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Abstract

Background: There is a great need to develop a computational approach to analyze and exploit the information contained in
gene expression data. The recent utilization of nonnegative matrix factorization (NMF) in computational biology has demonstrated
the capability to derive essential details from a high amount of data in particular gene expression microarrays. A common problem
in NMF is finding the proper number rank (r) of factors of the degraded demonstration, but no agreement exists on which technique
is most appropriate to utilize for this purpose. Thus, various techniques have been suggested to select the optimal value of rank
factorization (r).

Objective: In this work, a new metric for rank selection is proposed based on the elbow method, which was methodically
compared against the cophenetic metric.

Methods: To decide the optimum number rank (r), this study focused on the unit invariant knee (UIK) method of the NMF on
gene expression data sets. Since the UIK method requires an extremum distance estimator that is eventually employed for inflection
and identification of a knee point, the proposed method finds the first inflection point of the curvature of the residual sum of
squares of the proposed algorithms using the UIK method on gene expression data sets as a target matrix.

Results: Computation was conducted for the UIK task using gene expression data of acute lymphoblastic leukemia and acute
myeloid leukemia samples. Consequently, the distinct results of NMF were subjected to comparison on different algorithms. The
proposed UIK method is easy to perform, fast, free of a priori rank value input, and does not require initial parameters that
significantly influence the model’s functionality.

Conclusions: This study demonstrates that the elbow method provides a credible prediction for both gene expression data and
for precisely estimating simulated mutational processes data with known dimensions. The proposed UIK method is faster than
conventional methods, including metrics utilizing the consensus matrix as a criterion for rank selection, while achieving significantly
better computational efficiency without visual inspection on the curvatives. Finally, the suggested rank tuning method based on
the elbow method for gene expression data is arguably theoretically superior to the cophenetic measure.
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Introduction

Nonnegative matrix factorization (NMF) algorithms have been
advanced for the application fields of bioinformatics, artificial
intelligence [1], signal processing systems [2], and music signal
processing systems [3]. Lee and Seung [4] formulated a
parts-based illustrated algorithm to solve the problem of the
NMF puzzle. Furthermore, various algorithms have been
established to develop a solution to the NMF problem depending
on the field [5-8].

Several approaches have been developed for clustering samples,
mutational processes, and gene expression levels that draw
similar expression motifs [4,9-11]. However, cancer analysis
and classification based on genomic data offers a more powerful
method that approach the sensitivity of advanced computational
techniques to tackle certain problems such as modeling multiple,
heterogeneous populations and reducing the number of variables
(genes or mutations). Consequently, the choice of a trivial
number of discriminatory features from thousands of features
enhances crafting successful pinpointing classification systems
[12-14]. Although neural networks are prone to overfitting, if
the examined structure is noisy, as in the case of tumor
expression profiling [15], Pal et al [12] suggested a variation
of a multilayer perceptron network for biomarkers identification.
Nevertheless, these approaches have severe constraints in
capturing the entire framework essential in the data. Moreover,
they generally highlight the dominant forms in a data set and
cannot detect different signatures with a universal standard.
Thus, an unbiased technique is needed for deciphering many
clusters without visual inspection that is also capable of utilizing
a computational program.

A common problem in conventional multivariate data analysis
methods such as factor analysis (FA), principal component
analysis (PCA), cluster analysis, and NMF is to detect the proper
number (r) of factors, principal components, clusters, and ranks,
respectively. Item redundancy is common in long questionnaires
such as those used in a pilot questionnaire study, arguing for
the utilization of FA and the variance inflation factor on a
lifestyle questionnaire. Staffini et al [16] concluded that both
methods are acceptable for item reduction; however, both of
these techniques might produce distinct features as an outcome.

The aim of this study was to utilize the unit invariant knee (UIK)
method for obtaining related biological and molecular
correlations in gene expression data. The UIK method is used
to catch compositions essential for the data and to offer
biological understanding by systematizing both the features and
samples. The approach is based on a “knee point” and its unit
invariant estimation using the extremum distance estimator
method introduced by Christopoulous [17]. In this regard, NMF
decomposes the gene expression data set into fragments of
evocative features such as metagene and mutational signatures.
When applying this method to conventional factorization
techniques such as PCA or FA with World Values Survey Wave
5 United States data [18], certain factors (elements) clearly
explained the questionnaire responses (1=“Not at all like
me”...6=“Very much like me”) [19,20].

Therefore, given an NMF method and a data set (a target
matrix), the tens of thousands of genes regarding a small number
of signatures can be analyzed. Gene expression patterns of
samples can then be studied to determine the expression motifs
of the signatures. The signatures define an interesting
decomposition of genes, analogous to the motifs of Hutchins
et al [10] in which the first value is selected where the residual
sum of squares (RSS) curvature presents an inflection point.
The machinery of the UIK method can then be used to detect
this inflection and expression motifs define a robust clustering
of samples.

In this study, the elbow technique was considered for model
selection utilizing alternative parsing and its robustness was
evaluated [19,21]. The idea behind this approach is to develop
an unbiased computable optimization point of the RSS curve
that can then be used to select tuning parameters. The UIK
method has proven to be useful for a variety of models, from
classifying recordings of echolocation to a decision of predictive
models for soil carbon at the field scale [22,23], but has not
been used for NMF on genetic data to date. The advantage of
the UIK method relative to the cophenetic measure method
[24,25], as another NMF rank estimation measure, is that UIK
yields a closed-form formula that can provide greater insight
and computational speed in simulations, which can then be
applied for selecting the rank of NMF for real high-dimensional
hyperspectral data.

Finally, this study applies the combination of NMF and the UIK
method (designated the uikNMF method) to simplify cancer
classification tasks by clustering tumor samples and mutational
signature data sets. This enables illustrating numerous sturdy
decompositions of genetic and mutational signatures from
experimental and simulated data sets.

Methods

NMF Approach

Given a target matrix Vm×n, NMF identifies nonnegative

matrices such that Nm×r and Mr×n (ie, with all entries≥0) to
present the matrix decomposition as:

V ≈ NM (1)

In practice, N is typically viewed as a basis or metagenes matrix,
and the mixture coefficient matrix and metagene expression
profiles refer to the matrix N. The rank factorization is chosen
such that r≤min(m,n). The goal behind this selection is to explain
and split the details classified among V into r factors (ie, the

columns of N). Given a matrix Vm×n, NMF finds two

nonnegative matrices, Nm×r and Mr×n (ie, with all elements≥0),
to represent the decomposed matrix as

V ≈ NM,

for instance by natural demanding of nonnegative N and M to
minimize the reconstruction error:

||V – NM||F, subject to N ≥ 0, M ≥ 0 (2)

In this case, we consider a gene expression data set characterized
by the expression levels of m genes (probes) by n samples of
unique tissues, cells, cell lines, time points, or experiments. The
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number m of genes usually ranges from hundreds to thousands,
and the n of experiments or patients is typically 100 for gene
expression research. The gene expression data set is presented
by a matrix of expression V of size N×M, whose rows consist
of the expression levels of m genes and columns consist of n
samples.

The aim is to identify a small number of rank factorizations,
each defined as a positive linear combination of the V target
matrix. The positive linear combination of metagenes is
described by the gene expression motif of the samples. To obtain
a dimensional reduction of the microarray data and evaluate the
distinctions among samples, NMF was implemented utilizing
R statistical environment version 3.6.3 with the “NMF” package
[26].

Cophenetic Measure
In the framework of classification analyses, Brunet et al [9]
suggested utilizing the cophenetic correlation coefficient as a
metric asset of the clusters. Furthermore, a cophenetic measure
was proposed as one of the metrics utilizing the consensus
matrix as a criterion for rank selection [25]. Studying the values
of the consensus matrix as a similarity metric, the cophenetic
correlation coefficient is defined as the correlation between the
sample distances induced by the consensus matrix and the
cophenetic distances obtained by its hierarchical clustering.

Proposed UIK Method
Hutchins et al [10] demonstrated how the variation in the RSS
of the estimated matrix resulting from NMF analysis reveals a
robust approximation of the proper number of elements (r).
They employed Lee and Seung’s [4] algorithm to select r, in
which the plot of the RSS presents the first inflection point. In
practice, the rank factorization r can be computed with a
considerably smaller number of iterations, typically 20-30 runs
for each value of r. In contrast, an optimal NMF interpretation
requires a couple of hundred random restarts, which is
computationally costly.

For instance, a fundamental step for any unsupervised algorithm
is to determine the optimal number of clusters (k) into which
the data may be clustered [27]. The elbow method is one of the
most popular methods to determine the optimal value of such
components of optimum features [17,18]. The utilization of
UIK methodology for identification of the knee (elbow) point
of a curve has consistently proven to be immensely
advantageous in a wide variety of studies to locate the optimal
number of “components” on a scree plot of k-means, PCA, FA,
and NMF [27-32].

In many cases, utilization is referred to as uik(x,y), where x is
the vector of ranks, components, clusters, or factors and y is the
related vector of the RSS curve [10,22,33]. In regression
analysis, the term mean squared error (MSE) is sometimes used
to refer to the unbiased estimate of error variance (ie, the RSS
divided by the degrees of freedom). Ulfarsson and Solo [34]
proposed a metric for rank selection in NMF by selecting the
tuning parameters of an unbiased computable estimator of the
MSE [25]. Thus, as illustrated in Figure 1, the aim is to find an
inflection where r meets the proper number of the factorization
ranks utilizing the “elbow point,” which is virtually the point
where a severely decreasing or increasing curve begins to turn
“flat enough” [19,20,22,33,35]. Furthermore, this study
considered the function of the rank factorization curve and used
the function uik() from the R package inflection to select the
optimal rank [33,36,37]. The uik() function detects the
factorization rank when the curve begins to climb faster (start
point) and the point beyond which the curve flattens out (ending
point), which are generally known as the knee points of a curve
(Figure 1). In Figure 1, the emergence of factorization rank for
the Golub et al [38,39] gene expression data set is shown on
the rank survey plot. The optimal rank of the RSS plot is in
between knee points detected by the uik() function of the R
package inflection at the curve to which the cumulative rank
factorization belongs.
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Figure 1. (A) Rank survey plots for residual sum of squares (RSS) and (B) cophenetic coefficient curves factorization rank. The factorization rank
ranges from 3 to 37. The aim is to decide whether the optimal rank factorization is very rigid by simple visual inspection. (C) The function of factorization
rank is selected as the emergence rank of the RSS survey. The rank range between knee points is detected by the uik() function of the R package
"inflection" at the curve of the cumulative rank units. The best fit is determined using a linear regression model.

Cross-validation
This study used cross-validation to select an optimal number
of implicit elements in NMF. The goal of NMF is to obtain
low-dimensional N and M with all nonnegative elements by

minimizing the reconstruction error |V – NM|2. Leaving out a
single entry of V (eg, Vab) and implementing NMF of the
resulting matrix may produce a different result than the actual
result. In other words, finding N and M while minimizing
reconstruction error over all nonmissing entries results in:

∑ij≠ab(Vij – [NM]ij)
2(3)

Consequently, the left-out element Vab can be predicted by
calculating [WH]ab and then determining the prediction error
as:

E(ab) = (Vab – [WH]ab)
2(4)

One can repeat this process by crossing out all entries of Vab

one at a time and adding up the error of prediction overall, aa

and bb. This will lead to the predicted residual sum of squares
(PRESS) value. The PRESS value is defined as E(r) = ∑abE(ab),
which will strongly depend on the rank r. The prediction error,
E(r), will have a minimum defined as an “optimal rank” r.

Since the NMF must be reiterated for each crossed-out value
and might also be difficult to code (depending on the target
matrix entries and how smooth it is to implement NMF with
missing values), this can be a computationally expensive
procedure. For instance, in PCA, one can avoid this by crossing
out entire rows of V, which eventually speeds up the computing
[40]. All the traditional cross-validation rules can apply here.
Therefore, by not including multiple entries instead of a single
entry and iterating the computation process by bootstrapping

the entries instead of looping over all the entries, both techniques
can help speed up the procedure.

Note that various techniques have been developed to select the
optimal rank factorization. For example, Brunet et al [9]
suggested seizing the first value of r for which the cophenetic
coefficient value was decreasing, whereas Frigyesi et al [11]
considered the smallest value at which the decrease in the RSS
is lower than the decay of the RSS simulated from random data.
The aim of this study was to decide how and which approach
performs better on an estimation of the latent factors given
different algorithms of NMF.

Gene Expression Data Set
This study illustrates the utilization of NMF based on the UIK
method to select the optimal rank on the RSS curve with a
leukemia gene expression data set (esGolub) in simplifying
cancer subtypes [38,41,42]. This data set has been used in
several previous studies on NMF and is built in the NMF
package’s data [9,26,43], packed into an ExpressionSet object
[39]. To achieve biologically meaningful results, we used the
entire gene expression data set including 5000 features for 38
leukemia samples. The difference between acute myelogenous
leukemia and acute lymphoblastic leukemia (ALL) has been
noted. ALL is also separated into two subtypes: T-cell and B-cell
ALL.

Furthermore, this data set has served as a touchstone in cancer
classification at the molecule, histology, and stage levels [38,44].
In this study, this data set was reprocessed to compare several
clustering techniques regarding their effectiveness and
permanence in recuperating other differentially expressed genes
(DEGs) and associated pathways. Before the NMF procedure,
dimension reduction is recommended for larger gene expression

JMIR Bioinform Biotech 2023 | vol. 4 | e43665 | p. 4https://bioinform.jmir.org/2023/1/e43665
(page number not for citation purposes)

GuvenJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


data sets by nonspecific criteria based on the characteristics of
the expression estimates (ie, the mean threshold of variance and
genes with the smallest average variances) [45].

For example, by looking at the NMF rank survey plot of RSS
in Figure 1, we want to decide how many basis vectors we
should keep to obtain the optimal rank of the target (original)
matrix. To achieve such a task, an unbiased technique for
deciding the number of clusters without visual interpretation
that is simultaneously capable of utilizing a computational
program is needed.

Simulated Mutational Processes Data
The simulated mutational process data obtained from
Alexandrov et al [46] is publicly available as a MATLAB file
on SigProfiler [47]. They identified the handful of functional
processes for a group of 100 simulated cancer genomes based
on the repeatability of their signatures and low error for
reconstructing the novel catalogs. The data set was generated

by employing 10 mutational processes with different signatures
(motifs), each with 96 mutation types, and adding a Poisson
noise. The data also correspond to the six subtypes: C:G to A:T,
C:G to G:C, C:G to T:A, T:A to A:T, T:A to C:G, and T:A to
G:C and their immediate 5′ and 3′ sequence background.

Analyses were performed utilizing the R programming language.
Before the procedure, the low-quality genes with an inadequate
number of reads were eliminated and gene expression values
were converted to a logarithmic scale. The data set (Table 1)
was then normalized by computing the averages of each sample
in R. The NMF R package was used to draw plots of rank
surveys using the plot() function [48]. Rank survey analysis
was performed to compare the optimal rank with distinct
methods using the inflection package’s uik() and check_curve()
functions [36]. The readMat() function of the R.matlab package
[49] was used to import the simulated mutational processes data
(Table 1) from the MATLAB file into the R environment (see
Supplementary Data S1 in Multimedia Appendix 1).

Table 1. Gene expression and simulated mutational data sets.

SamplesSizeData set

385000×38esGolub gene expression

96100×96Mutational processes

Results

Applications of NMF Based on the UIK Method

Leukemia (esGolub) Data Set
The present results are based on the NMF package of Gaujoux
and Seoighe [26] combined with the technique introduced by
Hutchins et al [10] (Figure 1). However, as shown in Figure 2,
this study also tested other algorithms taken from the “brunet”
and “nsNMF” algorithms to illustrate remarkable differences.
It is important to emphasize that there is no remarkable base in
the experimental data examined herein. Consequently, it is not
possible to demonstrate considerable doubt that the proposed
approach operates effectively on the experimental data set. As
indicated in Figure 2, the uik() function selects the optimal rank
as the curve starts to decline faster (start point) and the point
beyond that the curve flattens out (ending point), which are

generally known as the knee points of a curve (Figure 1). The
UIK method identified 15 components for the brunet algorithm,
whereas the nsNMF algorithm detected 14 latent factors as the
best representation for the whole esGolub data set.

By simply looking at the cophenetic correlation or RSS plots
of rank factorization in Figure 3A, one can confirm that the
optimum rank factorization is 3. For performance reasons, the
submatrix esGolub (1:200) was initially performed with only
10 runs for each rank value. As demonstrated in Figure 3B, the
UIK method of optimal rank factorization was validated by
comparing with Gaujoux’s estimates of the esGolub subdata
set [50] (also see Supplementary Data S2 in Multimedia
Appendix 1). Consensus methods converged on a rank of 3,
replicating the result of Brunet et al [9], in which it was proposed
that 3 factors yielded a more complete understanding of the
esGolub data set with 200 features from 38 leukemia samples.

Figure 2. Application of the unit invariant knee (UIK) method on different algorithms: (A) “Brunet” and (B) “nsNMF.” The optimal rank, which UIK
represents, is 15 for the Brunet algorithm, whereas the UIK of the nsNMF algorithm reveals 14 as an optimum rank, similar to the “Lee” algorithm.
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Figure 3. (A) Estimation of the optimal rank. Nonnegative matrix factorization (NMF) survey plot of quality measures obtained from factorization
rank from 2 to 6 by running the target matrix esGolub [1:200] 10 times. (B) The function of factorization rank is selected as the emergence rank of the
residual sum of squares (RSS) survey. For example, the rank range of 2 to 6 is between knee points detected by the R inflection package's uik()function
at 3. Overall, the method of the UIK estimation was confirmed with former results.

Simulated Mutational Process Data
It is challenging to observe the rank factorization of the
simulated data on the cophenetic coefficient curve (Figure 4A).
Moreover, there is no clue in deciding rank factorization simply
by observing the cophenetic correlation (Figure 4A) and the
RSS (Figure 4B) plots. Nevertheless, the UIK method
successfully validated the results of Alexandrov et al [46] and
calculated 10 mutational signatures for the simulated data. From
the perspective of Frigyesi et al [11], Figure 4B further
demonstrates that the actual optimal value of r=10 with the UIK
method evaluates the ability of each value of the rank to classify
the samples into the same number of classes, which could be
smaller than the cophenetic measure (Figure 4A). Despite a
decline in the cophenetic correlation coefficient value for r=5,

8, 10, the clusters are stationary and reflected as robust by
Brunet et al [9], which produces unmeaningful results that match
the actual signatures. Alexandrov et al [46] considered that the
biological significance of the 10th cluster, for r=10, is less clear
with the cophenetic measure. The sharp decrease in the
cophenetic correlation coefficient at r=13 indicates that
substantially less stability is achieved using more than 10
clusters. Since this approach does not always provide a clear
and consistent cutoff for the choice of r, Alexandrov et al [46]
utilized the average silhouette width of the N clusters as a
measure of reproducibility for the whole solution. Here, the
method of UIK estimation with the former results of actual
signatures according to Alexandrov et al [46] was validated (see
Supplementary Data S3-S4 in Multimedia Appendix 1).

Figure 4. (A) It is complicated to locate the optimal rank with the cophenetic correlation coefficient approach. (B) However, the unit invariant knee
(UIK) method can facilitate this decision more quickly and more accurately, which agrees with the number of signatures detected by Alexandrov et al
[46]. RSS: residual sum of squares.
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Discussion

Principal Results
The novel finding of this study is the ability to apply the UIK
method in selecting optimal ranks based on the RSS curve of
factorization ranks of the NMF technique. First, this study
employed the Golub et al [38] data set and simulated mutational
process data [46,47] utilizing the UIK method, which does not
require averaging out the results from different runs of the nmf()
function [50] or considering the variance between each run.

In the second module, the UIK precisely estimates simulated
data with known dimensions. The UIK technique is free of a
priori rank parameter input and does not require setting initial
parameters that considerably affect the performance. Finally,
this method was tested on gene expression data deconvolution,
achieving optimal rank estimation.

The proposed uikNMF technique was tested on both
experimental gene expression and simulated mutational
processes data sets. Moreover, our recent study of utilization
of the UIK technique on NMF revealed the genetic links of type
2 diabetes (T2D) that could lead to the development of
Alzheimer disease (AD) [51]. The study extracted the most
significant genes, or so-called “metagenes,” using the elbow
method in T2D data, which may be helpful for gaining insight
into the mechanism of AD and the development of related
therapeutics.

This study further shows that the UIK method provides a
credible prediction for gene expression data and precisely
estimates simulated data with known dimensions. The proposed
UIK method based on the RSS curvature’s first inflection point
to estimate the optimal rank is theoretically superior or
equivalent to existing implementation and software. All the
undertaking is done with R programming and is freely available.

As future work, some software functionality ideas include
adapting the UIK method on NMF rank estimation in a single
function package to accommodate analyses of gene expression,
mutational processes, and other biological data sets at the
molecular level.

Limitations
The analysis has some limitations such that other NMF packages
or software on gene expression research were not tested. This
study demonstrates that the UIK method provides a credible
prediction for gene expression data. However, it was simply

assumed that the same algorithms of NMF are used, as far as
the RSS and residual curves would be approximated the same
way so that the UIK method would result in the same optimal
ranks.

Comparison With Prior Work
One of the arguments related to the choice of rank is to remove
noise and recover the signatures [52]. However, when it comes
to NMF, the choice of noise is not obvious as the noisy version
of the target matrix must be nonnegative as well, which suggests
that injected noise may also introduce bias [53]. In addition, the
selection of the noise distribution is yet another hyperparameter
that is not obvious to select. To handle the noise issue, it is
suggested to use gene expression data sets (ie, microarrays)
with low-quality reads and genes with a very low number of
reads removed before DEGs analysis. The DEGs would then
be used as the target matrix for the uikNMF method, as
previously demonstrated with T2D gene expression data [51].

Several methods have been developed to select the optimal rank
factorization [50]. For example, Brunet et al [9] proposed
grabbing the first value of r for which the cophenetic coefficient
rate was declining, whereas Frigyesi et al [11] pondered the
minimum value at which the decrease in the RSS is lower than
the decay of the RSS simulated from random data. The aim of
this study was to develop a method for deciding how and which
approach performs better on an estimation of the latent factors
on given different algorithms of NMF.

Conclusions
This study demonstrates that the elbow method provides a
credible prediction for both gene expression data and for
precisely estimating simulated mutational processes data with
known dimensions. The suggested UIK method is faster than
conventional methods with regard to usage of the consensus
matrix as a benchmark for rank choice, while achieving
considerably better computational adeptness without visual
inspection on the curvatives. It is further argued that the
suggested rank tuning method based on the elbow method with
gene expression data is theoretically superior to the cophenetic
measure. Lastly, the proposed method could be applied to other
types of gene expression data sets to reveal the most significant
genes (so-called “metagenes”) in various diseases, including
T2D and other metabolic diseases, and may further be helpful
for understanding the underlying mechanism of AD and related
neurological disorders.

Data Availability
The Golub gene expression [38] and simulated mutational processes [46] data sets are publicly available. The data and related R
studio codes supporting the findings of the article are available in Multimedia Appendix 1.
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Multimedia Appendix 1
Alexandrov et al [46] simulated mutational signatures data summary (Supplementary Data S1). Implementation of the comparison
of Gaujoux estimates of the esGolub subdata set with the unit invariant knee (UIK) method (Supplementary Data S2). The rank
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survey plot of Alexandrov et al [46] simulated mutational signatures data (Supplementary Data S3). Application of the UIK
method on Alexandrov et al [46] simulated mutational signatures data (Supplementary Data S4).
[PDF File (Adobe PDF File), 988 KB-Multimedia Appendix 1]
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