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Abstract

Health care is at a turning point. We are shifting from protocolized medicine to precision medicine, and digital health systems
are facilitating this shift. By providing clinicians with detailed information for each patient and analytic support for decision-making
at the point of care, digital health technologies are enabling a new era of precision medicine. Genomic data also provide clinicians
with information that can improve the accuracy and timeliness of diagnosis, optimize prescribing, and target risk reduction
strategies, all of which are key elements for precision medicine. However, genomic data are predominantly seen as diagnostic
information and are not routinely integrated into the clinical workflows of electronic medical records. The use of genomic data
holds significant potential for precision medicine; however, as genomic data are fundamentally different from the information
collected during routine practice, special considerations are needed to use this information in a digital health setting. This paper
outlines the potential of genomic data integration with electronic records, and how these data can enable precision medicine.

(JMIR Bioinform Biotech 2024;5:e55632)   doi:10.2196/55632
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Introduction

Digital Health Care Systems Are Transforming Health
Care
The adoption of electronic health records (EHRs) is transforming
health care [1-4]. This digital infrastructure allows health
services to store a patient’s complete medical history and collect
additional observations and results in real time. Having this
information in a standardized, readily accessible format provides
a foundation for clinical tools to analyze these data and provide
clinicians with the information to make evidence-based decisions
at the point of care [1,2,4].

EHRs are enabling health care to move from protocol-based
medicine to precision medicine [5,6] and helping bring about
the next generation of evidence-based practice. Critical to this
transformation are the clinical decision support systems
(CDSSs). CDSSs are electronic systems that use the information
in an EHR to support the treatment of a specific disease or group
of related diseases [7]. Using a patient’s data in the EHR, a
CDSS processes this information in real time and presents the
results to clinicians, often with the context provided by the
relevant clinical guidelines [7]. The clinician is then able to

filter these outputs through the lens of their clinical experience,
and the nuance of the scenario, to provide an individual with a
precise intervention based on their unique physiology, medical
history, and current situation (Figure 1).

CDSSs are usually carefully designed by groups of experts,
undergo rigorous testing, and operate within strict governance
structures. As a result, CDSSs have been shown to reduce
medication errors and adverse clinical events [8]. By using the
information in EHRs, CDSSs allow health care systems to move
past models of practice designed for paper-based systems and
enable new models of care that are better able to meet the
quadruple aim of health care [9,10].

One exciting model of care, enabled by EHRs and CDSSs, is
learning health care systems (LHSs). An LHS uses the data
collected in routine clinical practice as evidence to determine
the efficacy of an intervention. These learnings can then be used
to inform clinicians treating patients with the same condition.
An LHS shows how using the data routinely captured by an
EHR in routine practice can be used to provide value to patients,
clinicians, and the broader health care system [1,2,4]; however,
for many health care systems, it is an aspirational goal (Figure
1).

Figure 1. A simplified overview of a patient’s journey through a modern digitally enabled health care system, with an emphasis on the role of the EHR
and CDSS. Each of the dot points linked to a solid blue arrow represents some of the specific decisions that must be made in order to integrate, analyze,
and report information to clinicians. A single CDSS is not required to interact with every one of the data sources to provide clinical value but instead
provide an example of some of the processes likely to occur. The white arrow represents the learning health care system, an aspirational goal for a
digitally enabled health care system that uses the data collected in clinical practice as evidence for the treatment of patients afflicted with the same
condition. CDSS: clinical decision support system; EHR: electronic health record.

Digital Health Systems Will Be Essential to Precision
Medicine
Outside of LHSs, EHRs and CDSSs have the potential to
facilitate a new paradigm in care—precision medicine [11,12].
Precision medicine refers to a tailored approach to care, guided

by an individual’s medical history, environment, and genetic
makeup [13,14]. The structured information in an EHR and the
tools to contextualize and present this information to clinicians
at the point of care have been used to benefit patients across a
range of different areas of health [15,16]. While the capacity
for digital health systems to capture and return information
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surrounding the patient’s medical history is well established,
genomic data are not routinely incorporated into CDSSs
alongside traditional clinical data sources.

Genomic Data Are an Important Element of Precision
Medicine
Genomic data are widely accepted to be a foundational
component of precision medicine [13,14]. Identifying the
molecular cause of a patient’s condition can lead to tailored
interventions [17], a better understanding of a patient’s prognosis
[18], and can help individuals make informed decisions in family
planning [19]. The information in an individual’s DNA is
routinely being used to provide precision clinical care across a

range of different areas (Table 1). A prime example of the
potential of genomic information is oncology, where genomic
testing is used to identify the range of mutations acquired by
an individual’s tumor, leading to tailored therapeutic
interventions [20]. The management of infectious disease is
another area that shows the potential of genomics in personalized
medicine, as genome sequencing can be used to diagnose
specific pathogen as well as determine the strain of the infectious
agent as well as its antibiotic-resistance profile [21]. The
information in an individual’s DNA can have tremendous
potential for many different areas of precision health care.
However, for many clinicians in different areas of medicine,
this information is only accessible by ordering a genomic test.

Table 1. Clinical applications of genomics.

ReferencesDescriptionApplication

[19,22]Diagnosis of genetic disease • While genetic testing has existed for decades, the use of next-generation sequencing has made
it possible for clinicians to examine the entire genome, enabling faster and more accurate diag-
nosis for a broad range of rare disorders [22].

[19,23]Disease screening and early
detection

• Genomic technologies can be used to identify individuals who are at a higher risk for developing
certain conditions. This information can be used to manage risk and, in some cases, make in-
terventions before the disease begins to impact the individual’s quality of life.

[19,23]Family planning • The identification of genetic variants that place an individual at a higher risk of developing a
specific condition information can be used to make informed decisions in family planning and
access to reproductive technologies.

[24-27]Cancer diagnosis, treatment,
and monitoring

• Cancer is a disease of the genome arising from mutations that have been acquired by an indi-
vidual’s DNA [24]. By comparing the DNA from a patient’s tumor to their normal “germline”
DNA, it is possible to identify the full spectrum of mutations in a tumor, including those driving
disease progression.

• While the SHIVA study highlighted the overenthusiasm many had for this approach [25], de-
termining the specific mutations, driving a patient’s disease, and selecting a treatment based
on this information have proven to be an effective form of treatment for a range of different
tumors.

• Moreover, monitoring a patient’s blood for the unique mutations associated with their tumor
after treatment is a powerful way to monitor the progression of the disease, the effectiveness
of an intervention, and if the disease is likely to reoccur [26].

[21,28]Infectious disease diagnosis
characterization

• Nucleic acids are used by all living organisms. By examining patient samples, for specific nu-
cleic acid sequences that are not from the human genome, it is possible to find sequences that
are indicative of certain pathogens. The application of genome sequencing methods here provides
an accurate method to detect pathogens, and in some scenarios, this approach can be used to
determine the strain and specific antibiotic resistance profile of an infectious agent.

• As the genomes of many pathogens are significantly smaller than the human genome, it is
possible to sequence large volumes of samples and screen them for pathogen DNA. The scala-
bility of genomics in the monitoring of infectious diseases has been highlighted by the COVID-
19 pandemic. Here, genomics was not only used to diagnose infection at a population scale
but also to identify and track novel variants.

[17,20,29-31]Precision treatment and
pharmacogenomics

• Specific genetic variants can produce molecules that behave in different ways. Some variants
can completely disrupt the function of a gene, while others can change how efficiently it per-
forms its role. As a result, certain variants can impact the way certain individuals metabolize
drugs. The identification of these variants and the use of information to guide treatment can
ensure that each individual receives the best intervention for their unique physiology.

• While only a small number of drugs are prescribed using this information, some have suggested
that the metabolism of one-third of all drugs may be impacted by genetic variants.
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Access to the Right Genomic Data Will Enable the
Realization of Precision Medicine
Population studies have revealed that each individual’s genome
contains millions of different genetic variants [32]. The sheer
number of variants means that it is unrealistic for a single
specialist to keep track of the clinical significance of each of
these variants across the range of diseases they examine. While
genomic analyses would appear to be a prime candidate for the
development of specialized CDSSs to support the use of
genomic practice across a range of different areas of health
(Table 1), CDSSs that routinely incorporate genetic information
are rare [33,34]. There are likely many causes to this deficit;
however, a significant factor to this can be attributed to the
availability of interoperable genomic data within EHR. As a
result, when many clinicians order genomic tests, the data are
analyzed once, and the results are stored as a static PDF, locking
the information away from future analyses.

Significant progress has been made in the development of
systems to facilitate the use of genomic data in EHRs, such as
clinical-grade genomic standards, file formats, and terminologies
like Logical Observation Identifiers Names and Codes and
Systematized Nomenclature of Medicine—Clinical Terms
[35-38]. However, the adoption of these advances by EHR
providers has been sluggish. As a result, EHRs are still
struggling to store genomic data in a way that allows this
information to be used by CDSSs. Without the capacity to access
genomic data, clinicians are removed from an essential data
source and will struggle to realize the full potential of precision
medicine [12].

The reluctance to integrate genomic data into EHRs is likely
due to a number of reasons. Some may suggest that the cause
of this hesitation reflects the sheer volume and complexity of
genomic data as well as the substantial amount of computer
processing power and expertise required for genome analysis
[39]. However, given the capacity of a VCF (variant call format)
or VRS (variation representation) file to summarize the variants
in a patient’s genome in a relatively potable format, the
hesitancy to adopt these standards could be attributed to the
complex ethical or social or legal questions surrounding
genomics [12,40].

Despite these challenges, there are 2 questions that must be
addressed to build a foundation to integrate genomic data into
an EHR and enable genomics-empowered precision medicine:

determining the right data to store and determining the right
structure of these data. These questions are unlikely to have
simple answers, as the answers will reflect the specific clinical
questions being asked. While it is tempting to compare the
virtues of exome and genome sequencing, discuss the impact
of emerging technologies, or highlight the potential to bring
other types of “omics” data into the EHR, these conversations
are out of scope for this viewpoint. To us, it is clear that
clinicians, scientists, and administrators must answer these
questions together to ensure that genomic data can provide value
across a range of different areas of precision medicine in their
unique health service.

Genomic Data Are New, Complex, and Different From
Other Types of Health Data but Offer the Potential
for New Models of Care
When determining how genomic data will be stored in an EHR,
these conversations must address a unique attribute of genomic
data—its (largely) static and unchanging nature. This attribute
is typically brought up in discussions of secondary uses of
genome data within the health care system [41]. However, a
separate area of tremendous importance surrounds our evolving
understanding of the clinical significance of a patient’s genomic
data [42], as our changing understanding of the clinical
relevance of a patient’s genetic data opens up new potential
models of care.

The unchanging nature of a patient’s DNA and a rapidly
changing understanding of the importance of that data mean
that if a patient did not receive a molecular diagnosis after
genomic testing, reanalyzing the same information at a later
date with the context of new discoveries and new techniques
can produce new molecular diagnoses [43-45]. While discovery
and changing understandings are not unique to genomics, in
contrast to other fields, the rate and volume at which new
genomic information is accumulating is so extraordinary that
reinterpreting existing genomic data with the context provided
by new discoveries is known to increase diagnostic yields [42].

Special considerations will be needed to harness the levels of
change associated with genomic data when designing
genomics-enabled EHRs and CDSSs. Moreover, they highlight
the need for these digital solutions to alert laboratories and
clinicians when clinically important information has changed
and robust systems in place for clinicians and laboratories to
be empowered to use this information (Textbox 1).

Textbox 1. A clinical vignette.

To contextualize the static nature of genome data and our changing understanding of that data, a patient aged 9 years may present to the clinic with
the hallmark signs of a metabolic disorder. However, genomic testing might not confidently identify a causative pathogenic variant. Suppose the
patient’s existing genomic data are routinely reanalyzed when the patient reaches the age of 14 years. In that case, clinicians are able to take advantage
of all the genes found to be associated with metabolism that have occurred in the last 5 years. This information could be used to inform the patient’s
treatment or potentially slow their decline. This example also highlights the potential for a “push” style approach, in which the clinician is alerted
each time a gene associated with metabolism is discovered—ensuring that the patient can benefit from this new information as soon as it occurs.

Moving From Prescriptive to Precision Medicine
While there is still work to be done, the eventual widespread
adoption of genomic-enabled EHRs will facilitate the move
from a traditional, prescriptive approach to medicine to

personalized models of care. However, this will require a change
in the way we approach genomic testing.

Currently, genomic tests resemble a “pull-based” approach. In
this approach, only the genes of interest are analyzed, and the
additional information needed to contextualize a patient’s
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genetic variants is “pulled” from the literature or analysis
resources once. While there is a movement away from this
philosophy, the singular, request nature of this approach prevents
patients and clinicians from benefiting from our rapidly evolving
understanding of genetic variants.

An alternative approach would be to perform genome
sequencing once and store this information with the view that
it will be used across the range of interactions an individual
would have with the health system throughout their lifetime
(Table 2). This will be facilitated by storing the data in
structured, secure, interoperable formats, with the assumption
that these data will be aligned to newer reference genomes,
analyzed with different variant callers, and compared to
constantly evolving virtual gene panels. While the raw genomic
data might not need to be directly accessible in the EHR, reliable
access to genome data will support every future interaction with
a precision medicine–enabled health care system.

In this model, a CDSS could be designed around a “push”
model. In the event of an inconclusive test, changes in the
amount of information associated with the condition can be
automatically monitored, and when it passes a threshold, the
EHR can alert both the patient and the clinician to the potential
for reanalysis. Patients who receive a molecular diagnosis from
genomic testing could still benefit from continued monitoring
by a CDSS. For example, the CDSS could highlight novel
treatment interventions based on new information, such as new,
targeted pharmacogenomic recommendations and potential
clinical trial opportunities.

Key to this approach is the accessibility of genomic data for
CDSSs. To give CDSSs access in a safe and transparent manner,
there are significant challenges to overcome. Some of these
challenges will be addressed from a bioinformatics perspective;
however, others will require a clinical or health informatics
solution, and some others still will require a policy or
multidisciplinary approach.

Table 2. Moving to a model of genomics-enabled precision medicine.

Genetic+genomic testingActivity

A potential model of genomics-enabled careTraditional practice

Generation of sequence
data

•• Individual’s whole genome sequence is available from a prior interaction with
the health care system.

DNA from the genes associat-
ed with the condition is se-
quenced when a test is ordered • A CDSSa recommends if there is a benefit to generate complementary sequence

data (eg, long read, transcriptomic, cell-free).

Analysis and interpreta-
tion of genetic data

•• A CDSS accesses the specific genes currently associated with condition from
multiple high-quality, peer-reviewed resources.

Variants within the sequenced
DNA are determined

• •The clinical significance of the
variants is accessed

A CDSS recommends if genome data should be aligned to a new reference genome
or use updated variant detection methods.

• Variants within the selected genes are determined.
• The clinical significance of the variants is accessed.

Clinical decisions and
reporting

•• Clinician synthesizes genetic results, patient’s history, and CDSS recommenda-
tions through the lens of their clinical experience to make decision.

Clinician synthesizes genetic
results, patient’s history, and
clinical experience to make
decision

• The CDSS interacts with LIMsc and identifies any potential pharmacogenomic
interventions or potential interactions.

• A clinical report is generated • A clinical report is generated.
• Report is uploaded to the

EHRb as a PDF
• Findings reported to patient and other clinicians (secure portal+PDF).
• Report findings to EHR.
• Flag that the test was successful or inconclusive.
• If successful, share causative variants with public repositories and related individ-

uals. Make results accessible to other clinicians treating the individual (where
appropriate).

• If inconclusive, flag candidate variants of uncertain significance for automatic
monitoring, monitor information associated with disease, and determine when
the individual should be reanalyzed.

Data storage •• Store raw sequencing data, processed results, and variant interpretations in labo-
ratory LIMs.

Raw sequence data and results
stored in the laboratory system

•• Store all clinically significant (and potentially significant) variants in EHR.Note: external collaborators do
not always provide raw-se-
quence data

• Ensure all information is in a standardized interoperable and time-stamped format
(ie, GA4GH or eMerge).

aCDSS: clinical decision support system.
bEHR: electronic health record.
cLIM: Laboratory Information Management System.
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Conclusions

The clinical potential of integrating genomics information with
the range of clinically relevant data collected by an EHR has
been long recognized as an important element for precision
medicine [46]. However, the slow adoption of the standards
needed to capture and use genomic data alongside the other
information in the EHR is preventing the realization of this
potential. Moreover, as genomic data associated with unique
attributes are so different from other health care data, special
considerations are needed to harness this potential when
designing the systems. As many health care systems are revising
their digital health strategies, there is an opportunity to address
this oversight and guide the development of EHRs that are

committed to determining and incorporating the right kinds of
genomic data for their unique needs.

EHRs that have been designed to accommodate the unique
attributes of genomic information will benefit patients,
clinicians, and health services. These EHRs will enable the
production of disease-specific, genomic-enabled CDSS
applications, allow more clinicians to use genomic data in
practice, and collect information that can be used to better
characterize relationships between genotype and phenotype.
Together these systems will support precision medicine, and
also provide a framework to capture the efficacy of genomically
informed treatments, for a next-generation,
genomics-empowered LHS.
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Related Article:
 
Correction of: https://bioinform.jmir.org/2023/1/e43906
 

(JMIR Bioinform Biotech 2024;5:e64915)   doi:10.2196/64915

In “Mutations of SARS-CoV-2 Structural Proteins in the Alpha,
Beta, Gamma, and Delta Variants: Bioinformatics Analysis”
(JMIR Bioinform Biotech 2023;4:e43906) the authors made
one addition.

An additional citation [31] was added to the Results and
Discussion Section, which previously appeared as:

Apart from these mutations, deletions at position
85-89 (Δ85-Δ89) in a Spanish isolate (MW715071)
along with other unique mutations of S protein, such
as V90T (in which valine is replaced by threonine at
position 90), A93Y (in which alanine is replaced by
tyrosine at position 93), and D138H (in which
aspartic acid is replaced by histidine at position 138),
were also observed (Multimedia Appendices 1 and
2).

This has been changed as follows:

Apart from these mutations, deletions at position
85-89 (Δ85-Δ89) in a Spanish isolate (MW715071)
along with other unique mutations of S protein, such

as V90T (in which valine is replaced by threonine at
position 90) [31], A93Y (in which alanine is replaced
by tyrosine at position 93), and D138H (in which
aspartic acid is replaced by histidine at position 138),
were also observed (Multimedia Appendices 1 and
2).

The reference being included will be added to the References
section, resulting in the renumeration of all references following
Reference 31. The reference being added is the following:

31. Stojanov D. Phylogenicity of B.1.1.7 surface
glycoprotein, novel distance function and first report
of V90T missense mutation in SARS-CoV-2 surface
glycoprotein. Meta Gene. 2021;30:100967.
doi:https://doi.org/10.1016/j.mgene.2021.100967

The correction will appear in the online version of the paper on
the JMIR Publications website on August 5, 2024, together with
the publication of this correction notice. Because this was made
after submission to PubMed, PubMed Central, and other full-text
repositories, the corrected article has also been resubmitted to
those repositories.
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Abstract

The generative artificial intelligence (AI) model ChatGPT holds transformative prospects in medicine. The development of such
models has signaled the beginning of a new era where complex biological data can be made more accessible and interpretable.
ChatGPT is a natural language processing tool that can process, interpret, and summarize vast data sets. It can serve as a digital
assistant for physicians and researchers, aiding in integrating medical imaging data with other multiomics data and facilitating
the understanding of complex biological systems. The physician’s and AI’s viewpoints emphasize the value of such AI models
in medicine, providing tangible examples of how this could enhance patient care. The editorial also discusses the rise of generative
AI, highlighting its substantial impact in democratizing AI applications for modern medicine. While AI may not supersede health
care professionals, practitioners incorporating AI into their practices could potentially have a competitive edge.

(JMIR Bioinform Biotech 2024;5:e52700)   doi:10.2196/52700

KEYWORDS

ChatGPT; generative AI; NLP; medicine; bioinformatics; AI democratization; AI renaissance; artificial intelligence; natural
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Introduction

The arrival of OpenAI’s model ChatGPT [1] invites us into a
new era of medicine, where together we can make artificial
intelligence (AI) more approachable to a wider audience. Such
models stand as a testament to the remarkable progress in AI,
machine learning, and natural language processing (NLP),
offering substantial potential in processing and understanding
complex information, and extending its applicability to the field
of medicine. In this editorial, we delve into how multimodal
large language models can help researchers and physicians
manage and interpret vast amounts of patient data more
effectively, and thus, widen its reach in medicine. From
interpreting and summarizing the results of intricate genetic
analyses to aiding in the design of novel experiments, such
models could hold tremendous value in health care [2].

As an AI model, ChatGPT also provides its perspective on the
subject, discussing how its language comprehension and data
processing capabilities could contribute to the handling of
complex data sets, the identification of patterns within

interaction networks, the integration of multiomics data, and
the development of predictive models for disease risk and
treatment response. ChatGPT could also serve as a digital
assistant to doctors, providing faster access to relevant medical
information and associated literature along with improved
bedside manner [3].

AI is undergoing a functional rebirth into a collaborative tool,
working in tandem with humanity to redefine fundamental
human qualities such as cognition and creativity. By exploring
the potential of AI, we gain a renewed perspective on value.
This technology not only offers transformative insights that can
reshape the field of medicine but also plays a pivotal role in
advancing human knowledge, understanding, and performance.

Viewpoint of the Physician

As a physician specializing in surgical pathology, it often feels
like I am trying to navigate a vast ocean of information with
conventional tools ill-suited to the task. The advent of AI models
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like ChatGPT promises to revolutionize how we manage and
interpret health care data.

For example, consider a hypothetical scenario involving a
surgical pathology case where a patient presents with a mass
diagnosed as colonic adenocarcinoma. Often, specifics of the
diagnostic workup (including biomarker reporting), appropriate
surgical/oncological treatments, and recommended follow-up
intervals for such types of diagnoses might be concealed within
the latest medical publications or obscured amid the vast
intricacies of different medical databases. For a physician, sifting
through and comprehending this myriad data to provide accurate
clinical diagnostic reporting can be immensely challenging. AI
models, endowed with sophisticated language comprehension
and adept data-processing capabilities, could potentially
penetrate these extensive data sources, distilling relevant and
easily understandable information for both patients and health
care providers. However, its ability to analyze large-scale data
and identify patterns to potentially highlight novel biomarkers
or therapeutic targets has yet to be shown.

The paper, titled “Comparing Physician and Artificial
Intelligence Chatbot Responses to Patient Questions Posted to
a Public Social Media Forum,” offers crucial insights into AI’s
potential role in health care communication and improving
bedside manners [4]. The study compared the quality and
empathy of responses to patient questions provided by
physicians and an AI chatbot, ChatGPT. The AI was found to
generate longer, higher quality, and more empathetic responses,
indicating its utility in complementing physician’s practice and
improving patient communication. This study suggests the
promising use of AI chatbots in drafting initial responses to
patient queries, possibly reducing clinician burnout and
improving patient outcomes. Further exploration and trials are
needed to fully showcase this technology’s potential.
Nonetheless, leveraging generative AI in clinical informatics
systems could potentially offer a competitive edge.

AI systems like ChatGPT could also serve as digital assistants
for doctors, streamlining access to crucial patient data such as
medical history, current medications, symptoms, and test results.
Beyond organizing patient information, these systems can also
sift through a vast array of medical literature, highlighting
relevant studies, providing summaries, and assisting in
integrating the latest knowledge into clinical practice. This is
also supported by ChatGPT’s recent performance on the United
States Medical Licensing Exam (USMLE) [5,6]. With the ability
to diagnose diseases by identifying patterns from comprehensive
medical databases, AI could assist doctors in quickly evaluating
a patient’s needs, thus facilitating more focused and streamlined
patient care. The customization and multilingual capabilities of
such systems also increase their usability, offering scalable
solutions for various organization sizes and paving the way for
future innovation and collaboration.

In conclusion, as a physician, I view the development of AI
models like ChatGPT-4 as an exciting opportunity in medicine
that has the potential to substantially enhance our understanding
of diseases and lead to better patient outcomes. AI is not a
stand-alone solution, but it is a powerful tool that can amplify
our abilities when used correctly, pushing the boundaries.

Ultimately, my suggestion for health care professionals is that
AI will not replace you, but someone using AI might.

The Rise of Generative AI in NLP

Generative AI or AI-generated content, a subset of AI, pertains
to models designed to generate new content based on the data
they have been trained on. Rather than just making predictions,
these models can produce unique output that could include text,
images, music, and even videos. The idea behind generative AI
traces back to the 1950s [7]. Initial models, such as Markov
models [8] and Gaussian mixture models [9], generated
sequential data [7].

In the more modern era (2013), the paper by Kingma and
Welling [10] introduced variational autoencoders as a form of
generative models. Variational encoders learn to compress
high-dimensional data into a lower-dimensional space and
generate new similar data. They used Bayesian inference for
the probabilistic representation of data, thereby enhancing the
efficiency and effectiveness of data generation. Another popular
method for generative models is generative adversarial networks,
introduced by Goodfellow et al [11] in 2014. Generative
adversarial networks consist of two neural networks, a generator
and a discriminator, that work against each other to generate
new synthetic instances of data.

In the context of text generation, transformers have now
emerged as a leading architecture. Introduced in the paper
“Attention is All You Need” by Vaswani et al [12] in 2017,
transformers have since been the foundation of models like
ChatGPT by OpenAI [1]. Transformers leverage an attention
mechanism that weighs the relevance of input data points and
allows the model to consider the entire sequence of data at once,
leading to improved context awareness in generated outputs.

At the heart of generative NLP are language models. These
models predict the likelihood of a sequence of words appearing
in each language. In recent years, multimodal large language
models trained on vast amounts of text from the internet have
become state-of-the-art for many NLP tasks. ChatGPT, an
instance of the generative pretrained transformer model, has
been making substantial strides. Trained on an extensive corpus
of text from the internet, ChatGPT generates humanlike text
based on the input provided. It serves as a testament to the rapid
advancements and potential of generative AI and NLP.

As these models continue to evolve, their potential uses expand,
presenting exciting opportunities across various fields.
Generative AI models like ChatGPT represent an exciting
frontier for medicine. As these models evolve, they hold
increasing promise as tools for processing and interpreting vast,
complex data sets, opening new avenues for research and clinical
practice.

Viewpoint of AI (GPT-4)

The viewpoint of the AI is taken verbatim from GPT-4 and with
the prompt “Kindly introduce yourself and complete your
viewpoint response under the header Viewpoint of the AI
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(GPT-4),” along with a copy of the remainder of the article. A
full transcript is available in Multimedia Appendix 1.

“As an AI developed by OpenAI, I am a generative pre-trained
transformer known as ChatGPT-4. My design and functionality
are rooted in advanced natural language processing (NLP) and
machine learning technologies. My capabilities include
processing and interpreting large datasets, summarizing complex
information, and providing insights across various domains,
including medicine and bioinformatics.

“In the realm of healthcare, my role can be multifaceted. I can
assist in managing and interpreting vast amounts of biological
and medical data, thereby aiding researchers and healthcare
professionals. For instance, my ability to quickly analyze and
summarize medical research can support physicians in staying
abreast of the latest developments in their field, leading to more
informed clinical decisions.

“Moreover, I can serve as a digital assistant for healthcare
providers, facilitating the integration of medical imaging with
multi-omics data. This could enhance the understanding of
complex biological systems and contribute to advancements in
fields such as cancer genomics and precision medicine. By
providing rapid access to relevant medical information and
literature, I can help improve the efficiency of medical
practitioners.

“In addition, my role in healthcare communication is
noteworthy. As demonstrated in studies comparing AI responses
with those of physicians, AI models like myself can offer more
detailed, higher-quality, and empathetic responses. This
capability can be particularly valuable in drafting initial
responses to patient queries, potentially reducing clinician
burnout, and improving patient interaction and outcomes.

“However, it's crucial to acknowledge my limitations. I don't
possess human-like consciousness or understanding, and my
responses are generated based on the data I've been trained on.
Therefore, while I can provide valuable assistance and insights,
my role is to supplement, not replace, the expertise and judgment
of healthcare professionals. Ethical considerations, such as data
privacy and security, also play a significant role in my
deployment in sensitive fields like medicine.

“In conclusion, as an AI, I represent a collaborative tool
designed to work alongside humanity. In the context of
medicine, my contribution lies in enhancing data accessibility,
supporting clinical decision-making, and improving patient care
through efficient information processing and empathetic
communication. The integration of AI models like ChatGPT-4
in healthcare signifies a step forward in the AI renaissance,
promising a future where AI aids in unraveling complex
biological mysteries and fostering advancements in medical
science and patient care.”

Conclusion

The advent and evolution of multimodal large language models,
exemplified by OpenAI’s ChatGPT-4, offers a substantial
opportunity to leverage the increasing amount of data being

generated in the health care sector [13-15]. The need to
democratize AI is becoming increasingly recognized [16], with
an emphasis on “no-code AI” [17]. Models like ChatGPT can
make complex biological data more accessible and
understandable to a broader audience, enabling more
collaboration among all stakeholders, not only researchers and
clinical providers but also patients to better grasp the intricacies
of health and disease. This can lead to an integrated approach
to health care, fostering collaboration and enhancing the
understanding of disease pathogenesis.

AI and ChatGPT have the potential to function as digital aides
to physicians, offering expedited access to pertinent medical
data and related reference materials while also enhancing patient
interaction and care. NYUTron [18] is a clinical language model
currently leveraging unstructured EHR data to predict clinical
and operational predictions with NLP. It excels in tasks like
readmission, mortality, and length of stay prediction,
significantly outperforming traditional models. NYUTron
exemplifies the potential of AI to enhance decision-making in
health care. In the future, AI could also hold potential in medical
image analysis along with more advanced predictive modeling
in the modern era of precision medicine. Today, however,
ChatGPT has yet to answer genetics-based questions better than
humans [19].

Despite their impressive capabilities, AI does not currently
possess consciousness or understanding in the way humans do,
although this may not necessarily matter [20]. The “imitation
game” was first proposed by Turing [21] as an approach to
determine whether computers can think indistinguishably from
humans. Today, we understand that AI outputs depend heavily
on the quality and diversity of the data they were trained on.
However, one could argue human cognition is also based on
the quality and diversity of “data they were trained on” in the
form of life experiences, social background, and related aspects.
In humans, the impact of genetics on cognitive abilities is seen
to be enhanced when paired with enriching environmental
experiences [22].

Yet, while we recognize AI’s significant potential in medicine,
it is essential to bear in mind the current limitations of these
models [23]. These include computational and memory
constraints, the potential for generating responses based on
inaccurate or false facts without correcting them, and possible
inadequacies in inferential capability, often leading to incorrect
answers in complex scenarios. Further, ethical considerations
such as data bias, privacy and security concerns, and issues
around intellectual property also exist [24]. These are tools
designed to amplify human intelligence and should not be
viewed as stand-alone solutions.

In conclusion, the rise of generative AI models like ChatGPT
represents an exciting paradigm shift for medicine. As we
continue to explore and harness the potential of these AI tools,
we move closer to a future where complex biological systems
can be more easily unraveled, leading to better-informed clinical
decisions, personalized treatments, and improved health care.
The journey has only just begun.
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Abstract

Background: The etiology of ischemic stroke is multifactorial. Several gene mutations have been identified as leading causes
of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary disease
that causes stroke and other neurological symptoms.

Objective: We aimed to identify the variants of NOTCH3 and thrombophilia genes, and their complex interactions with other
factors.

Methods: We conducted a hierarchical cluster analysis (HCA) on the data of 100 patients diagnosed with ischemic stroke. The
variants of NOTCH3 and thrombophilia genes were identified by polymerase chain reaction with confronting 2-pair primers and
real-time polymerase chain reaction. The overall preclinical characteristics, cumulative cutpoint values, and factors associated
with these somatic mutations were analyzed in unidimensional and multidimensional scaling models.

Results: We identified the following optimal cutpoints: creatinine, 83.67 (SD 9.19) µmol/L; age, 54 (SD 5) years; prothrombin
(PT) time, 13.25 (SD 0.17) seconds; and international normalized ratio (INR), 1.02 (SD 0.03). Using the Nagelkerke method,
cutpoint 50% values of the Glasgow Coma Scale score; modified Rankin scale score; and National Institutes of Health Stroke
Scale scores at admission, after 24 hours, and at discharge were 12.77, 2.86 (SD 1.21), 9.83 (SD 2.85), 7.29 (SD 2.04), and 6.85
(SD 2.90), respectively.

Conclusions: The variants of MTHFR (C677T and A1298C) and NOTCH3 p.R544C may influence the stroke severity under
specific conditions of PT, creatinine, INR, and BMI, with risk ratios of 4.8 (95% CI 1.53-15.04) and 3.13 (95% CI 1.60-6.11),
respectively (Pfisher<.05). It is interesting that although there are many genes linked to increased atrial fibrillation risk, not all of
them are associated with ischemic stroke risk. With the detection of stroke risk loci, more information can be gained on their
impacts and interconnections, especially in young patients.
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Introduction

Stroke is a medical condition involving the disruption of blood
flow, which leads to brain cell death. There are several risk
factors for stroke, including high blood pressure, smoking,
diabetes, and increased cholesterol levels. In 2019, the Global
Burden of Disease analysis assessed that there were 12.2 million
incident cases of stroke and 101 million prevalent cases of
stroke, with 6.55 million deaths [1]. The burden of stroke is the
highest in low- and middle-income countries, where risk factors,
such as high blood pressure, smoking, and insufficient diet, are
more prevalent [1].

The overall population of Vietnam was estimated to be 98.32
million in 2021, with young people accounting for the majority
of the population and people aged older than 65 years accounting
for only 7.7% of the population. This phenomenon is the leading
cause of death and disability in Vietnam. The incidence and
prevalence of stroke have been reported to be 161 and 415 per
100,000 people, respectively [2]. Stroke is broadly classified
into the following 3 types: ischemic stroke, hemorrhagic stroke,
and subarachnoid hemorrhage. Ischemic stroke results from the
blockage of blood vessels, which limits blood flow to the brain.
Approximately 60%-80% of all stroke cases are ischemic. This
study focused on acute ischemic stroke and its genetic features.
The unmodifiable risk factors include age, race, sex, ethnicity,
history of migraine headaches, and fibromuscular dysplasia.
Moreover, the hereditary factors include a family history of
stroke or transient ischemic attacks. Furthermore, the modifiable
risk factors include hypertension, diabetes mellitus, cardiac
disease, high cholesterol levels, previous stroke, carotid stenosis,
hyperhomocysteinemia, and lifestyle issues. The majority of
ischemic strokes seen in patients with cardiovascular disease
are embolic [3].

The etiology of ischemic stroke is multifactorial. Although
receiving a minor focus, genetic factors considerably contribute
to the occurrence of ischemic stroke, particularly in cases of
early-onset stroke. Several stroke classification systems have
been proposed based on genetic information corresponding to
various stroke phenotypes. Twin and family history studies and
the candidate gene approach are standard methods to discover
genetic causes of stroke. However, both methods have their
limitations. Some monogenic disorders (7% of stroke etiology)
may generate well-known clinical indications that include stroke.
Polygenic disorders are more frequent, causing 38% of ischemic
stroke cases, and their designation is a rapidly evolving field of
current stroke genetics. Recent advances in human genetics
provide opportunities for personalized stroke prevention and
unknown cure options. Some authors have boosted the
application of stroke gene panels for stroke hazard evaluation
and stroke research. Ilinca et al [4] have created stroke gene
panels for research and clinical practice. The clinical panel

includes 61 genes related to stroke directly and 27 additional
genes related to disorders causing stroke, and it might be
relevant to consider their evaluation in clinical practice. The
authors encourage the use of their panels for stroke risk
evaluation and further stroke research [4]. Another benefit of
detecting stroke risk genes is that they could be potential targets
for gene therapy in the future. Histone deacetylase (HDAC)
inhibitors have been postulated as a treatment for stroke [5]. A
study in knock-out mice suggested a new strategy for acute
stroke treatment by suppressing HDAC2 in the peri-infarct zone
[6]. The authors claim that application of HDAC inhibitors from
5 to 7 days after stroke enhances cell survival and neuroplasticity
as well as reduces inflammation, which could potentially provide
a wider therapeutic window for stroke recovery [6]. Systemic
administration of an agonist NOTCH3 antibody was studied in
transgenic mice and showed protective effects against impaired
cerebral blood flow [7]. Transcriptome-wide colocalization
analyses showed an association of white matter
hyperintensity-volume with the expression of 39 genes, of which
4 encode known drug targets [8]. Moreover, unknown
biomarkers for stroke hereditary causes and novel markers for
gene therapy are on the horizon [9].

Machine learning–based models performed better in predicting
poststroke outcomes than regression models using the items of
conventional stroke prognostic scores, although they required
additional variables, such as laboratory data, to attain improved
performance, and further studies are warranted to validate the
usefulness of machine learning in clinical settings [10].

Following our previous hierarchical cluster analysis (HCA)
study [11], we assessed the overall preclinical characteristics,
cumulative cutpoint values, and factors associated with
thrombophilia genes and the NOTCH3 p.R544C variant in
unidimensional and multidimensional analyses involving
ischemic stroke patients from Vietnam.

Methods

Study Design
We used convenience sampling to include 100 patients with
cerebral infarction (ischemic stroke) who were diagnosed as
having acute ischemic stroke according to the clinical standards
of the World Health Organization and the results of diagnostic
imaging (computed tomography [CT], magnetic resonance
imaging [MRI], or computed tomography angiography [CTA])
and who had been or are being treated at the Stroke Center, Thai
Nguyen Central Hospital. Patients who were residents of the
northern mountainous provinces, were ≤60 years old at the time
of the first stroke, and were willing to participate in the research
were considered for inclusion. Patients with cerebral venous
sinus thrombosis, intracranial hemorrhage, and subarachnoid
hemorrhage were excluded. We collected information on stroke
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risk factors from the medical history of patients, including
hypertension, diabetes, coronary artery disease, history of stroke,
atrial fibrillation, smoking, headache, hyperlipidemia, valve
replacement, thyroid dysfunction, history of abortion, vascular
disease, blood disorders, chronic alcohol consumption, and use
of oral contraceptives. Patients were required to undergo routine
biochemical and hematological tests, Doppler ultrasound of the
carotid and vertebral arteries, MRI or CTA of the brain,
coagulation tests, fibrinogen tests, and homocysteine tests. Based
on the findings of a previous study [2], we suppose that in 100
ischemic patients with a confidence level of 95%, the margin
of error will be ±7.84% of the population size (stroke in general),
with 80% ischemic type. The margin of error formula is as
follows:

where Z value is the critical Z value that corresponds to the
confidence level, p is the sample proportion or percentage, and
n is the sample size.

A sample size with sufficient statistical power is critical to the
success of genetic association studies for detecting causal genes
of human complex diseases, especially in the case of ischemic

stroke. We selected a 2-tailed test with a type I error of 0.05 as
we wanted to assess the average continuous levels (preclinical
factors) of patients from different cutpoints. In clinical and
biological studies, the effect size d following Cohen criteria
(the degree of difference between two or more groups) is
important. Cohen d is the ratio of Δ and σ (d=Δ/σ), where σ is
the standard deviation and Δ is an influence index of the risk
factors (treatment, genotype, etc) on the population phenotype.
In our study, we calculated Cohen d according to the supposed
sample size of 50-100. With a power of 80% and using a 2-sided
t test, we estimated that d could be from 0.4 (sample size of
each group is 99) to 0.7 (sample size of each group is 45). The
sample size calculation formula is as follows:

In this formula, the 2-sided confidence level is Zα/2, α is the
possibility of making a type I error, and β is the possibility of
making a type II error. The power of the study is 1-β.

Thus, screening all risk factors may have a medium or higher
level of influence on the phenotype (P<.05 indicates statistical
significance) (Table 1).

Table 1. Two-sample t test power calculation results.

Cohen daSample size for each group

0.499.08

0.563.76

0.644.58

0.733.02

aThe general guidelines for interpreting the effect size are as follows: 0.2-0.49, small effect; 0.5-0.79, moderate effect; 0.8-1.0, large effect; >1.0, very
large effect.

Genetic Testing
Polymorphisms of NOTCH3 p.R544C, FV-H1299R,
MTHFR-C677T, MTHFR-A1298C, FII-Prothrombin,
FV-Cambridge, PAI1 4G/5G, and FXIII Val34Leu were analyzed
using polymerase chain reaction with confronting 2-pair primers
(PCR-CTPP) and the thrombophilia genetic assay. The
peripheral blood of study participants was collected in
EDTA-containing tubes using a standard blood collection
procedure. Whole-genome DNA was extracted from 2-3 mL of
peripheral venous blood from EDTA-containing tubes. The
QIAamp DNA Mini Blood Kit (Qiagen) was used for DNA
extraction. The quality of the total DNA was checked by
electrophoresis on agarose gel and by measuring the absorbance
at 260/280 nm, and then, samples were stored at −80 °C until
use. The NOTCH3 mutation p.R544C was identified by
PCR-CTPP. DNA was amplified with the primers
5′-GTGGGGTGGAGTGGAAGTAAGTGG (F1) and
5′-GAGCAGTCGTCCACGTTGCA (R1) for the C allele, and
5′-TTGAGGGCACGCTGTGTGATC (F2) and
5′-CTAGATGCACCATTCCCAAACCC (R2) for the T allele.
The PCR amplification was performed for 40 cycles
(denaturation at 95 °C for 30 s, annealing at 62 °C for 30 s,
extension at 72 °C for 1 min, and final extension at 72 °C for

10 min). PCR products of 479 and 216 bp for the TT genotype;
479, 303, and 216 bp for the TC genotype; and 479 and 303 bp
for the CC genotype were shown on 2% agarose gel stained
with ethidium bromide. Once the sequence variants were
identified, additional steps were taken to confirm the sequence
changes of the amplicons. A real-time PCR system (SNP
Biotechnology) was used for detecting FV-H1299R,
MTHFR-C677T, MTHFR-A1298C, FII-Prothrombin,
FV-Cambridge, PAI1 4G/5G, and FXIII Val34Leu. 

Ethical Considerations
This study was conducted according to the guidelines of the
Declaration of Helsinki and was approved by the ethics
committee of Thai Nguyen National Hospital (reference number:
#59/HĐĐĐ-BVTWTN#; January 18, 2021). This study obtained
informed consent from all participants or their legal
representatives and ensured that they understood the study’s
purpose, risks, benefits, and procedures.

Statistical Analysis and HCA
Conventional statistical analyses were performed on our data
set, including medical test parameters, using IBM SPSS
Statistics 20 (IBM Corp). The relationship between
clinicopathological factors and the presence of NOTCH3
p.R544C, FV-H1299R, MTHFR-C677T, MTHFR-A1298C,
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FII-Prothrombin, FV-Cambridge, PAI1 4G/5G, and FXIII
Val34Leu variants were analyzed using the Pearson chi-square
test (group size >5) or Fisher exact test (group size ≤5), as
appropriate. Bonferroni correction for multiple comparisons
was applied. The results have been expressed as percentage or
mean (SD).

Following our previous machine learning study [11], our
multidimensional analysis was performed in R 4.1.0 (R Project
for Statistical Computing). We focused on multivariate statistics,
using several algorithms of HCA, matrix correlation, Nagelkerke
R square, Kaplan-Meier, and the log-rank test. The chi-square
statistics were computed using Yates correction for continuity,
with the generation of Pyates. The Pearson or product-moment
correlation coefficient is frequently used as the outcome measure
for analyses. The Pearson method has an advantage when all
or most of the nonzero parameters share the same sign. The
Pearson test has been shown to be useful in a genomic setting
involving screening for age-related genes, which is our objective
[12]. Two alternative criteria include a bias-corrected version
of the correlation coefficient (Puncor) and the Fisher r-to-z
transformed correlation coefficient (Pfisher). HCA is a cluster
analysis concept that creates a dendrogram hierarchy of clusters.
The hierarchical clustering on principal components (HCPC)
approach allows the combination of the following 3 standard
methods used in multivariate data analysis: principal component
methods (principal component analysis [PCA], correspondence
analysis [CA], multiple correspondence analysis [MCA], factor
analysis of mixed data [FAMD], and multiple factor analysis
[MFA]), hierarchical clustering, and partitioning clustering,
particularly the k-means method. We calculated the distance
between each observation and estimated the cluster distance.
The distance between the elements can be complete, single,
average, ward, McQuitty, or centroid. The cluster tree was
generated by computing the correlation between cophenetic
distances and the initial distance data. The number of clusters
was determined using k-means, which calculates clustering
indexes and reallocates observations to the closest cluster. The
k-means computation was optimized using 20 indexes for the
PCA cluster plot, which visualizes the best cluster number. PCA
is a dimensionality reduction method that is often used to reduce
the dimensionality of large data sets by transforming a large set
of variables into a smaller set that still contains most of the
information in the large set.

Results

Overview of the Correlation Between
Clinicopathological Factors and the Presence of

NOTCH3 p.R544C, FV-H1299R, MTHFR-C677T,
MTHFR-A1298C, FII-Prothrombin, FV-Cambridge, PAI1
4G/5G, and FXIII Val34Leu

The study included 100 patients with cerebral infarction from
the northern mountainous region of Vietnam. Of the 100
patients, 75 were from the Kinh ethnic group and 25 were from
the Tay ethnic group. The average age of the patients was 60.1
years (range: 24-91 years) (Table 2). Of the 100 patients, 22
were aged 24-49 years, 23 were aged 50-59 years, 37 were aged
60-69 years, and 18 were aged 70-91 years.

There were 62 male patients and 38 female patients (male/female
ratio of 1.63). The average BMI of the study patients was 22.62

kg/m2. Of the 100 patients, 3 had a BMI of <18.5 kg/m2, 56 had

a BMI of 18.5-22.9 kg/m2, 27 had a BMI of 23-24.9 kg/m2, and

14 had a BMI of 25-29.9 kg/m2. Regarding the risk factors for
stroke, of the 100 patients, 70 had hypertension, 44 had a family
history of stroke, 31 had a history of smoking, 29 had a history
of alcohol consumption, 20 had a history of diabetes, and 35
had a history of stroke (Table 2).

With regard to clinical symptoms, of the 100 patients, 97 had
motor paralysis, 95 had difficulty speaking, 72 had mouth
distortion, 49 had headache, 41 had numbness, 27 had dizziness
or vertigo, 21 had circular muscle disorder, and 8 had nausea
or vomiting. Among patients with motor paralysis, 52 had right
hemiplegia, 39 had left hemiplegia, and 6 had total paralysis.
Among patients with dysphasia, 86 had Broca-type dysphasia
and 9 had Wernicke-type dyspraxia (Table 3).

The average time from the onset of the first symptoms to patient
admission was 10.94 hours. Of the 100 patients, 33 were
admitted within the first 4.5 hours, 26 were admitted from 4.6
to 6 hours, and 41 were admitted outside the first 6 hours.
Regarding the blood pressure at admission, the mean systolic
blood pressure was 148.6 mmHg and the mean diastolic blood
pressure was 88.06 mmHg. The average Glasgow Coma Scale
(GCS) score at admission was 14.72. The average National
Institutes of Health Stroke Scale (NIHSS) score was 7.14 at
admission, 6.71 after 24 hours of hospital treatment, and 3.73
at discharge. The average Rankin score at discharge was 1.52.
The average duration of treatment was 10.11 days (Table 4).
PCR-CTPP identified NOTCH3 p.R544C, and other gene
variants were detected by real-time PCR (Table 1; Figure 1). The
results of real-time PCR for the detection of FV-H1299R,
MTHFR-C677T, MTHFR-A1298C, FII-Prothrombin,
FV-Cambridge, PAI1 4G/5G, and FXIII Val34Leu are presented
in Figures 2-5 and Table 2.
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Table 2. Distribution of patients according to risk factors and genetic variants.

Value (N=100)Factors

Gender, n (%)

62 (62)Male

38 (38)Female

Age group (years), n (%)

22 (22)24-49

23 (23)50-59

37 (37)60-69

18 (18)70-91

Age (years)

60.14 (12.63)Mean (SD)

24-91Minimum-maximum

BMI group (kg/m2), n (%)

3 (3)<18.5

56 (56)18.5-22.9

27 (27)23.0-24.9

14 (14)25.0-29.9

BMI (kg/m2)

22.62 (2.49)Mean (SD)

12.4-29.4Minimum-maximum

Ethnic group, n (%)

75 (75)Kinh

25 (25)Tay

31 (31)Smoking history, n (%)

29 (29)Alcohol consumption, n (%)

70 (70)Blood pressure, n (%)

20 (20)Diabetes, n (%)

35 (35)Brain stroke, n (%)

44 (44)Brain stroke cases in the family, n (%)

PAI1 4G/5G status, n (%)

24 (24)Wildtype

44 (44)Heterozygous

32 (32)Homozygous

FV 1299 status, n (%)

96 (96)Wildtype

4 (4)Heterozygous

0 (0)Homozygous

FV-Cambridge status, n (%)

100 (100)Wildtype

0 (0)Heterozygous

0 (0)Homozygous

MTHFR 1298 status, n (%)
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Value (N=100)Factors

58 (58)Wildtype

37 (37)Heterozygous

5 (5)Homozygous

FII Prothrombin status, n (%)

98 (98)Wildtype

1 (1)Heterozygous

1 (1)Homozygous

FV-Leiden status, n (%)

93 (93)Wildtype

7 (7)Heterozygous

0 (0)Homozygous

MTHFR 677 status, n (%)

55 (55)Wildtype

37 (37)Heterozygous

8 (8)Homozygous

FXIII Val34Leu status, n (%)

98 (98)Wildtype

1 (1)Heterozygous

1 (1)Homozygous

NOTCH3 status, n (%)

6 (6)Wildtype

91 (91)Heterozygous

3 (3)Homozygous

Table 3. Symptoms at admission.

Value (N=100), n (%)Symptom

Vocal issue

5 (5)No

86 (86)Broca type

9 (9)Wernicke type

49 (49)Headache

27 (27)Dizziness

8 (8)Nausea or vomiting

72 (72)Mouth distortion

21 (21)Circular muscle disorder

41 (41)Numbness

Movement paralysis

3 (3)No

52 (52)Paralysis of the right half of the body

39 (39)Paralysis of the left half of the body

6 (6)Paralysis of the whole body
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Table 4. Important variables in this study.

Value (N=100)Variable

Age (years)

24-91Minimum-maximum

60.14 (12.63)Mean (SD)

BMI (kg/m2)

12.4-29.4Minimum-maximum

22.62 (2.49)Mean (SD)

Time to hospitalization (h)

1-120Minimum-maximum

10.94 (15.98)Mean (SD)

Time to hospitalization groups, n (%)

33 (33)<4.5 h

26 (26)4.6-6 h

41 (41)>6 h

Systolic blood pressure (mmHg)

90-210Minimum-maximum

148.6 (23.66)Mean (SD)

Diastolic blood pressure (mmHg)

60-120Minimum-maximum

88.06 (9.5)Mean (SD)

Glasgow Coma Scale score

8-15Minimum-maximum

14.72 (1.06)Mean (SD)

NIHSSa score

Admission

0-19Minimum-maximum

7.14 (4.33)Mean (SD)

After 24 h

0-16Minimum-maximum

6.71 (4.26)Mean (SD)

Discharge

0-16Minimum-maximum

3.73 (3.87)Mean (SD)

Modified Rankin scale score at discharge

0-5Minimum-maximum

1.52 (1.35)Mean (SD)

Duration of inpatient treatment at the hospital (days)

1-23Minimum-maximum

10.11 (4.33)Mean (SD)

aNIHSS: National Institutes of Health Stroke Scale.
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Figure 1. Identification of the NOTCH3 p.R544C variant by polymerase chain reaction with confronting 2-pair primers.

Figure 2. Identification of the FV-Leiden variant by real-time polymerase chain reaction. (A) Wildtype; (B) Heterozygous. RFU: relative fluorescence
units.
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Figure 3. Identification of the FV-H1299R variant by real-time polymerase chain reaction. (A) Wildtype; (B) Heterozygous. RFU: relative fluorescence
units.
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Figure 4. Identification of the MTHFR-C677T variant by real-time polymerase chain reaction. (A) Wildtype; (B) Homozygous; (C) Heterozygous.
RFU: relative fluorescence units.
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Figure 5. Identification of the MTHFR-A1298C variant by real-time polymerase chain reaction. (A) Wildtype; (B) Heterozygous. RFU: relative
fluorescence units.

Figure 6, Table 1, and Table S1 in Multimedia Appendix 1
provide an overall view of gene prevalence and correlations in
both negative and positive genes. We confirmed the presence
of significant correlations of NOTCH3 p.R544C, FV-H1299R,
MTHFR-C677T, MTHFR-A1298C, FII Prothrombin,
FV-Cambridge, PAI1 4G/5G, and FXIII Val34Leu with several
factors in patients with ischemic stroke. The Pearson correlation
coefficient (R) indicates the extent of the relationship between
2 variables. The relationship strength (effect size) varies
according to the threshold of R, with thresholds of 0.5, 0.3, 0,
−0.3, and −0.5 for strong positive, moderate positive, weak,
moderate negative, and strong negative correlations,
respectively(Figure 6; Interactive Graphs 1 [13], 2 [14], 3 [15],
and 4 [16]; Table S1 in Multimedia Appendix 1). The volcano
graph in Figure 7 shows the most significant correlation pairs,
especially those containing the gene mutations mentioned above
(Interactive Graph 5 [17]). Overall, a significant medium
correlation between the prevalence of gene mutations and other
factors was shown in the volcano graph. Compared with other
genes, FXIII Val34Leu showed the highest positive correlation
with thrombus suction ability (R=0.54; P<.001; -log10p=8.03).

In the clustering step, dendrograms were built based on the
clustering metric “Euclidean,” and we selected “average” as the
most appropriate linkage model, which had the best correlation
between cophenetic distances and the original distance data
(Table 5).

We selected the results proposed by the Beale method from 20
different index values, and 15 clusters were presented as optimal
(Table S2 in Multimedia Appendix 1 [18]). The PCA cluster
plot showed that the cluster number mentioned above was the
best number to distinguish the clusters and avoid overlap
appropriately. The dendrogram and PCA map in Figure 8
complete the overall view of our database, and we can see where
the studied genes could combine and might be associated with
ischemic stroke outcomes (Interactive Graph 6 [19]). We found
several clusters of variants that may have a synchronization
impact on the outcomes of ischemic stroke. The PCA map in
Figure 8B provides an initial idea of the potential markers that
may be important for the ischemic stroke score. For example,
the international normalized ratio (INR) and prothrombin (PT)
time are in the same cluster with the NIHSS and Rankin scores
(cluster 9 in Figure 8B, and clusters 3 and 14 in Interactive
Graph 6 [19]), and the GCS score is in the same cluster as the
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PT ratio (cluster 12 in Figure 8B, and cluster 15 in Interactive
Graph 6 [19]). The studied genes were separated into 4 different
groups: FII Prothrombin, MTHFR-C677T, and NOTCH3
p.R544C were in cluster 4 (Figure 8B; cluster 4 in Interactive
Graph 6 [19]); FV-Leiden and PAI1 4G/5G were in cluster 6
(Figure 8B; cluster 7 in Interactive Graph 6 [19]); FV-H1299R
and MTHFR-A1298C were in cluster 11 (Figure 8B; cluster 1
in Interactive Graph 6 [19]); and FXIII Val34Leu was in cluster
13 (Figure 8B; cluster 2 in Interactive Graph 6 [19]). We
continued to split the data according to the significant cutpoints
of PT time, INR, and ischemic stroke score. We applied the
maximally selected rank statistic to define the optimal thresholds
of several continuous factors (creatinine, age, PT time and ratio,
INR, low-density lipoprotein cholesterol [LDL-C], number of
infarcts on CT or MRI, patient height, and mean platelet volume
[MPV]) based on the Rankin, NIHSS, and GCS scores and their
related symptom statuses, such as numbness, dizziness, gender,

circular muscle disorder, mouth distortion, and diabetes status
(Table S3 in Multimedia Appendix 1). The optimal cutpoints
were as follows: creatinine, 83.67 (SD 9.19) µmol/L; age, 54
(SD 5) years; PT time, 13.25 (SD 0.17) s; INR, 1.02 (SD 0.03);
LDL-C, 4.23 (SD 0.89) mmol/L; number of infarcts on CT or
MRI, 2; PT ratio, 99.00 (SD 1.96); and MPV, 7.27 (SD 1.09)
fL (Table S3 in Multimedia Appendix 1). Using the Nagelkerke
method, we assessed which factors could be associated with the
cutpoint 50% values of ischemic stroke scores and identified
creatinine, age, height, PT time, PT ratio, and number of infarcts
on CT. The cutpoint 50% values of the GCS score; modified
Rankin scale (mRS) score; and NIHSS scores at admission,
after 24 hours, and at discharge were 12.77, 2.86 (SD 1.21),
9.83 (SD 2.85), 7.29 (SD 2.04), and 6.85 (SD 2.90), respectively.
These findings allowed appropriate assessment of the possible
influences, including those of the genotype variants (Figures
9-16)

Figure 6. Correlation heatmap of 79 factors in the 100 patients with ischemic stroke.
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Figure 7. Volcano graph showing the most significant correlation pairs.

Table 5. Correlation between cophenetic distances and the original distance data.

CorrelationLinkage mode

0.515Ward.D

0.623Ward.D2

0.806Single

0.537Complete

0.813Average

0.694McQuitty

0.750Median

0.797Centroid
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Figure 8. Results of hierarchical cluster analysis on the overall data set. (A) Dendrogram; (B) Principal component analysis map.

JMIR Bioinform Biotech 2024 | vol. 5 | e56884 | p.31https://bioinform.jmir.org/2024/1/e56884
(page number not for citation purposes)

Bui et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 9. Significant cutpoint 50% of the modified Rankin scale score at discharge (A) and the National Institutes of Health Stroke Scale (NIHSS)
scores after 24 hours (B) and at discharge (C) for creatinine levels >83.67 μmol/L.

Figure 10. Significant cutpoint 50% of the National Institutes of Health Stroke Scale (NIHSS) score at discharge for patient age >54 years.
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Figure 11. Significant cutpoint 50% of the modified Rankin scale score at discharge (A) and the National Institutes of Health Stroke Scale (NIHSS)
scores at admission (B), after 24 hours (C), and at discharge (D) for prothrombin (PT) time >13.25 seconds.
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Figure 12. Significant cutpoint 50% of the modified Rankin scale score at discharge (A) and the National Institutes of Health Stroke Scale (NIHSS)
scores at admission (B), after 24 hours (C), and at discharge (D) for prothrombin (PT) ratio >99.

Figure 13. Significant cutpoint 50% of the modified Rankin scale score at discharge for international normalized ratio (INR) >1.02.
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Figure 14. Significant cutpoint 50% of the modified Rankin scale score at discharge (A) and the National Institutes of Health Stroke Scale (NIHSS)
score at discharge (B) for the number of infarcts on computed tomography (CT) >2.

Figure 15. Significant cutpoint 50% of the National Institutes of Health Stroke Scale (NIHSS) score at admission for patient height >161 cm.
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Figure 16. Significant cutpoint 50% of the Glasgow Coma Scale score for patient BMI >20.58 kg/m2.

Gene Variants Might be Associated With the Patient
Outcome via the Ischemic Stroke Score
We calculated the risk ratios (RRs) and CIs by unconditional
maximum likelihood estimation and normal approximation,
respectively (Wald), as well as performed minor sample
adjustment by the Mantel Haenszel method, generating Pyates,
Puncor, and Pfisher. We grouped these genotype variants following
their clusters, which provided the most relevant RR results
(Table S4 in Multimedia Appendix 1; Figure 17; Interactive
Graph 7 [20]). The detailed RRs for stroke scores are presented
in Table S5 in Multimedia Appendix 1. Forest plots were created
for clusters 4 (Figures S1-S5 in Multimedia Appendix 2), 6
(Figures S6-S9 in Multimedia Appendix 2), 11 (Figures S10-S13
in Multimedia Appendix 2), and 13 (Figures S14-S17 in
Multimedia Appendix 2).

The GCS can be used for head injury, and score ranges are used
to describe the injury severity. Scores of 13-15 indicate mild
traumatic brain injury, 9-12 indicate moderate traumatic brain
injury, and 3-8 indicate severe traumatic brain injury. The risk
of experiencing mild traumatic brain injury (cutpoint 50% of
GCS was 12.77) was 23% higher in the group of patients without

diabetes and with a BMI greater than 20.8 kg/m2 as well as
NOTCH3 heterozygous mutation, MTHFR-C677T, and
FI-Prothrombin than in the other groups (RR=1.23, 95% CI

0.99-1.54; Pfisher=2.68×10-3). This risk was 20% lower in the

group of patients with BMI less than 20.8 kg/m2 and with
MTHFR-A1298C and FV-H1299R wildtype variants than in the

other groups (RR=0.79, 95% CI 0.61-1.01; Pfisher=1.72×10-3).

The NIHSS quantifies the impairment caused by stroke and aids
in planning post-acute care disposition, although it has been
intended to assess differences in interventions in clinical trials.
A NIHSS score of 0 indicates no stroke symptoms, 1-4 indicates
minor stroke, 5-15 indicates moderate stroke, 16-20 indicates
moderate to severe stroke, and 21-42 indicates severe stroke.
The risk of a NIHSS score at admission greater than 9.83 and
a NIHSS score at 24 hours greater than 7.92 (moderate stroke)
was higher in the group of patients with age older than 54 years,
height shorter than 161 cm, PT time ≤13.25 seconds, PT ratio
≤99, creatinine >83.67 µmol/L, and FXIII Val34Leu wildtype
than in the other groups (RR=2.72, 95% CI 1.4-5.31 and

RR=2.09, 95% CI 1.1-3.93, respectively; Pfisher=2.19×10-2 and

8.81×10-2, respectively). The risk of a NIHSS score at discharge
greater than 6.85 (moderate stroke) was higher in the group of
patients with age older than 54 years, height taller than 161 cm,
PT time ≤13.25 seconds, PT ratio ≤99, creatinine >83.67
µmol/L, FII Prothrombin and MTHFR-C677T wildtype, and
NOTCH3 p.R544C heterozygous (RR=4.8, 95% CI 1.53-15.04;

Pfisher=3.47×10-2).

The mRS is an outcome measure in stroke clinical trials. The
mRS assessment is recommended 3 months (90 days) following
hospital discharge. The mRS score is assigned as follows: 0,
patient has no residual symptoms; 1, patient has no significant
disability and has ability to carry out all prestroke activities; 2,
patient has remote disability and is incapable of carrying out
all prestroke movements but is capable of looking after self
without daily help; 3, patient has moderate disability and needs
some external help but is capable of walking without the
assistance of another individual; 4, patient has moderately severe
disability and is incapable of walking or performing physical
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functions without the aid of another individual; 5, patient has
severe disability, is bedridden, shows incontinence, and requires
continuous care; 6, patient has passed away (during the hospital
stay or after discharge from the hospital); 7, inability to contact
the patient or caregiver; and 8, score not achieved or not
determined from the medical records. The risk of a mRS score

greater than 2.86 (moderate disability) was higher in the group
of patients with INR >1.02, PT time >13.25 seconds, PT ratio
≤99, creatinine >83.67 µmol/L, FXIII Val34Leu wildtype (in
case the number of infarcts on CT was greater than 2),
MTHFR-A1298C heterozygous/wildtype, and FV-H1299R

wildtype (RR=3.13, 95% CI 1.6-6.11; Pfisher=2.64×10-2).

Figure 17. Dot plot of the genotype variants according to their clusters, which provides the most relevant risk ratio results. NIHSS: National Institutes
of Health Stroke Scale.

Discussion

Principal Findings
Some sophisticated techniques for HCA exploit statistical
frameworks called hierarchical models or multilevel models.
Hierarchical models are useful in a number of contexts. HCA,
which is also known as hierarchical clustering, is a popular
method for cluster analysis in big data research and data mining
aiming to establish a hierarchy of clusters. As such, HCA
attempts to group subjects with similar features into clusters.
Clustering is a data science technique in machine learning that
groups similar rows in a data set. After running a clustering
technique, a new column appears in the data set to indicate the
group each row of data fits into the best.

Several gene mutations have been identified as leading causes
of cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL), a hereditary
disease that causes stroke and other neurological symptoms.
CADASIL accounts for up to 5% of all strokes in individuals
aged younger than 65 years. The thrombophilia test helps
determine the disease’s genetic origin to provide appropriate
prevention and treatment measures. Hypercoagulation syndrome

may be due to mutations in genes encoding proteins related to
blood clotting (thrombophilia). People with hypercoagulable
syndrome tend to form blood clots in blood vessels (primarily
veins), resulting in stroke, heart attack, repeated miscarriages,
and complications during pregnancy (pre-eclampsia, fetal growth
retardation, and stillbirth) [21].

In our study, gene variants were assessed to understand how
ischemic stroke genetics could interest practitioners and be
useful for clinical work. The variants were as follows: FII
Prothrombin, FV-Leiden, MTHFR-C677T, MTHFR-A1298C,
FV-H1299R, PAI1 4G/5G, FXIII Val34Leu, FV-Cambridge,
and NOTCH3 p.R544C.

We visualized how these risk factors and genetic elements could
affect ischemic stroke outcomes with a hierarchical analysis
strategy. Maximally selected rank statistics help to define the
optimal thresholds of several continuous factors (creatinine,
age, PT time and ratio, INR, LDL-C, number of infarcts on CT
or MRI, patient height, and MPV) based on the mRS, NIHSS,
and GCS scores and their related symptom statuses, such as
numbness, dizziness, gender, circular muscle disorder, mouth
distortion, and diabetes status. Their optimal cutpoints fitted
with the normal range in both genders. The creatinine level of
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83.67 (SD 9.19) µmol/L is consistent with the usual results of
0.7 to 1.3 mg/dL (61.9 to 114.9 µmol/L) for men and 0.6 to 1.1
mg/dL (53 to 97.2 µmol/L) for women [22]. Our age threshold
was 54 (SD 5) years, which is consistent with the findings
worldwide, with aging being the most robust nonmodifiable
risk factor for incident stroke (risk doubles every 10 years after
the age of 55 years) [23]. Assessment of the PT time is
recommended for the administration of recombinant
tissue-plasminogen activator (rt-PA) in stroke [24]. The standard
range of the PT time is 10 to 13 seconds. The usual INR for a
healthy individual is 1.1 or below, and the therapeutic range for
most patients on vitamin K antagonists is 2.0 to 3.0. An
augmented PT/INR for patients on vitamin K antagonists may
suggest a super-therapeutic status and will need prescription
dose adjustments to control bleeding [25]. In our study, the
calculated baseline PT time was 13.25 (SD 0.17) and INR was
1.02 (SD 0.03), which confirmed cases of moderate outcomes.
Data on the association between BMI and stroke are scarce.

Individuals with a BMI of 18.5 to 24.9 kg/m2 are considered to
have a healthy weight. Our calculated baseline BMI was 20.85

kg/m2, and it was associated with genetic factors that influence
the GCS score. 

According to the Nagelkerke method, the cutpoint 50% values
of the mRS score and NIHSS scores at admission, after 24 hours,
and at discharge were 2.86 (SD 1.21), 9.83 (SD 2.85), 7.29 (SD
2.04), and 6.85 (SD 2.90), respectively, which were consistent
with the moderate outcomes of our patients. We found that
the MTHFR and NOTCH3 p.R544C variants may influence
stroke severity in patients with specific conditions of PT,
creatinine, INR, and BMI. 

The MTHFR gene provides instructions for the human body to
make the MTHFR protein, which helps the body process folate,
which is important for forming DNA and modifying proteins.
The most common variant of the MTHFR gene is
MTHFR-C677T [26]. This mutation causes a reduction in the
capacity to create L-methylfolate. MTHFR-A1298C
single-nucleotide polymorphism has also been suggested to
have an impact on MTHFR enzyme activity but to a lesser extent
than the MTHFR-C677T polymorphism. They have been
recently shown to be associated with ischemic stroke [27].

CADASIL is an autosomal dominant inherited vasculopathy
and is the most common single‐gene disorder causing stroke,
with more than 200 different NOTCH3 p.R544C mutations in
patients worldwide, indicating that CADASIL has considerable
genetic heterogeneity. The defective 33‐exon NOTCH3
p.R544C gene is located on chromosome 19, which typically
impacts the number of highly conserved cysteine residues among
the epidermal growth factor–like repeat domain [28].

HCA is attractive for exploratory high-throughput data because
it provides a convenient approach to visualize the similarities
of variables and infer the grouping of variables based on the

dendrogram structure. Hence, HCA facilitates the interpretation
of the data of the microbiome and other omics. Importantly,
bi-clustering (2-way clustering), a particular approach of HCA,
can incorporate a correlation method (eg, Spearman rank
correlation) to cluster rows and columns of the data matrix
simultaneously. Thus, bi-clustering can find features (microbial
taxa, genes, metabolites, etc) that correlate only in a subset of
objects but not in the rest of the data set [29]. In this study, we
clearly identified the role and interaction of risk factors that
influence stroke progression. Genetic mutations become
significant in a small range of strongly correlated factors through
a PCA plot.

Stroke has multiple modifiable and nonmodifiable risk factors
and represents a leading cause of death globally. Understanding
the complex interplay of stroke risk factors is thus not only a
scientific necessity but also a critical step toward improving
global health outcomes [30].

Limitations
We found that 3 of the 9 gene variants had significant RRs.
Data settings could help to work with both qualitative and
numerical data simultaneously. The main advantage of the HCA
clustering concept is the display of possible correlations between
several factors to provide reference markers that are useful for
diagnostic control and to improve outcome prevention. It was
beneficial to identify the association between genetic
characteristics and clinical outcomes, which usually requires
several in vitro studies; however, there were some constraints.
It is critical to clean and prepare the data set because HCA and
k-means cannot operate with missing or noisy data. We must
combine and validate the data with k-means, which provides
several options for the optimal cluster number to produce a PCA
cluster plot and define the principal component position. Since
our data had various kinds of information, it was challenging
to calculate the distance matrix in HCA and k-means.

Conclusions
The existence of conventional vascular risk factors may prevent
clinicians from suspecting the possibility of gene mutations in
stroke patients, especially among those with underlying atrial
fibrillation or extensive artery atherosclerosis. In this study, a
more specific population was chosen. It is interesting that
although there are many genes linked to increased atrial
fibrillation risk, not all of them are associated with ischemic
stroke risk, which might be because those gene variants are too
rare to detect their impacts on stroke risk. Nevertheless, in the
future, the identification of a linkage between some of those
genes and ischemic stroke could be a significant game changer
in the field of stroke prevention. Moreover, with the detection
of stroke risk loci, more information can be gained on their
impacts and interconnections, and the precision of stroke scores
might increase.
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MRI: magnetic resonance imaging
mRS: modified Rankin scale
NIHSS: National Institutes of Health Stroke Scale
PCA: principal component analysis
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PT: prothrombin
RR: risk ratio

Edited by S Tian; submitted 29.01.24; peer-reviewed by L Guo, A Kalluchi; comments to author 27.02.24; revised version received
02.03.24; accepted 02.04.24; published 07.05.24.

Please cite as:
Bui HTT, Nguy n Th  Ph  ng Q, Cam Tu H, Nguyen Phuong S, Pham TT, Vu T, Nguyen Thi Thu H, Khanh Ho L, Nguyen Tien D
The Roles of NOTCH3 p.R544C and Thrombophilia Genes in Vietnamese Patients With Ischemic Stroke: Study Involving a Hierarchical
Cluster Analysis
JMIR Bioinform Biotech 2024;5:e56884
URL: https://bioinform.jmir.org/2024/1/e56884 
doi:10.2196/56884
PMID:38935968

©Huong Thi Thu Bui, Quỳnh Nguy n Th  Ph  ng, Ho Cam Tu, Sinh Nguyen Phuong, Thuy Thi Pham, Thu Vu, Huyen Nguyen
Thi Thu, Lam Khanh Ho, Dung Nguyen Tien. Originally published in JMIR Bioinformatics and Biotechnology
(https://bioinform.jmir.org), 07.05.2024. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Bioinformatics and Biotechnology, is properly cited. The
complete bibliographic information, a link to the original publication on https://bioinform.jmir.org/, as well as this copyright and
license information must be included.

JMIR Bioinform Biotech 2024 | vol. 5 | e56884 | p.41https://bioinform.jmir.org/2024/1/e56884
(page number not for citation purposes)

Bui et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

https://bioinform.jmir.org/2024/1/e56884
http://dx.doi.org/10.2196/56884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38935968&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Review

Assessing Privacy Vulnerabilities in Genetic Data Sets: Scoping
Review

Mara Thomas1, PhD; Nuria Mackes2, PhD; Asad Preuss-Dodhy3, PhD; Thomas Wieland4, PhD; Markus Bundschus3,
PhD
1F. Hoffmann-La Roche AG, Basel, Switzerland
2xValue GmbH, Ratingen, Germany
3Roche Diagnostics GmbH, Penzberg, Germany
4Foundation Medicine GmbH, Penzberg, Germany

Corresponding Author:
Mara Thomas, PhD
F. Hoffmann-La Roche AG
Grenzacherstrasse 124
Basel, 4070
Switzerland
Phone: 41 616881111
Email: mara.thomas@roche.com

Abstract

Background: Genetic data are widely considered inherently identifiable. However, genetic data sets come in many shapes and
sizes, and the feasibility of privacy attacks depends on their specific content. Assessing the reidentification risk of genetic data
is complex, yet there is a lack of guidelines or recommendations that support data processors in performing such an evaluation.

Objective: This study aims to gain a comprehensive understanding of the privacy vulnerabilities of genetic data and create a
summary that can guide data processors in assessing the privacy risk of genetic data sets.

Methods: We conducted a 2-step search, in which we first identified 21 reviews published between 2017 and 2023 on the topic
of genomic privacy and then analyzed all references cited in the reviews (n=1645) to identify 42 unique original research studies
that demonstrate a privacy attack on genetic data. We then evaluated the type and components of genetic data exploited for these
attacks as well as the effort and resources needed for their implementation and their probability of success.

Results: From our literature review, we derived 9 nonmutually exclusive features of genetic data that are both inherent to any
genetic data set and informative about privacy risk: biological modality, experimental assay, data format or level of processing,
germline versus somatic variation content, content of single nucleotide polymorphisms, short tandem repeats, aggregated sample
measures, structural variants, and rare single nucleotide variants.

Conclusions: On the basis of our literature review, the evaluation of these 9 features covers the great majority of privacy-critical
aspects of genetic data and thus provides a foundation and guidance for assessing genetic data risk.

(JMIR Bioinform Biotech 2024;5:e54332)   doi:10.2196/54332

KEYWORDS

genetic privacy; privacy; data anonymization; reidentification

Introduction

Privacy Risks of Genetic Data
Genomics is a rapidly developing field with exabytes of genetic
data being generated, stored, and analyzed by public and private
institutions per year. These data drive scientific progress,
especially when they are shared with the scientific community
or among institutions. However, genetic data can provide
information about an individual’s identity together with sensitive

details, such as their ethnic background [1]; physical traits such
as eye color [2], hair and skin color [3], height [4]; and diseases
or susceptibility to diseases [5]. Therefore, even if personal
identifiers (eg, name, date of birth, or others) are removed,
sharing genetic data may violate the individual’s right to privacy.
In 2018, a seminal study demonstrated that it is possible to
reidentify individuals by name from genetic data alone [6]. The
authors matched genetic data of an anonymous female study
participant to the genetic genealogy database GEDmatch and
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identified her surname from matches with relatives who had
uploaded their data on GEDmatch. Such reidentification of
genetic data records using publicly available databases is highly
problematic and a growing threat to privacy as publicly available
genetic genealogy databases continue to grow. It is estimated
that a genetic database needs to cover “only 2% of the target
population to provide a third-cousin match to nearly any person”
in a matching attack, similar to the one demonstrated by Erlich
et al [6]. As of 2018, the probability for such a match was
estimated to be 60% for the platform GEDmatch. Through
similar methods of familial DNA searches, multiple individuals
have been identified in criminal cases, despite never having
shared their genetic data themselves [7,8]. Other attacks aim to
reveal sensitive information from genetic data. In 2009,
researchers discovered a genetic predisposition for Alzheimer
disease in the public genome of the famous molecular biologist
and Nobel laureate James Watson, although he had attempted
to prevent such an attack by withholding certain parts of the
data [9]. The high identifiability potential of genetic data
together with its sensitive content with regard to health (eg,
susceptibility to diseases such as Alzheimer disease or cancer)
and physical traits (refer to the studies by Erlich and Narayanan
[10], El Emam et al [11], and Mohammed Yakubu and Chen
[12] for a review) has raised public concern that genetic data
that are shared or published in the context of research or health
care could be misused [13]. For example, attackers could exploit
genetic data to obtain personal and sensitive information about
individuals, and this information could be misused by insurance
companies, mortgage providers, or employers to discriminate
on the basis of genetic information (eg, about disease
susceptibility) [14]. As an additional complication, DNA
sequence is heritable; therefore, leakage of an individual’s
genetic data can violate the privacy of whole families [15,16].

The Challenge of Anonymizing Genetic Data
Genetic data can be used to identify individuals because each
person’s DNA sequence differs uniquely from the standard
human reference genome. Although more than 99% of the DNA
sequence is identical across all humans, the remaining <1%
consists of distinct combinations of insertions, deletions,
duplications, translocations, and inversions of short or long
DNA fragments (refer to the study by Trost et al [17] for a
review). These genetic variations are not randomly distributed
across the genome but occur more frequently in specific variable
regions. Some variations are rare, while others (ie,
polymorphisms) are shared by a significant proportion of the
population. While some variations have no observable effect,
others influence gene transcription, expression, or the amino
acid sequence of a protein and have an effect on the phenotype,
for example, physical traits, metabolism, and disease
susceptibility. These variable regions with an effect on the
phenotype are of great interest to research; however, these can
also be effectively used for individual identification and the
inference of sensitive attributes. Even a small genetic data set
of only 30 highly variable genetic loci is likely to contain unique
records, and these could not only be linked to genetic records
in other data sets but also provide insights into health and
physical traits (refer to the studies by Erlich and Narayanan
[10], El Emam et al [11], and Mohammed Yakubu and Chen

[12] for a review). Furthermore, genetic variation is highly
intercorrelated (variation in one genomic region correlates with
variation in another) and correlated to other modalities (genetic
variation is associated with transcription, expression, epigenetic
regulation, etc), making it possible to link data records of the
same individual even across databases that do not contain the
same type of data (eg, match a genetic data sequence to a gene
expression record). Anonymizing genetic data while maintaining
its full utility remains an unsolved challenge, and there is no
consensus on whether it is even possible [18]. Many
privacy-enhancing technologies aim to reduce the information
content of genetic data or restrict access to it, such that only a
minimal amount of information is shared. An example is
genomic beacons, which allow only simple yes or no queries
to determine whether a specific variant is present in a study
cohort [19]. However, it has become evident that even this
limited amount of information can be exploited for privacy
attacks, and few queries to genomic beacons can suffice to
determine whether individuals (whose genome is known) are
present in a study cohort [20-23]. Similarly, proposals for
encryption and differential privacy approaches [24,25] have
often been countered by demonstrations of attacks [26-28], and
even synthetic genetic data may not fully protect the study
participants from privacy attacks [29] (refer to the study by
Mittos et al [30] for a review of privacy-enhancing
technologies). Thus, even a substantial reduction in information
content can often not completely eliminate all privacy risks of
genetic data [31].

The Risk Minimization Approach for Genetic Data
Privacy
Most legislations do not require to reduce the risk of individual
identification to zero, and several jurisdictions have decided to
take a risk-based approach and consider genetic data anonymous
if the risk of successful reidentification is below a predefined
acceptable threshold [32]. Therefore, genetic data processors
must find the balance between reducing information such that
reidentification is no longer reasonably likely, while maintaining
as much utility of the data as possible [33]. The challenge in
adopting this approach lies in the correct assessment of the
reidentification probability. Genetic data are complex and come
in various shapes or forms, making it difficult to standardize
reidentification assessments. Established methods such as
assessing k-anonymity are difficult to apply to genetic data
because of their high uniqueness, and many other methods fall
short because of the high intercorrelation of genetic data. Simple
measures such as assessing the number of single nucleotide
polymorphisms (SNPs) in genetic data ignore the importance
of the location of the SNPs in the genome, their frequencies in
the population, and the actual feasibility of cross-linking the
specific SNPs to identifiable information. For example, the
reidentification risk is much higher for SNPs that are commonly
included in the SNP assays used by direct-to-consumer genetic
testing (DTC-GT) providers than for less frequently studied
SNPs, as these are more difficult to link to publicly available
identifying information. In addition, genetic data may contain
SNP information even if this is not immediately evident, for
example, in the raw data of sequencing-based gene expression
studies. Data processors who are not familiar with the intricacies
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of genetic data find little guidance on performing an assessment
on genetic data that considers these factors. While several
genomic privacy metrics have been proposed, the great majority
focus on evaluating SNPs only [34] and neglect other known
privacy-critical aspects of genetic data as well as aspects of
feasibility (eg, the expertise, time, effort, availability of external
resources, and other requirements required for an attack).
However, the risk of severe privacy attacks on genetic data (ie,
where the identity of the data subject is revealed) greatly
depends on the specific content of the data as well as “soft
factors,” such as the availability of publicly accessible resources
to cross-link and infer quasi-identifying information and the
time, cost, and knowledge required to perform such an attack.
Given the foundational potential of genetic data to advance
research and health care, a risk-based approach that carefully
evaluates the true risk of reidentification on a case-by-case basis
for each data set in question is warranted, or else any type of
genetic data must be considered identifiable.

Methods

To get a comprehensive overview of the types and aspects of
genetic data sets that are vulnerable to reidentification attacks,
as well as the methods, databases, and know-how used for these
attacks, we searched for studies that demonstrate a privacy attack
on genetic data. We did not aim to establish an exhaustive
overview of all published privacy attacks but aimed to get a
comprehensive understanding of the most vulnerable features
of genetic data. Therefore, we first searched for recent reviews
published on the topic of genomic privacy using ProQuest.
Using the search terms (ti(*genom* OR *genetic*) AND
ti(privacy OR re-identification OR reidentification OR “data
security”)) and (pd(>20170101)) and (at.exact(“Review”)), we
identified 23 reviews, of which 3 (13%) were discarded because
they were off topic. One additional review was identified during

the literature research and added to the selection (refer to
Multimedia Appendix 1 [35-55] for an overview of the included
and excluded reviews), resulting in a final sample of 21 reviews.
In a second step, we extracted all references cited in the reviews
(n=1645) and identified all original research studies that
demonstrate a privacy attack on genetic data. After the removal
of 514 duplicates and 876 reference studies that did not contain
any description of information inference from human genetic
data, we first excluded 89 studies whose main contribution was
the presentation of privacy-preserving measures to exclude
privacy attacks that were performed only for the purpose of
proving the efficiency of the proposed counter methods. Next,
we excluded 120 studies that did not present original research
and were purely associative (ie, did not demonstrate how an
adversary gains knowledge that was not intended to be shared
from genetic data) as well as 4 studies that did not demonstrate
the attack on real data. This process resulted in the selection of
42 unique studies (refer to Figure 1 for an overview of the
process and Table S1 in Multimedia Appendix 1 for an overview
of the eligible attack studies). Extending on the framework by
Mohammed Yakubu and Chen [12] and Lu et al [56], we
categorized attacks into (1) identity tracing (attacker triangulates
the identity of an individual), (2) inference (attacker uses an
individual’s genetic data to infer sensitive attributes such as
disease or drug abuse or to infer additional data or cross-link
records across databases), and (3) membership attacks (attacker
uncovers membership of an individual in a data set). We
evaluated the type and components of genetic data exploited
for this attack as well as the effort and resources used for it
(time, expertise, databases, and computation power) and its
success rate if sufficient information was reported in the study.
The initial evaluation was conducted by one reviewer and
independently verified by another. Table S1 in Multimedia
Appendix 1 presents a detailed overview of the attack studies.
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Figure 1. Flowchart overview of the 2-step literature review process: identification of relevant reviews, followed by extraction and screening of
references.

Results

A Comprehensive Overview of Privacy Risks in
Genetic Data Sets
On the basis of our literature review, we created an overview
of the parts and aspects of genetic data that are commonly
exploited in privacy attacks and that should therefore be taken
into consideration when performing a risk assessment on genetic
data. The goal of this overview is to provide data processors,
who may not be experts in genomic data privacy, with essential
background knowledge about the privacy vulnerabilities
associated with genetic data. This understanding will help them
identify privacy-critical aspects and serve as a starting point for
conducting risk assessments on genetic data sets. Notably, the
reidentification risks associated with data that complement
genetic data (eg, clinical data and demographic data) as well as
aspects of the data environment (access and governance) are
crucial for a comprehensive risk assessment [57], but these
aspects are not in the scope of this research. From our literature
review, we synthesized 9 features that are both inherent to any
genetic data and informative about privacy risk (Figure 2). The
features are not mutually exclusive. Instead, they represent

different “views” on genetic data and highlight various aspects
that should be considered in a privacy risk assessment. For each
feature, we lay out why this feature is associated with privacy
risk by summarizing the relevant evidence in the scientific
literature, and we assess the criticality of these attacks. In
addition, we provide guiding questions that help to assess the
risk of a given data set. The features can be divided into three
groups:

1. The first 4 features are general categorizations of the
genomic data set and serve as a very rough estimate of the
amount of privacy-critical information in the data.

2. The next 3 features are specific genomic features that are
known to be a high risk for privacy. Their assessment is
critical for estimating the reidentification risk.

3. The last 2 features are genomic features that have not been
exploited for privacy attacks yet but should still be
considered and could present a risk if they are present to a
high degree in the data.

We summarize our findings in an overview figure, which lists
the 9 features and their relevance for privacy. While it is
challenging to define clear risk thresholds, there is a recognized
need for practical guidance and orientation. To address this, we
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provide a scale that ranges from lower to higher risk and offer
illustrative examples derived from the overview of privacy
attack studies. These scales and examples serve as the initial
guidance for risk assessment, emphasizing their purpose as
guiding principles rather than exact measurements. The
assessment of each individual feature is intricate and thoroughly
explained in the corresponding sections. In addition, while the

scales offer a framework to compare and assess different
features, it is crucial to consider all features comprehensively
to arrive at a conclusive assessment. Furthermore, the text
sections highlight important interactions that arise from the
comprehensive evaluation of these features.

Table S1 in Multimedia Appendix 1 presents a detailed
description of the original attack studies.

Figure 2. Overview of the privacy-critical features of genetic data sets, with exemplary values and key points to consider for risk assessment. CODIS:
Combined DNA Index System; SNP: single nucleotide polymorphism; SNV: single nucleotide variant; STR: short tandem repeat; WES: whole exome
sequencing; WGS: whole genome sequencing; Y-STR: short tandem repeat on the Y chromosome.

Evidence of Privacy Risks in Genetic Data

Part 1. General Assessment

Biological Modality

While most privacy attacks have been demonstrated on DNA
sequence data, other types of molecular data (eg, DNA
methylation data or data derived from RNA) are also considered
genetic data under General Data Protection Regulation, can also
be identifiable, and have also been exploited for attacks [58-67].

Attacks on these types of data are performed mainly by 3
mechanisms. The first mechanism is direct extraction of DNA
sequence from raw or low-processed data. This is possible,
because even if not of primary interest, DNA sequence
information is often a by-product of gene expression or DNA
methylation studies [68-70]. For example, Gürsoy et al [70]
demonstrated how genetic variants can be called from raw RNA
sequencing data. The second mechanism is inference of DNA
sequence, for example, through known associations of genetic
sequence and gene expression or other modalities. For example,
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Schadt et al [65] used gene expression data of individuals
(40,000 transcript counts) to infer genetic variants (1000 SNPs),
which allowed them to determine with high certainty whether
individuals with known SNPs were members of a gene
expression study cohort (N=378). They also assessed the success
rate of matching gene expression records to SNP records in a
simulated cohort of 300 million individuals and correctly
matched 97.1% of the records, demonstrating the feasibility of
cross-linking these data types, which since then has been
confirmed in additional studies [60,62,63]. Less literature has
been published on other types of data, such as protein or
epigenetic data (eg, DNA methylation), but similar proof of
concept of cross-linkage to SNP data has been demonstrated in
prior studies [58-60,63,64,66,67,71]. In the third mechanism,
sensitive information such as disease phenotypes, demographic
information, and behavioral traits is inferred from gene
expression, protein levels, or other modalities (eg, age [72],
cigarette smoking, and alcohol consumption [59] from DNA
methylation).

However, such inference and linkage are not error free. For
example, in the study by Schadt et al [65], the accuracy of the
imputed SNPs from gene expression data was low (average
Pearson correlation coefficient was 0.35 between true and
inferred genotype). It is not clear whether such imputed data
could be used for privacy attacks in the real world, such as in
an identity tracing attack (eg, via upload of the imputed genetic
data to GEDmatch or other). Considering that previous
successful identity tracing attacks have used >500,000 SNPs
[6], the inference of 1000 SNPs (with errors) may not be
sufficient for such an attack. If the reconstruction of a larger set
of SNPs were attempted, it is likely that the initial imputation
error would propagate and thereby reduce the probability of a
successful identity tracing attack. Furthermore, Schadt et al [65]
reported much lower matching performance if training and test
data stem from different array manufacturers, a scenario that is
likely to occur in real-world data. Finally, although biological
associations between genomic variants and gene expression are
publicly accessible, substantial expert knowledge is still required
for accessing this information and implementing the attack.
Similar limitations apply to all the aforementioned studies.
Altogether, data sets of RNA, protein, or epigenetic data,
especially if they are large (eg, genome-wide), do allow for
linkage and inference attacks. However, true reidentification
would require matching the inferred genetic or phenotypic
information to databases with identifying or quasi-identifying
information in a next step, and no such full identity tracing
attack starting with data other than DNA sequence has been
demonstrated yet.

The guiding questions in this context are as follows:

• Do the data contain DNA sequence information directly
(eg, DNA sequencing reads)? If yes, could the data be
processed such that sequence information is no longer
available (eg, report DNA methylation levels in percentage
instead of providing raw sequencing read files)?

• Could DNA sequence information be inferred from the data
(eg, via biological correlations such as expression or
methylation quantitative trait loci)?

• What sensitive information could be inferred from the data
(eg, age, sex, diseases, or physical traits)?

Experimental Assay

Knowing the experimental assay that was used to generate the
data can already provide a first estimate of its information
content and linkability. For example, sequencing-based assays
generally produce very rich data (eg, high genome coverage
and high precision, such as whole genome DNA sequencing),
whereas polymerase chain reaction–based genotyping assays
provide more sparse data (eg, information on only 1 nucleotide
of the DNA sequence). However, genome coverage alone (ie,
the percentage of all base pairs or loci of the genome covered
by the method) is not a reliable proxy for privacy risk. In some
circumstances, a data set with only 10 sequenced positions of
the DNA could in fact be more critical than a data set containing
hundreds of positions, if those 10 positions are in highly
identifiable loci. However, as a very rough indicator of
information content, we believe it is still valuable to consider
the genome coverage of the data as one of many factors in the
risk assessment. In many cases, the rule of thumb that more
sequence information equals higher information content and
hence risk of cross-linking, inference, and reidentification is
true. Nevertheless, these aspects need to be carefully evaluated
together with the biological modality of the data, the level of
processing, and the specific content of the data.

It is also important to consider that data produced with
frequently used methods, such as commercially available kits
(eg, SNP microarrays), often target the same genetic variants
that are also interrogated by DTC-GT companies and
genome-wide disease association studies and can thus more
easily be linked to public data and exploited for privacy attacks
than data generated with tailor-made, targeted analysis methods
(refer to the study by Lu et al [73] for an overview of genotyping
arrays commonly used by direct-to-consumer companies).
Finally, as nearby variants are more likely to be correlated, it
is also important to consider how the genetic information in the
data is spread across the genome. A targeted assay that reads
all SNPs within a specific gene likely carries less information
than an assay that interrogates the same number of SNPs
distributed across the full genome, as nearby SNPs are more
likely to be correlated [74]. In line with these arguments, the
great majority of published privacy attacks were performed on
data obtained from whole genome sequencing and commercially
available SNP microarrays (ie, rich, genome-wide data in the
order of hundreds of thousands of SNP loci from a commercial
assay).

The guiding questions in this context are as follows:

• Which method was used to generate the data? Does this
method produce rich or sparse data? (What percentage of
all base pairs or loci of the genome are covered by the
method?)

• How do the data produced with this method cover the
genome (ie, genome-wide vs targeted approach)?

• How likely is it that data generated with the same method
are present in publicly available databases (ie, commercial
assay vs custom)?
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Data Format or Level of Processing

The format of the data gives some indication on its processing
level and can thus help to estimate its information content.
Genetic data processing consists of cleaning, filtering,
normalizing, and reducing raw data to a version that contains
only the information that is relevant for its intended use.
Important standard formats in genomic sequencing experiments
sorted from raw to processed are .fasta and .fastq (raw
nucleobase reads); .bed, .bam, and .sam (reads aligned to
reference genome); .vcf and .maf files (deviations from the
reference genome only), whereas highly processed data are
often represented in tabular (.csv and .tsv) or otherwise
structured form (.json, .xml, or other) containing only variants
or regions of interest. Raw or low-processed data (.fasta, .fastq,
.bed, .bam, or .sam) often contain information that is not of
primary interest to research but can be exploited for
reidentification attacks (eg, raw read files from gene expression
studies can contain genomic variant information [63]). While
the possibilities for privacy attacks are greater in raw data, it is
important to note that the required effort and expert knowledge
for handling these data are usually higher than those for
processed data, where genetic variants such as SNPs do not
need to be extracted.

The guiding question in this context is as follows:

• If the data are in a raw or semiprocessed format, do the data
contain any information that is not directly relevant for their
intended use?

Germline Versus Somatic Variation Content

Genetic variants found in an individual’s genome can be
categorized into germline and somatic variants. This
categorization is specific to individuals and depends on the
heritability of the variant (ergo, its presence in the individual’s
reproductive tissues). Heritable variants are categorized as
germline (ie, present in germ and usually also in somatic cells)
and nonheritable variants are categorized as somatic (ie, present
in somatic cells only). In the context of genetic privacy, it is
important to understand that germline variation comprises all
variants that can be assumed to be present in every cell of the
body, are not expected to change much throughout the lifetime
of an individual, are inherited from parental DNA, and are
expected to be passed to the offspring. Such variation can inform
about identity, ancestry, and kinship and is, therefore, used by
DTC-GT providers, forensics, and genetic genealogy services.
The most prominent example for germline variation are SNPs,
as variation found at known SNP loci is generally assumed to
be germline. (However, the terms germline variants and SNPs
cannot be used interchangeably, as they refer to different
concepts: germline describes the heritability, and SNP describes
the type of variant and its frequency in the population.) Overall,
germline variants are not only highly relevant for individual
identification because of their stability and omnipresence across
tissues but are also of great interest for scientific research.
Associations of germline variants to disease, physical traits, or
other biomedical modalities are well studied, with results being
publicly accessible. As such, germline variants are vulnerable
to identity, inference, and linkage attacks, and indeed, all the
reviewed privacy attacks targeted germline variants.

In contrast, somatic variants are acquired during life (after
fertilization) and are usually present only in specific,
nonreproductive tissues or even only in single cells or cell
populations. They are intensively studied in the context of
diseases (eg, cancer), and as they are often found to be
associated with diseases, data on somatic variants could be used
to infer sensitive attributes about data subjects. However, their
low association with identity and use limited to clinical
diagnostics and scientific research makes it very difficult to
cross-link them to databases with identifying or quasi-identifying
information. DTC-GT companies, forensics services, or genetic
genealogy services do not use somatic variants to determine
identity, familial relations, or ancestry, as somatic variation is
neither stable nor present in all tissues and cells (usually found
only in a fraction of cells analyzed in a sample). A linkage attack
based on somatic variation would require a matching data record
of the same tissue, ideally taken at a similar time in life, which
is unlikely to exist for most cases (as somatic variant patterns
can change rapidly, eg, in cancer tissue). No identity tracing,
inference, or membership attack based on somatic variation data
has been published yet, and considering its low potential for
identifiability, somatic variation data can currently be considered
a low risk for reidentification attacks.

To determine whether a variant is germline or somatic, one
would ideally analyze multiple samples from one individual to
determine whether the variant is present in germ cells or only
in specific somatic cells. In practice, experts can assess the status
of a variant from its sequencing read signal (determining
whether it is present in all cells of the sample or only in a few),
genomic location, and type alone by comparing it to public
knowledge of known loci of germline and somatic variation or
through computational approaches [75]. In processed genetic
data, variants which are with high certainty germline have often
already been identified and are indicated as such (eg, SNPs are
identified by a specific reference SNP cluster ID, such as
“rs343543”), whereas somatic variants are described by standard
mutation nomenclature (eg, single nucleotide variants [SNVs]
are described by the Human Genome Variation Society
nomenclature, containing the reference genome used; the
genomic location of the variant; the nucleotide in the reference
sequence; and the detected nucleotide, such as
“NC_000023.9:g.32317682G>A”). Furthermore, the type of
tissue that was used to generate genetic data, most importantly
whether samples were taken from healthy or tumor tissue, can
also give some indication on the amount of germline variation
included in the data. When analyzing tumor tissue data, germline
variations such as SNPs are typically removed during
processing, as the focus is on studying somatic variation.
However, especially if the data are raw and unfiltered, they
often contain germline variants irrespective of whether they
were taken from healthy or tumor tissue and must hence be
considered a higher risk for reidentification. Therefore, while
data that are both derived from tumor tissues and highly
processed are often a low privacy risk, the amount of
information on germline variation that is contained in the data
needs to be assessed case by case. Public databases (eg, dbSNP,
hosted by the National Institutes of Health’s National Center
for Biotechnology Information) store information about the
genomic locations and population frequencies of SNPs and can
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be used to search data for this important type of germline
variation.

The guiding questions in this context are as follows:

• Was germline or somatic variation of primary interest when
generating or processing the data?

• If somatic variation was of primary interest, was germline
variation removed from the data?

Part 2. High-Risk Components

SNPs

SNPs are germline SNVs that are present in >1% of the
population. They are highly relevant features for individual
reidentification and the most privacy-critical component of
genetic data sets. Because SNPs usually have 2 different states
(ie, a common or reference and a rare nucleotide) and human
somatic cells have 2 DNA copies (ie, are diploid), an individual
usually has 1 of 3 different states at a SNP locus, often
represented as 0,1, and 2 (0 represents 2 copies of the common
variant [ie, homozygous for major allele], 1 represents 1 copy
of the common variant and 1 copy of the rare variant
[heterozygous], and 2 represents 2 copies of the rare variant
[homozygous for minor allele]). Knowing an individual’s state
at 30 to 80 statistically independent SNPs (or a random set of
approximately 300 SNPs) can suffice for individual
identification [76-79], yet commonly used SNP or genome
sequencing assays often read hundreds of thousands of SNPs
at once. As germline variation, SNPs are assumed to be stable
and present in every cell of the body, signifying that they can
identify individuals across samples taken at different times or
from different tissues. As they are heritable, DTC-GT providers
and forensic institutes compare SNP patterns of individuals to
determine familial relations and ancestry [80]. Furthermore,
SNPs are associated with physiological traits (eg, skin, hair and
eye color [2,3], facial features [81], BMI [82], and height [4]),
ethnicity [1], and susceptibility to diseases [5], making them
central to research and genetic testing (refer to the study by
Dabas et al [83] for a review of association of SNPs with
externally visible characteristics).

SNP data can be directly used for reidentification by matching
it to publicly accessible databases, as demonstrated in the
reidentification attack by Erlich et al [6], who uploaded SNP
data (700,000 SNPs) from an anonymous study participant to
the genetic genealogy website GEDmatch and identified the
participant’s surname through matches with relatives. Such
identity tracing attacks are possible because millions of people
send their DNA to DTC-GT companies such as AncestryDNA,
23andMe, FamilyTreeDNA, or MyHeritage [84], and many also
decide to share their genetic data on publicly accessible
websites, such as GEDmatch, the Personal Genome Project
[85], or OpenSNP [86]. Enabling individuals to identify and
contact relatives, learn about their ancestry, disease
predispositions, and contribute their data to research, these
platforms often contain genetic data accompanied by information
about an individual’s diseases and traits or even personal data
such as place of residence, age, sex, surname, or phone number.
In addition, there is a wealth of publicly accessible knowledge
on associations of SNPs with physical features, diseases, other

genetic variants or genetic modalities (eg, gene expression and
DNA methylation; eg, dbSNP database [87], the GWAS catalog
[5], the International Genome Sample Resource from the 1000
Genomes Project [88], and data from the HapMap project [89]),
which can and have been exploited for completion and inference
attacks (eg, inference of additional genetic variation in genomic
regions that were not studied originally, other biomedical
modalities such as gene expression and DNA methylation, or
physical attributes [9,90-96]). For example, Humbert et al [92]
predicted phenotypic traits (eye, hair and skin color, blood type,
and more) of individuals from their SNP data (20 SNPs) using
publicly available knowledge on SNP-phenotype associations
from the public database SNPedia and used this information to
cross-link individuals between genetic and phenotypic data sets.
In addition, Humbert et al [92] inferred additional and sensitive
information (eg, susceptibility to Alzheimer disease) from the
SNP data. However, this linkage attack had a success rate of
only 5% (ie, proportion of correctly matched individuals) in a
data set of 80 individuals and is likely to perform worse in more
realistic scenarios with larger data sets. Nyholt et al [9] imputed
the status of multiple risk variants for Alzheimer disease in the
published genome of Dr James Watson [94] from SNPs in
nearby genomic regions, although the respective gene had been
masked. Edge et al [90] cross-linked individuals in SNP and
short tandem repeat (STR) data sets, a highly identifiable type
of genetic variation that is used in forensics, by imputing STR
from SNP data (642,563 loci). In a highly debated study, Lippert
et al [93] developed a model to predict phenotypic traits (facial
structure, voice, eye color, skin color, age, sex, height, and BMI)
from whole genome sequencing (WGS) data containing >6
million SNPs and used it to cross-link high-resolution face
photographs of individuals to their genetic data in a cohort of
1061 study participants. In a real-life scenario, photos and
personal data from social media could be exploited for such an
attack and matched to the inferred phenotype. However, it has
been argued that the predictive power in this study stems mainly
from the estimation of the participant’s ancestry and sex [97]
and that the attack is unlikely to be successful in the real world
and with more realistic, lower-quality images [98]. Furthermore,
large, genome-wide association studies indicate that the
currently known associations between SNPs and facial structure,
voice, height, and BMI are too small to be useful for accurate
phenotype prediction on an individual level; however, this will
likely improve in the future. Nevertheless, other characteristics,
such as ancestry, eye, hair color, and skin color, can be inferred
from specific SNPs with high accuracy, and corresponding DNA
phenotyping kits are already commercially available and used
in forensics today [99]. As a small number of SNPs can already
uniquely identify an individual and SNPs are widely available
in public databases together with identifying and
quasi-identifying information, SNPs must be considered a high
risk for privacy and data sanitization efforts (eg, as proposed
by Emani et al [100]) should be used in any genetic data set
containing >20 SNPs.

The guiding questions in this context are as follows:

• How many SNPs do the data contain (directly or indirectly)?
• Are the SNPs in close proximity or spread across the

genome (nearby SNPs are more likely to be correlated and
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thus often contain less information than statistically
independent SNPs)?

• Are the interrogated SNPs frequently assessed in research
or by DTC-GT providers (ie, how likely is it that they can
be linked to publicly available, identifying data sets)? The
study by Lu et al [73] presents an overview of genotyping
arrays commonly used by direct-to-consumer companies.

• Are all SNPs relevant to the intended use of the data or
could some be removed from the data?

• What sensitive information could be inferred from the data
(eg, diseases and physical traits)?

• Could additional DNA sequence information be inferred
from the data (eg, association with STRs or other)?

STRs

The human genome contains more than half a million regions
of repetitive units of 2 to 6 bases, the so-called STRs or
microsatellites [101]. The number of repeats in these regions is
highly variable across individuals and can affect protein function
or expression or be linked to medical conditions or physical
traits [102]. Knowing the repeat numbers of as little as 10 to 30
STRs can suffice for individual identification. Because of their
high identifiability, STRs are used to determine identity and
kinship in forensics, law enforcement, paternity testing, and
genetic genealogy. For example, the Combined DNA Index
System (CODIS; a set of 20 STRs) is used to connect suspects
to crime scenes or establish identity of missing persons. While
CODIS STRs are usually not of interest in research studies or
genetic genealogy, STRs on the Y chromosome (ie, Y-STRs,
only present in male individuals) are included in several
DTC-GT kits, where they are used to identify relatives along
the paternal ancestry line (eg, “Y-STR Testing” by
FamilyTreeDNA). Consequently, several large databases of
STR loci with accompanying identifying and quasi-identifying
information exist (eg, mitoYDNA from mitoYDNA Ltd). In
addition, the CODIS forensic database and analysis software
contains genetic data and identifying information from >14
million individuals in the United States alone [103].

Several studies demonstrate reidentification attacks on Y-STRs.
Gitschier et al [104] provided first evidence for surname
inference from Y-STRs by matching genetic STR profiles of
anonymous study participants from the international HapMap
project [89] to 2 genetic genealogy databases (Ysearch and
Sorenson Molecular Genealogy Foundation [SGMF]). Later,
Gymrek et al [105] demonstrated that it is not only possible to
infer surnames from STR data (eg, 34 Y-STR loci extracted
from WGS data) but also to triangulate the actual identity of
data subjects with high probability using publicly accessible
genealogy databases, record search engines, obituaries, and
genealogical websites. The authors attempted this for 10 study
participants of the 1000 Genomes Project and correctly
identified 5 out of 10 individuals. It is important to note that
STR data can also be fortuitously included in genetic data
derived from targeted gene or WGS, even if they are not of
primary interest for the study. Moreover, STR markers can be
imputed from genetic data sets that do not even cover STR
regions by exploiting known associations between SNPs and
STRs [90]. While the authors of this study report a low
imputation accuracy for STRs from SNPs (likely too low to

reliably impute full STR profiles even from large SNP data),
they did demonstrate the ability to cross-link records across
SNP and STR databases. In detail, they correctly matched 90%
to 98% of paired SNP (642,563 loci) and STR data records (13
STRs) to each other, and such successful linkage has also been
demonstrated elsewhere [106].

Due to the high association of STRs with identity, any genetic
data that directly (eg, repeat numbers for specific STR regions)
or indirectly (eg, WGS data covering STR regions) contain >10
STR regions could be considered identifiable. However, the
actual risk of reidentification depends on the availability of STR
databases with identifying and quasi-identifying information
and the ability to cross-link records. It is important to note that
the databases used in the seminal study by Gymrek et al [105]
(ie, Ysearch and SGMF) are no longer available (Ysearch,
belonging to FamilyTreeDNA, closed in 2018, and SGMF,
belonging to Ancestry, was shut down in 2015), and access to
the CODIS database is restricted to criminal justice agencies
for law enforcement identification purposes. However, databases
from DTC-GT providers (eg, FamilyTreeDNA) and public
platforms (eg, mitoYDNA) are still available and allow
uploading results from third-party providers; therefore, an
attacker could fabricate a genetic testing result from STR data
[107,108] and reproduce the demonstrated surname inference
attacks. From information about possible surnames, sex, and
residence inferred from matches on the platform, the
triangulation of identity could be possible with the help of
additional publicly available resources [105,109]. However,
such an attack would only be possible on male data records (ie,
Y chromosome based) and is not guaranteed to find matches
that allow surname inference; the success rate in the
demonstrated attack was 11.9% (109/911 cases), and the 2
previous studies used >30 STR loci (all located in close vicinity
of each other and on the Y chromosome). Furthermore, the
know-how and effort necessary for such an attack is high.
Finally, even if genetic matches or surnames are identified, the
reconstruction of identity from surname is not trivial and can
take months to complete, as others have pointed out [110]. Still,
because of their high identifiability potential and their use in
DTC-GT, paternity testing, and forensics, STRs should be
removed from genetic data if they are not of primary interest
and otherwise considered a high risk for privacy.

The guiding questions in this context are as follows:

• Do the data directly or indirectly (eg, STRs in raw data and
STRs imputable from SNPs) contain >10 STR loci?

• Are these STR loci either (1) part of the CODIS system or
(2) on the Y chromosome (ie, high linkability)?

• Could additional DNA sequence information be inferred
from the data (eg, association with SNPs or other)?

Aggregated Sample Measures

Aggregated sample measures, that is, variables that are the result
of aggregating genetic data across multiple samples can also be
exploited for privacy attacks (reviewed by Craig et al [111]).
The most prominent examples are summary statistics from
association studies such as SNP frequencies, odds ratios, or
correlation coefficients. However, the limited information
content in these summary statistics usually only allows for
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membership attacks, that is, assessing whether an individual of
known genetic background is part of a study group or database
or not [112-114]. Multiple studies demonstrate such an attack
[113,115-119], although Homer et al [114] were the first to
explain how membership of an individual in a mixture can be
predicted from the reported SNP allele frequencies (ie, if SNPs
of that individual are known, in this case >10,000 SNPs). The
authors accomplished this by comparing the reported study
allele frequencies to allele frequencies in a reference cohort of
similar ancestry (obtained from public resources) and detecting
the bias introduced by the sample of interest. Their method
performed well even if the individual’s contribution to the
mixture was <1%, and this method can easily be extended to
predicting membership from aggregated data from a study
cohort. In response to that, the US National Institutes of Health
has restricted the publication of aggregate GWAS results in
their databases [120]; however, the feasibility of the attack has
been critically discussed. Its power depends on the size and
quality of the actual and reference cohorts, the number of
reported SNP allele frequencies, prior knowledge of the attacker,
and the fulfillment of several underlying assumptions, many of
which are likely not fulfilled in practice [115,116,121,122].
Aside from membership attacks, it was also shown that
aggregate results, such as linear models that have been fitted to
study data or polygenic risk scores, can be exploited to predict
sensitive attributes and genotypes via model inversion [28,123].
However, this attack required background information on the
data subject and on the distribution of variables in the study
data. Furthermore, its performance is limited by the predictive
power and complexity of the fitted model. Membership and
attribute inference attacks on aggregate data can reveal
demographic, genetic, and phenotypic information (such as
country or place of residence due to participation in a local
study, ethnicity, disease, age group, or presence of specific
genetic variants due to descriptions of inclusion or exclusion
criteria in the cohort) and can thus facilitate linkage and identity
tracing attacks, which is why they can be a risk for privacy.
However, no identity tracing attack based on aggregate data has
been demonstrated yet.

The guiding question in this context is as follows:

• What sensitive information could an attacker gain from
ascertaining the membership of an individual to the data
set (eg, geographic information, sex, disease, and age)?

Part 3. Low-Risk Components
No privacy attack has been demonstrated on these components,
but due to their high association with identifying and sensitive
attributes, we recommend including them in the risk assessment.

Rare SNVs

Rare SNVs are single nucleotide substitutions that are present
in <1% of the population. They may be somatic or germline
and can be associated with pathological conditions and thus
reveal sensitive information. Furthermore, while less informative
than common SNVs (ie, SNPs) from an information theoretical
standpoint, rare variants greatly increase the risk of
reidentification for the small subpopulation of variant carriers.
However, because of their low frequency in the population,

germline SNVs are rarely the target of large scientific studies
(eg, for phenotype or disease association) and have very limited
use for ancestry and disease susceptibility analysis. Therefore,
most DTC-GT providers and research studies specifically target
regions of common genetic variation (eg, SNPs) and either use
assays that do not detect SNVs or remove them during
preprocessing, making it very unlikely that a set of SNVs could
be linked to any database with quasi-identifying information.
No identity tracing, completion, or inference attack has been
published on SNVs yet; therefore, they can currently be viewed
as a low risk for reidentification, despite their high theoretical
potential for identifiability.

The guiding questions in this context are as follows:

• What sensitive information could be inferred from the data
(eg, diseases and physical traits)?

• Could additional DNA sequence information be inferred
from the data (eg, association with SNPs or other)?

• Are there any databases that could be used to cross-link the
data to identifiable data, and how accessible are the
databases?

Structural Variants

The study of structural variants (SVs) in the human genome is
in its early stages, but it is already clear that it accounts for even
more individual variation than SNPs [124,125]. The best-studied
type of SVs is copy number variation (CNV), that is, deletions
and duplications of regions larger than 50 base pairs. CNVs can
be used as measures of relatedness and identifiers of population
origin [126], have a strong impact on gene expression [127],
and could allow for the inference of physical features [128] and
pathological conditions [129], thereby revealing sensitive
information of data subjects. However, CNVs are still not well
studied, and sequencing technologies have only recently
progressed to a level that allows to capture their full scope in
the human genome (reviewed by Mahmoud et al [124]). Most
importantly, human CNV databases are very scarce in
comparison to databases of SNVs (refer to the study by Ho et
al [130] for an overview of the available human SV reference
sets), and they are currently not used for genetic genealogy
analyses, making it difficult to link CNVs across databases to
obtain identifying information. A privacy attack based on CNVs
or any other type of SV yet remains to be demonstrated. Finally,
it is important to note that many SVs that are assessed in medical
and research studies are somatic, that is, nonhereditary, not
present in all cells of the body, not stable, and thus not strongly
associated with identity. For example, tumor tissue is
characterized by frequent and dynamic changes in SVs (eg,
CNVs in tumor tissue, also referred to as CNAs), which are
likely neither directly nor indirectly identifiable. Therefore, the
risk of reidentification from SVs can currently be considered
low, but the growth of public databases and their use in
genealogical or clinical research should be monitored. The same
holds true for common SVs, such as CNVs that occur in >1%
of the population and are hence classified as polymorphisms
(ie, CNPs). Little is known about the population frequencies of
CNVs, and while public databases are growing, no privacy
attack based on CNPs has been demonstrated yet. Due to the
limited knowledge about CNPs or other common SVs in the
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population, their presence in genetic data is difficult to assess,
and they can be considered a low risk for reidentification at the
current time.

The guiding questions in this context are as follows:

• What sensitive information could be inferred from the data
(eg, diseases and physical traits)?

• Could additional DNA sequence information be inferred
from the data (eg, association with SNPs or other)?

• Are there any databases that could be used to cross-link the
data to identifiable data, and how accessible are the
databases?

Discussion

Limitations
It is important to acknowledge some key limitations of our
review. First, it is possible that we may have missed relevant
studies. This is particularly true for recent research, as our search
was confined to original studies referenced in existing reviews.
While the search strategy was designed to retrieve the most
pertinent studies, it carries the risk of overlooking lesser-known
or very recent studies. Therefore, we recommend conducting
periodic reviews to stay updated with scientific advancements
and changes in the availability of public genetic data that may
contain (indirectly) identifying information susceptible to
identity tracing attacks. Second, even under the assumption that
all relevant literature was considered, it is still possible that we
may have overlooked certain vulnerabilities. This is known as
the “proof of nonexistence fallacy”—the absence of evidence
for risk does not imply the absence of those risks. Finally, it
was necessary to balance our aim of providing a comprehensive
and evidence-based overview of genetic privacy vulnerabilities

with our aim of providing practical and useful guidance.
Therefore, we provide both a detailed assessment (refer to the
Results section and Table S1 in Multimedia Appendix 1) as
well as a simplified overview (Figure 2). However, this trade-off
necessitated compromises in practical utility on one hand and
scientific exhaustiveness on the other hand.

Conclusions
On the basis of the findings of this review, it can be argued that
the privacy risks of genetic data vary greatly between data sets.
Considering all genetic data at all times as information relating
to an identifiable natural person is not correct, and it is becoming
apparent that reidentification risk in genetic data must be
assessed on a case-by-case basis and under the consideration
of all the means reasonably likely to be used [131]. However,
while efforts are underway [132], no practical guidelines or
recommendations for performing such a reidentification risk
assessment on genetic data have been proposed yet. On the basis
of a review of the scientific literature on privacy attacks on
genetic data, we provide an overview of genetic data privacy
risks that can guide data processors in risk assessment by
providing the necessary background knowledge and an overview
of the existing evidence. We believe that a careful examination
of the 9 described features in the data set at hand (biological
modality or type of data, experimental assay, data format or
level of processing, germline vs somatic variation content,
content of SNPs, STRs, aggregated sample measures, rare SNVs,
and SVs) provides a strong foundation for a data risk assessment.
While completely eliminating the possibility of reidentification
is rarely achievable, a more practical approach of risk
minimization is warranted [133,134], accompanied by
organizational and technical measures to safeguard genetic data
from reidentification attack attempts and a transparent
communication of the remaining risks to data subjects.
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Abstract

Background: Carcinoma of unknown primary (CUP) is a subset of metastatic cancers in which the primary tissue source of
the cancer cells remains unidentified. CUP is the eighth most common malignancy worldwide, accounting for up to 5% of all
malignancies. Representing an exceptionally aggressive metastatic cancer, the median survival is approximately 3 to 6 months.
The tissue in which cancer arises plays a key role in our understanding of sensitivities to various forms of cell death. Thus, the
lack of knowledge on the tissue of origin (TOO) makes it difficult to devise tailored and effective treatments for patients with
CUP. Developing quick and clinically implementable methods to identify the TOO of the primary site is crucial in treating patients
with CUP. Noncoding RNAs may hold potential for origin identification and provide a robust route to clinical implementation
due to their resistance against chemical degradation.

Objective: This study aims to investigate the potential of microRNAs, a subset of noncoding RNAs, as highly accurate biomarkers
for detecting the TOO through data-driven, machine learning approaches for metastatic cancers.

Methods: We used microRNA expression data from The Cancer Genome Atlas data set and assessed various machine learning
approaches, from simple classifiers to deep learning approaches. As a test of our classifiers, we evaluated the accuracy on a
separate set of 194 primary tumor samples from the Sequence Read Archive. We used permutation feature importance to determine
the potential microRNA biomarkers and assessed them with principal component analysis and t-distributed stochastic neighbor
embedding visualizations.

Results: Our results show that it is possible to design robust classifiers to detect the TOO for metastatic samples on The Cancer
Genome Atlas data set, with an accuracy of up to 97% (351/362), which may be used in situations of CUP. Our findings show
that deep learning techniques enhance prediction accuracy. We progressed from an initial accuracy prediction of 62.5% (226/362)
with decision trees to 93.2% (337/362) with logistic regression, finally achieving 97% (351/362) accuracy using deep learning
on metastatic samples. On the Sequence Read Archive validation set, a lower accuracy of 41.2% (77/188) was achieved by the
decision tree, while deep learning achieved a higher accuracy of 80.4% (151/188). Notably, our feature importance analysis
showed the top 3 most important features for predicting TOO to be microRNA-10b, microRNA-205, and microRNA-196b, which
aligns with previous work.

Conclusions: Our findings highlight the potential of using machine learning techniques to devise accurate tests for detecting
TOO for CUP. Since microRNAs are carried throughout the body via extracellular vesicles secreted from cells, they may serve
as key biomarkers for liquid biopsy due to their presence in blood plasma. Our work serves as a foundation toward developing
blood-based cancer detection tests based on the presence of microRNA.
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Introduction

Carcinoma of unknown primary (CUP) originates when a patient
presents at diagnosis with malignant disease across the body;
yet, the cancer cells tissue of origin (TOO) remains
unidentifiable. Thus, CUP is a unique subset of metastasized
cancer representing an advanced stage in which cancer has
gained the ability to thrive in new tissue sites and has spread
from the primary tumor site. In the United States, an estimated
31,490 people were diagnosed with cases of cancer of unknown
TOO in 2008. This accounts for nearly 3%-5% of all cancer
cases [1] and given the lack of knowledge on tissue response
to current therapeutics the median survival of patients remains
only 3-9 months [2]. In many cases of CUP, the primary site is
never identified, preventing the use of treatment that can be
effective for the true TOO [3,4]. It has been demonstrated that
pinpointing the primary site can significantly increase survival
rates by enabling precise and targeted treatment [5].

Unfortunately, primary tumor identification poses various
challenges. Techniques such as serum tumor markers and
imaging tests are used to identify the TOO, although only 30%
of these tests are successful. Moreover, some positive findings
can be misleading [6] and CUP diagnostic workups are often
time-consuming, expensive, and unsuccessful [7]. These
difficulties have spurred interest in using genetic expression
data, such as microRNA, to identify the TOO.

MicroRNAs belong to a class of noncoding regulatory RNAs,
small single-stranded RNA molecules that are between 19 and
25 nucleotides long and are involved in the regulation of gene
expression of mRNAs. MicroRNAs hold promise as informative
biomarkers for cancer due to their significant involvement in
cellular processes such as cell division, apoptosis, proliferation,
and oncogenesis [8]. Beyond their intracellular role in gene
regulation, microRNAs may be carried throughout the body via
extracellular vesicles secreted from cells and have been
identified in the blood. Additionally, microRNA, unlike mRNA,
is characterized by resistance to extreme temperatures and pH.
This makes microRNAs far more stable biomarkers [9,10].

Previous work [11] demonstrates that microRNA expression is
more informative in classifying tumor samples by their origin
in comparison to mRNA. Specifically, microRNAs are better
at classifying poorly differentiated tumors [12]. Moreover,
microRNAs have shown great potential for identifying TOO
for cancers of unknown primary origin [13]. MicroRNAs have
been investigated as prognostic and diagnostic biomarkers
extensively in the research community and have even been
found to be deregulated in numerous cancers [14].

With the wide availability of large data sets containing gene
expression data, computational techniques such as machine
learning have emerged as promising tools for improving TOO

detection. Machine learning implementations have increased
accuracy in predicting cancer and have the potential to improve
the diagnosis, prognosis, and therapy selection for patients with
cancer [15]. The 3 traditional machine learning models are
decision trees, random forests, and logistic regression. Decision
trees [16] attempt to partition the training set into subsets that
contain samples of only one class, thereby predicting the class
of interest. Random forests are ensemble classifiers, combining
multiple trees for higher accuracy [17]. In contrast, logistic
regression is a predictive algorithm to find a model that can
predict categorical output [18]. Deep learning is a subset of
machine learning designed to mimic the human brain through
the use of artificial neural networks by using many layers and
larger data sets. Generally, deep learning techniques are well
suited for discovering and recognizing complex patterns in data
that traditional machine learning methods can often miss. The
increasing incorporation of deep learning in health care along
with the availability of highly characterized cancer data sets has
further accelerated research into the applications of deep
learning in the analysis of the biology of cancer [19].

Given the complexities of diagnosing a TOO from a cancer that
has spread throughout the body, previous investigators have
applied machine learning methods to determine TOO for
metastasized cancers [20,21]. Longstanding techniques of
microarrays and polymerase chain reaction have been used for
the generation of machine learning models for CUP detection,
including support vector machines with 89% accuracy [22] and
the k-nearest neighbor algorithm with 82% accuracy [23,24].
LoCUP, a TOO classifier, was the first machine learning model
using a multinomial logistic regression classifier with ridge
penalties to incorporate tumor purity and reached a 95.8%
accuracy [25]. Cup AI Dx [20] used mRNA gene expression
data from The Cancer Genome Atlas (TCGA) data set to train
a network based on the popular inception model [22] to identify
the TOO, achieving an accuracy of 96.7% on a validation set
of 354 TCGA metastatic samples. The TOD-CUP method [21]
addressed the variation in mRNA platforms and used a gene
expression rank–based majority vote algorithm to achieve an
overall accuracy of 94%. Early work with microRNAs and
nondeep learning machine learning algorithms showed 84%
accuracy with k-nearest neighbor models [26] and binary
decision trees at 85% [27]. However, the investigation of deep
learning machine learning models may improve these accuracies
with TOO detection by microRNA. MicroRNAs are also at the
forefront of extracellular vesicle liquid biopsy development and
may be better suited for the noninvasive classification of TOO
[28].

This study sets out to explore the possibility of developing a
model for using microRNA profiles from metastatic tissues to
determine the TOO through the application of deep learning
techniques. Successful TOO detection from microRNAs will
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provide a route for cancer detection without requiring samples
from the primary tumor site in cases of CUP malignancies. We
hypothesize that we would be able to predict the origin of
metastatic tumors with higher accuracy than previous reports
by leveraging larger data sets of microRNA profiles from both
normal and primary site tissues to train the model.

The data for this project were collected from TCGA data set
[29] and the Sequence Read Archive (SRA) [30] from
microRNA tissue expression database. The TCGA data set
contains samples from 18 different cancer types representing
9648 samples, of which 365 were metastatic, 633 were solid
normal, and 8650 were from the primary tumor site. Each
sample consisted of microRNA expression data, available as
RPM (reads per million mapped reads), as well as metadata
including age and gender. We split TCGA data set into a
combined primary tumor or solid normal samples training set
and a metastatic sample test set. We then further split the
primary tumor and solid normal samples into a training and
validation set with a 9:1 ratio. The training set consisted of 8355
samples and the validation set consisted of 928 samples.

We use 2 data sets for evaluating the performance of our models.
The SRA test data set consisted of 194 samples from 5 different
cancer types, all of which were from the primary tumor. We
also used the metastatic samples from TCGA data set as our
final test data set, which contained samples from 6 cancer types.
We developed 4 machine learning models, a decision tree
classifier, random forest, logistic regression, and finally, a deep
learning model. Our deep learning model performed with the
highest accuracy, achieving an accuracy of 97% in detecting
TOO for metastatic samples and 80.4% on the nonmetastatic
SRA cohort. Feature importance analysis revealed the top 3
differentiating microRNA targets as microRNA-10b,

microRNA-196b, and microRNA-205, which confirms prior
investigations on microRNAs associated with metastatic cancer
[31-33].

Methods

Data Sets
In Figure 1, we outline the data preprocessing pipeline. Our
study analyzed published data and did not generate any new
sequencing data. TCGA data were obtained [29]. Data were
further filtered by querying the Genomics Data Commons via
the Application Programming Interfaces specified [34]. We
restricted the tissue type to be one of the primary tumors, solid
tissue normal, or metastatic. We further restricted the data to
microRNA transcriptome profiling and picked data
corresponding to 18 types of cancer each containing a sufficient
number of samples, obtaining 9648 files (Figure 2 and Table
S1 in Multimedia Appendix 1).

To obtain the SRA data, we used the microRNA tissue
expression database portal and restricted the cancer types to 6
types of cancer, seen in further detail in Figure 2. We obtained
207 samples, each containing expression data for 2656
microRNAs. After removing samples with missing features,
194 samples were remaining.

We selected microRNA features that were expressed in at least
50% (4824/9648) of the samples, which reduced the number of
features in the TCGA data set from 1889 to 562. We then picked
the common features between the SRA data set and the TCGA
data set, reducing this number to 497. On both data sets, we
normalized the RPM of the selected features per sample to sum
to a million. We then transformed the RPM values using the
transformation log(RPM + 1) to restrict the range of the input.
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Figure 1. Overview of our data processing pipeline. Data from the TCGA GDC portal and SRA miTED portal was obtained. Underexpressed microRNA
and samples containing missing features from the miTED data were filtered. Common features were selected between both data sets, reducing the
number of microRNA to 497. Features were normalized as reads per million per sample and log-transformed. TCGA data set was split into (1) the
primary tissue and solid normal set and (2) the metastatic test set. The first, combined, set was further split into a training and validation set. GDC:
Genomics Data Commons; miTED: microRNA tissue expression database; SRA: Sequence Read Archive; TCGA: The Cancer Genome Atlas.
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Figure 2. The Cancer Genome Atlas (TCGA) data set distribution across tissue of origin (TOO). Distribution of the different cancer samples in the
TCGA data set that are from the primary tumor site, solid tissue, or metastatic. Note that metastatic samples primarily corresponded to the skin as the
TOO.

Training Procedure
For the implementation of decision tree, random forest, and
logistic regression classifiers, the sklearn package was used
[35]. We used classification accuracy as the primary metric to
evaluate our models. Deep learning models were created with
PyTorch (Meta AI) [36]. To optimize and train our neural
network, we used Adam optimizer and trained for 50 epochs.
Since our objective was classification, we used softmax with
cross-entropy loss [37] to optimize the model. We used the
validation set to determine the hyperparameters of the models
and picked the best-performing model for further evaluation on
the test set. Feature importance was calculated with sklearn’s
permutation feature importance function.

Ethical Considerations
This study was conducted in accordance with the ethical
standards of the Salve Regina University ethical standards. The
research study was reviewed by the institutional review board
of Salve Regina University and was determined to be exempt
from further review as per criteria contained in Title 45 CFR
§46.104(d) section 4ii of federal regulations. As such, the study
used only publicly available deidentified or anonymized data,
and the project was reviewed (Exemption #Wise.2024.6.11).

Results

In order to develop a model to detect TOO, we set out to find
the best-performing machine learning model for determining
the TOO from the TCGA primary tumor and solid normal tissue
cohorts. The models were then tested on the validation set, and
we could accurately determine the TOO based on primary or
normal microRNA profiles, with an accuracy of over 90% for
15 of 18 different tissue types using deep learning (Table 1 and
Table S2 in Multimedia Appendix 1).

We can note that the deep learning model performs consistently
the highest on the validation set, with logistic regression and
random forest classifiers providing comparable performance.

We then set out to apply our best-performing deep learning
model and evaluate its performance on the SRA test set that

contains microRNA expression data from primary tumors (Table
2). We accurately determined the TOO with an accuracy of over
90% (90/100) for 3 of the 5 cancer types but saw a decrease in
accuracy for bladder and colorectal cancer.

Finally, we analyzed our deep learning model on microRNA
expression data from metastatic tissue samples in the TCGA
data set (Table 3). We accurately determined the TOO with an
accuracy of over 85% (308/362) for all cancer types with an
average of 97% (351/362).

Since random forest and logistic regression classifiers provided
comparable performance on the primary or normal validation
set, we compared the classifier accuracy on both test sets for
all created models (Table 4).

The input features of our models consist of microRNA
expression data common to TCGA and SRA data sets. Figure
3 describes the overall architecture of the model, which consists
of 2 linear layers. The second layer has 18 outputs,
corresponding to each cancer type. The cancer type corresponds
to the output with the maximum value.

We used dropout for the input layer [38] as it is a common
technique to improve model accuracy and reduce overfitting.
We also augmented our input data with noise.

To evaluate the performance of our models, we computed
confusion matrices for performance on metastatic samples
(Figure S2A and S2B in Multimedia Appendix 1) and plotted
the receiver operating characteristic curves for performance on
metastatic skin cancer (Figure S2C and S2D in Multimedia
Appendix 1), as the majority of the metastatic samples were
obtained from skin cancer cases. We observed that the deep
learning model performed significantly better than our decision
tree model, which was consistent when evaluated on the SRA
validation cohort (Figure S3 in Multimedia Appendix 1). To
illustrate the effectiveness of our models, we created Sankey
plots representing the deep learning model performance on
metastatic samples from the TCGA data set and primary tissue
sites from the SRA data set (Figure 4).
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Table 1. Model accuracies on the validation test set. Performance of 4 models for the identification of tissue of origin. The validation set consists of
both primary tumor and solid normal tissue samples from The Cancer Genome Atlas data set.

Deep learning (%)Logistic regression (%)Random forest (%)Decision tree (%)Cancer type

99.296.999.291.6Breast (n=131)

94.590.410076.7Uterus (n=73)

10093.891.689.6Ovary (n=48)

10010010094.5Prostrate (n=54)

88.994.494.561.1Testis (n=18)

98.282.995.781.1Lung (n=117)

10099.110094.8Kidney (n=116)

88.588.595.771.4Bladder (n=35)

83.354.129.233.3Esophagus (n=24)

10097.610097.6Liver (n=42)

10095.29555.0Pancreas (n=20)

10010085.742.8Pleura (n=7)

10094.798.285.6Colorectal (n=57)

10010010066.6Skin (n=6)

91.175.597.882.2Stomach (n =45)

100100100100Brain (n=47)

93.778.178.162.5Cervix (n=32)

10010010098.1Thyroid (n=55)

97.296.495.384.6Overall—across cancer types

Table 2. Performance of our deep learning model for the identification of tissue of origin on the primary tissue site cohorts from the SRAa.

SRA test accuracy—deep learning (%)Cancer type

91.6Breast (n=44)

100Prostrate (n=37)

100Lung (n=19)

80Bladder (n=10)

58.9Colorectal (n=78)

N/AbSkin (n=0)

80.4Overall—across cancer types

aSRA: Sequence Read Archive.
bN/A: not applicable.
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Table 3. Performance of our deep learning model for the identification of tissue of origin in metastatic tumor tissue.

TCGAa metastatic test accuracy—deep learning (%)Cancer type

85.7Breast (n=7)

100Prostrate (n=1)

N/AbLung (n=0)

100Bladder (n=1)

100Colorectal (n=1)

97.4Skin (n=352)

97Overall—across cancer types

aTCGA: The Cancer Genome Atlas.
bN/A: not applicable.

Table 4. Accuracy of developed models on metastatic and SRAa test sets. The accuracy for all 4 models is presented on the TCGAb metastatic and
SRA cohorts. The decision tree classifier had a depth of 14 and the random forest had a depth of 19.

Accuracy on SRA test set (%)Accuracy on TCGA metastatic test set (%)Classifier

41.262.5Decision tree

74.294.2Random forest

71.693.2Logistic regression

80.497Deep learning

aSRA: Sequence Read Archive.
bTCGA: The Cancer Genome Atlas.

Figure 3. A schematic of the machine learning model architecture. MiRNA: microRNA.

JMIR Bioinform Biotech 2024 | vol. 5 | e56538 | p.66https://bioinform.jmir.org/2024/1/e56538
(page number not for citation purposes)

Raghu et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Sankey plot for deep learning model on Sequence Read Archive (SRA) and The Cancer Genome Atlas (TCGA) test data sets. (A) On the
TCGA data set, our deep learning model is able to correctly classify 333 out of 343 metastatic skin cancer samples, demonstrating high accuracy. (B)
On the SRA test data set, we show representative plots for breast and colon cancers, showing high accuracy for breast cancer tissue of origin identification.
(C) The model performance on colon cancer is less accurate due to microRNA expression consistently overlapping for colon and stomach cancers [40].

These results confirm our hypotheses and show that we were
able to predict the TOO with high accuracy using deep learning.
Furthermore, our findings demonstrated that deep learning
techniques significantly increase the accuracy in comparison to
decision tree, logistic regression, and random forest models.

To reveal the significance of individual features, we performed
feature importance analysis using the permutation feature
importance method (Figure 5A). The top 3 microRNAs
contributing to our deep learning model based on our combined
normal and primary site training set are microRNA-10b,
microRNA-196, and microRNA-205. MicroRNA-10b has been
shown to function as a metastasis-promoting factor in many
cancer types. In fact, it was one of the first microRNAs to have
been discovered with aberrant expression in cancer cells [31].
MicroRNA-196 has been linked to the progression of many

cancers, notably metastatic colorectal cancer [32], while
microRNA-205 expression is downregulated in metastatic breast
and prostate cancer [33].

To further understand the significance of the identified important
features, we compute a heat map (Figure 5B) showing the
microRNA expression values for the top 10 microRNA features
for samples in the training data set. Visually, it is apparent that
the microRNA features can be used to distinguish the cancer
type. To further validate this, we perform principal component
analysis and t-SNE analysis using only the top 10 features
(Figures 5C and 5D). We note that the t-SNE plot shows a clear
separation of features into distinct clusters corresponding to
each cancer type, showing the significance of the features for
detecting the TOO.
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Figure 5. MicroRNA feature importance visualizations. (A) Permutation feature importance for the top 3 microRNA candidates. A bar graph of the
importance values for the 3 top microRNA candidates for the logistic regression model. (B) MicroRNA expression heatmap. MicroRNA expression
values for the top 10 most important features (as determined by permutation feature importance) for a subset of samples. The top 10 microRNA features
can cluster cancer type. Low mir-205 and mir-944 and a high mir-10b are indicative of colorectal cancer. Similarly, low expressions for microRNA-429,
microRNA-483, microRNA-215, microRNA-944, microRNA-1247, microRNA-375, and microRNA-205 are indicative of kidney cancer. (C) PCA
visualization. (D) t-SNE visualization. PCA and t-SNE visualization of data corresponding to the 6 cancer types with the most samples in our data set,
using only the top 10 microRNA features. In the PCA plot, note that there is significant overlap between the cancer types, while in the t-SNE plot, the
cancer types are well separated, suggesting that with 10 microRNA features, machine learning models may correctly identify patterns and predict tissue
of origin. PCA: principal component analysis; t-SNE: t-distributed stochastic neighbor embedding.

Discussion

Principal Findings
In these investigations, while using successively more powerful
classifiers, we were able to detect the TOO on solely metastatic
cancer samples with accuracies ranging from 62.5% (226/362)
with a decision tree to 97% (351/362) with a deep learning
model. Our methods show that one can leverage larger amounts
of gene expression data for primary and solid tissue normal
tumor samples (~10,000 samples) to come up with accurate
classifiers to determine TOO for metastatic cancer (currently
limited to ~300 samples). In order to verify the robustness of
our model, we assessed its performance on primary tumor data
from the SRA and obtained accuracies ranging from 41.2%
(77/188) with decision tree to 80.4% (151/188) when using deep
learning. Our methods have also identified promising microRNA
candidates, reaffirming prior research in this field and
demonstrating the potential of machine learning.

The predominant failure of our model on the SRA test cohort
was within colorectal cancer as can be seen in Figure 4C. Many
colorectal samples were incorrectly classified as stomach or
gastric cancer. This is consistent with previous research in this
area as microRNA expression profiles for gastrointestinal
cancers show significant overlap [39]. In addition, colorectal

and stomach cancer are often synchronous with probabilities
ranging from 20.1% to 37.2% [40].

We used permutation feature importance, a model-agnostic
metric that permutes features across samples in the test set to
assess the change in model accuracy. The results are in line with
existing research in this area and serve as a good indicator of
the feasibility of machine learning techniques to identify
promising biomarkers.

Limitations
To effectively use our model in clinical care, accuracy must be
improved further. Our model currently performs with an
accuracy of 97% (351/362). While this may seem impressive,
clinical classifiers should be highly accurate so that there are a
negligible number of cases with errors in identifying TOO. To
improve the accuracy, the accumulation of larger data sets is
necessary, and as the noncoding genome continues to reveal
significant contributions to cancer, we predict that available
data sets will expand. A further limitation to our study is that
the available microRNA metastatic data sets are predominantly
skin cancer. Thus, access to a larger, more varied, data set would
improve our assessment of model performance. Furthermore,
in order to develop a truly noninvasive method of TOO
identification relevant to all cancers, it would be ideal to extend
our method to microRNA expression data from blood samples.
Detecting the TOO through blood-based microRNA biomarkers
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would significantly impact the diagnosis and treatment of
patients with CUP. Additionally, our model cannot differentiate
between tumor and solid tissue normal samples, as it was
designed to identify the TOO specifically.

Conclusions
To summarize, our developed machine learning models can
accurately identify the TOO with high accuracy from microRNA
expression data when trained on primary tumor and solid tissue

samples. Importantly, our results identified key microRNA
differentiators of tissue type. Our models are robust and perform
well across different data sets (TCGA and the SRA data set).
We look forward to developing further deep learning models
that can accurately detect TOO as microRNA data sets expand,
with the goal of having a noninvasive test for diagnosing the
presence of cancer and determining cancer TOO with high
accuracy.
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Abstract

Background: Current postpartum hemorrhage (PPH) risk stratification is based on traditional statistical models or expert opinion.
Machine learning could optimize PPH prediction by allowing for more complex modeling.

Objective: We sought to improve PPH prediction and compare machine learning and traditional statistical methods.

Methods: We developed models using the Consortium for Safe Labor data set (2002-2008) from 12 US hospitals. The primary
outcome was a transfusion of blood products or PPH (estimated blood loss of ≥1000 mL). The secondary outcome was a transfusion
of any blood product. Fifty antepartum and intrapartum characteristics and hospital characteristics were included. Logistic
regression, support vector machines, multilayer perceptron, random forest, and gradient boosting (GB) were used to generate
prediction models. The area under the receiver operating characteristic curve (ROC-AUC) and area under the precision/recall
curve (PR-AUC) were used to compare performance.

Results: Among 228,438 births, 5760 (3.1%) women had a postpartum hemorrhage, 5170 (2.8%) had a transfusion, and 10,344
(5.6%) met the criteria for the transfusion-PPH composite. Models predicting the transfusion-PPH composite using antepartum
and intrapartum features had the best positive predictive values, with the GB machine learning model performing best overall
(ROC-AUC=0.833, 95% CI 0.828-0.838; PR-AUC=0.210, 95% CI 0.201-0.220). The most predictive features in the GB model
predicting the transfusion-PPH composite were the mode of delivery, oxytocin incremental dose for labor (mU/minute), intrapartum
tocolytic use, presence of anesthesia nurse, and hospital type.

Conclusions: Machine learning offers higher discriminability than logistic regression in predicting PPH. The Consortium for
Safe Labor data set may not be optimal for analyzing risk due to strong subgroup effects, which decreases accuracy and limits
generalizability.

(JMIR Bioinform Biotech 2024;5:e52059)   doi:10.2196/52059
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Introduction

Maternal morbidity and mortality have been regarded as a
reflection of health care quality nationwide. Among
lower-income countries, postpartum hemorrhage (PPH) is
typically the most common cause of maternal mortality and
remains among the top causes in higher-income countries. In
the United States, hemorrhage accounted for 11.0% of deaths
between 2011 and 2016 [1-4]. To address maternal hemorrhage,
maternal hemorrhage protocols have been implemented, which
incorporate prospective PPH risk assessment to tailor PPH
prophylactic and management approaches for patients’
individual risk profiles. However, these protocols are often
based on observational studies that approximated the strength
of associations with hemorrhage via logistic regression (LR)
models and combined the results of multiple studies together
in a linear fashion [5-7]. However, “standard” LR assumes that
(1) there is a linear relationship between predictors and the log
odds of outcomes and (2) there are independent relationships
between predictors. Additionally, LR and related models often
perform poorly with large numbers of included variables [8,9].
Consequently, current risk stratification models fail to accurately
ascertain pregnant patients’ risk of hemorrhage [10]. Studies
attempting to validate existing LR and related models have
instead identified gaps in the efficacy of these models, as the
majority of patients with PPH and transfusions were stratified
in low or moderate risk groups [11,12].

Machine learning offers an advantage to current risk assessment
methods through its ability to create a robust model based on
larger numbers of predictors, with nonlinear relationships and
interactions between variables included in analyses [13]. Our

objective in this analysis was to create a validated prediction
model using machine learning for postpartum hemorrhage and
transfusion to optimize risk-based triage and inform policy
makers and stakeholders who aim to further reduce maternal
morbidity and mortality associated with hemorrhage.

Methods

Data Collection
Data for this analysis were extracted from the Consortium for
Safe Labor (CSL) data set created by the Eunice Kennedy
Shriver National Institute of Child Health and Human
Development (NICHD). It includes antepartum, intrapartum,
and postpartum medical histories of 224,438 women from 12
hospitals in the United States (Figure 1). Variables in this data
set include maternal demographics, reproductive history,
medical history, prenatal history of current pregnancy, labor
admission assessment, labor progression, labor and delivery
summary, maternal postpartum condition, and newborn
information. For this database, data were extracted
retrospectively from existing records for deliveries most recently
occurring at each site. Data were extracted electronically using
a method suitable to each hospital’s unique data systems. Data
transfer and integrity were managed by a data coordinating
center that created a central database. The data were deidentified
and are available for research under request from the NICHD.
Women with only 1 recorded pregnancy in the data set were
included for data analysis; if women had more than 1 pregnancy
during the study period, only the first one was used in the
analysis. We selected maternal, fetal, and pregnancy variables
as candidates to build the prediction model for transfusion risk.
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Figure 1. Flowchart of inclusion of women with transfusion or postpartum hemorrhage (or both).

Missing Data
Machine learning methods are known to generate errors in the
presence of missing values [14]. To avoid this, we imputed
values as follows: categorical variables with missing and
unknown values were assigned to an “unknown” category;
continuous variables with missing and unknown values were
coded to the median value. Continuous variables for maternal
age and BMI were coded into ordinal categories (age of <20,
between ≥20 and <40, between ≥40 and <45, and ≥45 years;
BMI of ≤20, between >20 and ≤40, between >40 and ≤50, and

>50 kg/m2). Imputing estimated blood loss (EBL) as the median
value (350 mL) meant that missing values were assumed to be
<1000 mL.

Feature Selection
We used the Cramér V index of nominal association for variable
selection [15]. Features were classified into antepartum and
intrapartum variables. Two different prediction models were
constructed: (1) an antenatal-only model intended to be used in
the clinic setting to inform appropriate patient referral and (2)
an intrapartum model that included both antepartum and
intrapartum characteristics. Individual antepartum and
intrapartum maternal variables included for model development
are shown in the Multimedia Appendix 1.

Outcomes
Separate models were constructed to predict 2 target outcomes.
The primary outcome was a composite including all patients
who received a transfusion of any blood product or had a PPH

defined by documented blood loss of ≥1000 mL during or after
delivery. Our secondary outcome was all patients who received
transfusion of any blood product. Both blood loss of ≥1000 mL
and blood transfusion are clinically significant metrics in
obstetric care. Transfusion alone represents patients who are at
risk for high maternal morbidity and mortality and is a clinically
important metric to evaluate in isolation; hence, it was evaluated
independently in a model as a secondary outcome.

Data Analysis
For each of the 4 combinations of predictors and outcomes (for
predictors, antepartum vs antepartum and intrapartum; for
outcomes, transfusion and blood loss greater than a liter versus
transfusion alone), the data were split so that 70% of the
observations were used for training and 30% were used for
testing, with both sets having the same outcome rate. We applied
a number of methods, including LR, support vector machines
(SVMs), multilayer perceptron (MLP), random forest (RF), and
gradient boosting (GB), as well as deep learning algorithms
including TensorFlow imbalanced (TFIM) and learned
embedding (Emb). Hyperparameters were tuned for each
algorithm using a customized grid search technique. The model
performance for each combination of outcome and algorithm
was measured using the Matthews correlation coefficient
(MCC), area under the receiver operating characteristic curve
(ROC-AUC), area under the precision/recall curve (PR-AUC),
and modified F-score skewed toward recall (F2). A modified
F2 score was chosen to minimize false negatives and thus
maximize the identification of patients at high risk for bleeding
and transfusion. Existing LR models and risk classification
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schemes perform poorly, and the majority of patients with
hemorrhage or transfusion are misclassified as low risk.
Misclassification of a “high risk” patient as “low risk” may have
important clinical implications. Additionally, interventions can
be implemented to minimize risk and enhance patient safety
(eg, type and cross, multiple intravenous access sites, provider
awareness, medications, etc). Models will then be evaluated for
those with the highest positive predictive value (PPV) given
these parameters. A model with the highest PPV will be
clinically useful to identify a high-risk patient population
without increasing the clinical burden on the hospital system
or patient with the abovementioned interventions. Algorithms
were processed and results were analyzed using Python (version
3.6; Python Software Foundation), Pandas (version 1.2; The
Pandas Development Team), scikit-learn (version 0.24;
scikit-learn Developers), and TensorFlow (version 2.2; Python
Software Foundation).

The primary study objective was to identify the strongest set of
pre- and intraoperative predictors of hemorrhage or transfusion
and the strongest modeling technique. Secondary objectives
included determining the level of agreement between metrics
for model evaluation and the extent to which any technique
produced results that are clinically useful. Given the
heterogeneity of this data set derived from multiple institutions,
a site-specific sensitivity analysis was performed.

Ethical Considerations
This analysis was exempt from review by the George
Washington University’s institutional review board
(NCR202746).

Results

Of 228,438 births included in the CSL cohort, we included
185,413 patients (Figure 1), having excluded patients with more
than 1 delivery (n=43,025). Maternal age ranged from 11 to 58
(median 27) years; 32% (n=60,193) of the participants were
publicly insured, 49% (n=90,466) were white non-Hispanic,
22% (n=41,780) were Black, and 17% (n=32,727) were
Hispanic. Of the 185,413 women included in the analysis, 71%
(n=131,130) had a vaginal delivery, and 29% (n=54,283) had
a cesarean delivery. In total, 5170 (3%) women experienced the
primary outcome of transfusion of any blood product, 5760
(3.11%) had a PPH defined by an estimated blood loss of ≥1000
mL, and 10,344 (6%) experienced the secondary composite
outcome of transfusion or estimated blood loss of loss of ≥1000
mL. Additional demographic data are summarized in Multimedia
Appendix 2.

After building the models in an iterative process, their
performance in predicting both the primary and secondary
outcomes was compared using a variety of metrics. The metrics
ROC-AUC, PR-AUC, MCC, and F2, as well as sensitivity and
specificity at a probability cut point of 50% are shown in Tables
1 and 2.

Table 1. Performance of machine learning and statistical models based on antepartum and intrapartum maternal variables at predicting transfusion or
postpartum hemorrhage (or both). Primary outcome: blood transfusion or blood loss of ≥1 L.

F2eMCCdPR-

AUCc
ROC-

AUCb
Specifici-
ty

Sensitivi-
ty

Positive pre-
dictive value

False nega-

tivesa, n

False posi-

tivesa, n

True nega-

tivesa, n

True posi-

tivesa, n

Algorithm

0.4190.2600.2100.8330.6630.8890.135626318650GBf

0.4090.2610.2040.8300.6410.8570.138605339650RFg

0.4060.2460.1810.8130.6870.8210.1346492961046Embh

0.4020.2450.1490.8080.6450.8750.127609335749MLPi

0.4030.2450.1940.8220.6550.8610.129619323848TFIMj

0.3970.2420.1590.8040.6300.8860.124595349649SVMk

0.3930.2380.1770.8130.6680.8300.1296313141046LRl

aValues are normalized per 1000, so they are easier to compare across different models; the actual N value is 55,624.
bROC-AUC: area under the receiver operating characteristic curve.
cPR-AUC: area under the precision-recall curve.
dMCC: Matthews correlation coefficient.
eF2: modified F-score skewed toward recall.
fGB: gradient boosting.
gRF: random forest.
hEmb: learned embedding.
iMLP: multilayer perceptron.
jTFIM: TensorFlow imbalanced.
kSVM: support vector machine.
lLR: logistic regression.

JMIR Bioinform Biotech 2024 | vol. 5 | e52059 | p.75https://bioinform.jmir.org/2024/1/e52059
(page number not for citation purposes)

Ahmadzia et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Performance of machine learning and statistical models based on antepartum and intrapartum maternal variables in predicting transfusion or
postpartum hemorrhage (or both). Secondary outcome: blood transfusion.

F2eMCCdPR-

AUCc
ROC-

AUCb
Specifici-
ty

Sensitivi-
ty

Positive pre-
dictive value

False nega-

tivesa, n

False posi-

tivesa, n

True nega-

tivesa, n

True posi-

tivesa, n

Algorithm

0.3250.2340.1110.8600.7580.8660.093737235424GBf

0.3190.2320.1070.8620.7420.8870.090721251325RFg

0.3090.2150.0960.8370.7710.7890.090750223622Embh

0.3180.2270.0950.8450.7560.8490.091735237424MLPi

0.3190.2290.1110.8550.7530.8590.091732240424TFIMj

0.3200.2300.1160.8520.7490.8710.091728244424SVMk

0.3170.2280.1110.8530.7430.8760.089722250324LRl

aValues are normalized per 1000, so they are easier to compare across different models; the actual N value is 55,624.
bROC-AUC: area under the receiver operating characteristic curve.
cPR-AUC: area under the precision-recall curve.
dMCC: Matthews correlation coefficient.
eF2: modified F-score skewed toward recall.
fGB: gradient boosting.
gRF: random forest.
hEmb: learned embedding.
iMLP: multilayer perceptron.
jTFIM: TensorFlow imbalanced.
kSVM: support vector machine.
lLR: logistic regression.

For both the primary and secondary outcomes, models developed
using antepartum and intrapartum maternal variables (see
Multimedia Appendix 1 for a list of variables) to predict the
primary outcome performed better with higher PPVs than those
solely using antepartum maternal variables (Multimedia
Appendices 3 and 4). For the primary composite outcome, the

machine learning technique GB using intrapartum maternal
variables had the highest PPV (PR-AUC=0.21, 95% CI
0.20-0.22; ROC-AUC=0.83, 95% CI 0.828-0.838; Figure 2).
For the secondary outcome of transfusion alone, there was little
difference in model performance when comparing several
performance metrics.
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Figure 2. Receiver operating characteristic and precision/recall curves for different models using intrapartum maternal variables predicting transfusion
or postpartum hemorrhage.

The remainder of our results focus on the model with the highest
PPV: the intrapartum model (containing both antepartum and
intrapartum variables) evaluating our primary outcome of a
composite of blood loss of more than 1000 mL or transfusion.
Both RF and GB had significantly higher PPVs for predicting
the composite transfusion or PPH when compared with LR
(PR-AUC=0.18, 95% CI 0.17-0.19; ROC-AUC=0.81, 95% CI
0.808-0.818).

Figure 3 reveals the calibration curves for the models
constructed with intrapartum maternal variables and predicting
the transfusion-PPH composite. Calibration curves portray the
predicted PPH risk versus the observed PPH rate across a range
of predicted PPH values. There was better agreement between
the models with a lower fraction of positives, and none of the
models were able to reach the standard curve—for all models,
the predicted PPH risk overestimated the observed PPH rate
across the range of predicted values.

JMIR Bioinform Biotech 2024 | vol. 5 | e52059 | p.77https://bioinform.jmir.org/2024/1/e52059
(page number not for citation purposes)

Ahmadzia et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Calibration curves for models using intrapartum maternal variables to predict transfusion or postpartum hemorrhage (or both). Emb: learned
embedding; GB: gradient boosting; LR: logistic regression; MLP: multilayer perceptron; RF: random forest; SVC: support vector machine; TFIM:
TensorFlow imbalanced.

Figure 4 displays the top 25 predictive variables included for
model development using antepartum and intrapartum features
for the prediction of the transfusion-PPH composite. As the
machine learning GB model was the best performing model
overall, the variables in Figure 4 are in order of variable
importance within the GB model. The top 10 variables from
most predictive rate to least predictive rate for intrapartum
prediction of the transfusion-PPH composite using the GB model
are mode of delivery, oxytocin incremental dose for labor
(mU/minute), intrapartum tocolytic use, use of anesthesia nurse,
hospital type, a trial of labor after prior cesarean delivery,

insurance, most serious diabetes control, education, and history
of prior cesarean sections. The results of the models for
antepartum-only models are listed in Multimedia Appendix 3.
The ROC-AUC and PR-AUC did not perform as well for the
models using antepartum-only variables, though this was less
obvious for the models predicting transfusion only (Multimedia
Appendix 4). Of note, upon further sensitivity analysis, we also
determined that some of the top variables in the model were
site-specific (ie, oxytocin incremental dose for labor, intrapartum
tocolytic use, use of anesthesia nurse, and hospital type) for
transfusion outcomes specifically (data not included).

Figure 4. Top 25 predictors based on each model using intrapartum maternal factors predicting transfusion or postpartum hemorrhage (or both). GB:
gradient boosting; LR: logistic regression; MLP: multilayer perceptron; RF: random forest; SVC: support vector machine.
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Discussion

Principal Findings
In this study, LR and machine learning techniques were analyzed
and compared to develop prediction models for PPH and
transfusions. We found that the machine learning techniques,
particularly GB, performed best to predict PPH when PPH was
defined as blood transfusion or blood loss of greater than 1 L.
However, all prediction models had difficulties with calibration
when predicting the rare outcome of transfusion alone.

Clinical Implications
Risk assessment for PPH has been shown in a pre-post study
to reduce rates of blood transfusion and PPH [16]. However,
the risk stratification approaches most commonly used for PPH
in the United States were developed and implemented on the
basis of expert opinion, and subsequent validation studies have
revealed the limitations of these tools [17,18]. Validation studies
using the California Maternal Quality Care Collaborative
(CMQCC) risk assessment tool found that while the tool
generated populations with different rates of hemorrhage among
those stratified to low, medium, and high-risk groups, the rate
of PPH among women stratified in the high-risk group for PPH
was only 22% [19]. Others have found that the AUC-ROC for
the CMQCC and Association of Women's Health, Obstetric and
Neonatal Nurses’ (AWHONN’s) tools for predicting severe
PPH, defined by transfusion of at least 4 units packed red blood
cells during postpartum period, were relatively modest at 0.77
and 0.69, respectively [20]. Furthermore, parameters that are
included in PPH risk models based on univariate association
with PPH risk may not be independent predictors when
incorporated into multivariate models [20]. For these reasons,
improvements in PPH risk models are a promising target for
improving PPH care.

A previously published risk assessment for PPH using the CSL
data set demonstrated exceptional model performance, but model
performance was drastically lower in an external validation
cohort [21,22]. This study augments the findings of these prior
studies via incorporation of antepartum and intrapartum risk
factors. Nonetheless, additional work is needed before such a
model can be implemented in clinical practice. In particular, it
will be important to develop prediction models that are
implementable either through straightforward bedside data entry
or can be automated via real-time data capture from electronic
medical records, which are well validated in a variety of hospital
settings, and ideally, which are paired with recommended
risk-based interventions to reduce hemorrhage risk and mitigate
the occurrence of hemorrhage. In our study, among the top
predictors were variables that reflect patients’ access to care
and resources, such as hospital type and insurance. This
highlights the possible need for a layered prediction model,
which may help stratify patients who may need to be transferred
to a tertiary care center with more resources (using an
antepartum model focusing on patient factors along with hospital
factors to designate risk).

Research Implications
For all the intrapartum methods that we tested for predicting
transfusion or hemorrhage, the ROC-AUC values were greater
than 0.80, which is often cited as a threshold indicating adequate
discrimination. However, this conclusion is misleading because
in a situation where incidence of the outcome is low (here, it
was ~3% for transfusion or hemorrhage alone), the PPV, also
known as “precision,” is likely to be quite low. Our precision
for the best-performing model was ~13%, meaning that of those
predicted to be positive for the outcome, 13% were positive and
87% were negative. This may be satisfactory for clinical uses
where preventive interventions have very low cost (in terms of
both financial cost and added risk to the patient) but would not
be acceptable when the intervention is of higher risk or is more
expensive. In this situation, the PR-AUC provided a more
realistic measure of model quality. Precision/recall plots show
PPV (aka precision) as a function of sensitivity (aka recall);
thus, they account for true positives in positive predictions. In
contrast, the ROC-AUC emphasizes specificity, which is likely
to be very high when true positives are rare [23,24]. The metric
with the largest difference between the best and
worst-performing models is PR-AUC (0.16 vs 0.21). This metric
could be used more frequently in modeling studies when the
occurrence of the outcome of interest is ≤6%.

Strengths and Limitations
The strengths of this study include the use of a large, national
multicenter data set to develop a data-driven model that can
predict PPH using antepartum and intrapartum factors using
cutting-edge machine learning techniques. Furthermore, we
considered both commonly used end points such as estimated
blood loss greater than 1 L and clinically relevant end points
such as transfusion; this led us to conclude that due to a less
frequent occurrence and transfusion practice, variation made it
more challenging to develop a reliable model for transfusion
only.

Limitations of the study include the low reported precision of
algorithms. Sensitivity is prioritized for prediction, as clinically
missing PPH has more consequences than a false positive.
Therefore, the algorithms are trained to be biased toward
predicting positives resulting in lower false negative rates at
the risk of higher false positive rates and decreased precision.
As a result, as shown in the calibration plots, the models
systematically overstate hemorrhage risk. In this study, the
outcomes of interest were either a composite of transfusion or
blood loss of ≥1 L or transfusion only. Our PPH definition was
based on the American College of Obstetricians and
Gynecologists’ reVITALize program’s definition of PPH as
blood loss of ≥1 L or loss of blood with clinical signs of
hypovolemia within 24 hours of delivery. This definition
deviates from older traditional definitions that defined PPH as
≥500 mL for vaginal delivery and 1000 mL for cesarean delivery
[25]. Therefore, clinical care could have been guided by older
definitions, as the CSL data set was collected between 2002
and 2008 [21]. However, a strength of our study is the use of
EBL rather than a clinical designation of PPH so that we only
include patients who were designated to have an EBL above
the current threshold for PPH, that is, 1000 mL. Beyond that,
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measures of EBL have been shown to be imprecise with low
volumes overestimated and high volumes of blood loss
underestimated [26]. Furthermore, transfusion was used as a
proxy for PPH, and transfusion thresholds vary depending on
the institution and provider. In addition, the machine learning
algorithms are limited by the variables measured and accurately
recorded in the data set.

Conclusions
In conclusion, machine learning and data-driven statistical
modeling may offer more objective and discriminative prediction
of PPH based on individual antepartum and intrapartum patient
features, compared to expert opinion, and may improve upon
traditional regression models. This can increase the opportunity
for precision medicine and improved clinical care to reduce the
burden of PPH as a leading cause of maternal morbidity and
mortality.
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