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Abstract

Background: T helper (Th) 9 cells are a novel subset of Th cells that develop independently from Th2 cells and are characterized
by the secretion of interleukin (IL)-9. Studies have suggested the involvement of Th9 cells in variable diseases such as allergic
and pulmonary diseases (eg, asthma, chronic obstructive airway disease, chronic rhinosinusitis, nasal polyps, and pulmonary
hypoplasia), metabolic diseases (eg, acute leukemia, myelocytic leukemia, breast cancer, lung cancer, melanoma, pancreatic
cancer), neuropsychiatric disorders (eg, Alzheimer disease), autoimmune diseases (eg, Graves disease, Crohn disease, colitis,
psoriasis, systemic lupus erythematosus, systemic scleroderma, rheumatoid arthritis, multiple sclerosis, inflammatory bowel
disease, atopic dermatitis, eczema), and infectious diseases (eg, tuberculosis, hepatitis). However, there is a dearth of information
on its involvement in other metabolic, neuropsychiatric, and infectious diseases.

Objective: This study aims to identify significant differentially altered genes in the conversion of Th2 to Th9 cells, and their
regulating microRNAs (miRs) from publicly available Gene Expression Omnibus data sets of the mouse model using in silico
analysis to unravel various pathogenic pathways involved in disease processes.

Methods: Using differentially expressed genes (DEGs) identified from 2 publicly available data sets (GSE99166 and GSE123501)
we performed functional enrichment and network analyses to identify pathways, protein-protein interactions, miR-messenger
RNA associations, and disease-gene associations related to significant differentially altered genes implicated in the conversion
of Th2 to Th9 cells.

Results: We extracted 260 common downregulated, 236 common upregulated, and 634 common DEGs from the expression
profiles of data sets GSE99166 and GSE123501. Codifferentially expressed ILs, cytokines, receptors, and transcription factors
(TFs) were enriched in 7 crucial Kyoto Encyclopedia of Genes and Genomes pathways and Gene Ontology. We constructed the
protein-protein interaction network and predicted the top regulatory miRs involved in the Th2 to Th9 differentiation pathways.
We also identified various metabolic, allergic and pulmonary, neuropsychiatric, autoimmune, and infectious diseases as well as
carcinomas where the differentiation of Th2 to Th9 may play a crucial role.

Conclusions: This study identified hitherto unexplored possible associations between Th9 and disease states. Some important
ILs, including CCL1 (chemokine [C-C motif] ligand 1), CCL20 (chemokine [C-C motif] ligand 20), IL-13, IL-4, IL-12A, and
IL-9; receptors, including IL-12RB1, IL-4RA (interleukin 9 receptor alpha), CD53 (cluster of differentiation 53), CD6 (cluster of
differentiation 6), CD5 (cluster of differentiation 5), CD83 (cluster of differentiation 83), CD197 (cluster of differentiation 197),
IL-1RL1 (interleukin 1 receptor-like 1), CD101 (cluster of differentiation 101), CD96 (cluster of differentiation 96), CD72 (cluster
of differentiation 72), CD7 (cluster of differentiation 7), CD152 (cytotoxic T lymphocyte–associated protein 4), CD38 (cluster

JMIR Bioinform Biotech 2023 | vol. 4 | e42421 | p. 1https://bioinform.jmir.org/2023/1/e42421
(page number not for citation purposes)

Khokhar et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

mailto:dr.purvipurohit@gmail.com
http://www.w3.org/Style/XSL
http://www.renderx.com/


of differentiation 38), CX3CR1 (chemokine [C-X3-C motif] receptor 1), CTLA2A (cytotoxic T lymphocyte–associated protein 2
alpha), CTLA28, and CD196 (cluster of differentiation 196); and TFs, including FOXP3 (forkhead box P3), IRF8 (interferon
regulatory factor 8), FOXP2 (forkhead box P2), RORA (RAR-related orphan receptor alpha), AHR (aryl-hydrocarbon receptor),
MAF (avian musculoaponeurotic fibrosarcoma oncogene homolog), SMAD6 (SMAD family member 6), JUN (Jun proto-oncogene),
JAK2 (Janus kinase 2), EP300 (E1A binding protein p300), ATF6 (activating transcription factor 6), BTAF1 (B-TFIID TATA-box
binding protein associated factor 1), BAFT (basic leucine zipper transcription factor), NOTCH1 (neurogenic locus notch homolog
protein 1), GATA3 (GATA binding protein 3), SATB1 (special AT-rich sequence binding protein 1), BMP7 (bone morphogenetic
protein 7), and PPARG (peroxisome proliferator–activated receptor gamma, were able to identify significant differentially altered
genes in the conversion of Th2 to Th9 cells. We identified some common miRs that could target the DEGs. The scarcity of studies
on the role of Th9 in metabolic diseases highlights the lacunae in this field. Our study provides the rationale for exploring the
role of Th9 in various metabolic disorders such as diabetes mellitus, diabetic nephropathy, hypertensive disease, ischemic stroke,
steatohepatitis, liver fibrosis, obesity, adenocarcinoma, glioblastoma and glioma, malignant neoplasm of stomach, melanoma,
neuroblastoma, osteosarcoma, pancreatic carcinoma, prostate carcinoma, and stomach carcinoma.

(JMIR Bioinform Biotech 2023;4:e42421) doi: 10.2196/42421
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Introduction

CD4+ T helper (Th) cells have been classified into different
subsets based on the cytokine profile that each subset secretes
and their distinct role in regulating immunity and inflammation.
Previous studies have shown that immune cells play a role in
various metabolic [1-3] and infectious [3-7] diseases. Th9 cells

are a subset of CD4+ Th cells that develop from naïve T cells
and release interleukin (IL)-9. The generation of Th9 cells from
naïve Th0 cells requires a Th2 state as an intermediate. While
both Th2 and Th9 cells express PU.1 (spleen focus forming
virus [SFFV] proviral integration oncogenes), IRF4 (interferon
regulatory factor 4), and GATA3 (GATA binding protein 3),
the latter have upregulated expression of IRF4 and suppressed
PU.1. The Th2 cells, generated during Th0 cell differentiation,
further evolve into Th9 cells in the presence of activated
Smad3/Smad4 and IRF4 pathways. The prolonged transforming
growth factor beta (TGFβ) stimulation transforms the Th2 cells
into Th9 cells and alters the cytokine secretion pattern from an
IL-4–dominant phenotype to an IL-9–dominant one [8]. Th9
cells produce IL-9, which is crucial in regulating autoimmune
and allergic reactions [9]. Various other cytokines also affect
the development of Th9 cells and IL-9 production. IL-23 inhibits
IL-9 production, whereas IL-1 and IL-33 stimulate the
production of IL-9 in T cells [10,11]. Similarly, IL-25 stimulates
the release of IL-9 from T cells [12]. In addition, costimulatory
receptors, such as OX40, have been found to be a stimulant for
the development of Th9 cells [13]. Thus, the development of
Th9 cells is a result of integrating multiple positive and negative
signals in the form of cytokines and costimulation from surface
receptors.

Th9 cells can manifest differently in various diseases. Th9 cells
have been demonstrated to incite allergic airway disease [14].
Th9 cells have also been implicated in tumor immunity [10].
Interestingly, the evolution of Th2 to Th9 cells does influence
the pathophysiology of multiple diseases. The nitric
oxide–mediated airway inflammation has been attributed to the

inducing effect of nitric oxide on the development of Th9 cells
[15]. The tricarboxylic acid cycle metabolite succinate stimulates
Th9 cell differentiation and leads to Th9 cell–mediated tumor
regression. Similarly, Th9 differentiation resulting from IL-35
stimulation accentuates the inflammatory process and leads to
an immunoglobulin (Ig) class switch toward IgG4 in
IgG4-related diseases [16].

Unfortunately, the experimental approach to Th9 cells has been
riddled with difficulty, because a selective deficiency model
for Th9 lineage has not yet been defined. In addition, factors
needed to develop Th9 cells such as IL-4 and IRF4 are required
to develop other Th subsets [17]. Our study aimed to compare
the transcriptome of Th2 and Th9 cells to identify the pattern
of changes in the expression of various genes when the Th2
cells get differentiated into Th9 cells. We also aimed to assess
these genes, which are markedly altered in the transition of Th2
to Th9 cells, in various other diseases to enlist the possible
diseases in which Th9 cells may play a crucial role.

Methods

Expression Profiling: Gene Expression Omnibus Assay
to Data Mining for Th2 to Th9 Cells Differentiation
We performed a search in the Gene Expression Omnibus (GEO)
database using several keywords, including “Healthy Control,”
“Wild Type,” “Mice,” “Mus musculus,” “Th9,” “Th2,” and
“Expression profiling by array” from January 1, 2012, to
December 17, 2020, and selected 2 gene series expressions
(GSEs) data for further study: GSE99166 and GSE123501.
GSE99166 contained 4 samples of Th2 wild-type cells
(GSM2634701, GSM2634702, GSM2634711, and
GSM2634712) and 5 samples of Th9 wild-type cells
(GSM2634695, GSM2634703, GSM2634704, GSM2634713,
and GSM2634714) from the spleen. GSE123501 contained 2
samples of Th2 wild-type cells (GSM3505597 and
GSM3505602) and another 2 samples of Th9 wild-type cells
(GSM350598 and GSM3505603) from the spleen (Figure 1).
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Figure 1. Flow diagram illustrating the data collection process and the number of data sets considered for inclusion. Th: T helper; Treg: T regulatory
cell.

Assortment and Identification of Codifferentially
Expressed Messenger RNAs From the Spleen (2
Different) Data Sets
The differentially expressed genes (DEGs) were obtained from
the 13 samples of 2 different data sets (GSE99166 and
GSE123501) using the GREIN (GEO RNA-seq Experiments
Interactive Navigator) platform (BD2K-LINCS Data
Coordination and Integration Center). This interactive online
web tool analyses GEO RNA-seq data [18]. The DEGs extracted
from the data sets comprised genes from Th2 and Th9 cells. As
we wanted to assess the alteration of genes during the conversion
of Th2 to Th9 cells, the analysis was performed with DEGs of
Th2 cells as the standard to which DEGs of Th9 cells were

compared. The workflow for the data processing and analysis
is portrayed in Figure 2.

The DEGs were considered upregulated when the expression
of genes in Th9 cells was higher than that in Th2 cells. The
cutoff for the selection was kept at P<.05, and overlapping
DEGs between 2 data sets (GSE99166 and GSE123501) on
comparison of Th2 and Th9 cells were identified by the Venn
diagram tool [19,20]. In addition, the common upregulated,
downregulated, and oppositely regulated DEGs of these 2 data
sets (GSE99166 and GSE123501) were identified. The fold
change expression distribution was visualized by a heat map
and violin plot using the Linear Models for the Microarray Data
(limma) Package of R (R Foundation for Statistical Computing)
and Orange Data Mining (University of Ljubljana) [21,22].
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Figure 2. Flowchart of the data processing and analysis for Th2 to Th9 cells differentiation. DEG: differentially expressed gene; KEGG: Kyoto
Encyclopedia of Genes and Genomes; mRNA: messenger RNA; Th: T helper.

Functional Enrichment of Gene Ontology for Common,
Regulated DEGs
The codifferential genes were divided into 3 parts, namely, (1)
common upregulated, (2) common downregulated, and (3)
common, oppositely regulated. The top ranked ontological
features of all DEGs were analyzed with STRING. The Gene
Ontology (GO) terms included the following 3 categories:
biological processes, cellular components, and molecular
functions. The significant GO terms regulating genes are
presented in a radar graph with a negative log10 (false discovery
rate). We defined P<.05 as a significant value.

Kyoto Encyclopedia of Genes and Genomes Pathway
Analysis of Top Ranked Significant, Common,
Regulated DEGs
We searched the functionally significant Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways for top ranked
significantly altered DEGs using the STRING and
WikiPathways databases. We identified important genes
participating in each pathway, and selected the top 7 pathways
based on negative log10 (false discovery rate) and P values
(<.05) that were important for further study.

Genes Assortment and Construction of a
Protein-Protein Interaction Network of the Top
Enriched Pathways
We downloaded the complete gene list of the top ranked 7
individual pathways with an interaction network from the KEGG
database. We revisualized and constructed the pathway with

the help of Cytoscape (Cytoscape Team/Institute for Systems
Biology; an open-source software platform for visualizing
complex networks and integrating these with any type of
attribute data) [23] and marked the DEGs that play a significant
role in the differentiation of Th2 to Th9 cells.

Identification of Top Regulatory MicroRNAs Involved
in the Th2 to Th9 Differentiation Pathways
The top 10 microRNAs (miRs) that targeted the hub genes were
predicted by the well-established miR target prediction database
miRNet version 22.0 [24], with special emphasis on the selected
organism. Default values for the degree of interaction and
betweenness were selected. Common miRs and their targeted
messenger RNAs (mRNAs) of all groups were sorted by the
Venn diagram.

Construction of a Gene-Disease–Based Genomic
Pathway Interaction Network
The DEGs that were identified to play a significant role in Th2
to Th9 differentiation were further analyzed for their
involvement in various pathways pertaining to specific diseases
using DisGeNET (IBI Group) [25], a discovery platform that
describes genes, transcription factors (TFs), chemokines, and
IL in association with various specific diseases.

Ethical Considerations
The study was approved by the Institutional Ethics Committee
of All India Institute of Medical Sciences (AIIMS) Jodhpur
(certificate reference number AIIMS/IEC/2019-20/792).
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Results

Assortment of Significant DEGs in the Differentiation
of Th2 to Th9 Cells
The Mus musculus (C57BL/6) mRNA expression profiles of
GSE99167 and GSE123501, which were selected for this study,
included the expression profiles of Th2 and Th9 cells obtained
from the spleen. We extracted and compared mice spleen

samples from 2 different studies to identify genes that are
involved in the differentiation of Th2 to Th9 cells. In both
groups, 254 common mRNAs were identified, and 634 common
DEGs were identified, of which 236 were downregulated and
260 were upregulated. We performed a quality assessment of
the selected samples for our expression profiles (Figures 3A-3I;
see Tables S1 and S2 in Multimedia Appendix 1, and
Multimedia Appendix 2 for larger version of figures).
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Figure 3. Differential mRNA expression of the 2 data sets (GSE99166 and GSE123501) for Th2 to Th9 differentiation: Venn diagrams (A-C) of the
3 data sets' total common, downregulated, and upregulated DEGs; volcano plot for the data sets GSE99166 (D) and GSE123501 (E); and heat maps of
common downregulated (F) and common upregulated (G) DEGs extracted from the data sets consisting of genes from Th2 and Th9 cells. FCE levels
are displayed in ascending order from blue to yellow. Violin plots (H and I) showing FCE distribution of both data sets for common upregulated and
common downregulated DEGs. DEG: differentially expressed gene; FCE: fold change expression; mRNA: messenger RNA; Th: T helper.

Identification and Assortment of Codifferentially
Expressed ILs, Cytokines, Receptors, and TFs
Our analysis identified genes encoding various ILs and receptors
whose differential expression may determine the differentiation
of Th2 to Th9 cells. Some important ILs identified were CCL1

(chemokine [C-C motif] ligand 1), CCL20 (chemokine [C-C
motif] ligand 20), IL-13, IL-4, IL-12A, and IL-9. The important
receptors identified in our analysis were IL-12RB1, IL-4RA
(interleukin 4 receptor alpha), CD53 (cluster of differentiation
53), CD6 (cluster of differentiation 6), CD5 (cluster of
differentiation 5), CD83 (cluster of differentiation 83), CD197
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(cluster of differentiation 197), IL-1RL1 (interleukin 1
receptor-like 1), CD101 (cluster of differentiation 101), CD96
(cluster of differentiation 96), CD72 (cluster of differentiation
72), CD7 (cluster of differentiation 7), CD152 (cytotoxic T
lymphocyte–associated protein 4), CD38 (cluster of
differentiation 38), CX3CR1 (chemokine [C-X3-C motif]
receptor 1), CTLA2A (cytotoxic T lymphocyte–associated
protein 2 alpha), CTLA28, and CD196 (cluster of differentiation
196). In addition, the differential expression of various TFs such
as FOXP3 (forkhead box P3), IRF8 (interferon regulatory factor
8), FOXP2 (forkhead box P2), RORA (RAR-related orphan
receptor alpha), AHR (aryl-hydrocarbon receptor), MAF (avian
musculoaponeurotic fibrosarcoma oncogene homolog), SMAD6

(SMAD family member 6), JUN (Jun proto-oncogene), JAK2
(Janus kinase 2), EP300 (E1A binding protein p300), ATF6
(activating transcription factor 6), BTAF1 (B-TFIID TATA-box
binding protein associated factor 1), BAFT (basic leucine zipper
transcription factor), NOTCH1 (neurogenic locus notch homolog
protein 1), GATA3, SATB1 (special AT-rich sequence binding
protein 1), BMP7 (bone morphogenetic protein 7), and PPARG
(peroxisome proliferator–activated receptor gamma) may
influence the differentiation of Th2 to Th9 cells. The expression
of the aforementioned immune regulators is represented by a
heat map and Venn diagram in Figures 4A-4F (also see Tables
S3-S5 in Multimedia Appendix 1, and Multimedia Appendix 2
for larger version of figures).
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Figure 4. Differential mRNA expression of the 2 data sets (GSE99166 and GSE123501) for Th2 to Th9 differentiation: (A, B) interleukin,
cytokines/chemokines; (C, D) immune regulating transcription factor; (E, F) immune receptor heat maps and violin plot of all, downregulated, and
upregulated DEGs; (G, J) enrichment analysis of common DEGs; (G) Gene Ontology cellular component terms; (H) Gene Ontology molecular function
terms; (I) Gene Ontology biological process terms; and (J) the KEGG pathway. The radar plot or circular area graph values are represented in the -log10
(FDR). DEG: differentially expressed gene; FCE: fold change expression; FDR: false discovery rate; KEGG: Kyoto Encyclopedia of Genes and Genomes;
mRNA: messenger RNA; Th: T helper.

Functional Enrichment and KEGG Pathway Analysis
of DEGs Involved in the Transition of Th2 to Th9 Cells
A GO analysis of DEGs classified them into 3 functional classes
(Figures 4G-4I; see Multimedia Appendix 2 for larger versions
of figures): cellular component, biological process, and
molecular function.

The enrichments for the 3 DEG classes with significantly altered
expression are shown in Tables S6-S8 in Multimedia Appendix
1. In the KEGG pathway enrichment analysis, the identified

genes were enriched in various KEGG pathways such as
cytokines-cytokines interaction, Th1 and Th2 cell differentiation,
inflammatory bowel disease (IBD), Th17 cell differentiation,
the Fc epsilon RI signaling pathway, the T-cell receptor
signaling pathway, and pathways in cancer (Figure 4J and Tables
S9 and S10 in Multimedia Appendix 1; see Multimedia
Appendix 2 for larger version of figures).
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Construction of the Protein-Protein Interaction
Network of DEGs Involved in the Transition of Th2
to Th9 Cells
We downloaded the complete protein-protein interaction (PPI)
network of the identified KEGG pathways from the KEGG
database. The Cytoscape software was used for the construction
of the network. The significantly altered DEGs of cytokines,
chemokines, receptors, and TFs were highlighted in the
respective networks. Our analysis of the KEGG pathway
enrichment and PPI network demonstrated that the genes that
had a significantly altered expression in Th9 cells when

compared with Th2 cells also played a significant role in other
immune regulating pathways. These affected pathways were
mainly involved in cytokines-cytokines interaction, Th1 and
Th2 differentiation, CTLA4 (cytotoxic T lymphocyte–associated
protein 4) regulation, T-cell receptor signaling, Fc epsilon
signaling, Th17 cell differentiation, IBD, and cancer. The
concurrent presence of these genes in the aforementioned
pathways highlights the significance of the differentiation of
Th2 to Th9 in diseases where these pathways are affected. The
role of the identified DEGs in these pathways and their
interaction with other genes has been depicted in Figures 5-7.
See Multimedia Appendix 2 for larger images.

JMIR Bioinform Biotech 2023 | vol. 4 | e42421 | p. 9https://bioinform.jmir.org/2023/1/e42421
(page number not for citation purposes)

Khokhar et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Illustration of the Th2 to Th9 differentiation, mainly the 7 pathways involved in this regulatory mechanism: (A) heat maps expression (the
upper section of the heat map shows FCE values represented by varying color densities); (B) PPIs networks (top significant DEGs of the network are
illustrated in cyan); (C) common posttranscriptional regulatory microRNA pathways—(1) cytokine-cytokine receptor interaction, (2) Th1 and Th2 cell
differentiation, and (3) inflammatory bowel disease. FCE: fold change expression; PPI: protein-protein interaction; Th: T helper.
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Figure 6. Illustration of the Th2 to Th9 differentiation, mainly the 7 pathways involved in this regulatory mechanism: (A) heat maps expression (the
upper section of the heat map shows FCE values represented by varying color densities); (B) PPIs networks (top significant DEGs of the network are
illustrated in cyan); (C) common posttranscriptional regulatory microRNA pathways—(4) Th17 cell differentiation, (5) Fc epsilon and RI pathway, (6)
T-cell receptor signaling pathway. DEG: differentially expressed gene; FCE: fold change expression; PPI: protein-protein interaction; Th: T helper.

Assessment of Gene Similarity in Pathways Identified
in the KEGG Pathway Enrichment Analysis
We performed a gene similarity analysis to find similar genes
in all the 7 KEGG pathways identified with the help of the Venn
diagram and calculate the percentage of similarity among the

genes that were altered. We observed that 7/13 (54%) genes
were similar between the “Th1 and Th2 cell differentiation”
and “IBD” pathways, whereas 7/14 (50%) genes were similar
between the “Th1 and Th2 cell differentiation” and “Th17 cell
differentiation” pathways (Figure 7A; see Multimedia Appendix
2 for larger images).
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Figure 7. Illustration of the Th2 to Th9 differentiation, mainly the 7 pathways involved in this regulatory mechanism: (A) heat maps expression (the
upper part of the heat map shows FCE values represented by varying color densities); (B) PPIs networks (top significant DEGs of the network are
presented in cyan); (C) common posttranscriptional regulatory microRNA pathways; (D) gene or DEGs similarity in regulatory pathways. DEG:
differentially expressed gene; FCE: fold change expression; PPI: protein-protein interaction; Th: T helper.

Prediction of miRs That Target the DEGs Involved in
the Transition of Th2 to Th9 cells
To explore the posttranscriptional regulation of the identified
DEGs, we predicted the miRs that could target the identified
DEGs. We identified the following 53 common miRs that could
target the DEGs listed in our analysis: let-7b-5p, let-7f-5p,
let-7g-5p, let-7i-5p, miR-1-3p, miR-101-3p, miR-103a-3p,
miR-107, miR-10a-5p, miR-10b-5p, miR-122-5p, miR-124-3p,
miR-129-3p, miR-130a-3p, miR-133a-3p, miR-139-5p,
miR-147a, miR-155-5p, miR-16-5p, miR-17-5p, miR-186-5p,
miR-195-5p, miR-200b-3p, miR-20a-3p, miR-20a-5p,
miR-20b-5p, miR-21-3p, miR-21-5p, miR-22-3p, miR-224-5p,
miR-24-3p, miR-26a-5p, miR-26b-5p, miR-27-5p, miR-27a-3p,
miR-302a, miR-30a-5p, miR-30c-5p, miR-30d-5p, miR-320a,
miR-34-5p, miR-374-5p, miR-426, miR-429, miR-618,
miR-6499-3p, miR-93-5p, miR-98-5p, miR-103a-3p,
miR-139-5p, miR-147a, miR-195-5p, and miR-27a-5p.

Identification of Diseases Associated With
Dysregulation of the Identified miRs and DEGs
Subsequent to the identification of pathways affected as a result
of the alteration of DEGs found in our analysis, we further

searched for possible diseases whose pathogenesis is affected
by alterations in these pathways. We listed the diseases where
alterations in the aforementioned 7 pathways have already been
documented, and these were as follows: metabolic diseases (eg,
diabetes mellitus, diabetic nephropathy, hyperactive behavior,
hypertensive disease, ischemic stroke, steatohepatitis, liver
fibrosis, obesity), allergic and pulmonary diseases (eg, asthma,
chronic obstructive airway disease, chronic rhinosinusitis, nasal
polyps, pulmonary hypoplasia, hay fever), carcinomas (eg, acute
leukemia and myelocytic leukemia, B-cell lymphomas,
lymphoma, adenocarcinoma, breast carcinoma, carcinoma of
the lung, cervical cancer, colorectal carcinoma, glioblastoma
and glioma, liver carcinoma, malignant neoplasm of the
stomach, melanoma, neuroblastoma, osteosarcoma, pancreatic
carcinoma, prostate carcinoma, stomach carcinoma),
neuropsychiatric disorders (eg, mental depression,
schizophrenia, Alzheimer disease), autoimmune diseases (eg,
Graves disease, Crohn disease, colitis, psoriasis, systemic lupus
erythematosus [SLE], systemic scleroderma, rheumatoid
arthritis, multiple sclerosis [MS], IBD, atopic dermatitis,
eczema), and infectious diseases (eg, sepsis, septicemia,
tuberculosis, hepatitis, herpes simplex infections, malaria; Figure
8).
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Figure 8. The diagram illustrates the molecular regulatory process of Th2 to Th9 differentiation in mouse spleen. This regulatory mechanism is regulated
by 7 major pathways controlled by some specific immune regulatory transcription factors, receptors, and cytokines/chemokines. The standard and
specific microRNAs play a crucial role in the posttranscriptional regulatory mechanism. These 7 pathways regulate DEGs misexpression involved in
some critical diseases. DEG: differentially expressed gene; KEGG: Kyoto Encyclopedia of Genes and Genomes; Th: T helper.

Discussion

Principal Findings
In this study, we compared 2 different data sets (GSE99166 and
GSE123501) that have compared the mRNA expression in Th2
and Th9 cells. We identified common DEGs that have
significantly altered expression between Th2 and Th9 cells from
these 2 data sets. Sequential assessment of the DEGs and miRs
that had significantly altered expression between Th2 and Th9
cells allows to identify disease states that affect the
differentiation process. Although this analysis does not answer
whether differentiation of Th2 to Th9 is the cause or the effect
of the disease state, it does unravel the possibility of hitherto
unknown associations between various diseases and the process
of differentiation of Th2 to Th9 cells. Our analysis indicates
that differentiation of Th2 to Th9 may play a crucial role via
the alteration of DEGs (Table 1) and miRs (Table 2) in various

metabolic diseases, allergic and pulmonary diseases, carcinomas,
neuropsychiatric disorders, autoimmune diseases, and infectious
diseases. In concordance with the existing literature, it was
revealed that Th9 cells might play a major role in erythematosus,
MS, IBDs, and psoriasis. The role of Th9 cells in autoimmune
disease has already been explored in multiple studies [26],
including in Graves disease [27], Crohn disease [28-30],
psoriasis [31], SLE [32-35], systemic scleroderma [36],
rheumatoid arthritis [37-40], MS [26,36,41,42], IBD
[26,29,30,43], and atopic dermatitis/eczema [44], which have
demonstrated an increased level of differentiation of Th2 to Th9
cells. Th9 cells and IL-9 have been observed in peripheral blood
mononuclear cells and synovial fluid from patients with
rheumatoid arthritis. Toll-like receptor 2 (TLR2) stimulates

naïve CD4+ T cells for IL-9 secretion and Th9 differentiation
by increasing the expression of TFs BATF and PU.1. TLR2
activation results in increased expression of IL-33 and its
receptor ST2, augmenting IL-9 gene expression and Th9 cell
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development [45]. Similarly, in patients with SLE, Th9 cell
differentiation is suppressed by repression of IRF4 expression
[46]. Although the role of Th9 has been explored in experimental
models of MS and IBD, there is insufficient evidence regarding
its role in humans. Th9 cells have been shown to play a
pathogenic role in experimental autoimmune encephalomyelitis,
an animal model of MS [47]. However, only limited studies
have assessed Th9 cells in human patients with MS. The skin
toxicity of Th9 cells makes them a crucial link in the
pathophysiology of multiple skin diseases [48]. Our study
highlights the possibility of Th9 playing a crucial role in the
pathophysiology of various autoimmune skin diseases such as
eczema, atopic dermatitis, psoriasis, and dermatitis. A
predominant expression of IL-9 from Th9 cells was observed
to be a characteristic immunologic signature in psoriatic arthritis
[49]. Similarly, IL-9 and PU.1 gene expressions in atopic
dermatitis were higher and associated with disease severity [50].
In addition, the Th9 cell percentage in patients with atopic
dermatitis correlated with serum IgE levels, highlighting the
link between allergy and the development of Th9 cells [51].
Our in silico analysis further reiterated the involvement of Th9
in various autoimmune pathways. The involvement of IL-9 and
Th9 cells in allergic response can also be seen in other diseases.
One such allergic disease in which Th9 cells have been recently
explored is asthma. Patients with allergic asthma have increased
peripheral blood Th9 cells and elevated levels of serum IL-9
[51]. SGK1 (serum/glucocorticoid regulated kinase 1) has been
shown to enhance the differentiation of Th9 by modulating the
nuclear factor kappa B (NF-κB) signaling pathway in patients
with asthma [52]. The activation of MAPK (mitogen-activated
protein kinase) has also been attributed to the activation of Th9
cells in mice models of asthma [53]. Interestingly, IL-9 and
IL-13 have been elevated in patients with chronic obstructive
airway disease compared with asthma [54]. However, so far,
the Th9 cells have not been explored for their significance in
the pathophysiology of chronic obstructive pulmonary disease.
Interestingly, apart from asthma, our in silico analysis
highlighted chronic obstructive airway disease, tuberculosis,
and chronic rhinosinusitis with nasal polyps as major airway
diseases in which Th9 cells may play a crucial role. Our findings
are in sync with the study of Ye et al [55], which demonstrated
tuberculous pleural effusion to be chemotactic for Th9 cells,
while pleural mesothelial cells in tuberculosis stimulated the
Th9 cell differentiation. This in silico analysis also highlights
the possible role of Th9 in neuropsychiatric diseases. Very few
studies have explored the role of Th9 in neuropsychiatric
disorders. Saresella et al [56] have demonstrated an increase in
the activity of Th9 lymphocytes, while postthymic maturation
pathways showed an accumulation of differentiated effector T

lymphocytes (CD4+). In Alzheimer disease, schizophrenia, and
multiple-episode schizophrenia, although IL-9 has been elevated,

limited studies have been performed to assess the role of Th9
cells in the pathophysiology of the diseases [56,57]. In addition
to the aforementioned diseases, this study identified
malignancies as one of the disease states that could be affected
by the development of Th9 cells. The role of Th9 cells in
modulating immunity in cancer has been widely explored. Th9
cells contribute to antitumor immunity by enhancing the
recruitment and activation of mast cells, natural killer cells,
CD8 T cells, and dendritic cells in the tumor microenvironment.
The antitumor effect of Th9 cells has been documented in
various animal studies. Lu et al [58] have demonstrated the
protective effects of IL-9 and Th9 on tumor development. The

tumor-specific Th9 cells promoted the activation of CD8+

cytotoxic T lymphocytes by recruiting dendritic cells into tumor
tissues and subsequently presenting tumor antigens in
tumor-draining LNs. Th9 cells in tumor tissues mount an
inflammatory response via CTL in a CCL20/CCR6 (chemokine
[C-C motif] receptor 6)-dependent manner [59,60]. Wang et al

[61] also demonstrated that Th9-enriched CD4+ T cells

significantly increased the expansion of activated CD8+ T cells
in a manner that was dependent on the expression of IL-9R
(interleukin 9 receptor). Th9 thus seems to enhance antitumor
immune response through T-cell cytotoxicity and play a crucial
role in controlling the progression of cancer [62]. Apart from
Th9 cells, the cytokine IL-9 has also been widely explored in

cancers. Expression of IL-9 in the serum and circulating CD4+

T cells was significantly upregulated in patients with breast
cancer compared with healthy controls [63]. Purwar et al [10]
demonstrated that IL-9 depletion in RORγt-deficient mice
promoted melanoma growth. Zheng et al [64] demonstrated that
Th9 cells produce IL-9 to induce glioma cell apoptosis and
inhibit tumor growth. Interestingly, tumor-specific Th9 cells
displayed a unique PU.1-TRAF6-NF-kB activation–driven
hyperproliferative feature, suggesting a persistence mechanism
rather than an antiapoptotic strategy. This equips tumor-specific

Th9 cells to become a more effective CD4+ T-cell subset for
adoptive cancer therapy [65]. Although Th9 cells play an
important role in tumor suppression, they have not been studied
in various cancer subtypes. Our analysis suggests a possible
role for Th9 in different cancer types such as malignant
neoplasm of the stomach, melanoma, neuroblastoma,
osteosarcoma, pancreatic carcinoma, and prostate carcinoma.
Finally, our study also highlights the possible role of Th9 in
different metabolic diseases. Interestingly, to our knowledge,
no study has yet explored the role of Th9 in metabolic diseases
such as diabetes and obesity. We want to highlight these lacunae
to open up newer research attempts that would explore the role
of Th9 in metabolic diseases. The insights into the role of Th9
in metabolic diseases would better help delineate the role of
immunological dysregulation in developing metabolic diseases.
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Table 1. Role of various differentially expressed genes in the differentiation of T helper 9 cells and production of IL-9a.

ReferencesEffect on T helper 9 cell differentiationTranscription factorsReceptorCytokine or ligand

[66,67]Both increases and decreasesSTAT1b and STAT3IL-6R and gp130IL-6

[68-70]Both increases and decreasesSTAT1 and STAT3IL-10R1c and IL-10R2IL-10

[71,72]DecreasesSTAT3IL-23R and IL-12RB1IL-23

[73]DecreasesSTAT1IL-27R and gp130IL-27

[74]DecreasesIFN-γ dIL-27RIL-27

[75,76]IncreasesNF-κBe, MYD88f, and IRAKgIL-1R1 and IL-1RACPIL-1α

[77-80]IncreasesMYD88, IRAK, NF-κB, STAT1, IL-9, and

IRF1h
IL-1R1 and IL-1RACPIL-1β

[75,81,82]IncreasesSTAT5, IL-9, BCL-6i, IRF4, and GATA3jIL-2Rα, IL-2Rβ, and γcIL-2

[83-85]IncreasesSTAT6, FOXP3k, IL-9IL-4Rα and γ-chainIL-4

[77,82]IncreasesIL-1β, BCL-6, STAT1, and STAT3IL-21R and γ-chainIL-21

[86]IncreasesACT1l and TRAF6?mIL-17RBIL-25

[87]IncreasesUnknownIL-1RL1 and IL-1RACPIL-33

[69]IncreasesSTAT1IFNAR1n and IFNAR2IFNα and IFNβ

[85,88,89]IncreasesSMADp, IL-9, PU.1q, FOXP3TGFβR2TGFβ o

[81]IncreasesSTAT5, IL-9TSLPRs and IL-7RαTSLP r

[90]IncreasesSMAD, TGFβACTRIIt and ALK4uActivin A

[91]IncreasesPKAx, NFATC2y, GATA3, and PU.1N/AwCGRP v

[15]Increasesp53z, IL-2, STAT5, IL-4Rα, TGFβR2N/ANitric oxide

[92]IncreasesIL-2, STAT5DR3 bbTL1A aa

[67]IncreasesNICD1 ccJaggedNotch

[73]DecreasesSTAT1IFNGR1dd and IFNGR2eeIFNγ

[93]DecreasesSHP2 hhPD1 ggPDL2 ff

aIL: interleukin.
bSTAT: signal transducer and activator of transcription.
cILxR: interleukin receptor (where x corresponds to the interleukin number).
dIFN: interferon.
eNF-κB: nuclear factor kappa B.
fMYD88: myeloid differentiation primary response gene 88.
gIRAK: interleukin-1 receptor-associated kinase 1.
hIRF: interferon regulatory factor.
iBCL-6: B-cell leukemia/lymphoma 6.
jGATA3: GATA binding protein 3.
kFOXP3: forkhead box P3.
lACT1: actin-related gene 1.
mTRAF6: TNF receptor–associated factor 6.
nIFNAR: interferon (alpha and beta) receptor.
oTGF: transforming growth factor.
pSMAD: SMAD family member.
qPU.1: spleen focus forming virus (SFFV) proviral integration oncogene.
rTSLP: thymic stromal lymphopoietin.
sTSLPR: thymic stromal lymphopoietin receptor.
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tACTRII: activin receptor type 2.
uALK4: activin A receptor, type 1B.
vCGRP: calcitonin/calcitonin-related polypeptide.
wN/A: not applicable.
xPKA: protein kinase A.
yNFATC2: nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 2.
zp53: transformation-related protein 53.
aaTL1A: tumor necrosis factor (ligand) superfamily, member 15.
bbDR3: death-domain receptor 3 (tumor necrosis factor receptor superfamily).
ccNICD1: notch1 intracellular domain 1.
ddIFNGR1: interferon gamma receptor 1.
eeIFNGR2: interferon gamma receptor 2.
ffPDL2: programmed cell death 1 ligand 2.
ggPD1: programmed cell death protein 1.
hhSHP2: protein tyrosine phosphatase, nonreceptor type 11.

Table 2. Role of various microRNAs and target genes in the differentiation of Th9a cells in various disease conditions.

ReferenceDifferentiation of Th9Molecular target geneLevel of microRNAType of diseaseStudy modelMicroRNA

[94]IncreasedReducing the expression of

HIF-1αb
UpregulatedLiver cancerMousemiR-145

[95]IncreasedIncreased c-MAF1c, SOCS1d,

CXCL1e, CXCL2f, IL-9Rg/IL-

9h, IL-17Ri/IL-17A

UpregulatedWoundMousemiR-155

[96]IncreasedTNF-α jUpregulatedAcute graft-ver-
sus-host disease

Human and mousemiR-155

[97]Decreased the IL-9 level in
overexpressed Th9 cells

Decreased HIF-2α expressionUpregulatedN/AkMousemiR-15b/miR-
16

[98]DecreasedDecreased FOXO1l expres-
sion

DownregulatedAsthmaBoth human and
mouse

miR-493-5p

[99]DecreasedNFATC1m downregulationUpregulatedN/AMousemiR-143 and
miR-145

[100]Increased Th9/IL-9Decreased SIRT1nUpregulatedMethicillin-re-
sistant Staphylo-
coccus aureus
pneumonia

HumanmiR-155

[101]IncreasedIncreased IRF4oUpregulatedAllergic rhinitisMousemiR-148a-3p

aTh9: T helper 9.
bHIF: hypoxia-inducible factor.
cMAF: avian musculoaponeurotic fibrosarcoma oncogene homolog.
dSOCS1: suppressor of cytokine signaling 1.
eCXCL1: chemokine (C-X-C motif) ligand 1.
fCXCL2: chemokine (C-X-C motif) ligand 2.
gIL-9R: interleukin 9 receptor.
hIL: interleukin.
iIL-17R: interleukin 17 receptor.
jTNF: tumor necrosis factor.
kN/A: not applicable.
lFOXO1: forkhead box O1.
mNFATC1: nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 1.
nSIRT1: sirtuin 1.
oIRF: interferon regulatory factor.
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Limitations
The main limitation of the study is that the analysis is based on
an in silico method where only a few specific wild-type samples
from data sets of previous studies were included; therefore,
further validation of the identified genes and miRNAs is required
in various animal models and human diseases. The data sets
were compiled using different arrays on the Affymetrix platform,
which may account for some of the variability in the results.
However, the functional enrichment for the mRNAs highlighted
some significant pathways related to immune regulation and its
derangements.

Conclusions
This study identified common DEGs of ILs, receptors, and TFs
that have significantly altered expression between Th2 and Th9

cells. The KEGG pathway enrichment analysis identified
cytokines-cytokines interaction, Th1 and Th2 differentiation,
T-cell receptor signaling regulation via CTLA4, Fc epsilon
signaling, and Th17 cell differentiation as the significant
pathways affected by the identified DEGs. Our study identified
hitherto unexplored possible associations between Th9 and
disease states. The interactome analysis also identified pathways
that are involved in various metabolic diseases, allergic and
pulmonary diseases, carcinomas, neuropsychiatric disorders,
autoimmune diseases, and infectious diseases, where
differentiation of Th2 to Th9 may play a crucial role. The
scarcity of studies on the role of Th9 in metabolic diseases
highlights the lacunae in this field. Thus, our study provides the
rationale for exploring the role of Th9 in various metabolic
disorders.
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IL-1R1: interleukin 1 receptor, type I
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IL-1RL1: interleukin 1 receptor-like 1
IL-2R: interleukin 2 receptor, alpha chain
IL-4R: interleukin 4 receptor, alpha
IL-4RA: interleukin 4 receptor, alpha
IL-6R: interleukin 6 receptor, alpha
IL-7R: interleukin 7 receptor
IL-9R: interleukin 9 receptor
IL-10R2: interleukin 10 receptor, beta
IL-12RB1: interleukin 12 receptor, beta 1
IL-12RB1: interleukin 12 receptor, beta 1
IL-17R: interleukin 17 receptor A
IL-17RB: interleukin 17 receptor B
IL-21R: interleukin 21 receptor
IL-23R: interleukin 23 receptor
IRAK: interleukin-1 receptor-associated kinase 1
IRF1: interferon regulatory factor
JAK2: Janus kinase 2
JUN: Jun proto-oncogene
KEGG: Kyoto Encyclopedia of Genes and Genomes
MAF: avian musculoaponeurotic fibrosarcoma oncogene homolog
MAPK: mitogen-activated protein kinase
MS: multiple sclerosis
MYD88: myeloid differentiation primary response gene 88
NFATC1: nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 1
NFATC2: nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 2
NF-κB: nuclear factor kappa B
NICD1: notch1 intracellular domain 1
NOTCH1: neurogenic locus notch homolog protein 1
p53: transformation-related protein 53
PD1: programmed cell death protein 1
PDL2: programmed cell death 1 ligand 2
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SIRT1: sirtuin 1
SLE: systemic lupus erythematosus
SMAD3: SMAD family member 3
SMAD4: SMAD family member 4
SMAD6: SMAD family member 6
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SOCS1: suppressor of cytokine signaling 1
STAT: signal transducer and activator of transcription
TGF: transforming growth factor
Th: T helper
TL1A: tumor necrosis factor (ligand) superfamily, member 15
TLR: Toll-like receptor
TNF: tumor necrosis factor
TRAF6: TNF receptor–associated factor 6
TSLP: thymic stromal lymphopoietin
TSLPR: thymic stromal lymphopoietin receptor
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