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Abstract

Background: In recent decades, the use of artificial intelligence has been widely explored in health care. Similarly, the amount
of data generated in the most varied medical processes has practically doubled every year, requiring new methods of analysis
and treatment of these data. Mainly aimed at aiding in the diagnosis and prevention of diseases, this precision medicine has shown
great potential in different medical disciplines. Laboratory tests, for example, almost always present their results separately as
individual values. However, physicians need to analyze a set of results to propose a supposed diagnosis, which leads us to think
that sets of laboratory tests may contain more information than those presented separately for each result. In this way, the processes
of medical laboratories can be strongly affected by these techniques.

Objective: In this sense, we sought to identify scientific research that used laboratory tests and machine learning techniques to
predict hidden information and diagnose diseases.

Methods: The methodology adopted used the population, intervention, comparison, and outcomes principle, searching the main
engineering and health sciences databases. The search terms were defined based on the list of terms used in the Medical Subject
Heading database. Data from this study were presented descriptively and followed the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses; 2020) statement flow diagram and the National Institutes of Health tool for quality
assessment of articles. During the analysis, the inclusion and exclusion criteria were independently applied by 2 authors, with a
third author being consulted in cases of disagreement.

Results: Following the defined requirements, 40 studies presenting good quality in the analysis process were selected and
evaluated. We found that, in recent years, there has been a significant increase in the number of works that have used this
methodology, mainly because of COVID-19. In general, the studies used machine learning classification models to predict new
information, and the most used parameters were data from routine laboratory tests such as the complete blood count.

Conclusions: Finally, we conclude that laboratory tests, together with machine learning techniques, can predict new tests, thus
helping the search for new diagnoses. This process has proved to be advantageous and innovative for medical laboratories. It is
making it possible to discover hidden information and propose additional tests, reducing the number of false negatives and helping
in the early discovery of unknown diseases.

(JMIR Bioinform Biotech 2022;3(1):e40473) doi: 10.2196/40473
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Introduction

Background
The large amount of data generated in the last decades has
become a great challenge, demanding new forms of analysis
and processing of complex and unstructured data, known until
now as data mining [1]. The health care domain has great
prominence in applying data mining, supporting infection
control, epidemiological analysis, treatment and diagnosis of
diseases, hospital management, home care, public health
administration, and disease management [2]. This predictive
analysis is strongly linked to the evolution of artificial
intelligence (AI) techniques such as machine learning (ML).
These algorithms, able to learn interactively from data, allow
systems based on computational intelligence to find information
that was initially unknown [3].

Currently, prediction systems [4] and decision-making support
have been using web-based medical records and clinical data,
analyzing the history of patients to propose models to identify
high-risk situations as well as false positives [5]. This precision
medicine (in silico) based on electronic health records has gained
strength given the possibility of more accessible and efficient
treatments aimed at the particular characteristics of each
individual. In this sense, Wong et al [6] proposed using ML to
structure and organize stored data and for mining and aiding in
diagnosis. Similarly, Roy et al [7] used electronic health record
data to predict laboratory test results in a pretest.

These works motivated us to study the potential of the use of
AI, especially ML techniques, in the area of health.

According to Peek et al [8], in recent decades, there has been a
major shift from knowledge-based to data-oriented methods.
Analyzing 30 years of publications from the International
Conference on Artificial Intelligence in Medicine, an increase
in the use of data mining and ML techniques was observed.

In recent years, other reviews have been published presenting
the growth and potential of the use of ML methods in the health
area. In their review, Rashidi et al [9] addressed the
multidisciplinary aspect of this scenario and presented the
potential of using ML techniques in data processing in the health
area comparing the different methods.

Similarly, Ahmed et al [10] discussed aspects of precision
medicine in their review, presenting works with different
approaches to the use of ML in addition to discussing ethical
aspects and the management of health resources.

However, the work by Houfani et al [11] focused on the
prediction of diagnoses, presenting an overview of the methods
applied in the prediction of diseases.

In their work, Ma et al [12] present aspects of real-world big
data studies with a focus on laboratory medicine. In their review,
Ma et al [12] highlighted the lack of standardization in clinical
laboratories and the difficulty in using data in real time, mainly
because of unstructured and unreliable data. However, the
potential is emphasized in the use of laboratory data together
with aspects such as the establishment of the reference range,
quality control based on patient data, analysis of factors that

affect analyte test results, establishment of diagnostic and
prognostic models, epidemiological investigation, laboratory
management, and data mining. All of this is aimed at helping
traditional clinical laboratories develop into smart clinical
laboratories.

In contrast to the studies presented, this study aimed to analyze
studies that used data from laboratory tests together with AI
techniques to predict new results.

Study Questions
Clinical laboratories display most test results as individual
numerical values. However, the results of these tests, viewed
in isolation, are usually of limited significance for reaching a
diagnosis.

In their study of ferritin, Luo et al [5] found that laboratory tests
often contain redundant information.

Similarly, Gunčar et al [13] found that ML models can predict
hematological diseases using only blood tests. In their study,
Gunčar et al [13] stated that laboratory tests have more
information than health professionals commonly consider.

Demirci et al [14] and Rosenbaum and Baron [15] also used
ML techniques to identify possible errors in the clinical process
of performing laboratory tests. In both studies, the authors
obtained satisfactory results, demonstrating the ability of
computational models based on ML to assist in analyzing
laboratory tests. Similarly, Baron et al [16] used an algorithm
to generate a decision tree capable of identifying tests with
possible problems arising from the preanalytical process during
the execution of laboratory tests.

The presentation of these works makes us reflect on how much
information can be present in a set of laboratory test data and
the potential for the exploration and use of such data. Thus, our
objective was to identify scientific studies that used laboratory
tests and ML models to predict results.

This study had the following specific research questions: (1) Is
it possible to predict specific examinations from other
examinations? (2) Which examinations are typically used as
input data to predict other results? and (3) What methods are
used to predict these tests?

Methods

Search Strategy
Searches were conducted in 7 electronic databases in
international journals in the areas of engineering and health
sciences—Compendex (Engineering Village), EBSCO
(MEDLINE complete), IEEE Xplore, PubMed (MEDLINE),
ScienceDirect, Scopus, and Web of Science—in the English
language for publications from April 2011 to February 2022.
Additional records were further identified during the screening
phase of this research by analyzing the references of the eligible
articles included.

The population, intervention, comparison, and outcome
principles were used to group the search terms. As this study
addressed laboratory tests, 3 principal search terms were
considered, and 2 Boolean operators were used (OR and AND):
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population (“Clinical Laboratory Test” OR “Laboratory
Diagnosis” OR “Blood Count, Complete” OR “Routine
Diagnostic Test”) AND intervention (“Machine Learning”)
AND outcomes (“Clinical Decision-Making” OR
“Computer-Assisted Diagnosis” OR “Predictive Value of
Tests”).

The search terms were defined based on the list of terms used
in the Medical Subject Heading database [17]. The studies were
collected from the databases from April 2, 2021, to April 10,
2021; the roots of the words and all the variants of the terms
were searched (singular or plural, past tense, gerund,
comparative adjective, and superlative, when possible). The
following filters were used for the area of activity: medicine,
engineering (industrial, biomedical, electrical, manufacturing,
and mechanics), robotics, health professions, and
multidisciplinary according to the availability in the database.

The following study characteristics were extracted and
described: authors’names, year of publication, title, description,
data set, features, methods, and main results. The data of this
study were presented descriptively and followed the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) statement flow diagram [18] and the National
Institutes of Health (NIH) Quality Assessment Tool for
Observational Cohort and Cross-Sectional Studies [19].

Inclusion and Exclusion Criteria
The criteria for inclusion and exclusion of studies are outlined
in Textbox 1.

The search results were exported to the web-based Mendeley
software (Elsevier), where duplicates or triplicates were
removed, and full texts were extracted after analyzing the
possible eligibility of the articles.

Textbox 1. Study inclusion and exclusion criteria.

Inclusion criteria

• Use of laboratory tests

• Use of machine learning techniques

• Written in English

• Full-text articles published in specialized journals

Exclusion criteria

• No use of laboratory tests

• Not seeking to predict new results

Study Analysis
Regarding the eligibility of the studies, the review process
involved an analysis of the title keywords and reading of the
abstracts by 2 reviewers independently (the first 2 authors of
this paper). When in doubt about eligibility, the full text was
reviewed. In cases of disagreement between the 2 reviewers, a
decision was made by consensus or a third investigator provided
an additional review, and the decision was made by arbitration.

Methodological Quality Assessment of the Studies
Regardless of the inclusion and exclusion criteria, which were
directly related to the objective of the study, an analysis of the
quality of the selected articles was also conducted.

The quality of the eligible studies was assessed using tools
proposed by the NIH of the United States [19]. This study
included the cross-sectional study assessment tool (with 14
criteria). The NIH website [19] provides tools and guidelines
for assessing the quality of each type of study, containing
explanatory information about each item that should be assessed
in the study: (1) Was the research question or objective in this
study clearly stated? (2) Was the study population clearly
specified and defined? (3) Was the participation rate of eligible
persons at least 50%? (4) Were all the participants selected or
recruited from the same or similar populations (including the
same period)? Were inclusion and exclusion criteria for being
in the study prespecified and applied uniformly to all

participants? (5) Was a sample size justification, power
description, or variance and effect estimates provided? (6) For
the analyses in this study, were the exposures of interest
measured before the outcomes were measured? (7) Was the
time frame sufficient so that one could reasonably expect to see
an association between exposure and outcome if it existed? (8)
For exposures that can vary in amount or level, did the study
examine different levels of exposure as related to the outcome
(eg, categories of exposure or exposure measured as a
continuous variable)? (9) Were the exposure measures
(independent variables) clearly defined, valid, reliable, and
implemented consistently across all study participants? (10)
Was the exposure assessed more than once over time? (11) Were
the outcome measures (dependent variables) clearly defined,
valid, reliable, and implemented consistently across all study
participants? (12) Were the outcome assessors blinded to the
exposure status of participants? (13) Was loss to follow-up after
baseline 20% or less? and (14) Were key potential confounding
variables measured and adjusted statistically for their impact
on the relationship between exposure and outcome?

The rating quality was classified as good, fair, or bad, allowing
for the general analysis of the evaluators considering all items
[19]. Each item in the assessment tool received an “✓” rating
when the study was performed, a negative (“–”) when not
performed, and other options (cannot be determined, not
applicable, and not reported).
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According to Wong et al [20], observational studies with a
classification of ≥67% of positive items indicated good quality,
34% to 66% of positive verifications indicated regular quality,
and ≤33% indicated low quality.

Results

The search results included 513 potentially eligible studies.
First, 8% (41/513) of duplicated or triplicated articles were
excluded, and of the 472 remaining articles, 43 (9.1%) were
considered eligible based on the review of titles, keywords, and
abstracts. Additional studies (n=30) were included after

searching the references and citations of the eligible articles,
totaling 73 full texts for evaluation. After reviewing these 73
studies, 33 (45%) were ineligible, ending the process with 40
(55%) studies for quality assessment (Figure 1).

Table 1 presents the assessment of the methodological quality
of the studies. The articles are organized by author and year, by
framing of the questions, and by the average points obtained
through this analysis performed by the authors of this paper.

Table 2 shows the description of the studies included in this
review. It is organized by author and year, title, description,
data set, features, methods, and main results.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of study screening and selection.
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Table 1. Assessment of the methodological quality of the studiesa.

Total assessment
tool items, n (%)

Quality assessment tool itemsAuthor, year

1413121110987654321

13 (93)✓✓✓✓N/Ab✓✓✓✓✓✓✓✓✓Richardson and
Lidbury [21], 2013

11 (79)✓✓✓CDN/ACDc✓✓✓✓✓✓✓✓Waljee et al [22],
2013

12 (86)✓✓✓✓✓✓CD✓✓✓CD✓✓✓Kinar et al [23],
2016

13 (93)✓✓✓✓N/A✓✓✓✓✓✓✓✓✓Luo et al [5], 2016

13 (93)✓✓✓✓✓✓N/A✓✓✓✓✓✓✓Razavian et al [24],
2016

13 (93)✓✓✓✓NRd✓✓✓✓✓✓✓✓✓Richardson and
Lidbury [25], 2017

12 (86)✓✓✓✓N/ACD✓✓✓✓✓✓✓✓Birks et al [26],
2017

12 (86)✓✓✓✓✓✓CDCD✓✓✓✓✓✓Hernandez et al
[27], 2017

13 (93)✓✓✓✓✓✓CD✓✓✓✓✓✓✓Roy et al [7], 2018

13 (93)✓✓✓✓N/A✓✓✓✓✓✓✓✓✓Rawson et al [28],
2019

14 (100)✓✓✓✓✓✓✓✓✓✓✓✓✓✓Aikens et al [29],
2019

11 (79)✓✓✓✓CD✓N/ACD✓✓✓✓✓✓Hu et al [30], 2019

14 (100)✓✓✓✓✓✓✓✓✓✓✓✓✓✓Bernardini et al
[31], 2019

13 (93)✓✓✓✓✓✓CD✓✓✓✓✓✓✓Xu et al [32], 2019

13 (93)✓✓✓✓N/A✓✓✓✓✓✓✓✓✓Lai et al [33], 2019

12 (86)✓✓✓✓N/A✓✓CD✓✓✓✓✓✓Tamune et al [34],
2020

13 (93)✓✓✓✓N/A✓✓✓✓✓✓✓✓✓Chicco and Jurman
[35], 2020

12 (86)✓✓✓✓✓NRCD✓✓✓✓✓✓✓Yu et al [36], 2020

12 (86)✓✓✓✓N/A✓N/A✓✓✓✓✓✓✓Banerjee et al [37],
2020

11 (79)✓✓✓✓N/ACDN/A✓✓✓✓✓✓✓Joshi et al [38],
2020

12 (86)✓✓✓✓N/A✓N/A✓✓✓✓✓✓✓Brinati et al [39],
2020

13 (93)✓✓✓✓N/A✓✓✓✓✓✓✓✓✓Metsker et al [40],
2020

13 (93)✓✓✓✓N/A✓✓✓✓✓✓✓✓✓AlJame et al [41],
2020

11 (79)✓✓✓✓N/ACDN/A✓✓✓✓✓✓✓Yadaw et al [42],
2020

12 (86)✓✓✓✓N/A✓N/A✓✓✓✓✓✓✓Cabitza et al [43],
2020

11 (79)✓✓✓✓N/ACD✓CD✓✓✓✓✓✓Schneider et al
[44], 2020

13 (93)✓✓✓✓N/A✓✓✓✓✓✓✓✓✓Yang et al [45],
2020
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Total assessment
tool items, n (%)

Quality assessment tool itemsAuthor, year

1413121110987654321

12 (86)✓✓✓✓✓N/A✓CD✓✓✓✓✓✓✓Plante et al [46],
2020

13 (93)✓✓✓✓✓✓CD✓✓✓✓✓✓✓Mooney et al [47],
2020

13 (93)✓✓✓✓N/A✓✓✓✓✓✓✓✓✓Yu et al [48], 2020

13 (93)✓✓✓✓N/A✓✓✓✓✓✓✓✓✓Kaftan et al [49],
2021

11 (79)✓✓✓✓N/ACD✓CD✓✓✓✓✓✓Park et al [50],
2021

13 (93)✓✓✓✓N/A✓✓✓✓✓✓✓✓✓Souza et al [51],
2021

13 (93)✓✓✓✓N/A✓✓✓✓✓✓✓✓✓Kukar et al [52],
2021

11 (79)✓✓✓✓N/ACDN/A✓✓✓✓✓✓✓Gladding et al [53],
2021

12 (86)✓✓✓✓N/A✓N/A✓✓✓✓✓✓✓AlJame et al [41],
2021

12 (86)✓✓✓✓N/A✓N/A✓✓✓✓✓✓✓Rahman et al [54],
2021

13 (93)✓✓✓✓✓✓✓CD✓✓✓✓✓✓Myari et al [55],
2021

13 (93)✓✓✓✓N/A✓✓✓✓✓✓✓✓✓Campagner et al
[56], 2021

12 (86)✓✓✓✓N/A✓N/A✓✓✓✓✓✓✓Babaei Rikan et al
[57], 2022

aQuality rating: ≥67%=good, 33% to 66%=fair, and ≤33%=poor.
bN/A: not applicable.
cCD: cannot be determined.
dNR: not reported.
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Table 2. Description of the studies included in this review (N=40).

Main resultsMethodsFeaturesData setDescriptionTitleAuthor, year

It was easier to predict
positive immunoassay

Implemented the
analysis using the

Age, gender, and CBCd

(FBCe) parameters

Used a data set of
18,625 records
from 1997 to 2007

This study investigat-
ed the effect of data
preprocessing, the use

Infection status
outcome, machine
learning method

Richardson
and Lidbury
[21], 2013 cases than negative

cases of HBV or
HCV.

RPARTf algo-

rithm in R (DTg)
made available by
ACT Pathology at
The Canberra Hos-

of ensembles con-
structed by bagging,
and a simple majority

and virus type inter-
act to affect the op-
timised prediction

pital, ACTc, Aus-
tralia

vote to combine classi-
fication predictions
from routine patholo-

of hepatitis virus
immunoassay re-
sults from routine

gy laboratory data,pathology laborato-
particularly to over-ry assays in unbal-

anced data come a significant im-
balance of negative

HBVa and HCVb cas-
es HBV or HCV im-
munoassay positive
cases.

MissForest had the
lowest imputation er-

MissForest, mean
imputation, near-

CBC (FBC) parametersThe cirrhosis co-
hort had 446 pa-

Compare the accuracy
of 4 imputation meth-

Comparison of im-
putation methods

Waljee et al
[22], 2013

ror for both continu-est neighbor im-tients, and the in-ods for missing entire-for missing labora-
ous and categoricalputation, andflammatory bowelly at random laborato-tory data in

medicine variables at each fre-
quency of missing-

MICEh to impute
the simulated
missing data

disease cohort had
395 patients from
a tertiary-level care
institution in Ann
Arbor, Michigan.

ry data and compare
the effect of the imput-
ed values on the accu-
racy of 2 clinical pre-
dictive models

ness, and it had the
smallest prediction
difference when mod-
els used imputed labo-
ratory values.

Mean ROC AUCl for
detecting CRC was

Gradient boosting

model and RFk

classifier

Age, gender, and CBC
(FBC) parameters

Used a data set of
2 million patients
from the Maccabi
Healthcare Ser-

Develop and validate
a model to identify in-
dividuals at increased

risk of CRCi

Development and
validation of a pre-
dictive model for
detection of col-
orectal cancer in

Kinar et al
[23], 2016

0.82 (SD 0.01) for the
Israeli validation set

vices in Israel and
primary care by the United King-

dom THINjanalysis of com-
plete blood counts:
a binational retro-
spective study

The model could pre-
dict ferritin results

It used LRn,
Bayesian LR,

Age, gender, and 41
laboratory tests

Used a data set of
5128 inpatients in
a tertiary care hos-

Used MLm to predict
ferritin values from
laboratory test results

Using Machine
Learning to Predict
Laboratory Test
Results

Luo et al [5],
2016

with high accuracy

(AUCp as high as
RFRo, and lasso
regression (las-
so).

pital in Boston,
Massachusetts,
collected over 3
months in 2013

0.97, held-out test da-
ta).

These representation-
based approaches sig-

The study trained

an LSTMq RNNr
18 laboratory testsUsed a data set

from laboratory
measurement and

Using longitudinal
measurements of labo-
ratory tests, the study

Multi-task Predic-
tion of Disease
Onsets from Longi-

Razavian et
al [24], 2016

nificantly outper-and 2 novel
diagnosis informa-evaluated learning to

predict disease onsets.
tudinal Laboratory
Tests

formed an LR with
several hand engi-
neered, clinically rele-
vant features.

CNNss for multi-
task prediction of
disease onset.

tion of 298,000 in-
dividuals from a
larger cohort of 4.1
million insurance
subscribers be-
tween 2005 and
2013
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Main resultsMethodsFeaturesData setDescriptionTitleAuthor, year

Generating data sets

using the SMOTEu

resulted in significant-
ly more accurate pre-
diction than single

downsizing or MDSv

of the data set.

RFsAge, gender, and 26
laboratory tests

The data set used
in this study origi-
nally comprised
18,625 individual
cases of hepatitis
virus testing over a
decade, from 1997
to 2007.

The impact of 3 bal-
ancing methods and 1
feature selection
method was explored
to assess the ability of

SVMst to classify im-
balanced diagnostic
pathology data associ-
ated with the laborato-
ry diagnosis of HBV
and HCV infections.

Enhancement of
hepatitis virus im-
munoassay out-
come predictions
in imbalanced rou-
tine pathology data
by data balancing
and feature selec-
tion before the ap-
plication of support
vector machines

Richardson
and Lidbury
[25], 2017

The algorithm offered
an additional means
of identifying risk of
CRC and could sup-
port other approaches
to early detection, in-
cluding screening and
active case finding.

Application of
the algorithm in
case-control anal-
ysis of patients
undergoing FBC
testing during
2012 to estimate
predictive values

Age, gender, and CBC
test

2,550,119 patients
who were ≥40
years old from
CPRD

Evaluate an existing
risk algorithm derived
in Israel that identifies
individuals according
to CRC risk using
FBC data through

CPRDw data from the
United Kingdom

Evaluation of a
prediction model
for colorectal can-
cer: retrospective
analysis of 2.5 mil-
lion patient records

Birks et al
[26], 2017

ROC AUC (0.80-
0.83), sensitivity
(0.64-0.75), and
specificity (0.92-0.97)

Supervised ML
algorithms for bi-
nary classifica-
tion (Gaussian

NBz, DT classifi-
er, RF classifier,
and SVM)

Alanine aminotrans-
ferase, alkaline phos-
phatase, bilirubin, crea-
tinine, C-reactive pro-

teins, and WBCy

Pathology and mi-
crobiology data of
patients from all
hospital wards at

ICHNTx were ex-
tracted.

Evaluated the perfor-
mance of different bi-
nary classifiers to de-
tect any type of infec-
tion from a reduced
set of commonly re-
quested clinical mea-
surements

Supervised learn-
ing for infection
risk inference us-
ing pathology data

Hernandez et
al [27], 2017

The study found that
low-yield laboratory
tests were common
(eg, approximately
90% of blood cultures
were normal).

Provided a data-
driven, systemat-
ic method to
identify cases
where the incre-
mental value of
testing is worth
reconsidering

Common laboratory
tests (eg, thyroid stimu-
lating hormone, sepsis
protocol lactate, ferritin,

and NT-PROBNPaa)

Electronic medical
records (Epic) of
71,000 patients ad-
mitted to Stanford
Tertiary Academic
Hospital between
the years 2008 and
2014

The study described
the prevalence of
common laboratory
tests in a hospital envi-
ronment and the rate
of “normal” results to
quantify pretest proba-
bilities under different
conditions.

Predicting Low In-
formation Laborato-
ry Diagnostic Tests

Roy et al [7],
2018

The infection group
had a likelihood of
0.80 (SD 0.09), and
the noninfection
group had a likelihood
of 0.50 (0.29, 95% CI
0.20-0.40; P<.01).
ROC AUC was 0.84
(95% CI 0.76-0.91).

A (SVM) binary
classifier algo-
rithm was devel-
oped and incorpo-
rated into the

EPIC IMPOCae

CDSSaf for inves-
tigation within
this study follow-
ing validation
and pilot assess-
ment.

C-reactive protein,

WCCac, bilirubin, crea-

tinine, ALTad, and alka-
line phosphatase

This study took
place at ICHNT,
comprising 3 uni-
versity teaching
hospitals. The
study took place
between October
2017 and March
2018 with 160,203
individuals.

An SMLab algorithm
was developed to
classify cases into in-
fection versus no infec-
tion using microbiolo-
gy records and 6
available blood param-
eters.

Supervised ma-
chine learning for
the prediction of
infection on admis-
sion to hospital: A
prospective obser-
vational cohort
study

Rawson et al
[28], 2019

A large proportion of
repeat tests were
within an SD of 10%
or 0.1 of the previous
measurement, indicat-
ing that a large vol-
ume of repetitive test-
ing may be contribut-
ing little new informa-
tion.

Six different ML
models for classi-
fication: a DT, a
boosted tree clas-
sifier (Ad-
aBoost), an RF, a
Gaussian NB
classifier, a lasso-
regularized LR,
and a linear re-
gression followed
by rounding to 0
or 1

Troponin, thyroid stim-
ulating hormone,
platelet count, phos-
phate in serum or plas-
ma, partial thromboplas-
tin time, NT-PROBNP,
magnesium, lipase, lac-
tase, heparin activity,
ferritin, creatinine ki-
nase, and C-reactive
protein

Analyzed 6 years
(2008-2014) of in-
patient data from
Stanford Universi-
ty Hospital, a ter-
tiary academic
hospital

Development of a
predictive model that
can identify low-infor-
mation laboratory
tests before they are
ordered

A machine learn-
ing approach to
predicting the sta-
bility of inpatient
lab test results

Aikens et al
[29]
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A new method for
prognosis of PQ poi-
soning with accuracy
of 79.6%

An effective

ELMai model
was developed
for classification
tasks.

Total bilirubin, direct
bilirubin, indirect
bilirubin, total protein,
albumin, albumin-glob-
ulin ratio, alanine
aminotransferase, aspar-
tate aminotransferase,

the ratio of ASTah to
ALT, blood glucose,
urea nitrogen, and crea-
tinine

The biochemical
indexes of 101 pa-
tients poisoned
with PQ who were
hospitalized in the
emergency room of
First Affiliated
Hospital of Wen-
zhou Medical Uni-
versity from 2013
to 2017

Explore useful index-
es from biochemical
tests and identify their
predictive value in
prognosis of patients

poisoned with PQag

Using Biochemical
Indexes to Prog-
nose Paraquat-Poi-
soned Patients: An
Extreme Learning
Machine-Based
Approach

Hu et al
[30], 2019

High agreement (from
0.664 to 0.911 of the
Lin correlation coeffi-
cient) of the TyG-er
and predictive pow-
er of the TyG-er ap-
proach (up to a mean
absolute er-
ror of 5.68% and cor-
relation coeffi-
cient=0.666; P<.05)

Highly inter-
pretable ML ap-
proach (ie, ensem-
ble regression
forest combined
with data imputa-
tion strategies),
named TyG-er

Gender, age, blood
pressure, height,
weight, and 73 laborato-
ry exams

A total of 2276
records from 968
patients not affect-

ed by T2Dak; the
longitudinal patient
observational peri-
od was from 2010
to 2018 (FIM-
MG_obs data set)

The study aimed to
discover nontrivial
clinical factors in

EHRaj data to deter-
mine where the in-
sulin resistance condi-
tion is encoded.

TyG-er: An ensem-
ble Regression
Forest approach for
identification of
clinical factors re-
lated to insulin re-
sistance condition
using Electronic
Health Records

Bernardini et
al [31], 2019

The findings suggest
that low-yield diagnos-
tic testing is common
and can be systemati-
cally identified
through data-driven
methods and patient
context–aware predic-
tions.

Regularized LR,
regression and

round, NB, NNal

multilayer percep-
trons, DT, RF,
AdaBoost, and

XGBam

The core features includ-
ed patient demograph-
ics, change of the most
recent test, number of
recent tests, history of
Charlson Comorbidity
Index categories, which
specialty team was
treating the patient,
time since admission,
statistical data, and lab-
oratory test results.

A total of 116,637
inpatients treated
at Stanford Univer-
sity Hospital from
January 2008 to
December 2017;
60,929 inpatients
treated at the Uni-
versity of Michi-
gan from January
2015 to December
2018; and 13,940
inpatients treated
at the University of
California, San
Francisco from
January 2018 to
December 2018
were assessed.

Identify inpatient diag-
nostic laboratory test-
ing with predictable
results that are unlike-
ly to yield new infor-
mation

Prevalence and
Predictability of
Low-Yield Inpa-
tient Laboratory
Diagnostic Tests

Xu et al
[32], 2019

The ROC AUC for
the proposed GBM
model was 84.7%
with a sensitivity of
71.6%, and the ROC
AUC for the proposed
LR model was 84%
with a sensitivity of
73.4%.

Predictive models
using LR and

GBMan tech-
niques

Age, sex, fasting blood
glucose, BMI, high-
density lipoprotein,
triglycerides, blood
pressure, and low-densi-
ty lipoprotein

13,309 Canadian
patients aged be-
tween 18 and 90
years

The objective of this
study was to build an
effective predictive
model with high sensi-
tivity and selectivity
to better identify
Canadian patients at
risk of having diabetes
mellitus based on pa-
tient demographic da-
ta and the laboratory
test results during
their visits to medical
facilities.

Predictive models
for diabetes melli-
tus using machine
learning techniques

Lai et al
[33], 2019

The study demonstrat-
ed that ML can effi-
ciently predict some
vitamin deficiencies
in patients with active
psychiatric symptoms.

ML models

(KNNao, LR,
SVM, and RF)

Age, sex, and 29 rou-
tine blood tests

Reviewed 497 pa-
tients admitted to
the Department of
Neuropsychiatry at
Tokyo Metropoli-
tan Tama Medical
Center between
September 2015
and August 2017

Predict vitamin B defi-
ciency using ML
models from patient
characteristics and
routine blood test re-
sults that can be ob-
tained within 1 hour

Efficient Predic-
tion of Vitamin B
Deficiencies via
Machine-Learning
Using Routine
Blood Test Results
in Patients with In-
tense Psychiatric
Episode

Tamune et al
[34], 2020
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The results of these 2-
feature models show
not only that serum
creatinine and ejection
fraction are sufficient
to predict survival of
patients with heart
failure from medical
records but also that
using these 2 features
alone can lead to more
accurate predictions
than using the original
data set features in
their entirety.

Apply several
ML classifiers to
both predict the
patient’s survival
and rank the fea-
tures correspond-
ing to the most
important risk
factors

Age, anemia, high
blood pressure, creati-
nine phosphokinase, di-
abetes, ejection frac-
tion, sex, platelets,
serum creatinine, serum
sodium, smoking, and
follow-up period

Medical records of
299 patients with
heart failure collect-
ed at the Faisal-
abad Institute of
Cardiology and the
Allied Hospital in
Faisalabad (Pun-
jab, Pakistan) from
April 2015 to De-
cember 2015

ML in particular can
predict patients’ sur-
vival from their data
and individuate the
most important fea-
tures among those in-
cluded in their medi-
cal records.

Machine learning
can predict sur-
vival of patients
with heart failure
from serum creati-
nine and ejection
fraction alone

Chicco and
Jurman [35],
2020

Was able to omit 15%
of laboratory tests
with <5% prediction
accuracy loss

The study ran a
novel DL method
combining 4 fea-
tures: lab (labora-
tory test data), D
(demographic da-
ta), V (vital data,
which were mean
and SD in the
vicinity of the
corresponding
laboratory tests),
and C (encoding
to indicate miss-
ing values).

Sodium, potassium,
chloride and serum bi-
carbonate, total calci-
um, magnesium, phos-

phate, BUNaq, creati-
nine, hemoglobin,
platelet count, and
WBC.

The data set
(MIMIC III) con-
tained 598,444 lab-
oratory test results
and 5,598,079 vital
sign records from
a total of 41,113
adult patients (aged
≥16 years) admit-
ted to critical care
units between 2001
and 2012.

Propose a novel DLap

method to jointly pre-
dict future laboratory
test events to be omit-
ted

Predict or draw
blood: An integrat-
ed method to re-
duce lab tests

Yu et al
[36], 2020

The study found that,
with FBCs, RF, shal-
low learning, and a
flexible ANN model
predict patients with
SARS-CoV-2 with
high accuracy be-
tween populations on
regular wards
(AUC=94%-95%) and
those not admitted to
the hospital or in the
community
(AUC=80%-86%).

RF and lasso-
based regularized
generalized linear
models and ANN

Age and CBC (FBC)
parameters

The data set includ-
ed in the analysis
and training con-
tained anonymized
FBC results from
5664 patients seen
at the Hospital Is-
raelita Albert Ein-
stein (São Paulo,
Brazil) from March
2020 to April 2020
and who had sam-
ples collected to
perform the SARS-

CoV-2 RT-PCRas

test during a visit
to the hospital.

The aim of the study
was to use ML, an

ANNar, and a simple
statistical test to iden-
tify patients who were
SARS-CoV-2–posi-
tive from FBCs with-
out knowledge of
symptoms or history
of the individuals.

Use of Machine
Learning and Arti-
ficial Intelligence
to predict SARS-
CoV-2 infection
from Full Blood
Counts in a popula-
tion

Banerjee et
al [37], 2020

Prediction of SARS-
CoV-2 PCR positivity
demonstrated a C-
statistic of 78% and
an optimized sensitivi-
ty of 93%.

The study trained

an L2av-regular-
ized LR model.

Absolute neutrophil
count, absolute lympho-
cyte count, and hemat-
ocrit

357 CBC data
from January 2020
to March 2020 or-
dered within 24
hours of a SARS-
CoV-2 PCR test
(based off the

WHOau assay)

Predict SARS-CoV-2

PCRat positivity based
on CBC components
and patient sex

A predictive tool
for identification of
SARS-CoV-2
PCR-negative
emergency depart-
ment patients using
routine test results

Joshi et al
[38], 2020

Their accuracy ranged
from 82% to 86%, and
sensitivity ranged
from 92% to 95%.

DT, ETsax, KNN,
LR, NB, RF, and
SVMs

Gender, age, leuko-
cytes, platelets, C-reac-
tive protein, transami-
nases, gamma-glutamyl-
transferase, lactate dehy-
drogenase, neutrophils,
lymphocytes, mono-
cytes, eosinophils, and
basophils

Data set available

from the IRCCSaw

Ospedale San Raf-
faele 2 with 279
cases randomly ex-
tracted from the
end of February
2020 to mid-March
2020

Develop a predictive
model based on ML
techniques to predict
positivity or negativi-
ty for COVID-19

Detection of
COVID-19 Infec-
tion from Routine
Blood Exams with
Machine Learning:
A Feasibility Study

Brinati et al
[39], 2020
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79.82% precision,
81.52% recall,
80.64% F1-score,
82.61% accuracy, and
89.88% AUC using
the NN classifier

ANN, SVM, DT,
linear regression,
and LR classifier

16 laboratory tests plus
a CBC

Laboratory records
from 5425 patients
between 2010 and
2017

Implementation of
ML methods for iden-
tifying the risk of dia-
betes polyneuropathy
based on structured
electronic medical
records collected from
databases of medical
information systems

Identification of
risk factors for pa-
tients with dia-
betes: diabetic
polyneuropathy
case study

Metsker et al
[40], 2020

The ensemble model
achieved outstanding
performance, with an
overall accuracy of
99.88%, AUC of
99.38%, sensitivity of
98.72%, and specifici-
ty of 99.99%.

The proposed
model used 3
classifiers—extra
trees, RF, and
LR—combining
their predictions
with an XGB.

24 laboratory tests, in-

cluding INRay, albu-
min, D-dimer, and pro-
thrombin time

The study used
5644 data samples
with 559 con-
firmed COVID-19
cases from a pub-
licly available data
set from Albert
Einstein Hospital
in Brazil.

The study proposed
ERLX, which is an
ensemble learning
model for COVID-19
diagnosis from routine
blood tests.

Ensemble learning
model for diagnos-
ing COVID-19
from routine blood
tests

AlJame et al
[41], 2020

Predicted positive
tests for SARS-CoV-
2 a priori at a sensitiv-
ity of 75% and a
specificity of 49%,
patients who were
SARS-CoV-2–posi-
tive who required
hospitalization with
0.92 AUC, and pa-
tients who were
SARS-CoV-2–posi-
tive who required crit-
ical care with 0.98
AUC

LR, NN, RF,
SVM, and gradi-
ent boosting
(XGB)

The study used 106
routine clinical, labora-
tory, and demographic
measurements.

The study used
anonymized data
from a cohort of
5644 patients seen
at the Hospital Is-
raelita Albert Ein-
stein in São Paulo,
Brazil, in the early
months of 2020.

The aim of this study
was to develop, study,
and evaluate clinical
predictive models that
estimate, using ML
and based on routinely
collected clinical data,
which patients are
likely to receive a
positive SARS-CoV-
2 test or require hospi-
talization or intensive
care.

Clinical Predictive
Models for
COVID-19: Sys-
tematic Study

Yadaw et al
[42], 2020

For the complete OSR
data set, the AUC for
the algorithms ranged
from 0.83 to 0.90; for
the COVID-19–specif-
ic data set, it ranged
from 0.83 to 0.87.

RF, NB, LR,
SVM, and KNN

72 features: CBC, bio-
chemical, coagulation,
hemogas analysis and
CO-oximetry values,
age, sex, and specific
symptoms at triage

1925 patients on
admission to the

EDaz at the San
Raffaele Hospital

(OSRba) from
February 2020 to
May 2020

Routine blood tests
can be exploited using
the authors’method to
diagnose COVID-19.

Development,
evaluation, and
validation of ma-
chine learning
models for
COVID-19 detec-
tion based on rou-
tine blood tests

Cabitza et al
[43], 2020

The algorithm identi-
fied 3% of the popula-
tion who required an
investigation and 35%
of patients who re-
ceived a diagnosis of
CRC within the fol-
lowing 6 months.

Validate the abili-
ty of an algorithm
that uses laborato-
ry and demo-
graphic informa-
tion to identify
patients at in-
creased risk of
CRC

Gender, year of birth,
and at least one CBC
test, including cell pa-
rameters

The eligible study
cohort population
included 2,855,994

KPNCbb Health
Plan members be-
tween 1996 and
2015.

Validate a predictive
score generated by an
ML algorithm with
common laboratory
test data to identify
patients at high risk of
CRC in a large, com-
munity-based, ethni-
cally diverse cohort

Validation of an
Algorithm to Iden-
tify Patients at
Risk for Colorectal
Cancer Based on
Laboratory Test
and Demographic
Data in Diverse,
Community-Based
Population

Schneider et
al [44], 2020

The model achieved
an AUC of 0.854. The
model, too, predicted
initial SARS-CoV-2
RT-PCR positivity in
66% of individuals
whose RT-PCR result
changed from nega-
tive to positive within
2 days.

Used a GBDTbf

model

26 laboratory tests, in-
cluding C-reactive pro-
tein, ferritin, lactic acid
dehydrogenase, and
magnesium

5893 patients eval-
uated at the

NYPHbd and

WCMbe from
March 2020 to
April 2020

Develop an ML model
integrating age, gen-
der, race, and routine
laboratory blood tests,
which are readily
available with a short

TATbc

Routine Laborato-
ry Blood Tests
Predict SARS-
CoV-2 Infection
Using Machine
Learning

Yang et al
[45], 2020
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The model found high
discrimination across
age, race, sex, and
disease severity sub-
groups and had high
diagnostic yield at low
score cutoffs in a
screening population
with a disease preva-
lence of <10%. Such
a model could rapidly
identify those at low
risk of COVID-19 in
a “rule out” method
and might reduce the
need for PCR testing
in such patients.

XGB ML model14 laboratory tests, in-
cluding sodium, bicar-
bonate, BUN, and chlo-
ride

Model training
used 2183 PCR-
confirmed cases
from 43 hospitals
during the pandem-
ic; negative con-
trols were 10,000
prepandemic pa-
tients from the
same hospitals.
External validation
used 23 hospitals
with 1020 PCR-
confirmed cases
and 171,734
prepandemic nega-
tive controls.

Develop an ML model
to rule out COVID-19
using only routine
blood tests among
adults in EDs

Development and
External Valida-
tion of a Machine
Learning Tool to
Rule Out COVID-
19 Among Adults
in the Emergency
Department Using
Routine Blood
Tests: A Large,
Multicenter, Real-
World Study

Plante et al
[46], 2020

Sensitivity of 27.9%
(95% CI 20.3-36.4),
specificity of 94.1%
(95% CI 93.3-94.8),

PPVbk of 13.9% (95%
CI 10.6-17.9), and

NPVbl of 97.4% (95%
CI 97.2-97.7)

LDAbi, KNN,
SVM with a lin-
ear kernel, and
RF along with

CARTbj

WCC, absolute neu-
trophils, lymphocytes,
monocytes, eosinophils,

basophils, NLRbg,

platelets, MPVbh, MPV
to platelet ratio, and
monocyte to lympho-
cyte ratio

129 women from
the Rotunda Hospi-
tal in 2019, a
stand-alone ter-
tiary-level materni-
ty hospital in Ire-
land

Use ML tools to iden-
tify if bacteremia in
pregnant or postpar-
tum women could be
predicted using FBC
parameters other than
the WCC

Predicting bacter-
aemia in maternity
patients using full
blood count param-
eters: A supervised
machine learning
algorithm approach

Mooney et al
[47], 2020

The model predicted
normality or abnormal-
ity of laboratory tests
with a 98.27% accura-
cy (AUC=0.9885;
sensitivity 97.84%;
specificity 98.8%;
PPV=99.01%;
NPV=97.39%) on
20.26% reduced labo-
ratory tests and recom-
mended 98.1% of
transitions to be
checked.

Built a DL model
with 5 variants
for each of the
combinations of
input features

Sodium, potassium,
chloride, serum bicar-
bonate, total calcium,
magnesium, phosphate,
BUN, creatinine,
hemoglobin, platelet
count, WBC, age, gen-
der, and race

The Medical Infor-
mation Mart for
Intensive Care III
data set with
53,423 distinct
hospital admis-
sions of adult pa-
tients to intensive
care units at Beth
Israel Deaconess
Medical Center

Build an ML model
that predicts laborato-
ry test results and pro-
vides a promising lab-
oratory test reduction
strategy using spatial-
temporal correlations

A deep learning
solution to recom-
mend laboratory
reduction strategies
in ICU

Yu et al
[48], 2020

A combination of rou-
tine laboratory
biomarkers (CRP,
LDH, and ferritin ±D-
dimer) can be used to
predict the diagnosis
of COVID-19 with an
accepted sensitivity
and specificity before
proceeding to defini-
tive diagnosis through
RT-PCR.

A retrospective
observational co-
hort study based

on STARDbo

guidelines to de-
termine the diag-
nostic accuracy
of COVID-19

Age, gender, C-reactive
protein, ferritin, LDH,
and D-dimer.

The sample size
was based on a
minimum sensitivi-
ty and specificity
of 95%; the study
randomly selected
medical records of
938 patients sus-
pected to have
COVID-19 be-
tween May 2020
and December
2020.

The study aimed to
evaluate the diagnos-
tic accuracy of

CRPbm, ferritin,

LDHbn, and D-dimer
in predicting positive
cases of COVID-19 in
Iraq.

Predictive Value of
C-reactive Protein,
Lactate Dehydroge-
nase, Ferritin and
D-dimer Levels in
Diagnosing
COVID-19 Pa-
tients: a Retrospec-
tive Study

Kaftan et al
[49], 2021
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The optimized ensem-
ble model achieved an
F1-score of 81% and
a prediction accuracy
of 92% for the 5 most
common diseases.

The study devel-
oped a new en-
semble model by
combining their
DL (DNN) model
with their 2 ML
models (SVM
and RF) to im-

prove AIbq perfor-
mance.

The study confirmed a
total of 88 attributes,
including sex and age.

The study analyzed
data sets provided
by the Department
of Internal
Medicine from
5145 patients visit-
ing the emergency
room and those ad-
mitted to Catholic
University of Ko-
rea St. Vincent’s
Hospital in Suwon,
Korea, between
2010 and 2019.

Build a new optimized
ensemble model by

blending a DNNbp

model with 2 ML
models for disease
prediction using labo-
ratory test results

Development of
machine learning
model for diagnos-
tic disease predic-
tion based on labo-
ratory tests

Park et al
[50], 2021

It was possible to de-
tect a group of units
of the map with a dis-
crimination power of
approximately 83% to
patients who were
SARS-CoV-2–posi-
tive.

Nonsupervised
clustering analy-
sis with NN

SOMbr as a strate-
gy of decision-
making

14 variables present in
the blood test

5644 patients allo-
cated to the Albert
Einstein Hospital
in São Paulo,
Brazil, in the Kag-
gle platform on
March 2020

Identify potential
variables in routine
blood tests that can
support clinician deci-
sion-making during
COVID-19 diagnosis
at hospital admission

Simple hemogram
to support the deci-
sion-making of
COVID-19 diagno-
sis using clusters
analysis with self-
organising maps
neural network

Souza et al
[51], 2021

The model exhibited
a high sensitivity of
81.9%, a specificity of
97.9%, and an AUC
of 0.97.

SBAbt algorithm:
a CRISP-

DMbu–based ML
pipeline consist-
ing of 5 process-
ing stages and us-
ing an XGB mod-
el

Age, gender, and 35
laboratory tests

52,306 patients ad-
mitted to the De-
partment of Infec-
tious Diseases,

UMCLbs, Slove-
nia, in March 2020
and April 2020

The aim of this study
was to determine the
diagnostic accuracy of
an ML model built
specifically for the di-
agnosis of COVID-19
using the results of
routine blood tests.

COVID-19 diagno-
sis by routine
blood tests using
machine learning

Kukar et al
[52], 2021

Urinary tract infec-
tion: ROC AUC=0.68,
sensitivity=52%, and
specificity=79%;
COVID-19: ROC
AUC=0.8, sensitivi-
ty=82%, and specifici-
ty=75%; heart failure:
ROC AUC=0.78, sen-
sitivity=72%, and
specificity=72%

MDCalc software
was used to ana-
lyze and apply
ML models using
DTs and ensem-
bles, LR, and
DNNs.

A maximum of 247
FBC features from

CSVbv data were used;
134 were categorical,
and 101 were numeric.

A total of 156,570
hematology raw
data were collected
between July 2019
and June 2020
from Waitakere
Hospital and North
Shore Hospital.

The study proposed a
method for screening
FBC metadata for evi-
dence of communica-
ble and noncommuni-
cable diseases using
ML.

A machine learn-
ing PROGRAM to
identify COVID-
19 and other dis-
eases from haema-
tology data

Gladding et
al [53], 2021

Experimental results
show that the pro-
posed DF model has
an accuracy of 99.5%,
sensitivity of 95.28%,
and specificity of
99.96%.

DFbw model con-
structed from 3
different classi-
fiers: extra trees,
XGB, and Light-
GBM

Age, gender, and 13
laboratory tests

5644 patient
records that were
collected from
March 2020 to
April 2020 (Albert
Einstein Israelita
Hospital, located in
São Paulo, Brazil)
and 279 patients
who were admitted
to San Raffaele
Hospital, Milan,
Italy, from the end
of February 2020
to mid-March 2020

Develop an ML predic-
tion model to accurate-
ly diagnose COVID-
19 from clinical or
routine laboratory test
data

Deep forest model
for diagnosing
COVID-19 from
routine blood tests

AlJame et al
[41], 2021

JMIR Bioinform Biotech 2022 | vol. 3 | iss. 1 | e40473 | p. 13https://bioinform.jmir.org/2022/1/e40473
(page number not for citation purposes)

Cardozo et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Main resultsMethodsFeaturesData setDescriptionTitleAuthor, year

For the development
cohort and the internal
and external valida-
tion cohorts using LR,
the AUCs were 0.987,
0.999, and 0.992, re-
spectively.

RF, SVM, KNN,
XGB, extra trees,
and LR

Age, lymphocyte count,
D-dimer, CRP, and cre-
atinine

654 patients with
and without
COVID-19 were
admitted to the ED
in Boston (March
2020 to April
2020) and Tongji
Hospital in China
(January 2020 to
February 2020).

Development of a
prediction model of
high mortality risk for
patients both with and
without COVID-19

Mortality Predic-
tion Utilising
Blood Biomarkers
to Predict the
Severity of
COVID-19 Using
Machine Learning
Technique

Rahman et al
[54], 2021

The combined WBC-
HFLC marker was the
best diagnostic marker
for both mild and seri-
ous disease. CRP and
lymphocyte count
were early indicators
of progression to seri-
ous disease, whereas

WBC, NEUTbz, IG,
and the NLR were the
best indicators of criti-
cal disease.

Enter binary LR
analysis was con-
ducted to deter-
mine the influ-
ence of the param-
eters on the out-
come.

Age, gender, and 13
laboratory tests

A retrospective
case-control study
conducted with da-
ta collected from
patients admitted
to the ED of Uni-
versity General
Hospital of Ioanni-
na (Ioannina,
Epirus, Greece)
from March 2020
to March 2021

Investigate the ability
of WBC and its sub-

sets, HFLCbx, IGby,
and C-reactive protein
to aid diagnosis of
COVID-19 during the
triage process and as
indicators of disease
progression to serious
and critical condition

Diagnostic value of
white blood cell
parameters for
COVID‐19: Is
there a role for
HFLC and IG?

Myari et al
[55], 2021

The study reported an
average AUC of 95%.
The best-performing
model (SVM) report-
ed an average AUC of
97.5%.

RF, LR, KNN,
SVM, NB, and
ensemble

Age, gender, and 23
routine laboratory tests

Data from 1736
patients collected
at the EDs of the
IRCCS Hospital
San Raffaele and
the IRCCS Istituto
Ortopedico
Galeazzi of Milan
(Italy)

Evaluate whether ML
models for COVID-19
diagnosis based on
CBC data could be ro-
bust to cross-site
transportability and,
thus, could be reliably
deployed as medical
decision support tools

External validation
of Machine Learn-
ing models for
COVID-19 detec-
tion based on
Complete Blood
Count

Campagner
et al [56],
2021

JMIR Bioinform Biotech 2022 | vol. 3 | iss. 1 | e40473 | p. 14https://bioinform.jmir.org/2022/1/e40473
(page number not for citation purposes)

Cardozo et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Main resultsMethodsFeaturesData setDescriptionTitleAuthor, year

On average, accuracy,
specificity, and AUC
were 92.11%,
84.56%, and 92.2%
for the first data set;
93.16%, 93.02%, and
93.2% for the second
data set; and 92.5%,
85%, and 92.2% for
the third data set, re-
spectively.

Seven ML meth-
ods —LR, KNN,
DT, SVM, NB,
ET, RF. In addi-
tion to XGB
—along with 4
DL methods:
DNN, CNN,
RNN, and LSTM

Routine laboratory tests
according to each of the
3 data sets

A total of 3 open-
access study data
sets from 2498 pa-
tients containing
routine blood test
data from COVID-
19 and
non–COVID-19
cases were used.

The study presented
the development and
comparison of various
models for diagnosing
positive cases of
COVID-19 using 3
data sets of routine
laboratory blood tests.

COVID-19 diagno-
sis from routine
blood tests using
artificial intelli-
gence techniques

Babaei
Rikan et al
[57], 2022

aHBV: hepatitis B virus.
bHCV: hepatitis C virus.
cACT: Australian Capital Territory.
dCBC: complete blood count.
eFBC: full blood count.
fRPART: Recursive Partitioning.
gDT: decision tree.
hMICE: Multivariate Imputation by Chained Equations.
iCRC: colorectal cancer.
jTHIN: The Health Improvement Network.
kRF: random forest.
lROC AUC: area under the receiver operating characteristic curve.
mML: machine learning.
nLR: logistic regression.
oRFR: RF regression.
pAUC: area under the curve.
qLSTM: long short-term memory.
rRNN: recurrent neural network.
sCNN: convolutional neural network.
tSVM: support vector machine.
uSMOTE: Synthetic Minority Over-sampling Technique.
vMDS: multiple downsizing.
wCPRD: Clinical Practice Research Datalink.
xICHNT: Imperial College Healthcare National Health Service Trust.
yWBC: white blood count.
zNB: naïve Bayes.
aaNT-PROBNP: N-terminal pro–brain natriuretic peptide.
abSML: supervised machine learning.
acWCC: white cell count.
adALT: alanine aminotransferase.
aeEPIC IMPOC: Enhanced, Personalized, and Integrated Care for Infection Management at the Point-of-Care.
afCDSS: clinical decision support system.
agPQ: Paraquat.
ahAST: aspartate transaminase.
aiELM: extreme learning machine.
ajEHR: electronic health record.
akT2D: type 2 diabetes.
alNN: neural network.
amXGB: extreme gradient boosting.
anGBM: gradient boosting machine.
aoKNN: k-nearest neighbor.
apDL: deep learning.
aqBUN: blood urea nitrogen.
arANN: artificial NN.

JMIR Bioinform Biotech 2022 | vol. 3 | iss. 1 | e40473 | p. 15https://bioinform.jmir.org/2022/1/e40473
(page number not for citation purposes)

Cardozo et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


asRT-PCR: reverse transcription polymerase chain reaction.
atPCR: polymerase chain reaction.
auWHO: World Health Organization.
avL2: L2-penalization.
awIRCCS: Scientific Institute for Research, Hospitalization and Healthcare.
axET: extremely randomized trees.
ayINR: international normalized ratio.
azED: emergency department.
baOSR: San Raphael Hospital.
bbKPNC: Kaiser Permanente Northern California.
bcTAT: turnaround time.
bdNYPH: New York Presbyterian Hospital.
beWCM: Weill Cornell Medicine.
bfGBDT: gradient boosting DT.
bgNLR: neutrophil to lymphocyte ratio.
bhMPV: mean platelet volume.
biLDA: linear discriminant analysis.
bjCART: classification and regression trees.
bkPPV: positive predictive value.
blNPV: negative predictive value.
bmCRP: C-reactive protein.
bnLDH: lactate dehydrogenase.
boSTARD: Standards for the Reporting of Diagnostic Accuracy Studies.
bpDNN: deep NN.
bqAI: artificial intelligence.
brSOM: self-organizing map.
bsUMCL: University Medical Centre Ljubljana.
btSBA: Smart Blood Analytics.
buCRISP-DM: cross-industry process for data mining.
bvCSV: comma-separated value.
bwDF: deep forest.
bxHFLC: high-fluorescence lymphocyte cell.
byIG: immature granulocyte count.
bzNEUT: neutrophil count.

Discussion

Principal Findings
This study aimed to identify studies that used laboratory tests
to predict new results. Our interest in this line of study was
motivated by the possibility that laboratory tests can be used
more comprehensively to search for hidden information,
discovering previously unknown pathologies. This methodology
is highly advantageous for the diagnostic process of medical
laboratories. In this sense, intelligent systems could
automatically analyze the examinations performed on a patient
and make predictions in the search for hidden pathologies. In
positive cases, alarms would be generated, and complementary
examinations would be suggested. In most cases, the collected
sample could be used to carry out new tests.

The use of laboratory tests to predict results has been
increasingly explored. In recent years, several studies have
obtained good results using clinical data to search for diagnoses
[58]. In addition to laboratory tests, the studies in this review
used patient histories, imaging tests, and medical diagnoses.
For example, Wu et al [59] and Hische et al [60], in addition to

laboratory tests, also made use of other clinical data in the search
for a diagnosis. Some studies, such as those by Ravaut et al [61]
and Le et al [62], aimed to determine whether a patient was
likely to develop the disease in the future, which is quite relevant
as part of a process in predictive medicine. These studies
obtained good results but used clinical or diagnostic data. This
information is generated through the analysis by a physician,
unlike most laboratory tests such as the complete blood count,
which follows an automated analytical process without the
intervention of human factors.

However, in this research, we only looked for studies that
emphasized laboratory tests to predict new information. This
methodology can innovate the diagnostic processes of medical
laboratories and has attracted the interest of several researchers
over time, especially in recent years owing to the COVID-19
pandemic. In total, we found 40 studies referring to the last
decade that met the established criteria, with most studies
published in 2020 (15/40, 38%) and 2021 (10/40, 25%).

All (40/40, 100%) the studies presented in this review used
laboratory tests as input data in addition to some clinical data
such as gender and age. Some (12/40, 30%) studies used >20
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parameters, such as the study by Yadaw et al [42], who used
>100 different parameters. Others (6/40, 15%) used very few
parameters, as is the case of the work by Joshi et al [38], who
used only 3 parameters (absolute neutrophil count, absolute
lymphocyte count, and hematocrit). However, most (22/40,
55%) studies used approximately 10 parameters, with the
complete blood count as the primary data source. Finally, 22%
(9/40) of the studies used full blood count data only.

When analyzing the quality assessment tool (Table 1), all studies
showed good results, with an average value of 88%. As most
of the studies were characterized as retrospective cohort studies,
the data used were generated before the research. Thus,
questions 8 and 10 of the questionnaire [19], referring to the
levels and amount of exposure, were answered mainly with not
applicable or cannot be determined. This fact lowered the
average slightly in the evaluation process of most (38/40, 95%)
studies. However, 5% (2/40) of the studies [29,31] were
evaluated with 100%. Another 45% (18/40) of the studies were
evaluated with 93%, 32% (13/40) of the studies were evaluated
with 86%, and 18% (7/40) of the studies were evaluated with
79%.

Table 2 presents a summary of the main characteristics of the
studies. In addition to a brief description of the research, it is
possible to know the methodology and the main results in a
simplified way.

It is not possible to make a comparison between the
methodology and results of the selected studies as they had
different objectives. Our goal was to confirm the possibility of
predicting specific examinations from other examinations and
which ML methods and parameters were most used.

Regarding the models, most (39/40, 98%) studies used ML
methods with supervised training, almost always aiming at the
exam responsible for the diagnosis. Of the 40 studies selected,
only 3 (8%) used regression methods, whereas the other 37
(92%) used classification methods. Among the most used
models, we can mention logistic regression, random forest,
support vector machine, and k-nearest neighbor, trained as
binary classifiers. In the case of neural networks, they were
almost always used with deep learning techniques (deep neural
networks [DNNs]).

The random forest method was the most tested, with 50%
(20/40) of the studies using it. The next most tested methods
were logistic regression with 45% (18/40) of the studies and
support vector machine with 35% (14/40) of the studies,
followed by naïve Bayes, decision tree, and XGBoost with 25%
(10/40) of the studies each. By contrast, artificial neural
networks were tested in 18% (7/40) of the studies, in addition
to DNN methods in another 15% (6/40) of the studies.

In general, the most efficient method was the DNN, such that,
of the 6 studies that used this method, 5 (83%) had better results
with it. Next, there was the XGBoost method, such that, of the
10 studies that used this method, 7 (70%) considered it better,
followed by random forest, where, of the 20 studies that tested
this method, 12 (60%) had better results with it. In a simplified
way, we can say that the DNN method was 83% better than the

others, followed by XGBoost (70% better) and random forest
(60% better).

Although the DNN model presents better results, the random
forest method is quite attractive, not only because it is simple
and fast but also because it presents the path taken in the search
for the result, which is quite relevant in research in the health
care domain.

Research that initially caught our attention was conducted by
Luo et al [5] to predict ferritin levels to detect patients with
anemia. The research used 41 laboratory tests from 989 patients
admitted to the tertiary care hospital in Boston, Massachusetts,
for 3 months in 2013. The work had good results, with an area
under the curve (AUC) of 97%. The most interesting thing is
that, even in cases where the ferritin tests were false negatives,
the system could detect anemia. This result shows that laboratory
tests may have more information when analyzed holistically
than when referring to the specific test performed.

Rawson et al [28] used laboratory tests to identify cases of
bacterial infection among 160,203 hospitalized patients over 6
months. An interesting feature of this research is that only 6
tests were used as input parameters (C-reactive protein, white
blood cell count, bilirubin, creatinine, alanine aminotransferase,
and alkaline phosphatase), achieving good results, with an area
under the receiver operating characteristic curve of 0.84. The
use of a low number of examinations was an important factor
in building the model. This situation makes it possible to use
tests already performed on patients, making the screening
process fast and straightforward without collecting more blood
samples from a patient.

Of the selected studies, 8% (3/40) focused on the prediction of
colorectal cancer. Colorectal cancer has a high incidence rate,
accounting for many deaths worldwide. The early identification
of this type of pathology can be very advantageous to
governments and health systems, who can provide adequate
treatment to prevent the worsening of the disease. Kinar et al
[23] obtained good results in identifying patients with a
propensity to develop colorectal cancer 1 year before the
development of the disease. In this study, 20 parameters from
the complete blood count of approximately 2 million patients
were used. Similarly, Birks et al [26] used the complete blood
count of 2.5 million patients, obtaining an AUC of 75% for
more extended periods (3 years) and 85% for shorter periods
(6 months). More recently, Schneider et al [44] also obtained a
mean AUC of 78% in a study of approximately 2.8 million
patients seen between 1996 and 2015.

Another 12% (5/40) of the studies [7,29,32,36,48] aimed to
identify tests that would not change over time, remaining
classified as normal without the need to be repeated. In general,
all of them showed good results; however, we highlight the
work by Xu et al [32], who obtained an AUC of >90% for 12
months of analysis.

A recent publication that also caught our attention was the work
by Park et al [50]. The authors used deep learning models to
predict 39 different diseases in their research, reaching an
accuracy of >90% and an F1-score of 81% for the 5 most
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common diseases. They used 88 features from 5145 patients
who visited the emergency room.

The use of laboratory tests and ML techniques has increased in
recent years, mainly owing to the COVID-19 pandemic. Of the
40 studies in this review, 27 (68%) published between 2020
and 2022 were selected. Of these 27 studies, 19 (70%) studies
were related to SARS-CoV-2, a total of 8 (30%) studies were
published in 2020, a total of 9 (33%) studies were published in
2021, and 1 (4%) study was published in 2022. All of them used
laboratory tests to predict some unknown information, and most
(34/40, 85%) studies focused on the search for a diagnosis.

Analyzing aspects related to training and the potential for bias
based on the data sets, a common feature among most studies
was the fact that 92% (37/40) of them were treated as a
classification problem using supervised models. In this process,
a point to be considered is the fact that the target classes of the
models are almost always defined by a medical diagnosis or a
reference value. In class prediction, the results of values close
to the classification margins may be affected, influencing the
final result of the model.

Another aspect that draws attention is the fact that the data sets
were highly unbalanced, with some (3/40, 8%) studies
[21,23,26] where the target represented <1% of the data set,
implying some care to avoid errors in the training and evaluation
process. In this sense, most (34/40, 85%) of the analyzed studies
used the area under the receiver operating characteristic curve
as the main evaluation metric, with an average value of
approximately 85%. Although this metric is quite common in
health-related problems, some authors defend [63] the use of
the area under the precision-recall curve as the most appropriate
metric for strongly unbalanced bases.

Considering the aspects discussed, we question whether, in the
search for a diagnosis, it would not be more appropriate to treat
the prediction of new tests as a regression problem, leaving the
responsibility of decision-making to health professionals.

Limitations
One of the limitations of this study was how the articles were
selected, analyzing only the data from the titles, keywords, and
abstracts initially reviewed.

Another limitation was the nonuse of studies whose data source
consisted of imaging examinations and clinical history and
where the objective was not a prediction.

These criteria greatly reduced the number of selected studies.
However, our objective was to analyze only studies that had a
main focus on the use of laboratory tests. These requirements
are fundamental in building models that can automatically
analyze test results without affecting the processes of medical
laboratories.

Conclusions
In the search for scientific research that used laboratory tests
and ML models to predict new information, 40 studies were
found that fit the established criteria. Among these, all (40/40,
100%) sought to predict unknown information, with most
(34/40, 85%) focused on the search for a diagnosis.

We have seen a large increase in the use of this methodology
in recent years, mainly motivated by the COVID-19 pandemic.
Of the 40 works selected from 2010 onward, 27 (68%) focused
on SARS-CoV-2, published between 2020 and 2022.

All (40/40, 100%) studies used only laboratory tests, and the
complete blood count was the most used. The use of routine
examinations is encouraged, mainly as they are more frequently
performed and have greater availability. Among the prediction
methods, most (39/40, 98%) studies used ML models with
supervised learning. These techniques have been spreading and
obtaining good results over the years, and binary classification
models are still the most used, with XGBoost and DNNs being
the models with the best results. These models almost always
seek to determine the occurrence or not of a specific event,
which has proved to be very useful in the triage of hospitalized
patients and in the search for a diagnosis.

In general, all the evaluated studies presented good results,
making predictions according to the research objective.
Responding to the objectives of this work, we conclude that it
is possible to predict specific tests from other laboratory tests,
with the complete blood count being the most used in the
prediction of new results. The most used method was binary
classification with supervised learning.

Thus, the use of laboratory tests and ML techniques represents
an innovative potential for the process of medical laboratories,
allowing for a more comprehensive analysis of the tests
performed, enabling the early discovery of unknown pathologies
or errors in the tests performed. This automatic analysis is very
advantageous as it is low-cost and does not interfere with the
processes already established by medical laboratories.
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