wearable sensor to develop a
cough monitoring system that employed machine learning to
distinguish cough and noncough units [57]. Such digital
phenotypes can help “close the loop” between monitoring and
taking action, helping create adaptive, tailored preventive and
treatment journeys [71].

Regular use of wearable technology or behavior-tracking digital
health technologies is a valuable intervention in managing
health; however, personalized solutions are crucial to users'
engagement, as shown by research on the use of wearables in
health care [72]. Myneni and colleagues [73] analyzed the
behavior change content of a community-based wearable that
supports smoking cessation and found evidence from various
behavior change theories, including the self-efficacy theory.
Other studies examining behavior change technologies that
addressed the role of self-efficacy in changing one’s behavior
proposed the theory of self-efficacy as a key foundation for
wearables, suggesting that perceived self-efficacy facilitates the
link between intervention and behavior change [72]. Thus,
integrating digital phenotyping and wearable device use can
improve self-efficacy behaviors, enabling patients and health
consumers to take ownership of their health and wellness.

Future Implications
Digital phenotyping shows promise in improving
person-centered care. Such precision care can help drive a
proactive, predictive approach to health interventions and
improved outcomes. Our scoping review highlights the
increasing application of statistical and machine learning models
on health consumer data from wearable devices. The opportunity
to refine digital phenotypes with personal, self-reported data
points and real-world passive health information is likely to add
value to multiple medical research disciplines and accelerate
behavioral health. The success of digital phenotyping is
dependent on the willingness of hospitals, physicians, and health
care organizations to participate in its development for the
benefit of patients and health consumers. Hence, prospective,
longitudinal studies that include larger data sets from diverse
populations will be important to instill greater confidence in
digital phenotyping approaches. Digital phenotyping research
has been primarily explored in clinical indications related to
mental illnesses and psychiatric disorders. Future work should
focus on multivariate, replicable models that link to health
outcomes across various indications as well as combine and
analyze multiple data sources to provide a more holistic picture
of an individual’s behaviors and disease state.

Furthermore, given the rapid evolution of privacy concerns
affecting consumer technologies, finding ways to ensure data
privacy and ethical use of health information should be seen as
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a strategic priority not only to understand the boundaries of the
type of information that can be used for digital phenotyping but
to prioritize systems and checks for health consumer consent
and participation. AI and machine learning approaches need to
use more transparent, replicable, bias-free algorithms to aid in
robust decision making. This is especially important in low-
and middle-income contexts, where legal and regulatory
frameworks around machine learning deployment in health care
may be inadequately defined [74].

Building digital phenotypes has tremendous opportunities in
improving the user experience of mobile app–based digital
health solutions, helping drive positive health outcomes.
Interactive data from a smartphone can be used to generate
“engagement phenotypes,” and digital journeys can be tailored
to each phenotype [71]. Our previous work in machine learning
suggests that metrics such as user churn combined with digital
phenotyping can help improve user engagement with digital
health interventions, thereby potentially leading to better
outcomes [75]. Further work needs to be done on the real-world
application of machine learning–based models for digital
phenotyping in health care settings.

Scoping Review Limitations
Our scoping review may have missed relevant articles because
we only used 2 evidence sources (Google Scholar and PubMed)
to find articles due to their open-source nature. Because we
wanted to capture the breadth of digital phenotyping literature
published more recently, we only considered articles published

from 2020 onward. However, evidence on digital phenotyping
has rapidly grown in the past couple of years. Hence, our
scoping review most likely provided an apt snapshot of emerging
research on digital phenotyping. For speed, multiple reviewers
were involved in screening the full-text articles, which may
have led to different interpretations of the results and
implications. To help counteract this, we organized frequent
discussions among the reviewers to address any concerns about
whether a study should be included and reach a consensus. We
did not conduct an in-depth citation search of the final articles.
Thus, we may have missed relevant articles. Finally, we did not
evaluate the quality of the included articles using validated
quality assessment checklists. This was mainly due to the
heterogeneity of the study characteristics.

Conclusions
Our scoping review provides insightful foundational and
application-oriented approaches toward digital phenotyping,
including the use of active and passive data, differences in study
design, and perhaps most importantly, the growing use of newer
data analytics and machine learning algorithms to define and
implement digital phenotypes in health care. Future work should
focus on conducting longitudinal studies with diverse
populations and larger data sets from multiple sources,
leveraging newer machine learning approaches for digital
phenotyping, addressing privacy and ethical concerns around
passive data collection from commercial wearable devices and
smartphones, and building digital phenotypes to tailor treatment
plans and digital health interventions.
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