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Abstract

Background: While genomic variations can provide valuable information for health care and ancestry, the privacy of individual
genomic data must be protected. Thus, a secure environment is desirable for a human DNA database such that the total data are
queryable but not directly accessible to involved parties (eg, data hosts and hospitals) and that the query results are learned only
by the user or authorized party.

Objective: In this study, we provide efficient and secure computations on panels of single nucleotide polymorphisms (SNPs)
from genomic sequences as computed under the following set operations: union, intersection, set difference, and symmetric
difference.

Methods: Using these operations, we can compute similarity metrics, such as the Jaccard similarity, which could allow querying
a DNA database to find the same person and genetic relatives securely. We analyzed various security paradigms and show metrics
for the protocols under several security assumptions, such as semihonest, malicious with honest majority, and malicious with a
malicious majority.

Results: We show that our methods can be used practically on realistically sized data. Specifically, we can compute the Jaccard
similarity of two genomes when considering sets of SNPs, each with 400,000 SNPs, in 2.16 seconds with the assumption of a
malicious adversary in an honest majority and 0.36 seconds under a semihonest model.

Conclusions: Our methods may help adopt trusted environments for hosting individual genomic data with end-to-end data
security.

(JMIR Bioinform Biotech 2023;4:e44700) doi: 10.2196/44700
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Introduction

Background
With the dramatic decrease in sequencing costs and increase in
consumer sequencing organizations, there is no shortage of
genomics data. In fact, about 38 million people worldwide had
taken a direct consumer genetics test from organizations like
23andMe, Ancestry, and Family Tree DNA by 2021 [1].

The genome is valuable for identifying health risks, predicting
drug response, and revealing susceptibility to environmental
factors. Genomic data are the foundation of personalized
medicine. However, there are many privacy risks involved with
access to genomic data. For example, health insurance
companies can gain access to this data through genomic
databanks via financial compensation, then deny coverage to a
potential customer based on their genetic health risks. While
the Genetic Information Nondiscrimination Act protects against
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such discriminatory acts, detecting and enforcing such a law
requires effort that could be mitigated if the company never gets
the data in the first place. Traditional cryptographic methods
may protect against data leakage, but they often prevent
legitimate data queries for research and medical purposes. In
today’s ever-growing reliance on such data and collaboration,
the need for secure computation on genomic data is rapidly
growing. Thus, we propose methods in the realm of secure
computation, which allows computation on private or sensitive
data. We make use of secure computational methods to do secure
similarity measures on genetic data without revealing anything
about the data itself.

Genetic data is massive, so there are many different methods
of expressing that data depending on the application the data is
used for. We focus our attention on variants, which are often
reported in the Variant Call Format (VCF) file [2] and can refer
to substitutions, insertions, and deletions (indels); copy number
variations; and others. These variants correlate with relationships
between individuals and can be used to identify such
relationships. The correlation carries over to properly chosen
subsets of these variations, which we refer to as panels. Using
these panels, we can perform operations on smaller sets with a
fixed and reduced size to compute the similarity between two
individuals more efficiently.

Related Work
There are many other works that discuss secure similarity
comparisons of genetic data, typically in the context of
approximating edit distance [3-6]. Aziz et al [3] used shingle
set intersection as an alternative method of the similarity metric.
However, edit distance is not the only method of comparison
and lacks much information about the associated genetic
material. For example, edit distance is positionally agnostic.
Further, computing the edit distance takes O(mn) time for two
strings of length m and n. Some other methods discussed
performing set operations on variants [7], which aim to answer
a different question than our approach. Our approach targets
how similar two individuals are without identifying any genes
or variants while they aim to identify the specific genes in the
sets to help look for causal genes in diseases.

Some other works used variation sets to compare two genomes
[6,8], but these works have some limitations. For example, the
methods by Çetin et al [8] allow a data owner to outsource their
data and securely query the data so that the server learns nothing
about the VCF data. The specific operation asks if a small set
of variants exists in some VCF data. The act of executing the
query provides too much information about the stored VCF data
and cannot be used for queries from outsiders. Zhu et al [6]
focused on looking at small edit sets (VCFs) from shorter
sequences and did not look at whole genome similarity, which
is what our approach aims to look at. The method by Mahdi et
al [4] aimed to securely compute the Hamming distance to
search for the most similar sequences in a database using prefix
tree queries. However, the method used a trusted party to encrypt
the data and distributes decryption keys to researchers, but the
expectation of the existence of a trusted party is not practical.

General Approach
In our scheme, we make use of secure multiparty computational
techniques to allow secret sharing of filtered variation data.
These techniques are built to allow a set of parties to compute
on joint data without revealing anything about the input other
than what can be derived from the output. Such methods
typically use secret sharing schemes or homomorphic encryption
schemes, which permit users to perform computations on the
encrypted data without first decrypting it.

We consider two entities, each with an individual’s genetic data
to compare; both parties then agree on a set of important genetic
variants through a public panel and ordering of those variants,
and encode their genetic data into a binary vector based on the
presence of the selected variants in their VCF files. The owners
of the binary vectors then secretly share each element in the
vector. Each sharing will consist of pieces, and each piece will
be given to one of the computing servers. The servers then
compute our protocol on the input shares to produce and send
output shares to the user, who then reconstructs the shares to
get the result.

In this problem domain, the participating parties (ie, individuals
or organizations) can be classified into three categories: (1)
database owners, (2) users, and (3) service providers (SPs).

• Database owners: These entities could be any health care
organization, ancestry company, or genetic profiling
company. They provide services for others to query their
DNA data but do not want to expose them.

• Users: The users are parties who wish to make queries in
the database. They may be individual patients, medical
doctors looking for treatment for their patients by means
of a similar patient query, other data owners, or researchers
from universities.

• Service providers: The SPs can be any organization that
offers computational infrastructures, such as Amazon
(Amazon Web Service [AWS]), Microsoft (Azure), and
Google (Google Cloud Platform [GCP]).

Note that the roles are not mutually exclusive, and a single party
may take on multiple roles without compromising the system’s
security. For example, a database owner could play the role of
one of the SPs and take part in the computation.

The goal is to provide secure methods to compute set operations
on the two input sets of variants, as shown in Figure 1. We
include methods to compute the union, intersection, set
difference, symmetric difference, and Jaccard similarity on
filtered sets of VCFs. We use these methods, for example, to
compute the Jaccard similarity between two sets of variants.
The protocol is broken up into three phases, the input phase,
the computation phase, and the output phase.

• Computation phase: The SPs will perform the specified set
operations on the sets of single nucleotide polymorphism
(SNPs; or other types of variants) retrieving the sizes of the
sets. These sizes can then be used to compute similarity
metrics between the two input sequences. These similarity
metrics can then be used according to the specific
application, such as finding the top k matches.
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• Output phase: The SPs receive the shares of the output.
After this, the SPs can send their final shares to the user so
that the user can reconstruct the result.

Figure 1 illustrates the general process when the parties are
interested in the Jaccard similarity. The final values J1, J2, J3

held by the servers are seemingly random and, thus, do not

individually give any information of the actual Jaccard similarity
J. However, the full set of values can be used to reconstruct J.
Precisely, we have J ← RECONSTRUCT
(‹P1,J1›,‹P2,J2›,‹P3,J3›). The user can learn J by having each
server Pi send their share Ji, then using the RECONSTRUCT
function.

Figure 1. The database owner and the user filter their genomic data for variants and encode them into a binary string (eVariants) of the same length as
the selected panel used for comparisons. Elements of the string are 1 if the implicated variant is present or 0 otherwise. They are then secretly shared
with the service providers for secure computation. The service providers do not learn anything about the variants because they only receive secret shares
of the encoded variants and none of the encoded variants themselves. Next, each player (Pi) computes the secret share (Ji) by using the secret shares
received. Each server (Pi) then sends (Ji) to the user. The user then applies these shares to reconstruct the Jaccard similarity (J←RECONSTRUCT( Pi,Ji ).

Contribution
We propose a method to securely compute the Jaccard similarity
over two individuals’ filtered set of genetic variants. We use
the Multi-Party Secure, Privacy-Preserving, and Decentralized
Zeus (MP-SPDZ) framework [9] to test the run time and
communication costs of our approach. We also tested our
approach on a few different popular secure multiparty
computation paradigms considering different adversarial models.
We then show that our approach provides useful information
about the data when the filtered set is chosen properly. We make
use of a highly informative but small SNP panel [10] with 4763
SNPs and VCFs from the Genome in a Bottle (GIAB) data set
to show that there exists an SNP panel that can be used to
identify familial relationships as an example application of our
approach. These results are compared with the genomic
comparison software BEDTools [11].

Methods

Preliminaries
In this section, we give an overview of the technical background
that is needed for our protocols. We start by describing secure
multiparty computation—the foundation that enables the
execution of our protocols. We then introduce secret sharing
and the two types used in the protocols behind the primitive
operations in our protocols. We will then discuss the MP-SPDZ
framework and how it helped us test the resource requirements
behind our protocols.

Threat Model
Secure computation aims to provide guarantees on the privacy
of data and correctness of computation. Any situation that
potentially compromises these two guarantees is considered a
threat. We will assume that the database owner and the user are
both semihonest [12]. This means that the database owner and
the user will follow the protocol as prescribed. However, we
will consider both honest-but-curious and malicious adversarial
models for the computing servers. The protocols we run from
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the MP-SPDZ framework are based on those assumptions. The
computational costs of the protocols are correlated with the
assumptions of the behavior of the adversary. For example, if
the adversary may do something not prescribed in the protocol,
we must use extra measures to ensure that behavior does not
cause any compromises to the security guarantees such as
correctness or privacy.

Secure Multiparty Computation
Secure multiparty computation allows a set of n parties to
compute a function over their private inputs without revealing
anything about the input other than what can be derived from
the output. There are many works providing methods for secure
multiparty computation [13-20]. We adapted the methods
provided by the MP-SPDZ framework [9] and its protocols.
The protocols we used are Semihonest Oblivious Transfer
(Semi-OT), MASCOT, Shamir, and Malicious Shamir
(Mal-Shamir). Here, OT in Semi-OT and MASCOT both stand
for oblivious transfer used to compute multiplication under
additive sharing [19,21].

We give a more detailed description of the methods implemented
in MP-SPDZ that are used to execute our protocols.

• Semihonest Shamir (Shamir): A semihonest protocol based
on the Shamir sharing scheme [22]. This protocol requires
at least three computing parties to be used. It is the
semihonest equivalent of the honest-majority maliciously
secure protocol Mal-Shamir. This protocol is referred to as
“Shamir” in the MP-SPDZ framework.

• Mal-Shamir: A maliciously secure execution of the Shamir
protocol. This protocol also requires at least three computing
parties and can tolerate a minority of players deviating from
the protocol and preserve correctness and privacy. This
protocol is referred to as “Mal-Shamir” in the MP-SPDZ
framework.

• Semi-OT: A semihonest equivalent of the MASCOT
protocol, multiplication is based on the OT protocol. This
protocol can be executed with as few as two computing
parties. This protocol is referred to as “Semi” in the
MP-SPDZ framework.

• MASCOT: A maliciously secure malicious majority
protocol. This protocol makes use of oblivious transfer to
compute multiplications and can also be executed with as
few as two computing parties [19]. This protocol is referred
to as “MASCOT” in the MP-SPDZ framework.

These protocols are specifications on how to perform addition
and multiplication in a secure setting. We make use of these
specifications so that our protocol can be executed securely. All
these specifications rely on a notion called secret sharing.

Secret sharing forms the foundation of many secure multiparty
computation protocols. A secret sharing is an encoding such
that a single element (referred to here as a secret) is used to
generate an array via a stochastic function (GENSHARE in 1).
In a situation where shares should be turned back into the
corresponding value, we use a deterministic function known as
RECONSTRUCT.

Data
We tested our method on a small data set called GIAB as well
as a simulated data set that we used to collect larger unspecified
use panels that have no specified use only for measuring the
scale of complexity growth as the panel size increases.

The simulated portion of the data was simulated according to
the method described by Yue and Liti [23] with the GRCh38
Genome Reference Consortium Human Reference 38 from the
University of California, Santa Cruz (UCSC) [24] as our
reference genome. Specifically, simuG was used to generate a
simulated SNP panel of 1 million SNPs and 2 simulated human
VCF files with 5 million SNPs in each. The top “k” SNPs from
the simulated SNP panel were pulled to test the impact of panel
size on the protocol. Importantly, the simulated VCF files were
simulated such that they only contained SNPs and no other
variants.

In the VCF format, a single SNP element is a tuple containing
the chromosome, position, reference allele, and alternate
allele—labeled as “Chr,” “Pos,” “Ref,” and “Alt” in the VCF
file, respectively. The chromosome represents the chromosome
on which the SNP is located, the position gives a direct location
on the chromosome, the reference allele is the standard base to
be compared within this location, and the alternate allele is the
nonreference base found in this location for a specific genome.
Thus, standard VCFs will only have entries for observed
variants, not all possible variants. Other information is also
provided in the file, but it is not important for our method.

We also tested our method on the GIAB data set [25]. This data
set consists of two families, an Ashkenazim family and a
Chinese family. Both families have a mother, a father, and a
son. The Ashkenazim data set’s IDs are HG002, HG003, and
HG004 for the son, father, and mother, respectively. The IDs
of the Chinese family are HG005, HG006, and HG007 for the
son, father, and mother, respectively. To use these VCFs in our
method, we made use of an SNP panel [10] with 4763 SNPs.

Secure Set Operations
In this section, we provide an overview of the secure operations
that would be executed to compare two VCFs with SNP panels.
Using the variant panel, we created an m bit string where each
position of the bit string contains a “1” if the implicated variant
is in the genome (as indicated by the VCF data) or a “0”
otherwise. We can then embed the string into the field F to
perform a computation that allows us to securely perform set
operations based on the array. We are interested in the number
of elements in a set from set operations. Though our protocols
calculate the size of the sets produced by the set operations,
they can be easily modified to produce the set itself by skipping
the last step.

The protocols we describe in this section use subprotocols
implemented by MP-SPDZ, and we denote these subprotocols
with π. For example, πmult multiplies two shared values together.
These operations require communication between the parties;
thus we use this symbol rather than a simple multiplication
symbol. However, affine operations such as addition and
multiplication by a constant such as 2 do not require
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communication and are not written with a subprotocol symbol
π.

We converted the two sets of genomic variants, A, B into two

m-dimensional vectors , . Using these vectors, we can
perform elementwise operations on the array to execute set
operations and compute any similarity metric that relies on those
set operations, such as Jaccard similarity. Here, we provide a
formal description of the protocols.

Specifically, let the tuple of the genomic variants be (Chr, Pos,
Ref, Alt). To generate the two m-dimensional vectors, we select
a public panel of variants S to filter off and order to. The vector

= (a1, ..., an) is defined to be ai = 1 if the i-th SNP (Chri,
Posi, Refi, Alti) ∈ S ∩ A; otherwise ai = 0.

After computing step 1 in UNION, = 1 implies that at least

= 1 or = 1. This means the sum of the elements of the

vector is equal to the size of the union of the two sets A and
B. Thus, in step 2, UNION computes the sharing of the size of
the union.

After step 1 in INTERSECT, = 1 implies that both = 1

or = 1. Thus the sum of the elements in is equal to the
size of the intersection of the two sets A and B. Thus on step 2,
the protocol computes a sharing of the size of the intersection
of the two sets.

After step 1 in DIFFERENCE, = 1 implies that = 1 and

= 0. This corresponds to being the set difference, so

computing the sum of in step 2 gives us a sharing of the size
of the set difference A \ B.

After step 1 in SYMDIFFERENCE, = 1 implies that either

= 1 or = 1, but not both. Thus, computing the sum in step
2 gives us the size of the symmetric set difference of A and B.

Jaccard similarity is the ratio of the size of the intersection to
the union of two sets. Since A ∩ B ⊆ A ∪ B, we have |A ∩ B|≤|A
∪ B| and that J ∈ [0, 1]. Here, we use our previous protocols
to first compute the sizes of the union and intersection, and we
use the results to compute the Jaccard similarity.

Network Setup
We had two different scenarios tested in our network setup, as
shown in Figure 2. The first of which was a virtual network
constructed for quick easy testing over a local area network.
We then made use of CloudLab to host a real network. Using
the virtual network, we ran our protocol on simulated data, and
using the CloudLab network, we ran our methods on real-life
data samples.

The virtual network was constructed using VirtualBox in the
Ubuntu environment. We set up three virtual machines with
access to the network and required the machines to talk on the
network to communicate. The behavior of this network is
consistent with that of a LAN. Using the three machines, we
established a network and ran the protocols. Two machines
provided input by secret sharing their data according to the
protocol. The third machine helped to facilitate the Shamir and
Mal-Shamir protocols. The third machine was not used during
the Semi-OT and MASCOT executions.

For the CloudLab servers, we had three servers that could
communicate with each other and provide computation. We
used two of the servers as the input providers, and the third
server helped to facilitate the realization of the Shamir and
Mal-Shamir (three party) protocols. These servers better
simulate a real-world computing environment.
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Figure 2. Network setup. The institutions first share their data (top) with the two service providers. The researcher can then query the database (bottom)
and get the information they require for their research.

MP-SPDZ Setup
We used MP-SPDZ [9] for the implementation of the secure
protocols. The MP-SPDZ documentation provides a
comprehensive guide in setting up the experiments. In our setup,
we had three servers P0, P1, P2. The servers P0, P1 were treated
as users of the system, and they provided the input to the
computation. This is because the two servers have their own
privacy and security of interest, so there is less concern for
collusion. If these two parties do not want to hide their
information from each other, there is no reason to perform the
computation. The last party P2 is there to obtain the necessary
three parties for Shamir and Mal-Shamir. This party in practice
would be an individual who is selected by both of the parties
who provide an input to the computation as this can help ensure
that the extra party is not biased toward one of the input parties.

Results

We tested our protocols (ie, Shamir, Mal-Shamir, Semi-OT,
and MASCOT) with simulated filtered genomic variants sets
of up to 400,000 elements in length. Protocols were run over
both a virtual network and a CloudLab network. The Shamir
[22,26-28] and Mal-Shamir (maliciously secured by verification
techniques by Chida et al [29]) protocols require third-party
computation. The Semi-OT and MASCOT [19] protocols require
at least two parties. In general, the honest majority is more
efficient than the malicious majority protocols but at a minimum
requires three parties to execute.

We measure the resources needed to compute an operation (set
difference, symmetric difference, and Jaccard similarity)
between two sets over the specified length of the array through
time and network communication. The unit of time measured
here is in seconds as measured by the framework, and the

network communication is measured in megabytes. Figure 3
shows these results over an array of panel sizes.

We were able to calculate the Jaccard similarity over SNP panels
of size 400,000 in 0.363 seconds with Shamir, 2.155 seconds
with Mal-Shamir, 13.184 seconds with Semi-OT, and 113.397
seconds (about 2 minutes) with MASCOT. Shamir is the most
efficient, whereas MASCOT takes the longest. The extra time
MASCOT takes is due to extra security guarantees that it offers
over the Shamir method. Figure 4 illustrates the growing
complexity as the number of computing servers increases.
Adding more servers has the benefit of improving the security
of the system. When looking at Figure 4, one may notice that
Shamir and Mal-Shamir do not have a statistic for two players.
This is because these protocols do not support two players.

We also ran our method on the GIAB data set [25]. The
comparison required converting the VCF and SNP panel files
into a binary array to be used in the secure computation. This
process took on average 96.430 seconds (about 1 and a half
minutes) per file using our custom code. This process is a
one-time need, and the resulting files can be used multiple times
for other comparisons. We used our secure method in
conjunction with the SNP panel provided by Murray et al [10].
Figure 5 compares the Jaccard similarity between filtered SNPs
and the entire VCF using BEDTools [11], which indicates a
high correlation. For convenience, we reiterate that HG002 is
the child of HG003 and HG004, and that HG005 is the child of
HG006 and HG007. Then we ran different secure computing
methods on the network. The costs of the computation with the
panel size of 4763 are presented in Table 1.

The comparison by Jaccard similarity took an average of 31.008
seconds between two files. This comparison done by BEDTools
assumes that the VCF files are sorted but does not require any
preprocessing beforehand.
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Figure 3. Each figure shows the growth of complexity as the array length grows. While we chart Mal-Shamir, MASCOT, Semi-OT, and Shamir together
in the same chart, they are not comparable in terms of resource use alone. The more expensive protocols tend to have stronger security guarantees.
However, the security guarantees of Shamir and Mal-Shamir are frequent enough for standard usage and are practical to use on larger sets. Mal-Shamir:
Malicious Shamir; Semi-OT: Semihonest Oblivious Transfer.

Figure 4. The communication complexity scales quadratically with the number of players. The benefit of increasing the number of computing servers
is increased security.
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Figure 5. The Jaccard similarity is compared through filtered single nucleotide polymorphisms (Panel Jaccard) vs through the entire VCF using
BEDTools (Whole VCF Jaccard). The correlation can be seen: HG002 matches HG003 and HG004 and HG005 matches HG006 and HG007. VCF:
Variant Call Format.

Table 1. This table shows the computation using the secure protocols from the filtered panel using 4763 single nucleotide polymorphisms after
preprocessing.

Communication (MB)Time (s), averageMethod

1.6710.0350Shamir

9.3570.1125Mal-Shamira

40.5700.7085Semi-OTb

353.3635.4322MASCOT

aMal-Shamir: Malicious Shamir.
bSemi-OT: Semihonest Oblivious Transfer.

Discussion

There are several established protocols in a secure multiparty
computation that allow for computation over a finite field. We
make use of a framework called MP-SPDZ that securely
implements these operations as described in many secure
settings.

Our work provides an efficient secure method for computing
similarity between two genomic sequences by considering
predefined variant panels. Our study only considers the presence
of a variant (ie, binary representation) and does not explicitly
compute the set based on the actual allele (ie, nucleotide identity
A, T, C, G) or combination of alleles (ie, heterozygous positions)
represented at that location. Although this is sufficient for most
practical applications, our methods can easily be extended to
compute the set based on the explicit allele presented at the
given location.

Our method can easily be extended to allow only results beyond
a certain threshold. Such a modification can be done by
performing an inequality check at the end of any of the

protocols. The inequality check only needs to be performed
once and adds constant time to the protocol when the number
of parties is fixed.

We presented four protocols that can be used to execute the
arithmetical operations of our protocols. Based on the results
in the previous section Shamir and Mal-Shamir are faster but
have different security guarantees from Semi-OT and MASCOT.
Mal-Shamir provides realistic security guarantees while
requiring similar computational and network resources to
Shamir. Thus, we recommend using Mal-Shamir to execute our
protocols. Shamir requires at least three parties, so we suggest
executing the protocol using Semi-OT when only two parties
can be used. Though MASCOT provides malicious security,
the method is still impractical on realistic data sets if we expect
results in real time. However, in some situations it may be
reasonable to allow processing over a day, then even MASCOT
will be practical.

Our development may pave the way for a practical protocol to
share human variant data securely, which may help support
large-scale variant applications for precision medicine.
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