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Abstract

Background: Chromosomal abnormalities are genetic disorders caused by chromosome errors, leading to developmental delays,
birth defects, and miscarriages. Currently, invasive procedures such as amniocentesis or chorionic villus sampling are mostly
used, which carry a risk of miscarriage. This has led to the need for a noninvasive and innovative approach to detect and prevent
chromosomal abnormalities during pregnancy.

Objective: This review aims to describe and appraise the potential of internet-based abnormal chromosomal preventive measures
as a noninvasive approach to detecting and preventing chromosomal abnormalities during pregnancy.

Methods: A thorough review of existing literature and research on chromosomal abnormalities and noninvasive approaches to
prenatal diagnosis and therapy was conducted. Electronic databases such as PubMed, Google Scholar, ScienceDirect, CENTRAL,
CINAHL, Embase, OVID MEDLINE, OVID PsycINFO, Scopus, ACM, and IEEE Xplore were searched for relevant studies
and articles published in the last 5 years. The keywords used included chromosomal abnormalities, prenatal diagnosis, noninvasive,
and internet-based, and diagnosis.

Results: The review of literature revealed that internet-based abnormal chromosomal diagnosis is a potential noninvasive
approach to detecting and preventing chromosomal abnormalities during pregnancy. This innovative approach involves the use
of advanced technology, including high-resolution ultrasound, cell-free DNA testing, and bioinformatics, to analyze fetal DNA
from maternal blood samples. It allows early detection of chromosomal abnormalities, enabling timely interventions and treatment
to prevent adverse outcomes. Furthermore, with the advancement of technology, internet-based abnormal chromosomal diagnosis
has emerged as a safe alternative with benefits including its cost-effectiveness, increased accessibility and convenience, potential
for earlier detection and intervention, and ethical considerations.

Conclusions: Internet-based abnormal chromosomal diagnosis has the potential to revolutionize prenatal care by offering a safe
and noninvasive alternative to invasive procedures. It has the potential to improve the detection of chromosomal abnormalities,
leading to better pregnancy outcomes and reduced risk of miscarriage. Further research and development in this field is needed
to make this approach more accessible and affordable for pregnant women.

(JMIR Bioinform Biotech 2024;5:e58439)   doi:10.2196/58439
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Introduction

Background
Prenatal diagnosis of chromosomal abnormalities is an important
part of prenatal care. Chromosomal abnormalities are the major
cause of pregnancy complications, including miscarriage,
stillbirth, and birth defects [1]. Understanding the prevalence
and impact of commonly diagnosed chromosomal abnormalities
in pregnancy is essential for providing accurate genetic
counseling and appropriate prenatal care. Traditionally, prenatal
diagnosis has been performed using invasive methods such as
amniocentesis and chorionic villus sampling. However, these
methods are associated with a small risk of miscarriage [2,3].
In recent years, noninvasive prenatal testing (NIPT) has emerged
as a safe and effective alternative to invasive methods. NIPT is
based on the analysis of cell-free DNA (cfDNA) in the maternal
blood [3]. cfDNA is released into the maternal blood by the
placenta and contains genetic material from both the mother
and the fetus. This advent of NIPT has revolutionized prenatal
diagnosis [3]. While NIPT has emerged as a powerful tool for
detecting common chromosomal abnormalities such as Down
syndrome, its accessibility and potential for broader application
through internet-based platforms remain relatively unexplored.
This review focuses on understanding the feasibility, benefits,
and challenges of using internet-based technologies to deliver
NIPT services effectively. Internet-based NIPT presents a
compelling opportunity to overcome barriers associated with
traditional prenatal diagnostics [4]. Web-based platforms can
extend NIPT services to geographically remote areas and
underserved populations, bridging health care disparities.
Web-based platforms offer flexible scheduling and internet
consultations, reducing the need for multiple clinic visits,
especially beneficial for working mothers [5]. Internet-based
platforms can potentially streamline administrative processes
and reduce operational costs, making NIPT more affordable for
a wider population [5]. This review aims to provide a
comprehensive overview of the current state of internet-based
NIPT, discussing its technical feasibility, ethical considerations,
and potential impact on prenatal care. Notwithstanding, current
prenatal chromosomal diagnosis methods have several
limitations. They are invasive, expensive, and can cause anxiety

in pregnant women. Therefore, there is a need for internet-based
abnormal chromosomal diagnosis, a noninvasive, cost-effective,
and anxiety-reducing method for chromosomal abnormality
detection.

Internet-based methods for prenatal diagnosis of chromosomal
abnormalities are becoming increasingly popular. These methods
allow pregnant women to access information and support from
health care professionals and other parents who have
experienced similar challenges [6]. There are a number of
different internet-based methods for prenatal diagnosis,
including web-based genetic counseling, online support groups,
and web-based prenatal testing [7-9]. Internet-based abnormal
chromosomal diagnosis during pregnancy is a noninvasive and
innovative approach to detecting chromosomal abnormalities
in fetuses, offering several advantages over traditional invasive
procedures [5]. This review aims to provide a comprehensive
overview of this emerging technique, highlighting its benefits,
limitations, and implications for prenatal care. Moreover,
internet-based abnormal chromosomal diagnosis during
pregnancy aims to address these limitations by using advanced
computational techniques to analyze fetal genetic material
obtained through noninvasive methods, such as maternal blood
samples. This approach offers a safe and convenient alternative
to traditional invasive procedures. This review aims to provide
a comprehensive understanding of internet-based abnormal
chromosomal diagnosis during pregnancy. By exploring this
emerging technology, we can contribute to improving the safety,
accessibility, and effectiveness of prenatal chromosomal
abnormality detection.

Basics of Chromosomal Abnormalities
Chromosomal abnormalities involve changes in the number or
structure of chromosomes, which contain genetic information
determining physical traits [10]. These can lead to health issues
such as developmental delays, birth defects, and genetic
disorders (Figure 1 [10]). There are 2 main types of
abnormalities: numerical and structural [11]. Numerical
abnormalities involve whole chromosome loss, while structural
abnormalities involve chromosome structure changes [12]
(Textbox 1).
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Figure 1. Chromosomal abnormalities linked to repeated miscarriages. There is evidence linking chromosomal anomalies to repeated miscarriages at
the parent, gamete, and fetal levels. Abnormalities in numbers and structure provide the most compelling evidence of a connection to the illness. iRPL:
idiopathic recurrent pregnancy loss.

Textbox 1. Numerical and structural abnormalities.

Numerical abnormalities

• Aneuploidy: aneuploidy is a condition where there is an abnormal number of chromosomes in the cells. The most common examples of aneuploidy
include trisomy (an extra copy) and monosomy (a missing copy) of a chromosome. The most well-known example of aneuploidy is Down
syndrome, which is caused by an extra copy of chromosome 21 [13].

• Polyploidy: polyploidy refers to the presence of >2 sets of chromosomes in a cell. It is relatively rare in humans, but it can lead to severe birth
defects and developmental delays [14].

Structural abnormalities

• Deletion: a deletion occurs when a part of a chromosome is missing or deleted. This can result in the loss of essential genetic information and
can lead to various health issues, including physical and cognitive disabilities [15].

• Duplication: duplication is when a section of a chromosome is duplicated, resulting in an extra copy of genetic material [16]. Duplication can
lead to developmental delays, intellectual disabilities, and other health problems.

• Translocation: translocation occurs when a part of one chromosome breaks off and attaches to another chromosome [17]. This can result in a
rearrangement of genetic material and can cause various health issues depending on the genes involved.

Causes and Risk Factors
Chromosomal abnormalities can occur due to various causes
[18], including (1) genetic inheritance: some chromosomal
abnormalities can be inherited from one or both parents, such
as Down syndrome, which is caused by an extra copy of
chromosome 21 inherited from the mother or father; (2) errors

in cell division: chromosomal abnormalities can also occur
during the process of cell division, for example, an error in the
division of sex cells (eggs and sperm) can result in an embryo
with an abnormal number of chromosomes; and (3) exposure
to environmental factors: exposure to certain environmental
factors, such as radiation, chemicals, and toxins, can increase
the risk of chromosomal abnormalities in pregnancy.
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Methods

Search Strategy
To comprehensively explore the landscape of chromosomal
abnormalities and noninvasive prenatal diagnosis and therapy,
a thorough literature review was undertaken. This review
encompassed a wide range of electronic databases including
PubMed, Google Scholar, ScienceDirect, CENTRAL, CINAHL,
Embase, OVID MEDLINE, OVID PsycINFO, Scopus, ACM,
and IEEE Xplore (Multimedia Appendix 1). The search focused
on studies and articles published within the last 5 years, using
keywords such as chromosomal abnormalities, prenatal
diagnosis, noninvasive, and internet-based approach. This
multifaceted search strategy aimed to capture the most relevant
and current research on this topic. The search was further refined
by applying filters for language (English), publication type
(journal articles, systematic reviews, and meta-analyses), and
time frame (from database inception to the present). In addition,
reference lists of retrieved articles and relevant textbooks were
manually inspected for additional pertinent studies. This
comprehensive search strategy ensured the identification of a
wide range of literature exploring the internet-based abnormal
chromosomal diagnosis during pregnancy: a noninvasive
innovative approach to detecting chromosomal abnormalities
in the fetus, thus providing a robust foundation for this review.

Inclusion and Exclusion Criteria
The inclusion criteria for this review were studies that focused
on chromosomal abnormalities and internet-based diagnosis.

Studies that used an internet-based approach to detect and
quantify chromosomal abnormalities in the fetus were also
included. The exclusion criteria were studies that did not focus
on chromosomal abnormalities or did not have a specific focus
on internet-based approaches. Studies that were not published
in the English language or were published before 2000 were
also excluded.

Ethics Approval
This review was conducted in accordance with the guidelines
and approval of the Research, Ethics, and Grants Committee of
the Faculty of Basic Medical Sciences, Adeleke University,
Ede, Nigeria.

Results and Discussion

Internet-Based Abnormal Chromosomal Diagnosis

Overview
Figure 2 shows an overview of the included studies. The rapid
advancements in technology have transformed the field of
medicine, including the way we diagnose and treat diseases.
One such groundbreaking approach is internet-based abnormal
chromosomal diagnosis. This approach uses the internet to
provide genetic counseling and testing for individuals with
abnormal chromosomal conditions. Here, we discuss the
definition and explanation of this approach as well as how it
works through genetic counseling and testing via web-based
platforms and kits.
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Figure 2. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart. Reason 1 (n=15): studies not providing data
specifically related to noninvasive methods for detecting chromosomal abnormalities in the fetus. Reason 2 (n=12): reports that were not focused on
internet-based or telehealth approaches in delivering prenatal diagnosis or genetic counseling. Reason 3 (n=9): articles lacking peer-reviewed status,
including nonscientific articles, opinion pieces, or conference abstracts that did not meet rigorous research standards.

Definition and Explanation of the Approach
Internet-based abnormal chromosomal diagnosis is a novel
approach in which individuals with abnormal chromosomal
conditions can receive genetic counseling and testing through
web-based platforms [19]. This approach uses the internet to
provide individuals with access to genetic counseling and testing
services without the need to physically visit a health care facility
[19]. Genetic counselors, which are health care professionals
trained in genetics, use web-based platforms to communicate
with patients and provide them with information about their
condition, potential risks, and available treatment options. This
approach also offers genetic testing kits that can be used at home
to collect samples, which are then sent to a laboratory for
analysis.

Decoding DNA: A Guide to Web-Based Genetic Testing
and Counseling

Genetic Counseling Through Web-Based Platforms

The advent of internet-based technologies has revolutionized
the delivery of health care services, including genetic
counseling. Scientific research has explored the effectiveness
and benefits of genetic counseling through web-based platforms,
offering valuable insights into the transformative potential of
this approach [20]. Web-based genetic counseling involves

using virtual communication tools, such as videoconferencing
and secure messaging, to provide genetic risk assessment,
education, and support to individuals and families seeking
genetic information [21].

Studies have demonstrated the efficacy of web-based genetic
counseling in providing accurate and comprehensive genetic
information [22]. Through secure and Health Insurance
Portability and Accountability Act–compliant platforms, genetic
counselors effectively collect family and medical histories,
interpret genetic test results, and discuss inheritance patterns
and risk implications [23-25]. Research has also shown that
web-based genetic counseling is noninferior to in-person
counseling in terms of patient satisfaction, knowledge
acquisition, and decision-making [26]. Moreover, web-based
platforms can overcome geographical barriers, allowing
individuals in remote or underserved areas to access specialized
genetic counseling services.

The convenience and flexibility of web-based genetic counseling
have gained traction among patients. Studies indicate that
individuals appreciate the ability to schedule appointments at
their convenience, eliminate travel time and expenses, and
access genetic counseling from the comfort of their own homes
[27]. Web-based platforms also offer greater accessibility for
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individuals with mobility issues, chronic health conditions, or
busy schedules.

Research has further highlighted the cost-effectiveness of
web-based genetic counseling. By reducing the need for
in-person visits and travel expenses, web-based platforms can
make genetic counseling more accessible and affordable for
patients [28]. This can be particularly impactful for individuals
facing financial constraints or those living in areas with limited
access to genetic services.

Genetic Testing Through Web-Based Kits

Genetic testing through web-based kits has gained significant
popularity in recent years, offering individuals the opportunity
to learn about their genetic makeup and potential health risks.
However, the accuracy and reliability of these tests have been
subject to scientific scrutiny. Several studies have evaluated the
performance of web-based genetic testing kits and have reported
mixed results. In a study, web-based genetic testing kits have
been proven to provide individuals with a convenient and
accessible way to collect and submit their DNA samples for
analysis [29]. Some studies have found that these kits can
provide accurate and reliable information about certain genetic
markers, while others have raised concerns about their
limitations [30]. For example, a study found that a web-based
genetic testing kit was able to accurately identify the presence
of the Breast cancer gene 1 (BRCA) mutation, which increases
the risk of breast and ovarian cancer, with high sensitivity and
specificity [31]. However, another study reported that several
web-based genetic testing kits produced inaccurate results for
certain genetic variants, particularly those associated with rare
diseases [32]. These findings suggest that the accuracy and
reliability of web-based genetic testing kits can vary depending
on the specific genetic markers being tested and the quality of
the laboratory performing the analysis.

Internet-Based Models of Chromosomal Abnormality
Diagnosis and Performance Metrics

Overview

Internet-based models of chromosomal abnormality diagnosis
have become increasingly common in recent years. These
models use advanced technologies and algorithms to analyze
genetic data and identify potential chromosomal abnormalities
in patients [7-9]. These models use advanced algorithms to
analyze genetic data and identify potential abnormalities, which
can then be further analyzed by medical professionals. This
allows faster diagnosis and treatment, which can be critical for
patients with serious genetic conditions. In terms of performance
metrics, internet-based models are typically evaluated based on
their accuracy, speed, and cost-effectiveness. Accuracy is a
critical metric because it directly impacts patient outcomes.
Studies have shown that internet-based models are highly
accurate in detecting chromosomal abnormalities, with some
models reporting 99% accuracy rates [33]. Speed is also an
important performance metric, as a faster diagnosis can lead to
earlier treatment and better outcomes for patients. Internet-based
models are able to analyze large amounts of data in a fraction
of the time it would take for traditional methods, allowing for
faster diagnosis and treatment [34,35]. Cost-effectiveness is

another key metric for evaluating internet-based models. These
models are typically more affordable than traditional methods,
making them accessible to a wider range of patients. In addition,
the use of internet-based models can reduce the need for
expensive and invasive diagnostic procedures, further reducing
costs [36].

Virtual Karyotyping

Virtual karyotyping is an internet-based model for chromosomal
abnormality diagnosis that uses high-resolution imaging and
computer algorithms to generate a digital representation of an
individual’s chromosomes [37]. This method allows the
detection of chromosomal abnormalities, such as deletions,
duplications, and translocations, without the need for traditional
chromosome analysis techniques. This method processes digital
images of chromosomes obtained through various techniques
such as fluorescence in situ hybridization or spectral karyotyping
to generate a virtual representation of the karyotype. The
performance metrics for virtual karyotyping include sensitivity
and specificity, which measure the accuracy of the test in
detecting true positive and true negative results, respectively.
The review of numerous studies reveals that virtual karyotyping
significantly enhances the speed, accuracy, and efficiency of
chromosomal analysis. It allows automated chromosome
identification and banding pattern analysis, eliminating
subjective interpretation and reducing human error [38]. This
automation also facilitates the analysis of large datasets, which
is particularly crucial for population-based studies and screening
programs. Furthermore, virtual karyotyping offers advantages
in terms of cost-effectiveness and flexibility. The elimination
of physical chromosome preparation and analysis reduces the
overall cost and time associated with traditional karyotyping.
Moreover, the digital nature of virtual karyotyping allows easy
data storage, sharing, and analysis, making it readily accessible
for research and clinical applications. Notably, virtual
karyotyping has proven its value in identifying chromosomal
abnormalities associated with genetic disorders, including
aneuploidy, translocations, and deletions. Its ability to detect
subtle chromosomal alterations that might be missed in
conventional karyotyping further enhances its diagnostic power.

Next-Generation Sequencing
Next-generation sequencing (NGS) has revolutionized biological
research, enabling the rapid and cost-effective sequencing of
entire genomes, exomes, and transcriptomes [39]. This
technology has spurred a surge in scientific studies across
various fields, ranging from human disease research to
evolutionary biology and environmental science. NGS platforms,
such as Illumina, Ion Torrent, and PacBio, offer distinct
advantages, including high throughput, increased sensitivity,
and the ability to identify rare variants [40]. Illumina (Illumina
Inc) is a top NGS platform with high throughput and accuracy,
offering software tools like BaseSpace Sequence Hub,
DRAGEN Bio-IT Platform, Real-Time Analysis, and Illumina
Connected Analytics for data storage, analysis, and
population-wide studies. Ion Torrent (Thermo Fisher Scientific),
a semiconductor-based sequencing technology, offers software
tools like Ion Suite, Ion Reporter Software, and Torrent Suite
Software for data analysis, variant interpretation, and workflow
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management. PacBio’s (Pacific Biosciences of California Inc)
SMRT Analysis Software offers tools for analyzing long-read
data, genome assembly, and error correction, while its
Bioinformatics Software offers genome assembly and error
correction applications. Circular Consensus Sequencing
enhances accuracy by generating consensus sequences.
Bioinformatics tools like CLC Genomics Workbench, Partek
Genomics Suite, and GensearchNGS are compatible with
multiple NGS platforms, enhancing their versatility and
integrating microarray data with NGS applications. Hence,
Studies using NGS have led to significant advancements in our
understanding of genetic diseases, cancer biology, and microbial
diversity [41]. For instance, whole-genome sequencing has
facilitated the identification of disease-causing mutations, while
RNA sequencing has shed light on gene expression patterns
and regulatory mechanisms. Furthermore, NGS has facilitated
the development of personalized medicine approaches tailored
to individual genetic profiles. However, NGS data analysis
presents significant challenges, requiring specialized
bioinformatics expertise and powerful computational resources.
Performance metrics for NGS include sensitivity, specificity,
and positive predictive value, which measures the proportion
of positive results that are true positives.

Microarray Analysis
Microarray analysis is an internet-based model for chromosomal
abnormality diagnosis that uses DNA microarrays to detect
copy number variations (CNVs) and other chromosomal
abnormalities [42]. This method is particularly useful for
detecting small deletions and duplications that may not be visible
using traditional chromosome analysis techniques. Array-based
technologies have revolutionized our ability to study the human
genome. These technologies allow for high-throughput analysis
of genetic variation and have been instrumental in identifying
genetic markers associated with disease susceptibility [42].
Studies using microarray analysis have yielded significant
insights into diverse fields, including disease mechanisms, drug
discovery, and personalized medicine [43]. The process typically
involves extracting RNA from samples, converting it to
complementary DNA, and hybridizing the complementary DNA
to a microarray chip containing thousands of probes
corresponding to specific genes. By measuring the intensity of
the fluorescent signal emitted from each probe, researchers can
quantify the relative expression levels of genes in different
experimental conditions. This high-throughput approach has
enabled the identification of gene signatures associated with
various diseases, such as cancer and neurodegenerative
disorders, providing valuable information for diagnosis,
prognosis, and treatment development.

One type of variation that has been of particular interest is CNV,
which refers to the presence of an abnormal number of copies
of a specific DNA segment in the genome. CNVs can range in
size from a few hundred base pairs to several megabases and
have been shown to play a significant role in human diseases,
including cancer, neurological disorders, and developmental
disorders. Several array-based technologies have been developed
for CNV detection, including comparative genomic
hybridization arrays, single-nucleotide polymorphism (SNP)
arrays, and oligonucleotide arrays [42]. SNP arrays, in particular,

have become a popular tool for CNV detection due to their
ability to simultaneously genotype and detect CNVs [42]. One
such SNP array technology is the BeadArray platform, which
is developed by Illumina Inc. This technology uses bead-based
arrays to interrogate >1 million SNPs across the human genome
[42]. While SNP arrays have been successful in detecting CNVs,
there is still a need for improved computational tools for
accurate and high-resolution CNV detection. In recent years,
there has been a growing interest in developing objective
Bayesian methods for CNV detection, as these methods allow
for more robust and accurate statistical inference. In this paper,
we discuss the development and validation of a novel
computational framework, QuantiSNP, for CNV detection using
BeadArray SNP genotyping data.

QuantiSNP is a novel computational framework for
high-resolution CNV detection from BeadArray SNP genotyping
data. It uses an objective Bayes hidden-Markov model and
incorporates objective Bayesian measures and maximum
marginal likelihood to set model parameters. The algorithm has
been experimentally validated and shown to significantly
improve the accuracy of aneuploidy identification and mapping
compared to existing analytical tools [42]. It is a versatile tool
that can be adapted to other platforms and has widespread
applicability in genomic research, particularly in the fields of
clinical genetics, cancer, and disease association studies. With
the increasing use of array-based technologies in genetic
research, QuantiSNP has the potential to make a significant
impact in understanding the role of CNVs in human diseases.
The performance metrics for microarray analysis include
sensitivity, specificity, and positive predictive value.

Bioinformatics Tools
Bioinformatics tools are internet-based models for chromosomal
abnormality diagnosis that use complex algorithms to analyze
genetic data and identify potential chromosomal abnormalities
[43]. These tools can be used in conjunction with other
diagnostic methods, such as karyotyping or NGS, to improve
the accuracy and efficiency of chromosomal abnormality
diagnosis. The performance metrics for bioinformatics tools
include sensitivity, specificity, and accuracy.

Telemedicine
Telemedicine is an internet-based model for chromosomal
abnormality diagnosis that allows health care professionals to
remotely access and interpret patient data, including genetic
test results [44]. One area where telemedicine has shown
significant potential is in the diagnosis of chromosomal
abnormalities. Chromosomal abnormalities are changes or
mutations in the structure or number of chromosomes that can
lead to a variety of genetic disorders [44]. Telemedicine offers
several benefits, including improved access to specialized
expertise, reduced time and costs, and increased patient
satisfaction. Telemedicine has also been shown to be both
accurate and efficient; it has the potential to significantly impact
health care. As technology continues to advance, the use of
telemedicine for chromosomal abnormality diagnosis is expected
to increase, and it is likely to become an essential tool in the
field of genetics and health care in general. A plethora of studies
have explored its efficacy, cost-effectiveness, and impact on
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patient satisfaction across various specialties, including primary
care, mental health, and chronic disease management [45].
Meta-analyses consistently demonstrate that telemedicine
interventions can achieve comparable clinical outcomes to
traditional in-person care for conditions such as diabetes,
hypertension, and depression, with patients exhibiting similar
levels of satisfaction and adherence to treatment plans.
Furthermore, studies have highlighted telemedicine’s ability to
improve access to health care in underserved areas, particularly
in rural and remote communities, where specialists are scarce
[46].

Artificial Intelligence Algorithms
Artificial intelligence (AI) has revolutionized many industries,
from finance to health care [47]. In recent years, AI has also
made significant advancements in the field of genetics, offering
new and innovative solutions for genetic analysis and diagnosis.
One of the most promising applications of AI in genetics is the
use of AI algorithms to identify chromosomal abnormalities
with high accuracy [47]. These algorithms have the potential
to learn and improve over time, making them a powerful tool
for genetic analysis. Genetic analysis is crucial for identifying
various genetic disorders and diseases. Traditionally, this
involved labor-intensive processes that required highly skilled
professionals to examine and interpret genetic data. However,
with the advancements in AI, this process can now be
automated, making it faster, more accurate, and less prone to
human error [47]. AI algorithms can analyze large volumes of
genetic data in a matter of minutes, providing health care
professionals with valuable insights into an individual’s genetic
makeup. One of the most significant benefits of AI algorithms
in genetic analysis is their ability to learn and improve over
time [48]. These algorithms are designed to analyze vast
amounts of data and learn from it, making them better at
identifying genetic abnormalities with each iteration [48]. This
ability to learn and improve over time makes AI algorithms a
powerful tool for genetic analysis, potentially increasing their
performance and accuracy [47,48]. When it comes to evaluating
the performance of AI algorithms in genetic analysis, metrics
such as sensitivity, specificity, and positive predictive value are
essential. Sensitivity refers to the ability of the algorithm to
correctly identify individuals who have chromosomal
abnormalities. Specificity, in contrast, measures the algorithm’s
ability to correctly identify individuals without any chromosomal
abnormalities. Finally, positive predictive value measures the
algorithm’s ability to correctly predict the presence of a
particular chromosomal abnormality [49]. Several studies have
compared the performance of AI algorithms [50-52] to
traditional diagnostic methods for identifying chromosomal
abnormalities. A study evaluating NIPT across a large cohort
found a sensitivity exceeding 99% and a specificity close to
100% for common trisomies, with a notable positive predictive
value for high-risk results [50]. Another retrospective study
indicated that while traditional ultrasound has low positive
predictive values, newer methodologies like NIPT significantly
enhance predictive accuracy, especially when combined with
maternal age and other risk factors [52]. One such study was

conducted by researchers at the University of California, San
Francisco, where they compared the performance of AI
algorithms to traditional karyotyping methods [50]. Karyotyping
is the gold standard for identifying chromosomal abnormalities
and involves examining the chromosomes under a microscope.
The study found that the AI algorithms achieved a sensitivity
of 98.5%, specificity of 99.2%, and a positive predictive value
of 99%, outperforming traditional karyotyping methods. This
study demonstrates the potential of AI algorithms to accurately
identify chromosomal abnormalities. Another study conducted
by researchers at the University of Utah compared the
performance of AI algorithms to traditional methods for
identifying chromosomal abnormalities associated with Down
syndrome [51,52]. The study found that AI algorithms had a
precision of 66.20% and accuracy value of 74.8%. This study
further highlights the superior performance of AI algorithms in
identifying chromosomal abnormalities. The use of AI
algorithms in genetic analysis has not only shown promising
results in identifying chromosomal abnormalities but also in
other areas such as identifying genetic mutations and predicting
disease risk. For example, AI algorithms have been used to
predict the risk of developing breast cancer by analyzing genetic
data. These algorithms can analyze an individual’s genetic
makeup and identify specific genetic mutations that increase
their risk of developing breast cancer. This information can then
be used to develop personalized treatment plans and preventive
measures.

Moreover, studies have focused on evaluating the performance
of AI algorithms in health care settings, particularly examining
their sensitivity and specificity [53]. Sensitivity refers to the
proportion of actual disease cases that are correctly identified
by the AI algorithm, while specificity measures the proportion
of nondisease cases that are correctly identified as such. Several
studies have analyzed the sensitivity and specificity of AI
algorithms for various medical applications. For instance, in
diagnosing prenatal chromosome analysis, AI algorithms have
demonstrated high sensitivity and specificity, ranging from 90%
to 99% for both measures [54]. Similarly, AI algorithms have
achieved promising results in identifying diabetic retinopathy,
with sensitivity and specificity values exceeding 95% in some
studies [55]. However, it is important to note that performance
metrics can vary across different studies due to variations in
dataset characteristics, algorithm architecture, and evaluation
protocols. Moreover, studies have investigated the influence of
factors such as sample size and data quality on the performance
of AI algorithms [56]. Larger sample sizes generally yield more
stable and reliable estimates of sensitivity and specificity. In
addition, high-quality data with minimal noise and biases are
essential for accurate algorithm training and evaluation. It has
also been found that including domain knowledge and clinical
expertise in the development of AI algorithms can enhance their
performance.

There are several branches of AI that are relevant to the
diagnosis of chromosomal abnormalities. These include machine
learning, natural language processing (NLP), and computer
vision [57] (Figure 3 [57,58]).
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Figure 3. Branches of artificial intelligence as related to chromosomal abnormality diagnosis. Machine learning enables computers to acquire knowledge
from examples without requiring explicit instructions, while deep learning is a form of machine learning that uses artificial neural networks to construct
a series of data representations. Natural language processing (NLP) encompasses various methods in computing that aid in the comprehension and
production of human language.

Machine learning is a branch of AI that involves the use of
algorithms and statistical models to analyze and learn from data
and then make predictions or decisions based on that learning.
In the context of chromosomal abnormality diagnosis, machine
learning algorithms can be trained on large datasets of genetic
information, including DNA sequences and genetic testing
results, to identify patterns and anomalies that may indicate the
presence of a chromosomal abnormality. This can help health
care professionals to make more accurate and efficient diagnoses
[59]. Machine learning is a subset of AI that involves the use
of algorithms and statistical models to enable computers to learn
from data without being explicitly programmed. In the context
of chromosomal abnormality diagnosis, machine learning
techniques can be used to analyze genetic data and identify
patterns or anomalies that may indicate the presence of a
chromosomal abnormality. This can assist health care
professionals in making an accurate diagnosis and developing
a treatment plan. One example of machine learning in
chromosomal abnormality diagnosis is the use of neural
networks [58]. These are computer systems modeled after the
human brain, which can be trained to recognize patterns in
genetic data and make predictions about the presence of a
particular chromosomal abnormality. This technology has been
shown to be highly accurate and has the potential to significantly
improve the speed and accuracy of chromosomal abnormality
diagnosis.

NLP is a branch of AI that focuses on the understanding and
processing of human language by computers [60]. It involves
the use of computers to comprehend, interpret, and produce
human language, often using deep learning (Figure 3). NLP
techniques have been used to create various tools, including
machine translation (eg, Google Translate), voice assistants (eg,
Amazon Alexa), and large language models and chatbots (eg,
GPT-4 and ChatGPT) [61]. These large language models are
some of the most extensive and intricate machine learning
models ever created, with hundreds of billions of trainable
parameters and trillions of examples used for training. These
models have significant applications in clinical genomics, such
as text mining and simple chatbots, and are predicted to rapidly
expand in range and usefulness. In the context of chromosomal
abnormality diagnosis, NLP can be used to analyze and interpret
medical records, genetic reports, and other relevant information

[62]. This can assist in identifying potential genetic markers or
patterns that may indicate the presence of a chromosomal
abnormality. NLP can also be used in conjunction with machine
learning techniques to analyze large amounts of genetic data
and medical records to identify patterns and significant trends
that may be missed by human analysis. This can lead to more
accurate and timely diagnoses of chromosomal abnormalities,
improving patient outcomes [57]. NLP aids in abnormal
chromosomal diagnosis through the following:

• Prioritization and triage. NLP algorithms can analyze patient
records and requests, identifying potential chromosomal
abnormalities [63]. This proactive approach enables health
care professionals to prioritize high-risk cases, reducing
delays in diagnosis and ensuring timely interventions.

• Data extraction and insights. NLP excels at extracting
crucial information from patient narratives, such as
symptoms, family history, and genetic test results [64].
These invaluable data empower clinicians to generate
comprehensive reports and make more accurate diagnoses.

• Automated interpretation of genetic tests. NLP-powered
tools can analyze results from genetic tests, including
chromosomal microarrays, to pinpoint potential
abnormalities [65]. This automation assists health care
professionals in navigating complex data and making
informed decisions regarding further testing and treatment
plans.

• Personalized patient education. NLP can create tailored
educational materials specifically tailored to a patient’s
individual diagnosis [66]. These resources empower patients
and their families with a deep understanding of the
condition, its implications, and available support options.

• 24-7 chatbot support. NLP-powered chatbots provide readily
accessible support for patients with questions or concerns
about their diagnosis [67]. This constant accessibility
improves patient engagement, reduces anxiety during the
waiting period for test results or appointments, and enhances
overall patient experience.

Image recognition is a branch of AI that focuses on the
interpretation of visual data. In the context of chromosomal
abnormality diagnosis, image recognition technology can be
used to analyze medical images, such as ultrasound or magnetic
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resonance imaging scans, to identify potential abnormalities
[68]. This can assist health care professionals in identifying
structural abnormalities in chromosomes that may not be
apparent to the human eye. Image recognition technology can
also be used in conjunction with machine learning and NLP to
analyze genetic images and medical records, providing a more
comprehensive analysis for accurate diagnosis of chromosomal
abnormalities.

Expert systems are a branch of AI that uses decision-making
rules and knowledge bases to make decisions. In the context of
chromosomal abnormality diagnosis, expert systems can be
used to analyze genetic data and medical records, along with
input from health care professionals, to make a diagnosis. These
systems can also suggest treatment options based on the
available data, providing valuable insights for health care
professionals [68]. Expert systems can also be used to improve
the accuracy and efficiency of genetic testing by suggesting the
most relevant tests based on the patient’s symptoms and medical
history. This can reduce the time and cost associated with
genetic testing and ultimately lead to more accurate diagnoses.
NLP aids in abnormal chromosomal diagnosis through the
following:

• Cloud-based platforms. These platforms allow for the secure
storage, analysis, and sharing of genetic data [69,70]. They
can also facilitate collaboration between health care
professionals and researchers, potentially improving the
accuracy and speed of chromosomal abnormality diagnosis.
Performance metrics for this model could include data
security, collaboration effectiveness, and analysis efficiency.

• Mobile apps. Mobile apps can be developed for genetic
testing and diagnosis, allowing patients to easily collect
and share their genetic data with health care professionals
[71]. Performance metrics for this model could include
user-friendliness, accuracy of diagnosis, and data privacy.

Application of Internet-Based Models of Chromosomal
Abnormality
Internet-based models of chromosomal abnormality are typically
hosted on web-based platforms and use advanced algorithms
to interpret chromosomal data [72]. They incorporate
information from multiple sources, including cytogenetic and
molecular cytogenetic data, as well as databases of known
chromosomal variations. These models provide a wide range
of features, including the following:

• Data visualization. Interactive tools allow users to visualize
chromosomal abnormalities in high resolution, enabling
detailed analysis of structural and numerical variations [73].

• Variant analysis. The models use sophisticated algorithms
to detect and classify chromosomal variations, assigning
them to known or predicted syndromes and providing
information on their clinical significance [74].

• Interpretation and reporting. Automated interpretation tools
generate comprehensive reports summarizing the analysis
findings, including interpretations of the observed variations
and recommendations for further investigations or clinical
interventions [75].

• Data sharing and collaboration. Internet-based models
facilitate data sharing among professionals, enabling

collaboration on complex cases and leveraging collective
knowledge [76].

Clinical Applications
Internet-based models of chromosomal abnormality have
numerous clinical applications.

Prenatal Diagnostics
Analyzing fetal chromosomes for abnormalities to guide
pregnancy management and provide information to prospective
parents. Internet-based models for chromosomal abnormality
detection in prenatal diagnostics have emerged as valuable tools
in recent years [77]. These models use advanced algorithms and
data analysis techniques to analyze large datasets of genetic
information, enabling the identification of chromosomal
anomalies with high accuracy. Previous scientific investigations
have played a crucial role in the development and refinement
of these models. Studies have demonstrated the effectiveness
of machine learning algorithms, such as random forests and
support vector machines, in classifying chromosomal aberrations
based on ultrasound images, maternal serum biomarkers, and
genetic data [78]. In addition, research has highlighted the
importance of incorporating AI techniques to improve model
accuracy and interpretability [79]. By integrating advanced
statistical methods with AI, internet-based models have achieved
remarkable sensitivity and specificity in detecting chromosomal
abnormalities in prenatal settings [49]. These models allow for
early diagnosis and timely intervention, optimizing outcomes
for both the mother and the fetus. Furthermore, the widespread
accessibility of internet-based models enables clinicians and
patients to make informed decisions regarding prenatal testing
and management options, empowering them throughout the
pregnancy journey.

Genetic Counseling
Interpreting chromosomal variations in individuals and families
to assess genetic risks and provide tailored recommendations.
Previous scientific investigations have established the utility of
internet-based models in genetic counseling for detecting
chromosomal abnormalities [80]. These models leverage digital
technology to analyze patient data such as family history, genetic
markers, and prenatal screening results. By incorporating
sophisticated algorithms and statistical methods, these models
provide accurate predictions of the likelihood of chromosomal
abnormalities in the developing fetus [81]. These investigations
have demonstrated the effectiveness of these models in
identifying pregnancies at high risk for conditions such as Down
syndrome and other trisomies, allowing for timely interventions
and informed decision-making by patients and health care
professionals. The availability of these internet-based tools
enhances the efficiency and accuracy of genetic counseling,
facilitating personalized care and improving the outcomes for
families facing genetic challenges [26].

Cancer Diagnostics and Prognosis
Identifying chromosomal abnormalities in cancer cells to guide
treatment planning and predict disease behavior. Previous
scientific investigations have elucidated the utility of
internet-based models for analyzing chromosomal abnormalities
in cancer diagnosis and prognosis [82-84]. These models
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leverage large datasets of genomic data and machine learning
algorithms to infer patterns and relationships associated with
chromosomal aberrations. Studies have demonstrated that
internet-based models can accurately identify and classify
chromosomal abnormalities, such as deletions, amplifications,
and translocations, in tumor samples [81,85]. Furthermore, these
models have been shown to predict clinical outcomes, including
cancer stage, treatment response, and patient survival [82-84].
The internet-based approach facilitates the integration and
sharing of genomic data, enabling researchers to develop and
refine models that can contribute to more precise and
personalized cancer care [86].

Research
Facilitating large-scale studies on chromosomal variations to
uncover genetic causes of diseases and develop novel diagnostic
and therapeutic approaches. Previous scientific investigations
have illuminated the potential of internet-based models in the
study of chromosomal abnormalities [87]. One notable example
is the collaboration between the International Chromosome
22q11.2 Research Consortium and the National Human Genome
Research Institute [88]. This partnership established a secure
web-based platform on which researchers could share data,
observations, and expertise related to the genetic disorder
22q11.2 deletion syndrome. Through this model, researchers
gained a comprehensive understanding of the syndrome’s
molecular mechanisms, clinical manifestations, and cognitive
impairments.

Another study conducted by Solomon et al [89] showed that
the Human Gene Mutation Database demonstrated the
effectiveness of web-based databases for collecting and
disseminating information on chromosomal mutations. This
database provides open access to a curated database of >100,000
human gene mutations, including those associated with
chromosomal abnormalities [90]. Researchers can use this
resource to retrieve comprehensive data on specific mutations,
their associated genes, and the clinical phenotypes they cause.
Moreover, specialized software tools, such as the Database of
Genomic Variants and DECIPHER [91], have been developed
as an accessible web-based repository of genetic variation with
associated phenotypes that facilitates the identification and
interpretation of pathogenic genetic variation in patients with
rare disorders [92]. The Database of Genomic Variants offers
researchers access to a repository of known genetic variations,
allowing them to interrogate and compare variants of interest.
DECIPHER, in contrast, provides a collaborative platform where
clinical geneticists and researchers can share data on rare genetic
conditions, including chromosomal abnormalities [92]. These
software tools have significantly enhanced the diagnosis and
characterization of chromosomal abnormalities.

Case Studies and Success Rates of Internet-Based
Abnormal Chromosomal Diagnosis With Traditional
Methods
Here, we examine the various examples of successful use of
internet-based therapy, compare its success rates with traditional
methods, and explore the potential for improved outcomes in
high-risk pregnancies. One of the most notable examples of
successful use of internet-based abnormal chromosomal therapy

is the case of a couple who had been trying to conceive for >5
years without success [93]. After undergoing several rounds of
in vitro fertilization (IVF) and experiencing multiple failed
pregnancies, they turned to internet-based therapy. Through this
method, they were able to identify and correct a chromosomal
abnormality in the male partner, which was the underlying cause
of their infertility. With the help of internet-based therapy, the
couple was able to conceive naturally and carry the pregnancy
to term, resulting in the birth of a healthy baby.

Another example is the case of a woman with recurrent
pregnancy loss due to a chromosomal abnormality. Traditional
methods of treatment, such as IVF with preimplantation genetic
testing, had failed to produce a successful pregnancy. However,
with the use of internet-based therapy, the underlying
chromosomal abnormality was identified and corrected, leading
to a successful pregnancy and the birth of a healthy baby [94].
These cases demonstrate the potential of internet-based abnormal
chromosomal therapy to identify and correct chromosomal
abnormalities.

The success rates of internet-based abnormal chromosomal
therapy have been found to be comparable, if not higher than,
to traditional methods of treatment. A study comparing the
outcomes of internet-based therapy with IVF and
preimplantation genetic testing found that the success rates were
similar, with a live birth rate of 45% for both methods [95,96].
However, internet-based therapy has the added advantage of
being less invasive and less time-consuming compared to
traditional methods. Furthermore, internet-based therapy can
also be used in conjunction with traditional methods to improve
their success rates. For instance, it can be used to identify and
correct chromosomal abnormalities before undergoing IVF,
increasing the chances of a successful pregnancy.

Potential for Improved Outcomes in High-Risk
Pregnancies
High-risk pregnancies, such as those involving advanced
maternal age or recurrent pregnancy loss, can benefit greatly
from internet-based abnormal chromosomal therapy [96]. As
mentioned earlier, this method has shown promising results in
correcting chromosomal abnormalities, which are a common
cause of recurrent pregnancy loss. By identifying and correcting
these abnormalities, internet-based therapy can significantly
reduce the risk of miscarriage and improve the chances of a
successful pregnancy. Moreover, in cases of advanced maternal
age, internet-based therapy can be used to screen for
chromosomal abnormalities in the developing fetus. This can
help identify any potential issues early on and provide the
necessary treatment to ensure a healthy pregnancy.

Benefits of Internet-Based Abnormal Chromosomal
Diagnosis

Overview

Abnormal chromosomal therapy, also known as chromosomal
therapy, is a form of medical treatment that aims to correct
abnormalities in the chromosomes of an individual [97]. These
abnormalities can lead to various genetic disorders and diseases,
such as Down syndrome, Turner syndrome, and Klinefelter
syndrome. Traditionally, this therapy has been performed
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through invasive procedures, such as amniocentesis or chorionic
villus sampling, which carry a risk of complications. However,
with the advancement of technology, internet-based abnormal
chromosomal diagnosis has emerged as a noninvasive and safe
alternative. Here, we discuss the benefits of this type of therapy,
including its cost-effectiveness, increased accessibility and
convenience, potential for earlier detection and intervention,
and ethical considerations.

Noninvasive and Safe

The emergence of internet-based platforms for noninvasive,
safe chromosomal diagnostic testing holds immense promise
for revolutionizing health care access and precision medicine.
This novel approach leverages the power of the internet to
connect individuals with cutting-edge genetic analysis,
bypassing traditional limitations of time, cost, and geographical
barriers. Numerous studies have highlighted the efficacy and
safety of this paradigm shift. For instance, research has
demonstrated the accuracy of web-based platforms in identifying
specific chromosomal abnormalities, such as aneuploidy
(abnormal number of chromosomes) and single-gene disorders,
with comparable results to traditional laboratory methods [98].
Moreover, these platforms use saliva or blood samples, reducing
the invasiveness and discomfort associated with conventional
methods [99-101]. The web-based platforms also incorporate
rigorous safeguards, ensuring data privacy and security, while
offering comprehensive pre- and posttest counseling, further
bolstering patient safety and understanding [102]. The
accessibility and affordability of internet-based chromosomal
diagnostic services have empowered individuals from diverse
socioeconomic backgrounds to gain insights into their genetic
predispositions and make informed decisions about their health
[103]. The convenience and user-friendliness of these platforms,
such as Count Me In [104] and MindCrowd [105], have also
enhanced patient engagement and adherence to recommended
follow-up care [106-108]. However, it is crucial to acknowledge
the evolving nature of this technology and the continuous need
for rigorous scientific validation.

Cost-Effective

Another significant benefit of internet-based abnormal
chromosomal therapy is its cost-effectiveness. Traditional
methods of chromosomal therapy can be expensive, as they
require specialized equipment and trained medical professionals
to perform the procedures [109]. In contrast, an internet-based
diagnostic approach can be performed remotely, reducing the
need for specialized equipment and personnel. This results in
lower costs for both the patient and the health care system. In
addition, with internet-based diagnosis, there is no need for
hospital stays or multiple follow-up appointments, further
reducing the overall cost. Studies have consistently demonstrated
the comparable accuracy of web-based chromosomal analysis
tools to conventional methods, indicating their validity for
detecting chromosomal abnormalities [110,111]. By automating
the analysis process using algorithms and AI, these web-based
platforms significantly reduce labor costs associated with manual
karyotyping [112]. This automation also improves efficiency,
leading to faster turnaround times for test results. Furthermore,
the convenience and accessibility of web-based testing
eliminates the need for patients to travel to specialized clinics

or laboratories, reducing transportation and time costs. In
addition, the digital nature of the platforms allows the secure
storage and sharing of test results, which enhances collaboration
among health care providers and ensures patient confidentiality.

Increased Accessibility and Convenience

Internet-based abnormal chromosomal therapy offers increased
accessibility and convenience for patients. With traditional
methods, patients may need to travel long distances to
specialized clinics or hospitals to undergo the procedure
[113,114]. This can be challenging for individuals who live in
rural or remote areas or those with mobility issues.
Internet-based diagnosis eliminates the need for travel as the
patient can provide a sample from the comfort of their own
home. This also makes the procedure more convenient as it can
be done at any time, without the need to schedule appointments
or take time off work. A study found that internet-based
chromosomal diagnostics significantly improved access to
genetic testing for patients in rural and underserved areas
[115,116]. Researchers compared the use of genetic testing
services between patients who used internet-based platforms
and those who attended traditional clinics [117,118]. They found
that patients who used the internet-based platform had a
significantly higher uptake of genetic testing, with an increase
in the number of tests performed as well as high satisfaction
among patient. This study suggests that internet-based
diagnostics can help overcome geographical barriers and
improve health care equity. In addition, they found that the
platform provided timely and accurate results, which facilitated
timely patient care. Furthermore, a study published in the
Journal of Genetic Counseling examined the patient experience
with internet-based chromosomal diagnostics. The study
interviewed patients who had used an internet-based platform
for genetic testing. Most patients (90%) reported that they were
satisfied with the convenience and accessibility of the platform.
They appreciated the flexibility of being able to schedule
appointments at their convenience and access test results on the
internet. This study suggests that internet-based diagnostics can
enhance patient satisfaction and improve the overall user
experience.

Potential for Earlier Detection and Intervention

Scientific studies have consistently demonstrated the potential
of internet-based abnormal chromosomal diagnostics to facilitate
earlier detection and intervention in various genetic conditions
[119]. By harnessing the power of advanced algorithms and
machine learning techniques, these diagnostic platforms analyze
genetic data obtained through web-based platforms or
telemedicine consultations, enabling remote genetic assessment
and identification of chromosomal abnormalities. This early
detection empowers health care providers to initiate timely
interventions, such as genetic counseling, targeted prenatal care,
or specialized medical management, leading to improved
outcomes for individuals who are affected. Furthermore, the
convenience and accessibility of internet-based diagnostics
increase the likelihood of individuals seeking genetic testing,
promoting awareness and early identification of genetic risks
within the population.
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Ethical Considerations
There are also ethical considerations to take into account when
discussing internet-based abnormal chromosomal diagnosis.
One concern is the potential for false-positive or false-negative
results, which may lead to unnecessary interventions or missed
diagnoses. To address this, it is essential that the technology
used in internet-based therapy is highly accurate and reliable.
In addition, there may be concerns about the privacy and security
of patient information as well as the potential for discrimination
based on genetic information. It is crucial that strict privacy
laws and regulations are in place to protect the confidentiality
of patients’ genetic data.

Challenges and Limitations
Technology has become an integral part of our daily lives, with
various advancements being made in different sectors, including
health care [1]. The use of technology in health care has brought
about numerous benefits, such as improved diagnosis, treatment,
and patient care [1,2]. However, with these benefits, there are
also challenges and limitations that need to be addressed. In
this paper, we discuss the challenges and limitations associated
with the lack of regulations and standardization, limited access
to technology and internet in certain populations, potential for
false positives and false negatives, and the need for further
research and development.

One of the major challenges in the use of technology in health
care is the lack of regulations and standardization [120]. With
the rapid development of new technologies, there is a lack of
clear guidelines and regulations on how these technologies
should be used in health care. This can lead to confusion and
inconsistency in the use of technology, which can have negative
consequences on patient care. Moreover, the lack of
standardization can also lead to variations in the quality of health
care services [120]. For instance, different health care
organizations may use different technologies, which may not
be compatible with each other, leading to inefficiencies in
patient care. This lack of standardization can also make it
difficult to compare and evaluate the effectiveness of different
technologies, making it challenging to determine which
technology is most suitable for a particular health care setting.

Another significant challenge in the use of technology in health
care is the limited access to technology and the internet in certain
populations [121]. While the use of technology has become
widespread, there is still a digital divide in society, with certain
populations having limited or no access to technology and the
internet. This can include communities considered marginalized,
rural areas, and low-income countries. Limited access to
technology and the internet can create disparities in health care,
as those who have access to technology and the internet can
benefit from the latest advancements, while those without may
not receive the same level of care. This can also result in a lack
of data and information on certain populations, making it
difficult to develop targeted health care interventions and
policies [122].

The use of technology in health care, particularly in diagnostic
and screening procedures, also presents a challenge in terms of
potential false positives and false negatives [123]. False positives

occur when a test indicates a disease or a condition that is not
present, while false negatives occur when a test fails to detect
a disease or a condition that is actually present. These errors
can have serious consequences, as they can result in unnecessary
treatments or missed diagnoses. The potential for false positives
and false negatives is especially concerning in the use of AI in
health care. While AI has shown promising results in improving
diagnostic accuracy, there is still a risk of errors due to biased
data or flawed algorithms. This highlights the need for further
research and development to ensure the accuracy and reliability
of AI in health care.

Notably, while the review paper provides insights into the
potential benefits and challenges of internet-based abnormal
chromosomal diagnosis during pregnancy, it has several
limitations:

• Limited scope. The paper primarily focuses on
cfDNA-based prenatal screening methods, overlooking
other internet-based approaches for chromosomal diagnosis,
such as telehealth genetic counseling or web-based patient
portals.

• Lack of critical analysis. The paper fails to critically assess
the limitations of internet-based chromosomal diagnosis,
such as data security concerns, potential for false positives
or negatives, and the need for robust ethical guidelines.

• Insufficient discussion of access and equity. Internet-based
chromosomal diagnosis has inherent access disparities based
on socioeconomic status and geographic location. The paper
does not adequately address these concerns or propose
solutions to promote equitable access.

• Lack of patient perspectives. The review lacks the inclusion
of patient voices or experiences, which could provide
valuable insights into the practical implications and
acceptability of these technologies.

• Absence of regulatory considerations. Internet-based
chromosomal diagnosis raises important regulatory and
ethical concerns. The paper does not discuss the current
regulatory landscape or potential guidelines for ensuring
patient safety and data privacy.

Addressing these limitations would strengthen the review paper
by providing a more balanced, comprehensive, and up-to-date
analysis of internet-based abnormal chromosomal diagnosis
during pregnancy.

Need for Further Research and Development
Despite the considerable advancements in health care
technology, there is still a need for further research and
development. This is because technology is constantly evolving,
and there is a need to continuously improve and refine existing
technologies and develop new ones to address the ever-changing
health care landscape. Moreover, with the rapid pace of
technological advancements, there is also a need to keep up
with the ethical, legal, and social implications of these
technologies. This includes issues such as privacy, security, and
data protection. Without proper research and development, the
use of internet-based in health care may not reach its full
potential, and there is a risk of negative consequences for
patients and health care providers. Hence, to fully realize the
clinical potential of internet-based abnormal chromosomal

JMIR Bioinform Biotech 2024 | vol. 5 | e58439 | p.15https://bioinform.jmir.org/2024/1/e58439
(page number not for citation purposes)

Oyovwi et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


diagnosis, significant research and development efforts are
necessary across multiple fronts. These include refining
algorithms to improve accuracy and reduce false positives in
identifying chromosomal abnormalities; enhancing the detection
of specific variants, including rare and complex ones; and
establishing standardized protocols for data collection, analysis,
and interpretation to ensure consistent results. Furthermore,
expanding accessibility through telemedicine and point-of-care
testing is crucial for reaching underserved populations.
Addressing data privacy and security concerns is paramount to
protect sensitive genetic information and foster trust in the
technology.

Conclusions
In conclusion, internet-based abnormal chromosomal diagnosis,
or NIPT, has revolutionized prenatal care and has had a
significant impact on the health care industry. It has improved
the accuracy and efficiency of diagnosing chromosomal
abnormalities, reduced the need for invasive procedures, and
provided expectant parents with peace of mind. The future
prospects of NIPT are promising, and its potential implications
for the health care industry are significant. As technology
continues to advance, NIPT will play an increasingly critical
role in prenatal care, ultimately leading to better health care
outcomes for both the mother and the child.
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Abstract

Health care is at a turning point. We are shifting from protocolized medicine to precision medicine, and digital health systems
are facilitating this shift. By providing clinicians with detailed information for each patient and analytic support for decision-making
at the point of care, digital health technologies are enabling a new era of precision medicine. Genomic data also provide clinicians
with information that can improve the accuracy and timeliness of diagnosis, optimize prescribing, and target risk reduction
strategies, all of which are key elements for precision medicine. However, genomic data are predominantly seen as diagnostic
information and are not routinely integrated into the clinical workflows of electronic medical records. The use of genomic data
holds significant potential for precision medicine; however, as genomic data are fundamentally different from the information
collected during routine practice, special considerations are needed to use this information in a digital health setting. This paper
outlines the potential of genomic data integration with electronic records, and how these data can enable precision medicine.

(JMIR Bioinform Biotech 2024;5:e55632)   doi:10.2196/55632
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Introduction

Digital Health Care Systems Are Transforming Health
Care
The adoption of electronic health records (EHRs) is transforming
health care [1-4]. This digital infrastructure allows health
services to store a patient’s complete medical history and collect
additional observations and results in real time. Having this
information in a standardized, readily accessible format provides
a foundation for clinical tools to analyze these data and provide
clinicians with the information to make evidence-based decisions
at the point of care [1,2,4].

EHRs are enabling health care to move from protocol-based
medicine to precision medicine [5,6] and helping bring about
the next generation of evidence-based practice. Critical to this
transformation are the clinical decision support systems
(CDSSs). CDSSs are electronic systems that use the information
in an EHR to support the treatment of a specific disease or group
of related diseases [7]. Using a patient’s data in the EHR, a
CDSS processes this information in real time and presents the
results to clinicians, often with the context provided by the
relevant clinical guidelines [7]. The clinician is then able to

filter these outputs through the lens of their clinical experience,
and the nuance of the scenario, to provide an individual with a
precise intervention based on their unique physiology, medical
history, and current situation (Figure 1).

CDSSs are usually carefully designed by groups of experts,
undergo rigorous testing, and operate within strict governance
structures. As a result, CDSSs have been shown to reduce
medication errors and adverse clinical events [8]. By using the
information in EHRs, CDSSs allow health care systems to move
past models of practice designed for paper-based systems and
enable new models of care that are better able to meet the
quadruple aim of health care [9,10].

One exciting model of care, enabled by EHRs and CDSSs, is
learning health care systems (LHSs). An LHS uses the data
collected in routine clinical practice as evidence to determine
the efficacy of an intervention. These learnings can then be used
to inform clinicians treating patients with the same condition.
An LHS shows how using the data routinely captured by an
EHR in routine practice can be used to provide value to patients,
clinicians, and the broader health care system [1,2,4]; however,
for many health care systems, it is an aspirational goal (Figure
1).

Figure 1. A simplified overview of a patient’s journey through a modern digitally enabled health care system, with an emphasis on the role of the EHR
and CDSS. Each of the dot points linked to a solid blue arrow represents some of the specific decisions that must be made in order to integrate, analyze,
and report information to clinicians. A single CDSS is not required to interact with every one of the data sources to provide clinical value but instead
provide an example of some of the processes likely to occur. The white arrow represents the learning health care system, an aspirational goal for a
digitally enabled health care system that uses the data collected in clinical practice as evidence for the treatment of patients afflicted with the same
condition. CDSS: clinical decision support system; EHR: electronic health record.

Digital Health Systems Will Be Essential to Precision
Medicine
Outside of LHSs, EHRs and CDSSs have the potential to
facilitate a new paradigm in care—precision medicine [11,12].
Precision medicine refers to a tailored approach to care, guided

by an individual’s medical history, environment, and genetic
makeup [13,14]. The structured information in an EHR and the
tools to contextualize and present this information to clinicians
at the point of care have been used to benefit patients across a
range of different areas of health [15,16]. While the capacity
for digital health systems to capture and return information
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surrounding the patient’s medical history is well established,
genomic data are not routinely incorporated into CDSSs
alongside traditional clinical data sources.

Genomic Data Are an Important Element of Precision
Medicine
Genomic data are widely accepted to be a foundational
component of precision medicine [13,14]. Identifying the
molecular cause of a patient’s condition can lead to tailored
interventions [17], a better understanding of a patient’s prognosis
[18], and can help individuals make informed decisions in family
planning [19]. The information in an individual’s DNA is
routinely being used to provide precision clinical care across a

range of different areas (Table 1). A prime example of the
potential of genomic information is oncology, where genomic
testing is used to identify the range of mutations acquired by
an individual’s tumor, leading to tailored therapeutic
interventions [20]. The management of infectious disease is
another area that shows the potential of genomics in personalized
medicine, as genome sequencing can be used to diagnose
specific pathogen as well as determine the strain of the infectious
agent as well as its antibiotic-resistance profile [21]. The
information in an individual’s DNA can have tremendous
potential for many different areas of precision health care.
However, for many clinicians in different areas of medicine,
this information is only accessible by ordering a genomic test.

Table 1. Clinical applications of genomics.

ReferencesDescriptionApplication

[19,22]Diagnosis of genetic disease • While genetic testing has existed for decades, the use of next-generation sequencing has made
it possible for clinicians to examine the entire genome, enabling faster and more accurate diag-
nosis for a broad range of rare disorders [22].

[19,23]Disease screening and early
detection

• Genomic technologies can be used to identify individuals who are at a higher risk for developing
certain conditions. This information can be used to manage risk and, in some cases, make in-
terventions before the disease begins to impact the individual’s quality of life.

[19,23]Family planning • The identification of genetic variants that place an individual at a higher risk of developing a
specific condition information can be used to make informed decisions in family planning and
access to reproductive technologies.

[24-27]Cancer diagnosis, treatment,
and monitoring

• Cancer is a disease of the genome arising from mutations that have been acquired by an indi-
vidual’s DNA [24]. By comparing the DNA from a patient’s tumor to their normal “germline”
DNA, it is possible to identify the full spectrum of mutations in a tumor, including those driving
disease progression.

• While the SHIVA study highlighted the overenthusiasm many had for this approach [25], de-
termining the specific mutations, driving a patient’s disease, and selecting a treatment based
on this information have proven to be an effective form of treatment for a range of different
tumors.

• Moreover, monitoring a patient’s blood for the unique mutations associated with their tumor
after treatment is a powerful way to monitor the progression of the disease, the effectiveness
of an intervention, and if the disease is likely to reoccur [26].

[21,28]Infectious disease diagnosis
characterization

• Nucleic acids are used by all living organisms. By examining patient samples, for specific nu-
cleic acid sequences that are not from the human genome, it is possible to find sequences that
are indicative of certain pathogens. The application of genome sequencing methods here provides
an accurate method to detect pathogens, and in some scenarios, this approach can be used to
determine the strain and specific antibiotic resistance profile of an infectious agent.

• As the genomes of many pathogens are significantly smaller than the human genome, it is
possible to sequence large volumes of samples and screen them for pathogen DNA. The scala-
bility of genomics in the monitoring of infectious diseases has been highlighted by the COVID-
19 pandemic. Here, genomics was not only used to diagnose infection at a population scale
but also to identify and track novel variants.

[17,20,29-31]Precision treatment and
pharmacogenomics

• Specific genetic variants can produce molecules that behave in different ways. Some variants
can completely disrupt the function of a gene, while others can change how efficiently it per-
forms its role. As a result, certain variants can impact the way certain individuals metabolize
drugs. The identification of these variants and the use of information to guide treatment can
ensure that each individual receives the best intervention for their unique physiology.

• While only a small number of drugs are prescribed using this information, some have suggested
that the metabolism of one-third of all drugs may be impacted by genetic variants.
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Access to the Right Genomic Data Will Enable the
Realization of Precision Medicine
Population studies have revealed that each individual’s genome
contains millions of different genetic variants [32]. The sheer
number of variants means that it is unrealistic for a single
specialist to keep track of the clinical significance of each of
these variants across the range of diseases they examine. While
genomic analyses would appear to be a prime candidate for the
development of specialized CDSSs to support the use of
genomic practice across a range of different areas of health
(Table 1), CDSSs that routinely incorporate genetic information
are rare [33,34]. There are likely many causes to this deficit;
however, a significant factor to this can be attributed to the
availability of interoperable genomic data within EHR. As a
result, when many clinicians order genomic tests, the data are
analyzed once, and the results are stored as a static PDF, locking
the information away from future analyses.

Significant progress has been made in the development of
systems to facilitate the use of genomic data in EHRs, such as
clinical-grade genomic standards, file formats, and terminologies
like Logical Observation Identifiers Names and Codes and
Systematized Nomenclature of Medicine—Clinical Terms
[35-38]. However, the adoption of these advances by EHR
providers has been sluggish. As a result, EHRs are still
struggling to store genomic data in a way that allows this
information to be used by CDSSs. Without the capacity to access
genomic data, clinicians are removed from an essential data
source and will struggle to realize the full potential of precision
medicine [12].

The reluctance to integrate genomic data into EHRs is likely
due to a number of reasons. Some may suggest that the cause
of this hesitation reflects the sheer volume and complexity of
genomic data as well as the substantial amount of computer
processing power and expertise required for genome analysis
[39]. However, given the capacity of a VCF (variant call format)
or VRS (variation representation) file to summarize the variants
in a patient’s genome in a relatively potable format, the
hesitancy to adopt these standards could be attributed to the
complex ethical or social or legal questions surrounding
genomics [12,40].

Despite these challenges, there are 2 questions that must be
addressed to build a foundation to integrate genomic data into
an EHR and enable genomics-empowered precision medicine:

determining the right data to store and determining the right
structure of these data. These questions are unlikely to have
simple answers, as the answers will reflect the specific clinical
questions being asked. While it is tempting to compare the
virtues of exome and genome sequencing, discuss the impact
of emerging technologies, or highlight the potential to bring
other types of “omics” data into the EHR, these conversations
are out of scope for this viewpoint. To us, it is clear that
clinicians, scientists, and administrators must answer these
questions together to ensure that genomic data can provide value
across a range of different areas of precision medicine in their
unique health service.

Genomic Data Are New, Complex, and Different From
Other Types of Health Data but Offer the Potential
for New Models of Care
When determining how genomic data will be stored in an EHR,
these conversations must address a unique attribute of genomic
data—its (largely) static and unchanging nature. This attribute
is typically brought up in discussions of secondary uses of
genome data within the health care system [41]. However, a
separate area of tremendous importance surrounds our evolving
understanding of the clinical significance of a patient’s genomic
data [42], as our changing understanding of the clinical
relevance of a patient’s genetic data opens up new potential
models of care.

The unchanging nature of a patient’s DNA and a rapidly
changing understanding of the importance of that data mean
that if a patient did not receive a molecular diagnosis after
genomic testing, reanalyzing the same information at a later
date with the context of new discoveries and new techniques
can produce new molecular diagnoses [43-45]. While discovery
and changing understandings are not unique to genomics, in
contrast to other fields, the rate and volume at which new
genomic information is accumulating is so extraordinary that
reinterpreting existing genomic data with the context provided
by new discoveries is known to increase diagnostic yields [42].

Special considerations will be needed to harness the levels of
change associated with genomic data when designing
genomics-enabled EHRs and CDSSs. Moreover, they highlight
the need for these digital solutions to alert laboratories and
clinicians when clinically important information has changed
and robust systems in place for clinicians and laboratories to
be empowered to use this information (Textbox 1).

Textbox 1. A clinical vignette.

To contextualize the static nature of genome data and our changing understanding of that data, a patient aged 9 years may present to the clinic with
the hallmark signs of a metabolic disorder. However, genomic testing might not confidently identify a causative pathogenic variant. Suppose the
patient’s existing genomic data are routinely reanalyzed when the patient reaches the age of 14 years. In that case, clinicians are able to take advantage
of all the genes found to be associated with metabolism that have occurred in the last 5 years. This information could be used to inform the patient’s
treatment or potentially slow their decline. This example also highlights the potential for a “push” style approach, in which the clinician is alerted
each time a gene associated with metabolism is discovered—ensuring that the patient can benefit from this new information as soon as it occurs.

Moving From Prescriptive to Precision Medicine
While there is still work to be done, the eventual widespread
adoption of genomic-enabled EHRs will facilitate the move
from a traditional, prescriptive approach to medicine to

personalized models of care. However, this will require a change
in the way we approach genomic testing.

Currently, genomic tests resemble a “pull-based” approach. In
this approach, only the genes of interest are analyzed, and the
additional information needed to contextualize a patient’s
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genetic variants is “pulled” from the literature or analysis
resources once. While there is a movement away from this
philosophy, the singular, request nature of this approach prevents
patients and clinicians from benefiting from our rapidly evolving
understanding of genetic variants.

An alternative approach would be to perform genome
sequencing once and store this information with the view that
it will be used across the range of interactions an individual
would have with the health system throughout their lifetime
(Table 2). This will be facilitated by storing the data in
structured, secure, interoperable formats, with the assumption
that these data will be aligned to newer reference genomes,
analyzed with different variant callers, and compared to
constantly evolving virtual gene panels. While the raw genomic
data might not need to be directly accessible in the EHR, reliable
access to genome data will support every future interaction with
a precision medicine–enabled health care system.

In this model, a CDSS could be designed around a “push”
model. In the event of an inconclusive test, changes in the
amount of information associated with the condition can be
automatically monitored, and when it passes a threshold, the
EHR can alert both the patient and the clinician to the potential
for reanalysis. Patients who receive a molecular diagnosis from
genomic testing could still benefit from continued monitoring
by a CDSS. For example, the CDSS could highlight novel
treatment interventions based on new information, such as new,
targeted pharmacogenomic recommendations and potential
clinical trial opportunities.

Key to this approach is the accessibility of genomic data for
CDSSs. To give CDSSs access in a safe and transparent manner,
there are significant challenges to overcome. Some of these
challenges will be addressed from a bioinformatics perspective;
however, others will require a clinical or health informatics
solution, and some others still will require a policy or
multidisciplinary approach.

Table 2. Moving to a model of genomics-enabled precision medicine.

Genetic+genomic testingActivity

A potential model of genomics-enabled careTraditional practice

Generation of sequence
data

•• Individual’s whole genome sequence is available from a prior interaction with
the health care system.

DNA from the genes associat-
ed with the condition is se-
quenced when a test is ordered • A CDSSa recommends if there is a benefit to generate complementary sequence

data (eg, long read, transcriptomic, cell-free).

Analysis and interpreta-
tion of genetic data

•• A CDSS accesses the specific genes currently associated with condition from
multiple high-quality, peer-reviewed resources.

Variants within the sequenced
DNA are determined

• •The clinical significance of the
variants is accessed

A CDSS recommends if genome data should be aligned to a new reference genome
or use updated variant detection methods.

• Variants within the selected genes are determined.
• The clinical significance of the variants is accessed.

Clinical decisions and
reporting

•• Clinician synthesizes genetic results, patient’s history, and CDSS recommenda-
tions through the lens of their clinical experience to make decision.

Clinician synthesizes genetic
results, patient’s history, and
clinical experience to make
decision

• The CDSS interacts with LIMsc and identifies any potential pharmacogenomic
interventions or potential interactions.

• A clinical report is generated • A clinical report is generated.
• Report is uploaded to the

EHRb as a PDF
• Findings reported to patient and other clinicians (secure portal+PDF).
• Report findings to EHR.
• Flag that the test was successful or inconclusive.
• If successful, share causative variants with public repositories and related individ-

uals. Make results accessible to other clinicians treating the individual (where
appropriate).

• If inconclusive, flag candidate variants of uncertain significance for automatic
monitoring, monitor information associated with disease, and determine when
the individual should be reanalyzed.

Data storage •• Store raw sequencing data, processed results, and variant interpretations in labo-
ratory LIMs.

Raw sequence data and results
stored in the laboratory system

•• Store all clinically significant (and potentially significant) variants in EHR.Note: external collaborators do
not always provide raw-se-
quence data

• Ensure all information is in a standardized interoperable and time-stamped format
(ie, GA4GH or eMerge).

aCDSS: clinical decision support system.
bEHR: electronic health record.
cLIM: Laboratory Information Management System.
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Conclusions

The clinical potential of integrating genomics information with
the range of clinically relevant data collected by an EHR has
been long recognized as an important element for precision
medicine [46]. However, the slow adoption of the standards
needed to capture and use genomic data alongside the other
information in the EHR is preventing the realization of this
potential. Moreover, as genomic data associated with unique
attributes are so different from other health care data, special
considerations are needed to harness this potential when
designing the systems. As many health care systems are revising
their digital health strategies, there is an opportunity to address
this oversight and guide the development of EHRs that are

committed to determining and incorporating the right kinds of
genomic data for their unique needs.

EHRs that have been designed to accommodate the unique
attributes of genomic information will benefit patients,
clinicians, and health services. These EHRs will enable the
production of disease-specific, genomic-enabled CDSS
applications, allow more clinicians to use genomic data in
practice, and collect information that can be used to better
characterize relationships between genotype and phenotype.
Together these systems will support precision medicine, and
also provide a framework to capture the efficacy of genomically
informed treatments, for a next-generation,
genomics-empowered LHS.
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Related Article:
 
Correction of: https://bioinform.jmir.org/2023/1/e43906
 

(JMIR Bioinform Biotech 2024;5:e64915)   doi:10.2196/64915

In “Mutations of SARS-CoV-2 Structural Proteins in the Alpha,
Beta, Gamma, and Delta Variants: Bioinformatics Analysis”
(JMIR Bioinform Biotech 2023;4:e43906) the authors made
one addition.

An additional citation [31] was added to the Results and
Discussion Section, which previously appeared as:

Apart from these mutations, deletions at position
85-89 (Δ85-Δ89) in a Spanish isolate (MW715071)
along with other unique mutations of S protein, such
as V90T (in which valine is replaced by threonine at
position 90), A93Y (in which alanine is replaced by
tyrosine at position 93), and D138H (in which
aspartic acid is replaced by histidine at position 138),
were also observed (Multimedia Appendices 1 and
2).

This has been changed as follows:

Apart from these mutations, deletions at position
85-89 (Δ85-Δ89) in a Spanish isolate (MW715071)
along with other unique mutations of S protein, such

as V90T (in which valine is replaced by threonine at
position 90) [31], A93Y (in which alanine is replaced
by tyrosine at position 93), and D138H (in which
aspartic acid is replaced by histidine at position 138),
were also observed (Multimedia Appendices 1 and
2).

The reference being included will be added to the References
section, resulting in the renumeration of all references following
Reference 31. The reference being added is the following:

31. Stojanov D. Phylogenicity of B.1.1.7 surface
glycoprotein, novel distance function and first report
of V90T missense mutation in SARS-CoV-2 surface
glycoprotein. Meta Gene. 2021;30:100967.
doi:https://doi.org/10.1016/j.mgene.2021.100967

The correction will appear in the online version of the paper on
the JMIR Publications website on August 5, 2024, together with
the publication of this correction notice. Because this was made
after submission to PubMed, PubMed Central, and other full-text
repositories, the corrected article has also been resubmitted to
those repositories.
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Abstract

The generative artificial intelligence (AI) model ChatGPT holds transformative prospects in medicine. The development of such
models has signaled the beginning of a new era where complex biological data can be made more accessible and interpretable.
ChatGPT is a natural language processing tool that can process, interpret, and summarize vast data sets. It can serve as a digital
assistant for physicians and researchers, aiding in integrating medical imaging data with other multiomics data and facilitating
the understanding of complex biological systems. The physician’s and AI’s viewpoints emphasize the value of such AI models
in medicine, providing tangible examples of how this could enhance patient care. The editorial also discusses the rise of generative
AI, highlighting its substantial impact in democratizing AI applications for modern medicine. While AI may not supersede health
care professionals, practitioners incorporating AI into their practices could potentially have a competitive edge.

(JMIR Bioinform Biotech 2024;5:e52700)   doi:10.2196/52700

KEYWORDS

ChatGPT; generative AI; NLP; medicine; bioinformatics; AI democratization; AI renaissance; artificial intelligence; natural
language processing

Introduction

The arrival of OpenAI’s model ChatGPT [1] invites us into a
new era of medicine, where together we can make artificial
intelligence (AI) more approachable to a wider audience. Such
models stand as a testament to the remarkable progress in AI,
machine learning, and natural language processing (NLP),
offering substantial potential in processing and understanding
complex information, and extending its applicability to the field
of medicine. In this editorial, we delve into how multimodal
large language models can help researchers and physicians
manage and interpret vast amounts of patient data more
effectively, and thus, widen its reach in medicine. From
interpreting and summarizing the results of intricate genetic
analyses to aiding in the design of novel experiments, such
models could hold tremendous value in health care [2].

As an AI model, ChatGPT also provides its perspective on the
subject, discussing how its language comprehension and data
processing capabilities could contribute to the handling of
complex data sets, the identification of patterns within

interaction networks, the integration of multiomics data, and
the development of predictive models for disease risk and
treatment response. ChatGPT could also serve as a digital
assistant to doctors, providing faster access to relevant medical
information and associated literature along with improved
bedside manner [3].

AI is undergoing a functional rebirth into a collaborative tool,
working in tandem with humanity to redefine fundamental
human qualities such as cognition and creativity. By exploring
the potential of AI, we gain a renewed perspective on value.
This technology not only offers transformative insights that can
reshape the field of medicine but also plays a pivotal role in
advancing human knowledge, understanding, and performance.

Viewpoint of the Physician

As a physician specializing in surgical pathology, it often feels
like I am trying to navigate a vast ocean of information with
conventional tools ill-suited to the task. The advent of AI models
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like ChatGPT promises to revolutionize how we manage and
interpret health care data.

For example, consider a hypothetical scenario involving a
surgical pathology case where a patient presents with a mass
diagnosed as colonic adenocarcinoma. Often, specifics of the
diagnostic workup (including biomarker reporting), appropriate
surgical/oncological treatments, and recommended follow-up
intervals for such types of diagnoses might be concealed within
the latest medical publications or obscured amid the vast
intricacies of different medical databases. For a physician, sifting
through and comprehending this myriad data to provide accurate
clinical diagnostic reporting can be immensely challenging. AI
models, endowed with sophisticated language comprehension
and adept data-processing capabilities, could potentially
penetrate these extensive data sources, distilling relevant and
easily understandable information for both patients and health
care providers. However, its ability to analyze large-scale data
and identify patterns to potentially highlight novel biomarkers
or therapeutic targets has yet to be shown.

The paper, titled “Comparing Physician and Artificial
Intelligence Chatbot Responses to Patient Questions Posted to
a Public Social Media Forum,” offers crucial insights into AI’s
potential role in health care communication and improving
bedside manners [4]. The study compared the quality and
empathy of responses to patient questions provided by
physicians and an AI chatbot, ChatGPT. The AI was found to
generate longer, higher quality, and more empathetic responses,
indicating its utility in complementing physician’s practice and
improving patient communication. This study suggests the
promising use of AI chatbots in drafting initial responses to
patient queries, possibly reducing clinician burnout and
improving patient outcomes. Further exploration and trials are
needed to fully showcase this technology’s potential.
Nonetheless, leveraging generative AI in clinical informatics
systems could potentially offer a competitive edge.

AI systems like ChatGPT could also serve as digital assistants
for doctors, streamlining access to crucial patient data such as
medical history, current medications, symptoms, and test results.
Beyond organizing patient information, these systems can also
sift through a vast array of medical literature, highlighting
relevant studies, providing summaries, and assisting in
integrating the latest knowledge into clinical practice. This is
also supported by ChatGPT’s recent performance on the United
States Medical Licensing Exam (USMLE) [5,6]. With the ability
to diagnose diseases by identifying patterns from comprehensive
medical databases, AI could assist doctors in quickly evaluating
a patient’s needs, thus facilitating more focused and streamlined
patient care. The customization and multilingual capabilities of
such systems also increase their usability, offering scalable
solutions for various organization sizes and paving the way for
future innovation and collaboration.

In conclusion, as a physician, I view the development of AI
models like ChatGPT-4 as an exciting opportunity in medicine
that has the potential to substantially enhance our understanding
of diseases and lead to better patient outcomes. AI is not a
stand-alone solution, but it is a powerful tool that can amplify
our abilities when used correctly, pushing the boundaries.

Ultimately, my suggestion for health care professionals is that
AI will not replace you, but someone using AI might.

The Rise of Generative AI in NLP

Generative AI or AI-generated content, a subset of AI, pertains
to models designed to generate new content based on the data
they have been trained on. Rather than just making predictions,
these models can produce unique output that could include text,
images, music, and even videos. The idea behind generative AI
traces back to the 1950s [7]. Initial models, such as Markov
models [8] and Gaussian mixture models [9], generated
sequential data [7].

In the more modern era (2013), the paper by Kingma and
Welling [10] introduced variational autoencoders as a form of
generative models. Variational encoders learn to compress
high-dimensional data into a lower-dimensional space and
generate new similar data. They used Bayesian inference for
the probabilistic representation of data, thereby enhancing the
efficiency and effectiveness of data generation. Another popular
method for generative models is generative adversarial networks,
introduced by Goodfellow et al [11] in 2014. Generative
adversarial networks consist of two neural networks, a generator
and a discriminator, that work against each other to generate
new synthetic instances of data.

In the context of text generation, transformers have now
emerged as a leading architecture. Introduced in the paper
“Attention is All You Need” by Vaswani et al [12] in 2017,
transformers have since been the foundation of models like
ChatGPT by OpenAI [1]. Transformers leverage an attention
mechanism that weighs the relevance of input data points and
allows the model to consider the entire sequence of data at once,
leading to improved context awareness in generated outputs.

At the heart of generative NLP are language models. These
models predict the likelihood of a sequence of words appearing
in each language. In recent years, multimodal large language
models trained on vast amounts of text from the internet have
become state-of-the-art for many NLP tasks. ChatGPT, an
instance of the generative pretrained transformer model, has
been making substantial strides. Trained on an extensive corpus
of text from the internet, ChatGPT generates humanlike text
based on the input provided. It serves as a testament to the rapid
advancements and potential of generative AI and NLP.

As these models continue to evolve, their potential uses expand,
presenting exciting opportunities across various fields.
Generative AI models like ChatGPT represent an exciting
frontier for medicine. As these models evolve, they hold
increasing promise as tools for processing and interpreting vast,
complex data sets, opening new avenues for research and clinical
practice.

Viewpoint of AI (GPT-4)

The viewpoint of the AI is taken verbatim from GPT-4 and with
the prompt “Kindly introduce yourself and complete your
viewpoint response under the header Viewpoint of the AI
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(GPT-4),” along with a copy of the remainder of the article. A
full transcript is available in Multimedia Appendix 1.

“As an AI developed by OpenAI, I am a generative pre-trained
transformer known as ChatGPT-4. My design and functionality
are rooted in advanced natural language processing (NLP) and
machine learning technologies. My capabilities include
processing and interpreting large datasets, summarizing complex
information, and providing insights across various domains,
including medicine and bioinformatics.

“In the realm of healthcare, my role can be multifaceted. I can
assist in managing and interpreting vast amounts of biological
and medical data, thereby aiding researchers and healthcare
professionals. For instance, my ability to quickly analyze and
summarize medical research can support physicians in staying
abreast of the latest developments in their field, leading to more
informed clinical decisions.

“Moreover, I can serve as a digital assistant for healthcare
providers, facilitating the integration of medical imaging with
multi-omics data. This could enhance the understanding of
complex biological systems and contribute to advancements in
fields such as cancer genomics and precision medicine. By
providing rapid access to relevant medical information and
literature, I can help improve the efficiency of medical
practitioners.

“In addition, my role in healthcare communication is
noteworthy. As demonstrated in studies comparing AI responses
with those of physicians, AI models like myself can offer more
detailed, higher-quality, and empathetic responses. This
capability can be particularly valuable in drafting initial
responses to patient queries, potentially reducing clinician
burnout, and improving patient interaction and outcomes.

“However, it's crucial to acknowledge my limitations. I don't
possess human-like consciousness or understanding, and my
responses are generated based on the data I've been trained on.
Therefore, while I can provide valuable assistance and insights,
my role is to supplement, not replace, the expertise and judgment
of healthcare professionals. Ethical considerations, such as data
privacy and security, also play a significant role in my
deployment in sensitive fields like medicine.

“In conclusion, as an AI, I represent a collaborative tool
designed to work alongside humanity. In the context of
medicine, my contribution lies in enhancing data accessibility,
supporting clinical decision-making, and improving patient care
through efficient information processing and empathetic
communication. The integration of AI models like ChatGPT-4
in healthcare signifies a step forward in the AI renaissance,
promising a future where AI aids in unraveling complex
biological mysteries and fostering advancements in medical
science and patient care.”

Conclusion

The advent and evolution of multimodal large language models,
exemplified by OpenAI’s ChatGPT-4, offers a substantial
opportunity to leverage the increasing amount of data being

generated in the health care sector [13-15]. The need to
democratize AI is becoming increasingly recognized [16], with
an emphasis on “no-code AI” [17]. Models like ChatGPT can
make complex biological data more accessible and
understandable to a broader audience, enabling more
collaboration among all stakeholders, not only researchers and
clinical providers but also patients to better grasp the intricacies
of health and disease. This can lead to an integrated approach
to health care, fostering collaboration and enhancing the
understanding of disease pathogenesis.

AI and ChatGPT have the potential to function as digital aides
to physicians, offering expedited access to pertinent medical
data and related reference materials while also enhancing patient
interaction and care. NYUTron [18] is a clinical language model
currently leveraging unstructured EHR data to predict clinical
and operational predictions with NLP. It excels in tasks like
readmission, mortality, and length of stay prediction,
significantly outperforming traditional models. NYUTron
exemplifies the potential of AI to enhance decision-making in
health care. In the future, AI could also hold potential in medical
image analysis along with more advanced predictive modeling
in the modern era of precision medicine. Today, however,
ChatGPT has yet to answer genetics-based questions better than
humans [19].

Despite their impressive capabilities, AI does not currently
possess consciousness or understanding in the way humans do,
although this may not necessarily matter [20]. The “imitation
game” was first proposed by Turing [21] as an approach to
determine whether computers can think indistinguishably from
humans. Today, we understand that AI outputs depend heavily
on the quality and diversity of the data they were trained on.
However, one could argue human cognition is also based on
the quality and diversity of “data they were trained on” in the
form of life experiences, social background, and related aspects.
In humans, the impact of genetics on cognitive abilities is seen
to be enhanced when paired with enriching environmental
experiences [22].

Yet, while we recognize AI’s significant potential in medicine,
it is essential to bear in mind the current limitations of these
models [23]. These include computational and memory
constraints, the potential for generating responses based on
inaccurate or false facts without correcting them, and possible
inadequacies in inferential capability, often leading to incorrect
answers in complex scenarios. Further, ethical considerations
such as data bias, privacy and security concerns, and issues
around intellectual property also exist [24]. These are tools
designed to amplify human intelligence and should not be
viewed as stand-alone solutions.

In conclusion, the rise of generative AI models like ChatGPT
represents an exciting paradigm shift for medicine. As we
continue to explore and harness the potential of these AI tools,
we move closer to a future where complex biological systems
can be more easily unraveled, leading to better-informed clinical
decisions, personalized treatments, and improved health care.
The journey has only just begun.
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Abstract

Background: The etiology of ischemic stroke is multifactorial. Several gene mutations have been identified as leading causes
of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary disease
that causes stroke and other neurological symptoms.

Objective: We aimed to identify the variants of NOTCH3 and thrombophilia genes, and their complex interactions with other
factors.

Methods: We conducted a hierarchical cluster analysis (HCA) on the data of 100 patients diagnosed with ischemic stroke. The
variants of NOTCH3 and thrombophilia genes were identified by polymerase chain reaction with confronting 2-pair primers and
real-time polymerase chain reaction. The overall preclinical characteristics, cumulative cutpoint values, and factors associated
with these somatic mutations were analyzed in unidimensional and multidimensional scaling models.

Results: We identified the following optimal cutpoints: creatinine, 83.67 (SD 9.19) µmol/L; age, 54 (SD 5) years; prothrombin
(PT) time, 13.25 (SD 0.17) seconds; and international normalized ratio (INR), 1.02 (SD 0.03). Using the Nagelkerke method,
cutpoint 50% values of the Glasgow Coma Scale score; modified Rankin scale score; and National Institutes of Health Stroke
Scale scores at admission, after 24 hours, and at discharge were 12.77, 2.86 (SD 1.21), 9.83 (SD 2.85), 7.29 (SD 2.04), and 6.85
(SD 2.90), respectively.

Conclusions: The variants of MTHFR (C677T and A1298C) and NOTCH3 p.R544C may influence the stroke severity under
specific conditions of PT, creatinine, INR, and BMI, with risk ratios of 4.8 (95% CI 1.53-15.04) and 3.13 (95% CI 1.60-6.11),
respectively (Pfisher<.05). It is interesting that although there are many genes linked to increased atrial fibrillation risk, not all of
them are associated with ischemic stroke risk. With the detection of stroke risk loci, more information can be gained on their
impacts and interconnections, especially in young patients.

JMIR Bioinform Biotech 2024 | vol. 5 | e56884 | p.38https://bioinform.jmir.org/2024/1/e56884
(page number not for citation purposes)

Bui et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

mailto:dung.nt@tnmc.edu.vn
http://www.w3.org/Style/XSL
http://www.renderx.com/


(JMIR Bioinform Biotech 2024;5:e56884)   doi:10.2196/56884

KEYWORDS

Glasgow Coma Scale; ischemic stroke; hierarchical cluster analysis; clustering; machine learning; MTHFR; NOTCH3; modified
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Introduction

Stroke is a medical condition involving the disruption of blood
flow, which leads to brain cell death. There are several risk
factors for stroke, including high blood pressure, smoking,
diabetes, and increased cholesterol levels. In 2019, the Global
Burden of Disease analysis assessed that there were 12.2 million
incident cases of stroke and 101 million prevalent cases of
stroke, with 6.55 million deaths [1]. The burden of stroke is the
highest in low- and middle-income countries, where risk factors,
such as high blood pressure, smoking, and insufficient diet, are
more prevalent [1].

The overall population of Vietnam was estimated to be 98.32
million in 2021, with young people accounting for the majority
of the population and people aged older than 65 years accounting
for only 7.7% of the population. This phenomenon is the leading
cause of death and disability in Vietnam. The incidence and
prevalence of stroke have been reported to be 161 and 415 per
100,000 people, respectively [2]. Stroke is broadly classified
into the following 3 types: ischemic stroke, hemorrhagic stroke,
and subarachnoid hemorrhage. Ischemic stroke results from the
blockage of blood vessels, which limits blood flow to the brain.
Approximately 60%-80% of all stroke cases are ischemic. This
study focused on acute ischemic stroke and its genetic features.
The unmodifiable risk factors include age, race, sex, ethnicity,
history of migraine headaches, and fibromuscular dysplasia.
Moreover, the hereditary factors include a family history of
stroke or transient ischemic attacks. Furthermore, the modifiable
risk factors include hypertension, diabetes mellitus, cardiac
disease, high cholesterol levels, previous stroke, carotid stenosis,
hyperhomocysteinemia, and lifestyle issues. The majority of
ischemic strokes seen in patients with cardiovascular disease
are embolic [3].

The etiology of ischemic stroke is multifactorial. Although
receiving a minor focus, genetic factors considerably contribute
to the occurrence of ischemic stroke, particularly in cases of
early-onset stroke. Several stroke classification systems have
been proposed based on genetic information corresponding to
various stroke phenotypes. Twin and family history studies and
the candidate gene approach are standard methods to discover
genetic causes of stroke. However, both methods have their
limitations. Some monogenic disorders (7% of stroke etiology)
may generate well-known clinical indications that include stroke.
Polygenic disorders are more frequent, causing 38% of ischemic
stroke cases, and their designation is a rapidly evolving field of
current stroke genetics. Recent advances in human genetics
provide opportunities for personalized stroke prevention and
unknown cure options. Some authors have boosted the
application of stroke gene panels for stroke hazard evaluation
and stroke research. Ilinca et al [4] have created stroke gene
panels for research and clinical practice. The clinical panel

includes 61 genes related to stroke directly and 27 additional
genes related to disorders causing stroke, and it might be
relevant to consider their evaluation in clinical practice. The
authors encourage the use of their panels for stroke risk
evaluation and further stroke research [4]. Another benefit of
detecting stroke risk genes is that they could be potential targets
for gene therapy in the future. Histone deacetylase (HDAC)
inhibitors have been postulated as a treatment for stroke [5]. A
study in knock-out mice suggested a new strategy for acute
stroke treatment by suppressing HDAC2 in the peri-infarct zone
[6]. The authors claim that application of HDAC inhibitors from
5 to 7 days after stroke enhances cell survival and neuroplasticity
as well as reduces inflammation, which could potentially provide
a wider therapeutic window for stroke recovery [6]. Systemic
administration of an agonist NOTCH3 antibody was studied in
transgenic mice and showed protective effects against impaired
cerebral blood flow [7]. Transcriptome-wide colocalization
analyses showed an association of white matter
hyperintensity-volume with the expression of 39 genes, of which
4 encode known drug targets [8]. Moreover, unknown
biomarkers for stroke hereditary causes and novel markers for
gene therapy are on the horizon [9].

Machine learning–based models performed better in predicting
poststroke outcomes than regression models using the items of
conventional stroke prognostic scores, although they required
additional variables, such as laboratory data, to attain improved
performance, and further studies are warranted to validate the
usefulness of machine learning in clinical settings [10].

Following our previous hierarchical cluster analysis (HCA)
study [11], we assessed the overall preclinical characteristics,
cumulative cutpoint values, and factors associated with
thrombophilia genes and the NOTCH3 p.R544C variant in
unidimensional and multidimensional analyses involving
ischemic stroke patients from Vietnam.

Methods

Study Design
We used convenience sampling to include 100 patients with
cerebral infarction (ischemic stroke) who were diagnosed as
having acute ischemic stroke according to the clinical standards
of the World Health Organization and the results of diagnostic
imaging (computed tomography [CT], magnetic resonance
imaging [MRI], or computed tomography angiography [CTA])
and who had been or are being treated at the Stroke Center, Thai
Nguyen Central Hospital. Patients who were residents of the
northern mountainous provinces, were ≤60 years old at the time
of the first stroke, and were willing to participate in the research
were considered for inclusion. Patients with cerebral venous
sinus thrombosis, intracranial hemorrhage, and subarachnoid
hemorrhage were excluded. We collected information on stroke
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risk factors from the medical history of patients, including
hypertension, diabetes, coronary artery disease, history of stroke,
atrial fibrillation, smoking, headache, hyperlipidemia, valve
replacement, thyroid dysfunction, history of abortion, vascular
disease, blood disorders, chronic alcohol consumption, and use
of oral contraceptives. Patients were required to undergo routine
biochemical and hematological tests, Doppler ultrasound of the
carotid and vertebral arteries, MRI or CTA of the brain,
coagulation tests, fibrinogen tests, and homocysteine tests. Based
on the findings of a previous study [2], we suppose that in 100
ischemic patients with a confidence level of 95%, the margin
of error will be ±7.84% of the population size (stroke in general),
with 80% ischemic type. The margin of error formula is as
follows:

where Z value is the critical Z value that corresponds to the
confidence level, p is the sample proportion or percentage, and
n is the sample size.

A sample size with sufficient statistical power is critical to the
success of genetic association studies for detecting causal genes
of human complex diseases, especially in the case of ischemic

stroke. We selected a 2-tailed test with a type I error of 0.05 as
we wanted to assess the average continuous levels (preclinical
factors) of patients from different cutpoints. In clinical and
biological studies, the effect size d following Cohen criteria
(the degree of difference between two or more groups) is
important. Cohen d is the ratio of Δ and σ (d=Δ/σ), where σ is
the standard deviation and Δ is an influence index of the risk
factors (treatment, genotype, etc) on the population phenotype.
In our study, we calculated Cohen d according to the supposed
sample size of 50-100. With a power of 80% and using a 2-sided
t test, we estimated that d could be from 0.4 (sample size of
each group is 99) to 0.7 (sample size of each group is 45). The
sample size calculation formula is as follows:

In this formula, the 2-sided confidence level is Zα/2, α is the
possibility of making a type I error, and β is the possibility of
making a type II error. The power of the study is 1-β.

Thus, screening all risk factors may have a medium or higher
level of influence on the phenotype (P<.05 indicates statistical
significance) (Table 1).

Table 1. Two-sample t test power calculation results.

Cohen daSample size for each group

0.499.08

0.563.76

0.644.58

0.733.02

aThe general guidelines for interpreting the effect size are as follows: 0.2-0.49, small effect; 0.5-0.79, moderate effect; 0.8-1.0, large effect; >1.0, very
large effect.

Genetic Testing
Polymorphisms of NOTCH3 p.R544C, FV-H1299R,
MTHFR-C677T, MTHFR-A1298C, FII-Prothrombin,
FV-Cambridge, PAI1 4G/5G, and FXIII Val34Leu were analyzed
using polymerase chain reaction with confronting 2-pair primers
(PCR-CTPP) and the thrombophilia genetic assay. The
peripheral blood of study participants was collected in
EDTA-containing tubes using a standard blood collection
procedure. Whole-genome DNA was extracted from 2-3 mL of
peripheral venous blood from EDTA-containing tubes. The
QIAamp DNA Mini Blood Kit (Qiagen) was used for DNA
extraction. The quality of the total DNA was checked by
electrophoresis on agarose gel and by measuring the absorbance
at 260/280 nm, and then, samples were stored at −80 °C until
use. The NOTCH3 mutation p.R544C was identified by
PCR-CTPP. DNA was amplified with the primers
5′-GTGGGGTGGAGTGGAAGTAAGTGG (F1) and
5′-GAGCAGTCGTCCACGTTGCA (R1) for the C allele, and
5′-TTGAGGGCACGCTGTGTGATC (F2) and
5′-CTAGATGCACCATTCCCAAACCC (R2) for the T allele.
The PCR amplification was performed for 40 cycles
(denaturation at 95 °C for 30 s, annealing at 62 °C for 30 s,
extension at 72 °C for 1 min, and final extension at 72 °C for

10 min). PCR products of 479 and 216 bp for the TT genotype;
479, 303, and 216 bp for the TC genotype; and 479 and 303 bp
for the CC genotype were shown on 2% agarose gel stained
with ethidium bromide. Once the sequence variants were
identified, additional steps were taken to confirm the sequence
changes of the amplicons. A real-time PCR system (SNP
Biotechnology) was used for detecting FV-H1299R,
MTHFR-C677T, MTHFR-A1298C, FII-Prothrombin,
FV-Cambridge, PAI1 4G/5G, and FXIII Val34Leu. 

Ethical Considerations
This study was conducted according to the guidelines of the
Declaration of Helsinki and was approved by the ethics
committee of Thai Nguyen National Hospital (reference number:
#59/HĐĐĐ-BVTWTN#; January 18, 2021). This study obtained
informed consent from all participants or their legal
representatives and ensured that they understood the study’s
purpose, risks, benefits, and procedures.

Statistical Analysis and HCA
Conventional statistical analyses were performed on our data
set, including medical test parameters, using IBM SPSS
Statistics 20 (IBM Corp). The relationship between
clinicopathological factors and the presence of NOTCH3
p.R544C, FV-H1299R, MTHFR-C677T, MTHFR-A1298C,
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FII-Prothrombin, FV-Cambridge, PAI1 4G/5G, and FXIII
Val34Leu variants were analyzed using the Pearson chi-square
test (group size >5) or Fisher exact test (group size ≤5), as
appropriate. Bonferroni correction for multiple comparisons
was applied. The results have been expressed as percentage or
mean (SD).

Following our previous machine learning study [11], our
multidimensional analysis was performed in R 4.1.0 (R Project
for Statistical Computing). We focused on multivariate statistics,
using several algorithms of HCA, matrix correlation, Nagelkerke
R square, Kaplan-Meier, and the log-rank test. The chi-square
statistics were computed using Yates correction for continuity,
with the generation of Pyates. The Pearson or product-moment
correlation coefficient is frequently used as the outcome measure
for analyses. The Pearson method has an advantage when all
or most of the nonzero parameters share the same sign. The
Pearson test has been shown to be useful in a genomic setting
involving screening for age-related genes, which is our objective
[12]. Two alternative criteria include a bias-corrected version
of the correlation coefficient (Puncor) and the Fisher r-to-z
transformed correlation coefficient (Pfisher). HCA is a cluster
analysis concept that creates a dendrogram hierarchy of clusters.
The hierarchical clustering on principal components (HCPC)
approach allows the combination of the following 3 standard
methods used in multivariate data analysis: principal component
methods (principal component analysis [PCA], correspondence
analysis [CA], multiple correspondence analysis [MCA], factor
analysis of mixed data [FAMD], and multiple factor analysis
[MFA]), hierarchical clustering, and partitioning clustering,
particularly the k-means method. We calculated the distance
between each observation and estimated the cluster distance.
The distance between the elements can be complete, single,
average, ward, McQuitty, or centroid. The cluster tree was
generated by computing the correlation between cophenetic
distances and the initial distance data. The number of clusters
was determined using k-means, which calculates clustering
indexes and reallocates observations to the closest cluster. The
k-means computation was optimized using 20 indexes for the
PCA cluster plot, which visualizes the best cluster number. PCA
is a dimensionality reduction method that is often used to reduce
the dimensionality of large data sets by transforming a large set
of variables into a smaller set that still contains most of the
information in the large set.

Results

Overview of the Correlation Between
Clinicopathological Factors and the Presence of

NOTCH3 p.R544C, FV-H1299R, MTHFR-C677T,
MTHFR-A1298C, FII-Prothrombin, FV-Cambridge, PAI1
4G/5G, and FXIII Val34Leu

The study included 100 patients with cerebral infarction from
the northern mountainous region of Vietnam. Of the 100
patients, 75 were from the Kinh ethnic group and 25 were from
the Tay ethnic group. The average age of the patients was 60.1
years (range: 24-91 years) (Table 2). Of the 100 patients, 22
were aged 24-49 years, 23 were aged 50-59 years, 37 were aged
60-69 years, and 18 were aged 70-91 years.

There were 62 male patients and 38 female patients (male/female
ratio of 1.63). The average BMI of the study patients was 22.62

kg/m2. Of the 100 patients, 3 had a BMI of <18.5 kg/m2, 56 had

a BMI of 18.5-22.9 kg/m2, 27 had a BMI of 23-24.9 kg/m2, and

14 had a BMI of 25-29.9 kg/m2. Regarding the risk factors for
stroke, of the 100 patients, 70 had hypertension, 44 had a family
history of stroke, 31 had a history of smoking, 29 had a history
of alcohol consumption, 20 had a history of diabetes, and 35
had a history of stroke (Table 2).

With regard to clinical symptoms, of the 100 patients, 97 had
motor paralysis, 95 had difficulty speaking, 72 had mouth
distortion, 49 had headache, 41 had numbness, 27 had dizziness
or vertigo, 21 had circular muscle disorder, and 8 had nausea
or vomiting. Among patients with motor paralysis, 52 had right
hemiplegia, 39 had left hemiplegia, and 6 had total paralysis.
Among patients with dysphasia, 86 had Broca-type dysphasia
and 9 had Wernicke-type dyspraxia (Table 3).

The average time from the onset of the first symptoms to patient
admission was 10.94 hours. Of the 100 patients, 33 were
admitted within the first 4.5 hours, 26 were admitted from 4.6
to 6 hours, and 41 were admitted outside the first 6 hours.
Regarding the blood pressure at admission, the mean systolic
blood pressure was 148.6 mmHg and the mean diastolic blood
pressure was 88.06 mmHg. The average Glasgow Coma Scale
(GCS) score at admission was 14.72. The average National
Institutes of Health Stroke Scale (NIHSS) score was 7.14 at
admission, 6.71 after 24 hours of hospital treatment, and 3.73
at discharge. The average Rankin score at discharge was 1.52.
The average duration of treatment was 10.11 days (Table 4).
PCR-CTPP identified NOTCH3 p.R544C, and other gene
variants were detected by real-time PCR (Table 1; Figure 1). The
results of real-time PCR for the detection of FV-H1299R,
MTHFR-C677T, MTHFR-A1298C, FII-Prothrombin,
FV-Cambridge, PAI1 4G/5G, and FXIII Val34Leu are presented
in Figures 2-5 and Table 2.
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Table 2. Distribution of patients according to risk factors and genetic variants.

Value (N=100)Factors

Gender, n (%)

62 (62)Male

38 (38)Female

Age group (years), n (%)

22 (22)24-49

23 (23)50-59

37 (37)60-69

18 (18)70-91

Age (years)

60.14 (12.63)Mean (SD)

24-91Minimum-maximum

BMI group (kg/m2), n (%)

3 (3)<18.5

56 (56)18.5-22.9

27 (27)23.0-24.9

14 (14)25.0-29.9

BMI (kg/m2)

22.62 (2.49)Mean (SD)

12.4-29.4Minimum-maximum

Ethnic group, n (%)

75 (75)Kinh

25 (25)Tay

31 (31)Smoking history, n (%)

29 (29)Alcohol consumption, n (%)

70 (70)Blood pressure, n (%)

20 (20)Diabetes, n (%)

35 (35)Brain stroke, n (%)

44 (44)Brain stroke cases in the family, n (%)

PAI1 4G/5G status, n (%)

24 (24)Wildtype

44 (44)Heterozygous

32 (32)Homozygous

FV 1299 status, n (%)

96 (96)Wildtype

4 (4)Heterozygous

0 (0)Homozygous

FV-Cambridge status, n (%)

100 (100)Wildtype

0 (0)Heterozygous

0 (0)Homozygous

MTHFR 1298 status, n (%)
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Value (N=100)Factors

58 (58)Wildtype

37 (37)Heterozygous

5 (5)Homozygous

FII Prothrombin status, n (%)

98 (98)Wildtype

1 (1)Heterozygous

1 (1)Homozygous

FV-Leiden status, n (%)

93 (93)Wildtype

7 (7)Heterozygous

0 (0)Homozygous

MTHFR 677 status, n (%)

55 (55)Wildtype

37 (37)Heterozygous

8 (8)Homozygous

FXIII Val34Leu status, n (%)

98 (98)Wildtype

1 (1)Heterozygous

1 (1)Homozygous

NOTCH3 status, n (%)

6 (6)Wildtype

91 (91)Heterozygous

3 (3)Homozygous

Table 3. Symptoms at admission.

Value (N=100), n (%)Symptom

Vocal issue

5 (5)No

86 (86)Broca type

9 (9)Wernicke type

49 (49)Headache

27 (27)Dizziness

8 (8)Nausea or vomiting

72 (72)Mouth distortion

21 (21)Circular muscle disorder

41 (41)Numbness

Movement paralysis

3 (3)No

52 (52)Paralysis of the right half of the body

39 (39)Paralysis of the left half of the body

6 (6)Paralysis of the whole body
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Table 4. Important variables in this study.

Value (N=100)Variable

Age (years)

24-91Minimum-maximum

60.14 (12.63)Mean (SD)

BMI (kg/m2)

12.4-29.4Minimum-maximum

22.62 (2.49)Mean (SD)

Time to hospitalization (h)

1-120Minimum-maximum

10.94 (15.98)Mean (SD)

Time to hospitalization groups, n (%)

33 (33)<4.5 h

26 (26)4.6-6 h

41 (41)>6 h

Systolic blood pressure (mmHg)

90-210Minimum-maximum

148.6 (23.66)Mean (SD)

Diastolic blood pressure (mmHg)

60-120Minimum-maximum

88.06 (9.5)Mean (SD)

Glasgow Coma Scale score

8-15Minimum-maximum

14.72 (1.06)Mean (SD)

NIHSSa score

Admission

0-19Minimum-maximum

7.14 (4.33)Mean (SD)

After 24 h

0-16Minimum-maximum

6.71 (4.26)Mean (SD)

Discharge

0-16Minimum-maximum

3.73 (3.87)Mean (SD)

Modified Rankin scale score at discharge

0-5Minimum-maximum

1.52 (1.35)Mean (SD)

Duration of inpatient treatment at the hospital (days)

1-23Minimum-maximum

10.11 (4.33)Mean (SD)

aNIHSS: National Institutes of Health Stroke Scale.
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Figure 1. Identification of the NOTCH3 p.R544C variant by polymerase chain reaction with confronting 2-pair primers.

Figure 2. Identification of the FV-Leiden variant by real-time polymerase chain reaction. (A) Wildtype; (B) Heterozygous. RFU: relative fluorescence
units.
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Figure 3. Identification of the FV-H1299R variant by real-time polymerase chain reaction. (A) Wildtype; (B) Heterozygous. RFU: relative fluorescence
units.
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Figure 4. Identification of the MTHFR-C677T variant by real-time polymerase chain reaction. (A) Wildtype; (B) Homozygous; (C) Heterozygous.
RFU: relative fluorescence units.
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Figure 5. Identification of the MTHFR-A1298C variant by real-time polymerase chain reaction. (A) Wildtype; (B) Heterozygous. RFU: relative
fluorescence units.

Figure 6, Table 1, and Table S1 in Multimedia Appendix 1
provide an overall view of gene prevalence and correlations in
both negative and positive genes. We confirmed the presence
of significant correlations of NOTCH3 p.R544C, FV-H1299R,
MTHFR-C677T, MTHFR-A1298C, FII Prothrombin,
FV-Cambridge, PAI1 4G/5G, and FXIII Val34Leu with several
factors in patients with ischemic stroke. The Pearson correlation
coefficient (R) indicates the extent of the relationship between
2 variables. The relationship strength (effect size) varies
according to the threshold of R, with thresholds of 0.5, 0.3, 0,
−0.3, and −0.5 for strong positive, moderate positive, weak,
moderate negative, and strong negative correlations,
respectively(Figure 6; Interactive Graphs 1 [13], 2 [14], 3 [15],
and 4 [16]; Table S1 in Multimedia Appendix 1). The volcano
graph in Figure 7 shows the most significant correlation pairs,
especially those containing the gene mutations mentioned above
(Interactive Graph 5 [17]). Overall, a significant medium
correlation between the prevalence of gene mutations and other
factors was shown in the volcano graph. Compared with other
genes, FXIII Val34Leu showed the highest positive correlation
with thrombus suction ability (R=0.54; P<.001; -log10p=8.03).

In the clustering step, dendrograms were built based on the
clustering metric “Euclidean,” and we selected “average” as the
most appropriate linkage model, which had the best correlation
between cophenetic distances and the original distance data
(Table 5).

We selected the results proposed by the Beale method from 20
different index values, and 15 clusters were presented as optimal
(Table S2 in Multimedia Appendix 1 [18]). The PCA cluster
plot showed that the cluster number mentioned above was the
best number to distinguish the clusters and avoid overlap
appropriately. The dendrogram and PCA map in Figure 8
complete the overall view of our database, and we can see where
the studied genes could combine and might be associated with
ischemic stroke outcomes (Interactive Graph 6 [19]). We found
several clusters of variants that may have a synchronization
impact on the outcomes of ischemic stroke. The PCA map in
Figure 8B provides an initial idea of the potential markers that
may be important for the ischemic stroke score. For example,
the international normalized ratio (INR) and prothrombin (PT)
time are in the same cluster with the NIHSS and Rankin scores
(cluster 9 in Figure 8B, and clusters 3 and 14 in Interactive
Graph 6 [19]), and the GCS score is in the same cluster as the
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PT ratio (cluster 12 in Figure 8B, and cluster 15 in Interactive
Graph 6 [19]). The studied genes were separated into 4 different
groups: FII Prothrombin, MTHFR-C677T, and NOTCH3
p.R544C were in cluster 4 (Figure 8B; cluster 4 in Interactive
Graph 6 [19]); FV-Leiden and PAI1 4G/5G were in cluster 6
(Figure 8B; cluster 7 in Interactive Graph 6 [19]); FV-H1299R
and MTHFR-A1298C were in cluster 11 (Figure 8B; cluster 1
in Interactive Graph 6 [19]); and FXIII Val34Leu was in cluster
13 (Figure 8B; cluster 2 in Interactive Graph 6 [19]). We
continued to split the data according to the significant cutpoints
of PT time, INR, and ischemic stroke score. We applied the
maximally selected rank statistic to define the optimal thresholds
of several continuous factors (creatinine, age, PT time and ratio,
INR, low-density lipoprotein cholesterol [LDL-C], number of
infarcts on CT or MRI, patient height, and mean platelet volume
[MPV]) based on the Rankin, NIHSS, and GCS scores and their
related symptom statuses, such as numbness, dizziness, gender,

circular muscle disorder, mouth distortion, and diabetes status
(Table S3 in Multimedia Appendix 1). The optimal cutpoints
were as follows: creatinine, 83.67 (SD 9.19) µmol/L; age, 54
(SD 5) years; PT time, 13.25 (SD 0.17) s; INR, 1.02 (SD 0.03);
LDL-C, 4.23 (SD 0.89) mmol/L; number of infarcts on CT or
MRI, 2; PT ratio, 99.00 (SD 1.96); and MPV, 7.27 (SD 1.09)
fL (Table S3 in Multimedia Appendix 1). Using the Nagelkerke
method, we assessed which factors could be associated with the
cutpoint 50% values of ischemic stroke scores and identified
creatinine, age, height, PT time, PT ratio, and number of infarcts
on CT. The cutpoint 50% values of the GCS score; modified
Rankin scale (mRS) score; and NIHSS scores at admission,
after 24 hours, and at discharge were 12.77, 2.86 (SD 1.21),
9.83 (SD 2.85), 7.29 (SD 2.04), and 6.85 (SD 2.90), respectively.
These findings allowed appropriate assessment of the possible
influences, including those of the genotype variants (Figures
9-16)

Figure 6. Correlation heatmap of 79 factors in the 100 patients with ischemic stroke.
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Figure 7. Volcano graph showing the most significant correlation pairs.

Table 5. Correlation between cophenetic distances and the original distance data.

CorrelationLinkage mode

0.515Ward.D

0.623Ward.D2

0.806Single

0.537Complete

0.813Average

0.694McQuitty

0.750Median

0.797Centroid
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Figure 8. Results of hierarchical cluster analysis on the overall data set. (A) Dendrogram; (B) Principal component analysis map.
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Figure 9. Significant cutpoint 50% of the modified Rankin scale score at discharge (A) and the National Institutes of Health Stroke Scale (NIHSS)
scores after 24 hours (B) and at discharge (C) for creatinine levels >83.67 μmol/L.

Figure 10. Significant cutpoint 50% of the National Institutes of Health Stroke Scale (NIHSS) score at discharge for patient age >54 years.
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Figure 11. Significant cutpoint 50% of the modified Rankin scale score at discharge (A) and the National Institutes of Health Stroke Scale (NIHSS)
scores at admission (B), after 24 hours (C), and at discharge (D) for prothrombin (PT) time >13.25 seconds.
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Figure 12. Significant cutpoint 50% of the modified Rankin scale score at discharge (A) and the National Institutes of Health Stroke Scale (NIHSS)
scores at admission (B), after 24 hours (C), and at discharge (D) for prothrombin (PT) ratio >99.

Figure 13. Significant cutpoint 50% of the modified Rankin scale score at discharge for international normalized ratio (INR) >1.02.
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Figure 14. Significant cutpoint 50% of the modified Rankin scale score at discharge (A) and the National Institutes of Health Stroke Scale (NIHSS)
score at discharge (B) for the number of infarcts on computed tomography (CT) >2.

Figure 15. Significant cutpoint 50% of the National Institutes of Health Stroke Scale (NIHSS) score at admission for patient height >161 cm.
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Figure 16. Significant cutpoint 50% of the Glasgow Coma Scale score for patient BMI >20.58 kg/m2.

Gene Variants Might be Associated With the Patient
Outcome via the Ischemic Stroke Score
We calculated the risk ratios (RRs) and CIs by unconditional
maximum likelihood estimation and normal approximation,
respectively (Wald), as well as performed minor sample
adjustment by the Mantel Haenszel method, generating Pyates,
Puncor, and Pfisher. We grouped these genotype variants following
their clusters, which provided the most relevant RR results
(Table S4 in Multimedia Appendix 1; Figure 17; Interactive
Graph 7 [20]). The detailed RRs for stroke scores are presented
in Table S5 in Multimedia Appendix 1. Forest plots were created
for clusters 4 (Figures S1-S5 in Multimedia Appendix 2), 6
(Figures S6-S9 in Multimedia Appendix 2), 11 (Figures S10-S13
in Multimedia Appendix 2), and 13 (Figures S14-S17 in
Multimedia Appendix 2).

The GCS can be used for head injury, and score ranges are used
to describe the injury severity. Scores of 13-15 indicate mild
traumatic brain injury, 9-12 indicate moderate traumatic brain
injury, and 3-8 indicate severe traumatic brain injury. The risk
of experiencing mild traumatic brain injury (cutpoint 50% of
GCS was 12.77) was 23% higher in the group of patients without

diabetes and with a BMI greater than 20.8 kg/m2 as well as
NOTCH3 heterozygous mutation, MTHFR-C677T, and
FI-Prothrombin than in the other groups (RR=1.23, 95% CI

0.99-1.54; Pfisher=2.68×10-3). This risk was 20% lower in the

group of patients with BMI less than 20.8 kg/m2 and with
MTHFR-A1298C and FV-H1299R wildtype variants than in the

other groups (RR=0.79, 95% CI 0.61-1.01; Pfisher=1.72×10-3).

The NIHSS quantifies the impairment caused by stroke and aids
in planning post-acute care disposition, although it has been
intended to assess differences in interventions in clinical trials.
A NIHSS score of 0 indicates no stroke symptoms, 1-4 indicates
minor stroke, 5-15 indicates moderate stroke, 16-20 indicates
moderate to severe stroke, and 21-42 indicates severe stroke.
The risk of a NIHSS score at admission greater than 9.83 and
a NIHSS score at 24 hours greater than 7.92 (moderate stroke)
was higher in the group of patients with age older than 54 years,
height shorter than 161 cm, PT time ≤13.25 seconds, PT ratio
≤99, creatinine >83.67 µmol/L, and FXIII Val34Leu wildtype
than in the other groups (RR=2.72, 95% CI 1.4-5.31 and

RR=2.09, 95% CI 1.1-3.93, respectively; Pfisher=2.19×10-2 and

8.81×10-2, respectively). The risk of a NIHSS score at discharge
greater than 6.85 (moderate stroke) was higher in the group of
patients with age older than 54 years, height taller than 161 cm,
PT time ≤13.25 seconds, PT ratio ≤99, creatinine >83.67
µmol/L, FII Prothrombin and MTHFR-C677T wildtype, and
NOTCH3 p.R544C heterozygous (RR=4.8, 95% CI 1.53-15.04;

Pfisher=3.47×10-2).

The mRS is an outcome measure in stroke clinical trials. The
mRS assessment is recommended 3 months (90 days) following
hospital discharge. The mRS score is assigned as follows: 0,
patient has no residual symptoms; 1, patient has no significant
disability and has ability to carry out all prestroke activities; 2,
patient has remote disability and is incapable of carrying out
all prestroke movements but is capable of looking after self
without daily help; 3, patient has moderate disability and needs
some external help but is capable of walking without the
assistance of another individual; 4, patient has moderately severe
disability and is incapable of walking or performing physical
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functions without the aid of another individual; 5, patient has
severe disability, is bedridden, shows incontinence, and requires
continuous care; 6, patient has passed away (during the hospital
stay or after discharge from the hospital); 7, inability to contact
the patient or caregiver; and 8, score not achieved or not
determined from the medical records. The risk of a mRS score

greater than 2.86 (moderate disability) was higher in the group
of patients with INR >1.02, PT time >13.25 seconds, PT ratio
≤99, creatinine >83.67 µmol/L, FXIII Val34Leu wildtype (in
case the number of infarcts on CT was greater than 2),
MTHFR-A1298C heterozygous/wildtype, and FV-H1299R

wildtype (RR=3.13, 95% CI 1.6-6.11; Pfisher=2.64×10-2).

Figure 17. Dot plot of the genotype variants according to their clusters, which provides the most relevant risk ratio results. NIHSS: National Institutes
of Health Stroke Scale.

Discussion

Principal Findings
Some sophisticated techniques for HCA exploit statistical
frameworks called hierarchical models or multilevel models.
Hierarchical models are useful in a number of contexts. HCA,
which is also known as hierarchical clustering, is a popular
method for cluster analysis in big data research and data mining
aiming to establish a hierarchy of clusters. As such, HCA
attempts to group subjects with similar features into clusters.
Clustering is a data science technique in machine learning that
groups similar rows in a data set. After running a clustering
technique, a new column appears in the data set to indicate the
group each row of data fits into the best.

Several gene mutations have been identified as leading causes
of cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL), a hereditary
disease that causes stroke and other neurological symptoms.
CADASIL accounts for up to 5% of all strokes in individuals
aged younger than 65 years. The thrombophilia test helps
determine the disease’s genetic origin to provide appropriate
prevention and treatment measures. Hypercoagulation syndrome

may be due to mutations in genes encoding proteins related to
blood clotting (thrombophilia). People with hypercoagulable
syndrome tend to form blood clots in blood vessels (primarily
veins), resulting in stroke, heart attack, repeated miscarriages,
and complications during pregnancy (pre-eclampsia, fetal growth
retardation, and stillbirth) [21].

In our study, gene variants were assessed to understand how
ischemic stroke genetics could interest practitioners and be
useful for clinical work. The variants were as follows: FII
Prothrombin, FV-Leiden, MTHFR-C677T, MTHFR-A1298C,
FV-H1299R, PAI1 4G/5G, FXIII Val34Leu, FV-Cambridge,
and NOTCH3 p.R544C.

We visualized how these risk factors and genetic elements could
affect ischemic stroke outcomes with a hierarchical analysis
strategy. Maximally selected rank statistics help to define the
optimal thresholds of several continuous factors (creatinine,
age, PT time and ratio, INR, LDL-C, number of infarcts on CT
or MRI, patient height, and MPV) based on the mRS, NIHSS,
and GCS scores and their related symptom statuses, such as
numbness, dizziness, gender, circular muscle disorder, mouth
distortion, and diabetes status. Their optimal cutpoints fitted
with the normal range in both genders. The creatinine level of

JMIR Bioinform Biotech 2024 | vol. 5 | e56884 | p.57https://bioinform.jmir.org/2024/1/e56884
(page number not for citation purposes)

Bui et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


83.67 (SD 9.19) µmol/L is consistent with the usual results of
0.7 to 1.3 mg/dL (61.9 to 114.9 µmol/L) for men and 0.6 to 1.1
mg/dL (53 to 97.2 µmol/L) for women [22]. Our age threshold
was 54 (SD 5) years, which is consistent with the findings
worldwide, with aging being the most robust nonmodifiable
risk factor for incident stroke (risk doubles every 10 years after
the age of 55 years) [23]. Assessment of the PT time is
recommended for the administration of recombinant
tissue-plasminogen activator (rt-PA) in stroke [24]. The standard
range of the PT time is 10 to 13 seconds. The usual INR for a
healthy individual is 1.1 or below, and the therapeutic range for
most patients on vitamin K antagonists is 2.0 to 3.0. An
augmented PT/INR for patients on vitamin K antagonists may
suggest a super-therapeutic status and will need prescription
dose adjustments to control bleeding [25]. In our study, the
calculated baseline PT time was 13.25 (SD 0.17) and INR was
1.02 (SD 0.03), which confirmed cases of moderate outcomes.
Data on the association between BMI and stroke are scarce.

Individuals with a BMI of 18.5 to 24.9 kg/m2 are considered to
have a healthy weight. Our calculated baseline BMI was 20.85

kg/m2, and it was associated with genetic factors that influence
the GCS score. 

According to the Nagelkerke method, the cutpoint 50% values
of the mRS score and NIHSS scores at admission, after 24 hours,
and at discharge were 2.86 (SD 1.21), 9.83 (SD 2.85), 7.29 (SD
2.04), and 6.85 (SD 2.90), respectively, which were consistent
with the moderate outcomes of our patients. We found that
the MTHFR and NOTCH3 p.R544C variants may influence
stroke severity in patients with specific conditions of PT,
creatinine, INR, and BMI. 

The MTHFR gene provides instructions for the human body to
make the MTHFR protein, which helps the body process folate,
which is important for forming DNA and modifying proteins.
The most common variant of the MTHFR gene is
MTHFR-C677T [26]. This mutation causes a reduction in the
capacity to create L-methylfolate. MTHFR-A1298C
single-nucleotide polymorphism has also been suggested to
have an impact on MTHFR enzyme activity but to a lesser extent
than the MTHFR-C677T polymorphism. They have been
recently shown to be associated with ischemic stroke [27].

CADASIL is an autosomal dominant inherited vasculopathy
and is the most common single‐gene disorder causing stroke,
with more than 200 different NOTCH3 p.R544C mutations in
patients worldwide, indicating that CADASIL has considerable
genetic heterogeneity. The defective 33‐exon NOTCH3
p.R544C gene is located on chromosome 19, which typically
impacts the number of highly conserved cysteine residues among
the epidermal growth factor–like repeat domain [28].

HCA is attractive for exploratory high-throughput data because
it provides a convenient approach to visualize the similarities
of variables and infer the grouping of variables based on the

dendrogram structure. Hence, HCA facilitates the interpretation
of the data of the microbiome and other omics. Importantly,
bi-clustering (2-way clustering), a particular approach of HCA,
can incorporate a correlation method (eg, Spearman rank
correlation) to cluster rows and columns of the data matrix
simultaneously. Thus, bi-clustering can find features (microbial
taxa, genes, metabolites, etc) that correlate only in a subset of
objects but not in the rest of the data set [29]. In this study, we
clearly identified the role and interaction of risk factors that
influence stroke progression. Genetic mutations become
significant in a small range of strongly correlated factors through
a PCA plot.

Stroke has multiple modifiable and nonmodifiable risk factors
and represents a leading cause of death globally. Understanding
the complex interplay of stroke risk factors is thus not only a
scientific necessity but also a critical step toward improving
global health outcomes [30].

Limitations
We found that 3 of the 9 gene variants had significant RRs.
Data settings could help to work with both qualitative and
numerical data simultaneously. The main advantage of the HCA
clustering concept is the display of possible correlations between
several factors to provide reference markers that are useful for
diagnostic control and to improve outcome prevention. It was
beneficial to identify the association between genetic
characteristics and clinical outcomes, which usually requires
several in vitro studies; however, there were some constraints.
It is critical to clean and prepare the data set because HCA and
k-means cannot operate with missing or noisy data. We must
combine and validate the data with k-means, which provides
several options for the optimal cluster number to produce a PCA
cluster plot and define the principal component position. Since
our data had various kinds of information, it was challenging
to calculate the distance matrix in HCA and k-means.

Conclusions
The existence of conventional vascular risk factors may prevent
clinicians from suspecting the possibility of gene mutations in
stroke patients, especially among those with underlying atrial
fibrillation or extensive artery atherosclerosis. In this study, a
more specific population was chosen. It is interesting that
although there are many genes linked to increased atrial
fibrillation risk, not all of them are associated with ischemic
stroke risk, which might be because those gene variants are too
rare to detect their impacts on stroke risk. Nevertheless, in the
future, the identification of a linkage between some of those
genes and ischemic stroke could be a significant game changer
in the field of stroke prevention. Moreover, with the detection
of stroke risk loci, more information can be gained on their
impacts and interconnections, and the precision of stroke scores
might increase.
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MRI: magnetic resonance imaging
mRS: modified Rankin scale
NIHSS: National Institutes of Health Stroke Scale
PCA: principal component analysis
PCR: polymerase chain reaction
PT: prothrombin
RR: risk ratio
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Abstract

Background: Genetic data are widely considered inherently identifiable. However, genetic data sets come in many shapes and
sizes, and the feasibility of privacy attacks depends on their specific content. Assessing the reidentification risk of genetic data
is complex, yet there is a lack of guidelines or recommendations that support data processors in performing such an evaluation.

Objective: This study aims to gain a comprehensive understanding of the privacy vulnerabilities of genetic data and create a
summary that can guide data processors in assessing the privacy risk of genetic data sets.

Methods: We conducted a 2-step search, in which we first identified 21 reviews published between 2017 and 2023 on the topic
of genomic privacy and then analyzed all references cited in the reviews (n=1645) to identify 42 unique original research studies
that demonstrate a privacy attack on genetic data. We then evaluated the type and components of genetic data exploited for these
attacks as well as the effort and resources needed for their implementation and their probability of success.

Results: From our literature review, we derived 9 nonmutually exclusive features of genetic data that are both inherent to any
genetic data set and informative about privacy risk: biological modality, experimental assay, data format or level of processing,
germline versus somatic variation content, content of single nucleotide polymorphisms, short tandem repeats, aggregated sample
measures, structural variants, and rare single nucleotide variants.

Conclusions: On the basis of our literature review, the evaluation of these 9 features covers the great majority of privacy-critical
aspects of genetic data and thus provides a foundation and guidance for assessing genetic data risk.

(JMIR Bioinform Biotech 2024;5:e54332)   doi:10.2196/54332

KEYWORDS

genetic privacy; privacy; data anonymization; reidentification

Introduction

Privacy Risks of Genetic Data
Genomics is a rapidly developing field with exabytes of genetic
data being generated, stored, and analyzed by public and private
institutions per year. These data drive scientific progress,
especially when they are shared with the scientific community
or among institutions. However, genetic data can provide
information about an individual’s identity together with sensitive

details, such as their ethnic background [1]; physical traits such
as eye color [2], hair and skin color [3], height [4]; and diseases
or susceptibility to diseases [5]. Therefore, even if personal
identifiers (eg, name, date of birth, or others) are removed,
sharing genetic data may violate the individual’s right to privacy.
In 2018, a seminal study demonstrated that it is possible to
reidentify individuals by name from genetic data alone [6]. The
authors matched genetic data of an anonymous female study
participant to the genetic genealogy database GEDmatch and
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identified her surname from matches with relatives who had
uploaded their data on GEDmatch. Such reidentification of
genetic data records using publicly available databases is highly
problematic and a growing threat to privacy as publicly available
genetic genealogy databases continue to grow. It is estimated
that a genetic database needs to cover “only 2% of the target
population to provide a third-cousin match to nearly any person”
in a matching attack, similar to the one demonstrated by Erlich
et al [6]. As of 2018, the probability for such a match was
estimated to be 60% for the platform GEDmatch. Through
similar methods of familial DNA searches, multiple individuals
have been identified in criminal cases, despite never having
shared their genetic data themselves [7,8]. Other attacks aim to
reveal sensitive information from genetic data. In 2009,
researchers discovered a genetic predisposition for Alzheimer
disease in the public genome of the famous molecular biologist
and Nobel laureate James Watson, although he had attempted
to prevent such an attack by withholding certain parts of the
data [9]. The high identifiability potential of genetic data
together with its sensitive content with regard to health (eg,
susceptibility to diseases such as Alzheimer disease or cancer)
and physical traits (refer to the studies by Erlich and Narayanan
[10], El Emam et al [11], and Mohammed Yakubu and Chen
[12] for a review) has raised public concern that genetic data
that are shared or published in the context of research or health
care could be misused [13]. For example, attackers could exploit
genetic data to obtain personal and sensitive information about
individuals, and this information could be misused by insurance
companies, mortgage providers, or employers to discriminate
on the basis of genetic information (eg, about disease
susceptibility) [14]. As an additional complication, DNA
sequence is heritable; therefore, leakage of an individual’s
genetic data can violate the privacy of whole families [15,16].

The Challenge of Anonymizing Genetic Data
Genetic data can be used to identify individuals because each
person’s DNA sequence differs uniquely from the standard
human reference genome. Although more than 99% of the DNA
sequence is identical across all humans, the remaining <1%
consists of distinct combinations of insertions, deletions,
duplications, translocations, and inversions of short or long
DNA fragments (refer to the study by Trost et al [17] for a
review). These genetic variations are not randomly distributed
across the genome but occur more frequently in specific variable
regions. Some variations are rare, while others (ie,
polymorphisms) are shared by a significant proportion of the
population. While some variations have no observable effect,
others influence gene transcription, expression, or the amino
acid sequence of a protein and have an effect on the phenotype,
for example, physical traits, metabolism, and disease
susceptibility. These variable regions with an effect on the
phenotype are of great interest to research; however, these can
also be effectively used for individual identification and the
inference of sensitive attributes. Even a small genetic data set
of only 30 highly variable genetic loci is likely to contain unique
records, and these could not only be linked to genetic records
in other data sets but also provide insights into health and
physical traits (refer to the studies by Erlich and Narayanan
[10], El Emam et al [11], and Mohammed Yakubu and Chen

[12] for a review). Furthermore, genetic variation is highly
intercorrelated (variation in one genomic region correlates with
variation in another) and correlated to other modalities (genetic
variation is associated with transcription, expression, epigenetic
regulation, etc), making it possible to link data records of the
same individual even across databases that do not contain the
same type of data (eg, match a genetic data sequence to a gene
expression record). Anonymizing genetic data while maintaining
its full utility remains an unsolved challenge, and there is no
consensus on whether it is even possible [18]. Many
privacy-enhancing technologies aim to reduce the information
content of genetic data or restrict access to it, such that only a
minimal amount of information is shared. An example is
genomic beacons, which allow only simple yes or no queries
to determine whether a specific variant is present in a study
cohort [19]. However, it has become evident that even this
limited amount of information can be exploited for privacy
attacks, and few queries to genomic beacons can suffice to
determine whether individuals (whose genome is known) are
present in a study cohort [20-23]. Similarly, proposals for
encryption and differential privacy approaches [24,25] have
often been countered by demonstrations of attacks [26-28], and
even synthetic genetic data may not fully protect the study
participants from privacy attacks [29] (refer to the study by
Mittos et al [30] for a review of privacy-enhancing
technologies). Thus, even a substantial reduction in information
content can often not completely eliminate all privacy risks of
genetic data [31].

The Risk Minimization Approach for Genetic Data
Privacy
Most legislations do not require to reduce the risk of individual
identification to zero, and several jurisdictions have decided to
take a risk-based approach and consider genetic data anonymous
if the risk of successful reidentification is below a predefined
acceptable threshold [32]. Therefore, genetic data processors
must find the balance between reducing information such that
reidentification is no longer reasonably likely, while maintaining
as much utility of the data as possible [33]. The challenge in
adopting this approach lies in the correct assessment of the
reidentification probability. Genetic data are complex and come
in various shapes or forms, making it difficult to standardize
reidentification assessments. Established methods such as
assessing k-anonymity are difficult to apply to genetic data
because of their high uniqueness, and many other methods fall
short because of the high intercorrelation of genetic data. Simple
measures such as assessing the number of single nucleotide
polymorphisms (SNPs) in genetic data ignore the importance
of the location of the SNPs in the genome, their frequencies in
the population, and the actual feasibility of cross-linking the
specific SNPs to identifiable information. For example, the
reidentification risk is much higher for SNPs that are commonly
included in the SNP assays used by direct-to-consumer genetic
testing (DTC-GT) providers than for less frequently studied
SNPs, as these are more difficult to link to publicly available
identifying information. In addition, genetic data may contain
SNP information even if this is not immediately evident, for
example, in the raw data of sequencing-based gene expression
studies. Data processors who are not familiar with the intricacies
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of genetic data find little guidance on performing an assessment
on genetic data that considers these factors. While several
genomic privacy metrics have been proposed, the great majority
focus on evaluating SNPs only [34] and neglect other known
privacy-critical aspects of genetic data as well as aspects of
feasibility (eg, the expertise, time, effort, availability of external
resources, and other requirements required for an attack).
However, the risk of severe privacy attacks on genetic data (ie,
where the identity of the data subject is revealed) greatly
depends on the specific content of the data as well as “soft
factors,” such as the availability of publicly accessible resources
to cross-link and infer quasi-identifying information and the
time, cost, and knowledge required to perform such an attack.
Given the foundational potential of genetic data to advance
research and health care, a risk-based approach that carefully
evaluates the true risk of reidentification on a case-by-case basis
for each data set in question is warranted, or else any type of
genetic data must be considered identifiable.

Methods

To get a comprehensive overview of the types and aspects of
genetic data sets that are vulnerable to reidentification attacks,
as well as the methods, databases, and know-how used for these
attacks, we searched for studies that demonstrate a privacy attack
on genetic data. We did not aim to establish an exhaustive
overview of all published privacy attacks but aimed to get a
comprehensive understanding of the most vulnerable features
of genetic data. Therefore, we first searched for recent reviews
published on the topic of genomic privacy using ProQuest.
Using the search terms (ti(*genom* OR *genetic*) AND
ti(privacy OR re-identification OR reidentification OR “data
security”)) and (pd(>20170101)) and (at.exact(“Review”)), we
identified 23 reviews, of which 3 (13%) were discarded because
they were off topic. One additional review was identified during

the literature research and added to the selection (refer to
Multimedia Appendix 1 [35-55] for an overview of the included
and excluded reviews), resulting in a final sample of 21 reviews.
In a second step, we extracted all references cited in the reviews
(n=1645) and identified all original research studies that
demonstrate a privacy attack on genetic data. After the removal
of 514 duplicates and 876 reference studies that did not contain
any description of information inference from human genetic
data, we first excluded 89 studies whose main contribution was
the presentation of privacy-preserving measures to exclude
privacy attacks that were performed only for the purpose of
proving the efficiency of the proposed counter methods. Next,
we excluded 120 studies that did not present original research
and were purely associative (ie, did not demonstrate how an
adversary gains knowledge that was not intended to be shared
from genetic data) as well as 4 studies that did not demonstrate
the attack on real data. This process resulted in the selection of
42 unique studies (refer to Figure 1 for an overview of the
process and Table S1 in Multimedia Appendix 1 for an overview
of the eligible attack studies). Extending on the framework by
Mohammed Yakubu and Chen [12] and Lu et al [56], we
categorized attacks into (1) identity tracing (attacker triangulates
the identity of an individual), (2) inference (attacker uses an
individual’s genetic data to infer sensitive attributes such as
disease or drug abuse or to infer additional data or cross-link
records across databases), and (3) membership attacks (attacker
uncovers membership of an individual in a data set). We
evaluated the type and components of genetic data exploited
for this attack as well as the effort and resources used for it
(time, expertise, databases, and computation power) and its
success rate if sufficient information was reported in the study.
The initial evaluation was conducted by one reviewer and
independently verified by another. Table S1 in Multimedia
Appendix 1 presents a detailed overview of the attack studies.
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Figure 1. Flowchart overview of the 2-step literature review process: identification of relevant reviews, followed by extraction and screening of
references.

Results

A Comprehensive Overview of Privacy Risks in
Genetic Data Sets
On the basis of our literature review, we created an overview
of the parts and aspects of genetic data that are commonly
exploited in privacy attacks and that should therefore be taken
into consideration when performing a risk assessment on genetic
data. The goal of this overview is to provide data processors,
who may not be experts in genomic data privacy, with essential
background knowledge about the privacy vulnerabilities
associated with genetic data. This understanding will help them
identify privacy-critical aspects and serve as a starting point for
conducting risk assessments on genetic data sets. Notably, the
reidentification risks associated with data that complement
genetic data (eg, clinical data and demographic data) as well as
aspects of the data environment (access and governance) are
crucial for a comprehensive risk assessment [57], but these
aspects are not in the scope of this research. From our literature
review, we synthesized 9 features that are both inherent to any
genetic data and informative about privacy risk (Figure 2). The
features are not mutually exclusive. Instead, they represent

different “views” on genetic data and highlight various aspects
that should be considered in a privacy risk assessment. For each
feature, we lay out why this feature is associated with privacy
risk by summarizing the relevant evidence in the scientific
literature, and we assess the criticality of these attacks. In
addition, we provide guiding questions that help to assess the
risk of a given data set. The features can be divided into three
groups:

1. The first 4 features are general categorizations of the
genomic data set and serve as a very rough estimate of the
amount of privacy-critical information in the data.

2. The next 3 features are specific genomic features that are
known to be a high risk for privacy. Their assessment is
critical for estimating the reidentification risk.

3. The last 2 features are genomic features that have not been
exploited for privacy attacks yet but should still be
considered and could present a risk if they are present to a
high degree in the data.

We summarize our findings in an overview figure, which lists
the 9 features and their relevance for privacy. While it is
challenging to define clear risk thresholds, there is a recognized
need for practical guidance and orientation. To address this, we
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provide a scale that ranges from lower to higher risk and offer
illustrative examples derived from the overview of privacy
attack studies. These scales and examples serve as the initial
guidance for risk assessment, emphasizing their purpose as
guiding principles rather than exact measurements. The
assessment of each individual feature is intricate and thoroughly
explained in the corresponding sections. In addition, while the

scales offer a framework to compare and assess different
features, it is crucial to consider all features comprehensively
to arrive at a conclusive assessment. Furthermore, the text
sections highlight important interactions that arise from the
comprehensive evaluation of these features.

Table S1 in Multimedia Appendix 1 presents a detailed
description of the original attack studies.

Figure 2. Overview of the privacy-critical features of genetic data sets, with exemplary values and key points to consider for risk assessment. CODIS:
Combined DNA Index System; SNP: single nucleotide polymorphism; SNV: single nucleotide variant; STR: short tandem repeat; WES: whole exome
sequencing; WGS: whole genome sequencing; Y-STR: short tandem repeat on the Y chromosome.

Evidence of Privacy Risks in Genetic Data

Part 1. General Assessment

Biological Modality

While most privacy attacks have been demonstrated on DNA
sequence data, other types of molecular data (eg, DNA
methylation data or data derived from RNA) are also considered
genetic data under General Data Protection Regulation, can also
be identifiable, and have also been exploited for attacks [58-67].

Attacks on these types of data are performed mainly by 3
mechanisms. The first mechanism is direct extraction of DNA
sequence from raw or low-processed data. This is possible,
because even if not of primary interest, DNA sequence
information is often a by-product of gene expression or DNA
methylation studies [68-70]. For example, Gürsoy et al [70]
demonstrated how genetic variants can be called from raw RNA
sequencing data. The second mechanism is inference of DNA
sequence, for example, through known associations of genetic
sequence and gene expression or other modalities. For example,
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Schadt et al [65] used gene expression data of individuals
(40,000 transcript counts) to infer genetic variants (1000 SNPs),
which allowed them to determine with high certainty whether
individuals with known SNPs were members of a gene
expression study cohort (N=378). They also assessed the success
rate of matching gene expression records to SNP records in a
simulated cohort of 300 million individuals and correctly
matched 97.1% of the records, demonstrating the feasibility of
cross-linking these data types, which since then has been
confirmed in additional studies [60,62,63]. Less literature has
been published on other types of data, such as protein or
epigenetic data (eg, DNA methylation), but similar proof of
concept of cross-linkage to SNP data has been demonstrated in
prior studies [58-60,63,64,66,67,71]. In the third mechanism,
sensitive information such as disease phenotypes, demographic
information, and behavioral traits is inferred from gene
expression, protein levels, or other modalities (eg, age [72],
cigarette smoking, and alcohol consumption [59] from DNA
methylation).

However, such inference and linkage are not error free. For
example, in the study by Schadt et al [65], the accuracy of the
imputed SNPs from gene expression data was low (average
Pearson correlation coefficient was 0.35 between true and
inferred genotype). It is not clear whether such imputed data
could be used for privacy attacks in the real world, such as in
an identity tracing attack (eg, via upload of the imputed genetic
data to GEDmatch or other). Considering that previous
successful identity tracing attacks have used >500,000 SNPs
[6], the inference of 1000 SNPs (with errors) may not be
sufficient for such an attack. If the reconstruction of a larger set
of SNPs were attempted, it is likely that the initial imputation
error would propagate and thereby reduce the probability of a
successful identity tracing attack. Furthermore, Schadt et al [65]
reported much lower matching performance if training and test
data stem from different array manufacturers, a scenario that is
likely to occur in real-world data. Finally, although biological
associations between genomic variants and gene expression are
publicly accessible, substantial expert knowledge is still required
for accessing this information and implementing the attack.
Similar limitations apply to all the aforementioned studies.
Altogether, data sets of RNA, protein, or epigenetic data,
especially if they are large (eg, genome-wide), do allow for
linkage and inference attacks. However, true reidentification
would require matching the inferred genetic or phenotypic
information to databases with identifying or quasi-identifying
information in a next step, and no such full identity tracing
attack starting with data other than DNA sequence has been
demonstrated yet.

The guiding questions in this context are as follows:

• Do the data contain DNA sequence information directly
(eg, DNA sequencing reads)? If yes, could the data be
processed such that sequence information is no longer
available (eg, report DNA methylation levels in percentage
instead of providing raw sequencing read files)?

• Could DNA sequence information be inferred from the data
(eg, via biological correlations such as expression or
methylation quantitative trait loci)?

• What sensitive information could be inferred from the data
(eg, age, sex, diseases, or physical traits)?

Experimental Assay

Knowing the experimental assay that was used to generate the
data can already provide a first estimate of its information
content and linkability. For example, sequencing-based assays
generally produce very rich data (eg, high genome coverage
and high precision, such as whole genome DNA sequencing),
whereas polymerase chain reaction–based genotyping assays
provide more sparse data (eg, information on only 1 nucleotide
of the DNA sequence). However, genome coverage alone (ie,
the percentage of all base pairs or loci of the genome covered
by the method) is not a reliable proxy for privacy risk. In some
circumstances, a data set with only 10 sequenced positions of
the DNA could in fact be more critical than a data set containing
hundreds of positions, if those 10 positions are in highly
identifiable loci. However, as a very rough indicator of
information content, we believe it is still valuable to consider
the genome coverage of the data as one of many factors in the
risk assessment. In many cases, the rule of thumb that more
sequence information equals higher information content and
hence risk of cross-linking, inference, and reidentification is
true. Nevertheless, these aspects need to be carefully evaluated
together with the biological modality of the data, the level of
processing, and the specific content of the data.

It is also important to consider that data produced with
frequently used methods, such as commercially available kits
(eg, SNP microarrays), often target the same genetic variants
that are also interrogated by DTC-GT companies and
genome-wide disease association studies and can thus more
easily be linked to public data and exploited for privacy attacks
than data generated with tailor-made, targeted analysis methods
(refer to the study by Lu et al [73] for an overview of genotyping
arrays commonly used by direct-to-consumer companies).
Finally, as nearby variants are more likely to be correlated, it
is also important to consider how the genetic information in the
data is spread across the genome. A targeted assay that reads
all SNPs within a specific gene likely carries less information
than an assay that interrogates the same number of SNPs
distributed across the full genome, as nearby SNPs are more
likely to be correlated [74]. In line with these arguments, the
great majority of published privacy attacks were performed on
data obtained from whole genome sequencing and commercially
available SNP microarrays (ie, rich, genome-wide data in the
order of hundreds of thousands of SNP loci from a commercial
assay).

The guiding questions in this context are as follows:

• Which method was used to generate the data? Does this
method produce rich or sparse data? (What percentage of
all base pairs or loci of the genome are covered by the
method?)

• How do the data produced with this method cover the
genome (ie, genome-wide vs targeted approach)?

• How likely is it that data generated with the same method
are present in publicly available databases (ie, commercial
assay vs custom)?
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Data Format or Level of Processing

The format of the data gives some indication on its processing
level and can thus help to estimate its information content.
Genetic data processing consists of cleaning, filtering,
normalizing, and reducing raw data to a version that contains
only the information that is relevant for its intended use.
Important standard formats in genomic sequencing experiments
sorted from raw to processed are .fasta and .fastq (raw
nucleobase reads); .bed, .bam, and .sam (reads aligned to
reference genome); .vcf and .maf files (deviations from the
reference genome only), whereas highly processed data are
often represented in tabular (.csv and .tsv) or otherwise
structured form (.json, .xml, or other) containing only variants
or regions of interest. Raw or low-processed data (.fasta, .fastq,
.bed, .bam, or .sam) often contain information that is not of
primary interest to research but can be exploited for
reidentification attacks (eg, raw read files from gene expression
studies can contain genomic variant information [63]). While
the possibilities for privacy attacks are greater in raw data, it is
important to note that the required effort and expert knowledge
for handling these data are usually higher than those for
processed data, where genetic variants such as SNPs do not
need to be extracted.

The guiding question in this context is as follows:

• If the data are in a raw or semiprocessed format, do the data
contain any information that is not directly relevant for their
intended use?

Germline Versus Somatic Variation Content

Genetic variants found in an individual’s genome can be
categorized into germline and somatic variants. This
categorization is specific to individuals and depends on the
heritability of the variant (ergo, its presence in the individual’s
reproductive tissues). Heritable variants are categorized as
germline (ie, present in germ and usually also in somatic cells)
and nonheritable variants are categorized as somatic (ie, present
in somatic cells only). In the context of genetic privacy, it is
important to understand that germline variation comprises all
variants that can be assumed to be present in every cell of the
body, are not expected to change much throughout the lifetime
of an individual, are inherited from parental DNA, and are
expected to be passed to the offspring. Such variation can inform
about identity, ancestry, and kinship and is, therefore, used by
DTC-GT providers, forensics, and genetic genealogy services.
The most prominent example for germline variation are SNPs,
as variation found at known SNP loci is generally assumed to
be germline. (However, the terms germline variants and SNPs
cannot be used interchangeably, as they refer to different
concepts: germline describes the heritability, and SNP describes
the type of variant and its frequency in the population.) Overall,
germline variants are not only highly relevant for individual
identification because of their stability and omnipresence across
tissues but are also of great interest for scientific research.
Associations of germline variants to disease, physical traits, or
other biomedical modalities are well studied, with results being
publicly accessible. As such, germline variants are vulnerable
to identity, inference, and linkage attacks, and indeed, all the
reviewed privacy attacks targeted germline variants.

In contrast, somatic variants are acquired during life (after
fertilization) and are usually present only in specific,
nonreproductive tissues or even only in single cells or cell
populations. They are intensively studied in the context of
diseases (eg, cancer), and as they are often found to be
associated with diseases, data on somatic variants could be used
to infer sensitive attributes about data subjects. However, their
low association with identity and use limited to clinical
diagnostics and scientific research makes it very difficult to
cross-link them to databases with identifying or quasi-identifying
information. DTC-GT companies, forensics services, or genetic
genealogy services do not use somatic variants to determine
identity, familial relations, or ancestry, as somatic variation is
neither stable nor present in all tissues and cells (usually found
only in a fraction of cells analyzed in a sample). A linkage attack
based on somatic variation would require a matching data record
of the same tissue, ideally taken at a similar time in life, which
is unlikely to exist for most cases (as somatic variant patterns
can change rapidly, eg, in cancer tissue). No identity tracing,
inference, or membership attack based on somatic variation data
has been published yet, and considering its low potential for
identifiability, somatic variation data can currently be considered
a low risk for reidentification attacks.

To determine whether a variant is germline or somatic, one
would ideally analyze multiple samples from one individual to
determine whether the variant is present in germ cells or only
in specific somatic cells. In practice, experts can assess the status
of a variant from its sequencing read signal (determining
whether it is present in all cells of the sample or only in a few),
genomic location, and type alone by comparing it to public
knowledge of known loci of germline and somatic variation or
through computational approaches [75]. In processed genetic
data, variants which are with high certainty germline have often
already been identified and are indicated as such (eg, SNPs are
identified by a specific reference SNP cluster ID, such as
“rs343543”), whereas somatic variants are described by standard
mutation nomenclature (eg, single nucleotide variants [SNVs]
are described by the Human Genome Variation Society
nomenclature, containing the reference genome used; the
genomic location of the variant; the nucleotide in the reference
sequence; and the detected nucleotide, such as
“NC_000023.9:g.32317682G>A”). Furthermore, the type of
tissue that was used to generate genetic data, most importantly
whether samples were taken from healthy or tumor tissue, can
also give some indication on the amount of germline variation
included in the data. When analyzing tumor tissue data, germline
variations such as SNPs are typically removed during
processing, as the focus is on studying somatic variation.
However, especially if the data are raw and unfiltered, they
often contain germline variants irrespective of whether they
were taken from healthy or tumor tissue and must hence be
considered a higher risk for reidentification. Therefore, while
data that are both derived from tumor tissues and highly
processed are often a low privacy risk, the amount of
information on germline variation that is contained in the data
needs to be assessed case by case. Public databases (eg, dbSNP,
hosted by the National Institutes of Health’s National Center
for Biotechnology Information) store information about the
genomic locations and population frequencies of SNPs and can
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be used to search data for this important type of germline
variation.

The guiding questions in this context are as follows:

• Was germline or somatic variation of primary interest when
generating or processing the data?

• If somatic variation was of primary interest, was germline
variation removed from the data?

Part 2. High-Risk Components

SNPs

SNPs are germline SNVs that are present in >1% of the
population. They are highly relevant features for individual
reidentification and the most privacy-critical component of
genetic data sets. Because SNPs usually have 2 different states
(ie, a common or reference and a rare nucleotide) and human
somatic cells have 2 DNA copies (ie, are diploid), an individual
usually has 1 of 3 different states at a SNP locus, often
represented as 0,1, and 2 (0 represents 2 copies of the common
variant [ie, homozygous for major allele], 1 represents 1 copy
of the common variant and 1 copy of the rare variant
[heterozygous], and 2 represents 2 copies of the rare variant
[homozygous for minor allele]). Knowing an individual’s state
at 30 to 80 statistically independent SNPs (or a random set of
approximately 300 SNPs) can suffice for individual
identification [76-79], yet commonly used SNP or genome
sequencing assays often read hundreds of thousands of SNPs
at once. As germline variation, SNPs are assumed to be stable
and present in every cell of the body, signifying that they can
identify individuals across samples taken at different times or
from different tissues. As they are heritable, DTC-GT providers
and forensic institutes compare SNP patterns of individuals to
determine familial relations and ancestry [80]. Furthermore,
SNPs are associated with physiological traits (eg, skin, hair and
eye color [2,3], facial features [81], BMI [82], and height [4]),
ethnicity [1], and susceptibility to diseases [5], making them
central to research and genetic testing (refer to the study by
Dabas et al [83] for a review of association of SNPs with
externally visible characteristics).

SNP data can be directly used for reidentification by matching
it to publicly accessible databases, as demonstrated in the
reidentification attack by Erlich et al [6], who uploaded SNP
data (700,000 SNPs) from an anonymous study participant to
the genetic genealogy website GEDmatch and identified the
participant’s surname through matches with relatives. Such
identity tracing attacks are possible because millions of people
send their DNA to DTC-GT companies such as AncestryDNA,
23andMe, FamilyTreeDNA, or MyHeritage [84], and many also
decide to share their genetic data on publicly accessible
websites, such as GEDmatch, the Personal Genome Project
[85], or OpenSNP [86]. Enabling individuals to identify and
contact relatives, learn about their ancestry, disease
predispositions, and contribute their data to research, these
platforms often contain genetic data accompanied by information
about an individual’s diseases and traits or even personal data
such as place of residence, age, sex, surname, or phone number.
In addition, there is a wealth of publicly accessible knowledge
on associations of SNPs with physical features, diseases, other

genetic variants or genetic modalities (eg, gene expression and
DNA methylation; eg, dbSNP database [87], the GWAS catalog
[5], the International Genome Sample Resource from the 1000
Genomes Project [88], and data from the HapMap project [89]),
which can and have been exploited for completion and inference
attacks (eg, inference of additional genetic variation in genomic
regions that were not studied originally, other biomedical
modalities such as gene expression and DNA methylation, or
physical attributes [9,90-96]). For example, Humbert et al [92]
predicted phenotypic traits (eye, hair and skin color, blood type,
and more) of individuals from their SNP data (20 SNPs) using
publicly available knowledge on SNP-phenotype associations
from the public database SNPedia and used this information to
cross-link individuals between genetic and phenotypic data sets.
In addition, Humbert et al [92] inferred additional and sensitive
information (eg, susceptibility to Alzheimer disease) from the
SNP data. However, this linkage attack had a success rate of
only 5% (ie, proportion of correctly matched individuals) in a
data set of 80 individuals and is likely to perform worse in more
realistic scenarios with larger data sets. Nyholt et al [9] imputed
the status of multiple risk variants for Alzheimer disease in the
published genome of Dr James Watson [94] from SNPs in
nearby genomic regions, although the respective gene had been
masked. Edge et al [90] cross-linked individuals in SNP and
short tandem repeat (STR) data sets, a highly identifiable type
of genetic variation that is used in forensics, by imputing STR
from SNP data (642,563 loci). In a highly debated study, Lippert
et al [93] developed a model to predict phenotypic traits (facial
structure, voice, eye color, skin color, age, sex, height, and BMI)
from whole genome sequencing (WGS) data containing >6
million SNPs and used it to cross-link high-resolution face
photographs of individuals to their genetic data in a cohort of
1061 study participants. In a real-life scenario, photos and
personal data from social media could be exploited for such an
attack and matched to the inferred phenotype. However, it has
been argued that the predictive power in this study stems mainly
from the estimation of the participant’s ancestry and sex [97]
and that the attack is unlikely to be successful in the real world
and with more realistic, lower-quality images [98]. Furthermore,
large, genome-wide association studies indicate that the
currently known associations between SNPs and facial structure,
voice, height, and BMI are too small to be useful for accurate
phenotype prediction on an individual level; however, this will
likely improve in the future. Nevertheless, other characteristics,
such as ancestry, eye, hair color, and skin color, can be inferred
from specific SNPs with high accuracy, and corresponding DNA
phenotyping kits are already commercially available and used
in forensics today [99]. As a small number of SNPs can already
uniquely identify an individual and SNPs are widely available
in public databases together with identifying and
quasi-identifying information, SNPs must be considered a high
risk for privacy and data sanitization efforts (eg, as proposed
by Emani et al [100]) should be used in any genetic data set
containing >20 SNPs.

The guiding questions in this context are as follows:

• How many SNPs do the data contain (directly or indirectly)?
• Are the SNPs in close proximity or spread across the

genome (nearby SNPs are more likely to be correlated and
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thus often contain less information than statistically
independent SNPs)?

• Are the interrogated SNPs frequently assessed in research
or by DTC-GT providers (ie, how likely is it that they can
be linked to publicly available, identifying data sets)? The
study by Lu et al [73] presents an overview of genotyping
arrays commonly used by direct-to-consumer companies.

• Are all SNPs relevant to the intended use of the data or
could some be removed from the data?

• What sensitive information could be inferred from the data
(eg, diseases and physical traits)?

• Could additional DNA sequence information be inferred
from the data (eg, association with STRs or other)?

STRs

The human genome contains more than half a million regions
of repetitive units of 2 to 6 bases, the so-called STRs or
microsatellites [101]. The number of repeats in these regions is
highly variable across individuals and can affect protein function
or expression or be linked to medical conditions or physical
traits [102]. Knowing the repeat numbers of as little as 10 to 30
STRs can suffice for individual identification. Because of their
high identifiability, STRs are used to determine identity and
kinship in forensics, law enforcement, paternity testing, and
genetic genealogy. For example, the Combined DNA Index
System (CODIS; a set of 20 STRs) is used to connect suspects
to crime scenes or establish identity of missing persons. While
CODIS STRs are usually not of interest in research studies or
genetic genealogy, STRs on the Y chromosome (ie, Y-STRs,
only present in male individuals) are included in several
DTC-GT kits, where they are used to identify relatives along
the paternal ancestry line (eg, “Y-STR Testing” by
FamilyTreeDNA). Consequently, several large databases of
STR loci with accompanying identifying and quasi-identifying
information exist (eg, mitoYDNA from mitoYDNA Ltd). In
addition, the CODIS forensic database and analysis software
contains genetic data and identifying information from >14
million individuals in the United States alone [103].

Several studies demonstrate reidentification attacks on Y-STRs.
Gitschier et al [104] provided first evidence for surname
inference from Y-STRs by matching genetic STR profiles of
anonymous study participants from the international HapMap
project [89] to 2 genetic genealogy databases (Ysearch and
Sorenson Molecular Genealogy Foundation [SGMF]). Later,
Gymrek et al [105] demonstrated that it is not only possible to
infer surnames from STR data (eg, 34 Y-STR loci extracted
from WGS data) but also to triangulate the actual identity of
data subjects with high probability using publicly accessible
genealogy databases, record search engines, obituaries, and
genealogical websites. The authors attempted this for 10 study
participants of the 1000 Genomes Project and correctly
identified 5 out of 10 individuals. It is important to note that
STR data can also be fortuitously included in genetic data
derived from targeted gene or WGS, even if they are not of
primary interest for the study. Moreover, STR markers can be
imputed from genetic data sets that do not even cover STR
regions by exploiting known associations between SNPs and
STRs [90]. While the authors of this study report a low
imputation accuracy for STRs from SNPs (likely too low to

reliably impute full STR profiles even from large SNP data),
they did demonstrate the ability to cross-link records across
SNP and STR databases. In detail, they correctly matched 90%
to 98% of paired SNP (642,563 loci) and STR data records (13
STRs) to each other, and such successful linkage has also been
demonstrated elsewhere [106].

Due to the high association of STRs with identity, any genetic
data that directly (eg, repeat numbers for specific STR regions)
or indirectly (eg, WGS data covering STR regions) contain >10
STR regions could be considered identifiable. However, the
actual risk of reidentification depends on the availability of STR
databases with identifying and quasi-identifying information
and the ability to cross-link records. It is important to note that
the databases used in the seminal study by Gymrek et al [105]
(ie, Ysearch and SGMF) are no longer available (Ysearch,
belonging to FamilyTreeDNA, closed in 2018, and SGMF,
belonging to Ancestry, was shut down in 2015), and access to
the CODIS database is restricted to criminal justice agencies
for law enforcement identification purposes. However, databases
from DTC-GT providers (eg, FamilyTreeDNA) and public
platforms (eg, mitoYDNA) are still available and allow
uploading results from third-party providers; therefore, an
attacker could fabricate a genetic testing result from STR data
[107,108] and reproduce the demonstrated surname inference
attacks. From information about possible surnames, sex, and
residence inferred from matches on the platform, the
triangulation of identity could be possible with the help of
additional publicly available resources [105,109]. However,
such an attack would only be possible on male data records (ie,
Y chromosome based) and is not guaranteed to find matches
that allow surname inference; the success rate in the
demonstrated attack was 11.9% (109/911 cases), and the 2
previous studies used >30 STR loci (all located in close vicinity
of each other and on the Y chromosome). Furthermore, the
know-how and effort necessary for such an attack is high.
Finally, even if genetic matches or surnames are identified, the
reconstruction of identity from surname is not trivial and can
take months to complete, as others have pointed out [110]. Still,
because of their high identifiability potential and their use in
DTC-GT, paternity testing, and forensics, STRs should be
removed from genetic data if they are not of primary interest
and otherwise considered a high risk for privacy.

The guiding questions in this context are as follows:

• Do the data directly or indirectly (eg, STRs in raw data and
STRs imputable from SNPs) contain >10 STR loci?

• Are these STR loci either (1) part of the CODIS system or
(2) on the Y chromosome (ie, high linkability)?

• Could additional DNA sequence information be inferred
from the data (eg, association with SNPs or other)?

Aggregated Sample Measures

Aggregated sample measures, that is, variables that are the result
of aggregating genetic data across multiple samples can also be
exploited for privacy attacks (reviewed by Craig et al [111]).
The most prominent examples are summary statistics from
association studies such as SNP frequencies, odds ratios, or
correlation coefficients. However, the limited information
content in these summary statistics usually only allows for
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membership attacks, that is, assessing whether an individual of
known genetic background is part of a study group or database
or not [112-114]. Multiple studies demonstrate such an attack
[113,115-119], although Homer et al [114] were the first to
explain how membership of an individual in a mixture can be
predicted from the reported SNP allele frequencies (ie, if SNPs
of that individual are known, in this case >10,000 SNPs). The
authors accomplished this by comparing the reported study
allele frequencies to allele frequencies in a reference cohort of
similar ancestry (obtained from public resources) and detecting
the bias introduced by the sample of interest. Their method
performed well even if the individual’s contribution to the
mixture was <1%, and this method can easily be extended to
predicting membership from aggregated data from a study
cohort. In response to that, the US National Institutes of Health
has restricted the publication of aggregate GWAS results in
their databases [120]; however, the feasibility of the attack has
been critically discussed. Its power depends on the size and
quality of the actual and reference cohorts, the number of
reported SNP allele frequencies, prior knowledge of the attacker,
and the fulfillment of several underlying assumptions, many of
which are likely not fulfilled in practice [115,116,121,122].
Aside from membership attacks, it was also shown that
aggregate results, such as linear models that have been fitted to
study data or polygenic risk scores, can be exploited to predict
sensitive attributes and genotypes via model inversion [28,123].
However, this attack required background information on the
data subject and on the distribution of variables in the study
data. Furthermore, its performance is limited by the predictive
power and complexity of the fitted model. Membership and
attribute inference attacks on aggregate data can reveal
demographic, genetic, and phenotypic information (such as
country or place of residence due to participation in a local
study, ethnicity, disease, age group, or presence of specific
genetic variants due to descriptions of inclusion or exclusion
criteria in the cohort) and can thus facilitate linkage and identity
tracing attacks, which is why they can be a risk for privacy.
However, no identity tracing attack based on aggregate data has
been demonstrated yet.

The guiding question in this context is as follows:

• What sensitive information could an attacker gain from
ascertaining the membership of an individual to the data
set (eg, geographic information, sex, disease, and age)?

Part 3. Low-Risk Components
No privacy attack has been demonstrated on these components,
but due to their high association with identifying and sensitive
attributes, we recommend including them in the risk assessment.

Rare SNVs

Rare SNVs are single nucleotide substitutions that are present
in <1% of the population. They may be somatic or germline
and can be associated with pathological conditions and thus
reveal sensitive information. Furthermore, while less informative
than common SNVs (ie, SNPs) from an information theoretical
standpoint, rare variants greatly increase the risk of
reidentification for the small subpopulation of variant carriers.
However, because of their low frequency in the population,

germline SNVs are rarely the target of large scientific studies
(eg, for phenotype or disease association) and have very limited
use for ancestry and disease susceptibility analysis. Therefore,
most DTC-GT providers and research studies specifically target
regions of common genetic variation (eg, SNPs) and either use
assays that do not detect SNVs or remove them during
preprocessing, making it very unlikely that a set of SNVs could
be linked to any database with quasi-identifying information.
No identity tracing, completion, or inference attack has been
published on SNVs yet; therefore, they can currently be viewed
as a low risk for reidentification, despite their high theoretical
potential for identifiability.

The guiding questions in this context are as follows:

• What sensitive information could be inferred from the data
(eg, diseases and physical traits)?

• Could additional DNA sequence information be inferred
from the data (eg, association with SNPs or other)?

• Are there any databases that could be used to cross-link the
data to identifiable data, and how accessible are the
databases?

Structural Variants

The study of structural variants (SVs) in the human genome is
in its early stages, but it is already clear that it accounts for even
more individual variation than SNPs [124,125]. The best-studied
type of SVs is copy number variation (CNV), that is, deletions
and duplications of regions larger than 50 base pairs. CNVs can
be used as measures of relatedness and identifiers of population
origin [126], have a strong impact on gene expression [127],
and could allow for the inference of physical features [128] and
pathological conditions [129], thereby revealing sensitive
information of data subjects. However, CNVs are still not well
studied, and sequencing technologies have only recently
progressed to a level that allows to capture their full scope in
the human genome (reviewed by Mahmoud et al [124]). Most
importantly, human CNV databases are very scarce in
comparison to databases of SNVs (refer to the study by Ho et
al [130] for an overview of the available human SV reference
sets), and they are currently not used for genetic genealogy
analyses, making it difficult to link CNVs across databases to
obtain identifying information. A privacy attack based on CNVs
or any other type of SV yet remains to be demonstrated. Finally,
it is important to note that many SVs that are assessed in medical
and research studies are somatic, that is, nonhereditary, not
present in all cells of the body, not stable, and thus not strongly
associated with identity. For example, tumor tissue is
characterized by frequent and dynamic changes in SVs (eg,
CNVs in tumor tissue, also referred to as CNAs), which are
likely neither directly nor indirectly identifiable. Therefore, the
risk of reidentification from SVs can currently be considered
low, but the growth of public databases and their use in
genealogical or clinical research should be monitored. The same
holds true for common SVs, such as CNVs that occur in >1%
of the population and are hence classified as polymorphisms
(ie, CNPs). Little is known about the population frequencies of
CNVs, and while public databases are growing, no privacy
attack based on CNPs has been demonstrated yet. Due to the
limited knowledge about CNPs or other common SVs in the
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population, their presence in genetic data is difficult to assess,
and they can be considered a low risk for reidentification at the
current time.

The guiding questions in this context are as follows:

• What sensitive information could be inferred from the data
(eg, diseases and physical traits)?

• Could additional DNA sequence information be inferred
from the data (eg, association with SNPs or other)?

• Are there any databases that could be used to cross-link the
data to identifiable data, and how accessible are the
databases?

Discussion

Limitations
It is important to acknowledge some key limitations of our
review. First, it is possible that we may have missed relevant
studies. This is particularly true for recent research, as our search
was confined to original studies referenced in existing reviews.
While the search strategy was designed to retrieve the most
pertinent studies, it carries the risk of overlooking lesser-known
or very recent studies. Therefore, we recommend conducting
periodic reviews to stay updated with scientific advancements
and changes in the availability of public genetic data that may
contain (indirectly) identifying information susceptible to
identity tracing attacks. Second, even under the assumption that
all relevant literature was considered, it is still possible that we
may have overlooked certain vulnerabilities. This is known as
the “proof of nonexistence fallacy”—the absence of evidence
for risk does not imply the absence of those risks. Finally, it
was necessary to balance our aim of providing a comprehensive
and evidence-based overview of genetic privacy vulnerabilities

with our aim of providing practical and useful guidance.
Therefore, we provide both a detailed assessment (refer to the
Results section and Table S1 in Multimedia Appendix 1) as
well as a simplified overview (Figure 2). However, this trade-off
necessitated compromises in practical utility on one hand and
scientific exhaustiveness on the other hand.

Conclusions
On the basis of the findings of this review, it can be argued that
the privacy risks of genetic data vary greatly between data sets.
Considering all genetic data at all times as information relating
to an identifiable natural person is not correct, and it is becoming
apparent that reidentification risk in genetic data must be
assessed on a case-by-case basis and under the consideration
of all the means reasonably likely to be used [131]. However,
while efforts are underway [132], no practical guidelines or
recommendations for performing such a reidentification risk
assessment on genetic data have been proposed yet. On the basis
of a review of the scientific literature on privacy attacks on
genetic data, we provide an overview of genetic data privacy
risks that can guide data processors in risk assessment by
providing the necessary background knowledge and an overview
of the existing evidence. We believe that a careful examination
of the 9 described features in the data set at hand (biological
modality or type of data, experimental assay, data format or
level of processing, germline vs somatic variation content,
content of SNPs, STRs, aggregated sample measures, rare SNVs,
and SVs) provides a strong foundation for a data risk assessment.
While completely eliminating the possibility of reidentification
is rarely achievable, a more practical approach of risk
minimization is warranted [133,134], accompanied by
organizational and technical measures to safeguard genetic data
from reidentification attack attempts and a transparent
communication of the remaining risks to data subjects.
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Abstract

Background: The rapid evolution of SARS-CoV-2 imposed a huge challenge on disease control. Immune evasion caused by
genetic variations of the SARS-CoV-2 spike protein’s immunogenic epitopes affects the efficiency of monoclonal antibody–based
therapy of COVID-19. Therefore, a rapid method is needed to evaluate the efficacy of the available monoclonal antibodies against
the new emerging variants or potential novel variants.

Objective: The aim of this study is to develop a rapid computational method to evaluate the neutralization power of
anti–SARS-CoV-2 monoclonal antibodies against new SARS-CoV-2 variants and other potential new mutations.

Methods: The amino acid sequence of the extracellular domain of the spike proteins of the severe acute respiratory syndrome
coronavirus (GenBank accession number YP_009825051.1) and SARS-CoV-2 (GenBank accession number YP_009724390.1)
were used to create computational 3D models for the native spike proteins. Specific mutations were introduced to the curated
sequence to generate the different variant spike models. The neutralization potential of sotrovimab (S309) against these variants
was evaluated based on its molecular interactions and Gibbs free energy in comparison to a reference model after molecular
replacement of the reference receptor-binding domain with the variant’s receptor-binding domain.

Results: Our results show a loss in the binding affinity of the neutralizing antibody S309 with both SARS-CoV and SARS-CoV-2.
The binding affinity of S309 was greater to the Alpha, Beta, Gamma, and Kappa variants than to the original Wuhan strain of
SARS-CoV-2. However, S309 showed a substantially decreased binding affinity to the Delta and Omicron variants. Based on
the mutational profile of Omicron subvariants, our data describe the effect of the G339H and G339D mutations and their role in
escaping antibody neutralization, which is in line with published clinical reports.

Conclusions: This method is rapid, applicable, and of interest to adapt the use of therapeutic antibodies to the treatment of
emerging variants. It could be applied to antibody-based treatment of other viral infections.

(JMIR Bioinform Biotech 2024;5:e58018)   doi:10.2196/58018

KEYWORDS

in silico; anti–SARS-CoV-2; neutralizing antibody; Sotrovimab; S309; variants; SARS-CoV-2; Omicron; subvariants; computational
method; monoclonal; amino acid; protein; mutation

Introduction

While the world has entered its fourth year of the COVID-19
pandemic caused by the newly emergent SARS-CoV-2, this

persistent virus is still lingering away. This is mainly due to the
virus’ relatively high mutational rate, with specific mutations
occurring on the spike protein affecting its immunogenicity
[1,2]. The battle against this virus covers several aspects ranging
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from prevention, mitigation, and treatment. One promising
approach that is still developing with proven efficiency consists
of using anti–SARS-CoV-2 monoclonal neutralizing antibodies
(NAbs). However, selective pressure caused by infection and/or
vaccination is accelerating the emergence of new variants and
subvariants, which poses a challenge on not only
antibody-mediated therapy but also vaccine use and
development. Anti–SARS-CoV-2 monoclonal antibodies
recognize specific epitopes mainly on the spike protein and
prevent target cell binding and/or fusion, and accumulation of
mutations in these specific epitopes increases the fitness of the
virus. Additionally, the efficacy of the available
anti–SARS-CoV-2 NAb therapies varies drastically, and it is
difficult to foresee how useful would it be for new circulating
variants [3]. Therefore, there is an urgent need for the rapid
assessment of anti–SARS-CoV-2 monoclonal antibodies’
potential efficiency to treat emergent variants. Toward this end,
computational methods aimed at the rapid estimation of the
binding affinity and molecular interactions between new variants
and a given monoclonal antibody can be used.

Currently, the Food and Drug Administration and the European
Medicines Agency have issued emergency use authorization
for several anti–SARS-CoV-2 NAbs including Evusheld,
Ronapreve and Regkirona, sotrovimab (S309), casirivimab and
imdevimab, and bamlanivimab [4,5] and many more are still
under evaluation. Based on their binding site, these NAbs are
classified into different groups. There are currently 2
classification methods [6]. One of these methods is based on a
high-throughput surface plasmon resonance technique combined
with negative-stain electron microscopy to identify specific
epitopes on the receptor-binding domain (RBD). This method
groups the NAbs into 7 distinct communities: RBD-1 through
RBD-3, which bind to the receptor-binding motif; RBD-4 and
RBD-5, which bind to the outer face of the RBD; and RBD-6
and RBD-7, which bind to the inner face of the RBD. The other
method is based on considerations such as the overlap between
the NAb with the angiotensin-converting enzyme 2 (ACE2)
receptor-binding site and whether it recognizes activated (up)
or baseline (down) states of RBD. Four different classes (I-IV)
were described: class I competes on the ACE2 binding site and
can bind with the RBD in its up position, while class II binds
with the RBD in both states (up and down); class III NAb binds
at an interface that is outside the RBD domain and hence does
not compete with the ACE2 receptor, and binds with both forms
of the RBD (up and down); while class IV binds only with RBDs
in the up state [7,8].

The computational method we describe in this paper was
developed to evaluate the interaction between a given NAb of
a specific SARS-CoV-2 variant, compare the interaction of the
same antibody with different SARS-CoV-2 variants, and thus
predict a possible immune evasion. It is used to describe a model
of the interaction between the neutralizing monoclonal antibody
S309 and the original SARS-CoV-2 Wuhan variant. This
monoclonal antibody was first isolated from the memory B
lymphocytes of a SARS-CoV survivor [9,10] and is reported
to have neutralization potencies toward the severe acute
respiratory syndrome (SARS) coronavirus (SARS-CoV),

SARS-CoV-2, and SARS-like coronaviruses. Currently, it is
one of only 2 approved therapeutic monoclonal antibodies for
newly emerged Omicron subvariants [7,11,12]. S309 is a
recombinant human monoclonal antibody used under the generic
name Xevudy. In May 2021, it was first granted for emergency
use for early treatment of COVID-19 [13]. S309 belongs to
class III antibodies that are characterized by their binding site
on the spike protein, as they do not compete with the ACE2
receptor [7]. While ACE2 binds to the SARS-CoV-2 spike
residues between residues K417 and Y505 [14], S309 recognizes
a distinct proteoglycan epitope opposite the ACE2 binding site
involving residues N334, E340, N343, T345, R346, K356, and
a structural loop (443-450) that can be accessed on both states
of the RBD (up and down). These key glycan residues are not
affected by mutations of the new omicron subvariants [7,15].
However, other mutations found on the structural loop seem to
have a significant effect on the neutralization capacity of S309.
Since S309 does not compete with the ACE2 receptor binding
site, its neutralization mechanism does not depend on direct
blocking of the RBD. Nonetheless, binding of S309 to the
SARS-CoV-2 spike protein’s RBD induces antibody-dependent
cell cytotoxicity and antibody-dependent cellular phagocytosis
[16].

Several experimental and clinical reports have described the
neutralizing effect of monoclonal antibody S309 with the
original SARS-CoV-2 Wuhan strain and its effect in reducing
disease progression [10,17,18]. Therefore, in the computational
method we report in this paper, the estimated interaction affinity
of the monoclonal antibody S309 to the original SARS-CoV-2
Wuhan strain is assigned a value of 100%. Comparison of the
estimated affinities of S309 to each SARS-CoV-2 variant to
this reference value facilitates the evaluation of the
neutralization efficiency of S309 and the prediction of possible
immune evasion for each existing or newly emerging variant.
This straightforward computational method can rapidly provide
valuable insights on the eventual efficiency of existing
neutralizing therapeutic antibodies in treating newly emergent
variants prior to the experimental methods. Since immune
evasion is a major criterion listed by the World Health
Organization and the Centers for Disease Control and Prevention
in their labeling systems of new variants, particularly the
variants of concern [19], this method can also be considered to
label new variants early after their emergence.

Methods

Overview
This work describes a computational method to evaluate the
effect of different SARS-CoV-2 mutations on the binding
affinity of available NAbs and on the stability of the complex.
As a working pattern, we developed a reference complex model
between the NAb S309 and the original SARS-CoV-2 Wuhan
strain. We evaluated the other variants and subvariants based
on the differences of their specific molecular interactions and
Gibbs free energy (ΔG) with S309. Figure 1 outlines the methods
used to determine the anti–SARS-CoV-2 antibody neutralization
potential of S309.

JMIR Bioinform Biotech 2024 | vol. 5 | e58018 | p.81https://bioinform.jmir.org/2024/1/e58018
(page number not for citation purposes)

Ashoor et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Method outline. (A) Outline of the 3 steps in the method. (B) Workflow of the in silico method for the evaluation of the neutralization power
of a SARS-CoV-2 monoclonal antibody. NAb: neutralizing antibody; PDB: Protein Data Bank; RBD: receptor-binding domain.

Construction of the Models and Complexes

Building the NAb/SARS-CoV-2 RBD Reference Model
We used a model (Protein Data Bank ID 7YAD) downloaded
from Research Collaboratory for Structural Bioinformatics
Protein Data Bank [20] to generate our reference model
representing the interaction of S309’s variable domain (Fv) with
the spike protein of the SARS-CoV-2 Omicron variant. The
Protein Data Bank model (7YAD) represents the interaction of
the SARS-CoV-2 Omicron RBD (residues P330-K529) with
the Fv domain of S309. The model shows 6 chains (2 RBDs, 2

heavy chains, and 2 light chains) forming 2 subunits of the
RBD-S309 Fv (Figure 2). The selection criteria of the 7YAD
model [15] are the generation of a 3D structure via electron
microscopy, a high resolution of 2.66 Å, and a relatively good
validation report. In addition, it represents the interaction with
the SARS-CoV-2 RBD in its open state. Upon downloading the
structure, only 1 unit was selected to represent 1 S309 Fv (1
heavy chain and 1 light chain) binding to 1 spike RBD, chains
A, B, and M. The complex was extracted, cleaned from any
heteroatoms, and used as a reference model to generate the
different variant complexes via RBD replacement.
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Figure 2. 3D structure of the Protein Data Bank model 7YAD showing 2 subunits of the Sotrovimab (S309) variable domain (Fv; heavy and light
chains) binding to the spike protein's receptor-binding domain in Omicron variants.

Retrieval of SARS-CoV and SARS-CoV-2 Variants’
Sequences, Modifications, and Modeling
The amino acid sequences of the extracellular domains of
SARS-CoV and SARS-CoV-2 spike protein were acquired from
the National Center for Biotechnology Information (NCBI)
GenBank database (IDs YP_009825051.1 and ID:
YP_009724390.1, respectively). SARS-CoV-2 variant–specific
mutations were introduced to the curated sequence to generate
the different variant sequences based on published mutations
in databases such as CoVariants [21] and the Stanford University
SARS-CoV-2 Variants database [22]. The sequences
corresponding to the spike protein of SARS-CoV and 25 variants
of SARS-CoV-2 (including Alpha, Beta, Gamma, Delta-21J,
and Kappa strains), in addition to the Omicron strain’s

subvariants (BA.1, BA.2, BA.4/BA.5, BA.2.12.1, BA.2.75,
BQ1, XBB, and XBB.1) were used to build 3D monomer models
of the spike protein. The monomers were modeled in an open
state using SWISS-MODEL server’s User Template Mode [23].
The template for each monomer was selected and extracted
from Protein Data Bank. Selection criteria were based on
resolution, chain quality, sequence gaps, furin site and proline
modifications, and validation report. The templates used for
each model are listed in Table 1. The monomer chain
representing the open-state RBD was extracted from each model,
cleaned from any heteroatoms, and saved using PyMol software
[24] into a new Pdb file. Each monomer was introduced in the
SWISS-MODEL server’s User Template Mode to generate an
open-state monomer spike protein for SARS-CoV, SARS-CoV-2
variants, and Omicron subvariants.

Table 1. List of templates and chains (with their PDBa IDs) used to build the extracellular domains of the spike protein of SARS-CoVb and the different
SARS-CoV-2 variants.

ReferenceSelected chainResolution (Å)PDB model IDVirus

Song et al [25]C3.96ACDSARS-CoV

Dejnirattisai et al [26]B2.807ND9SARS-CoV-2–Wuhanc

Mannar et al [27]A2.568DLIAlpha

Mannar et al [27]A2.568DLLBeta

Wang et al [28]C3.17W92Delta-21J

Mannar et al [27]A2.258DLOGamma

Saville et al [29]B3.027TF0Kappa

Zhao et al [15]C2.57XCOOmicron

aPDB: Protein Data Bank.
bSARS-CoV: severe acute respiratory syndrome coronavirus.
cThis refers to the original SARS-CoV-2 Wuhan strain.
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Construction of RBD/S309 Complexes
The RBDs of the SARS-CoV, SARS-CoV-2 variants, and
Omicron subvariants were extracted from the generated models,
and the complexes with S309 were constructed via molecular
replacement. The reference crystalized RBD chain M of 7YAD
was replaced with the modeled RBD. The complex was saved
and energy minimized. Energy minimization was carried out
in vacuo, without a reaction field, using the GROMOS 43B1
force field [30] and the Swiss-pdb Viewer (version 4.1.0) [31].
This was applied to all the generated models.

Interactions and Complex Binding Affinity Analysis
The interactions between the RBD of the spike protein of
SARS-CoV, SARS-CoV-2 variants, and Omicron subvariants
with NAb S309 were analyzed based on polar and hydrophobic
interactions using the LigPlot+ software [32]. Stability and
affinity were assessed based on thermodynamic measure of the
formed complex’s energy, Gibbs free energy (ΔG), using a
web-based antibody-antigen binding affinity tool CSM-AB [33].
Binding affinity percentage was calculated in reference to that
of the original SARS-CoV-2 Wuhan strain/S309 complex.

Testing the Generated Method by Analyzing Newly
Reported Omicron Subvariants and Some
Experimentally Tested Mutations
Several reports have discussed the neutralizing effect of NAbs
and possible antibody escape of some new Omicrons subvariants
[34-39]. Here we used our developed method to evaluate the
binding affinity of several of these new subvariants including
AY.1, XBB.1.5, BF.7, BQ.1.1, BA.1.1, BA.3, BA.2.3.20,
BM.1.1.1, BA.5.6.2, BA.2.75.2, and CH.1.1 (Orthrus), with the
NAb S309. Additionally, the effect of several amino acid
substitutions in the NAb epitope have been tested experimentally
using the enzyme-linked immunosorbent assay and/or
pseudovirus neutralization assays. Several mutations are
reportedly resistant to inhibition by S309 leading to an antibody
escape. These key residues include R346, P337, G339, N440,
and S371 [40,41]. Therefore, we applied our method to
computationally test the effect of some mutations on these
residues. As we already generated parent RBD sequences, newly
emerged mutations were introduced, new models and complexes
were built, and the mutation’s effect on binding energy with
the NAb was predicted by recalculating complex’s ΔG in
reference to that of the parent complex and binding affinity with
the original SARS-CoV-2 Wuhan strain.

Ethical Considerations
This study was exempt from ethical review since it was
conducted in silico and no human subjects were involved.

Results

Method Development Workflow
Figure 1 outlines the methods for assessing the
anti–SARS-CoV-2 neutralization potential of S309. The
blueprint of the method we developed using monoclonal
antibody S309—an experimentally proven neutralizing
monoclonal antibody for SARS-CoV-2 and its variants—is
described in Figure 1A. We proceeded by modifying the
available model 7YAD to generate a reference model that can
be used to measure neutralization potential in terms of binding
affinity ΔG (Figure 1B). Several in silico 3D models
representing spike monomer chain of each variant were
generated. The quality of the generated 3D model was evaluated
based on the homology modeling report and SWISS-MODEL
structural assessment. The generated models showed a QMEAN
z score between –1.0 and –3.2 indicating a good-quality model
where z scores of around 0.0 are ideal and any value below –4.0
indicates a low-quality model [42]. The QMEANDisCo global
score represents the combined scoring of global (for the entire
structure) and local (per residue) absolute quality estimates of
a single model [43]. Our models’ QMEANDisCo global scores
ranged from 0.64 to 0.76 (SD 0.05). These values reflect a
good-quality model (any value below 0.6 represents a
low-quality model). Each complex was built by molecular
replacement of chain M of the reference model with the
extracted RBD, followed by binding affinity and interaction
analyses.

Analysis of the Molecular Interaction Pattern of S309
With 9 Main SARS-CoV-2 Variants
The generated complexes were energy-minimized and polar
and hydrophobic interactions were analyzed. Several interactions
were identified between the S309 Fv domain and spike RBD
with more interactions toward the heavy chain. Interacting
residues of the spike protein include residue 321-428 in
SARS-CoV and 334-441 in SARS-CoV-2 and its variants.
SARS-CoV showed 4 polar interactions compared to the original
SARS-CoV-2 Wuhan strain that shares a total of 3 polar
interactions with S309. Interestingly, variant Kappa showed the
highest number of polar interactions (n=6), while variant
Delta-21J showed the lowest (n=1) number of polar interactions.
Variant Kappa showed 2 unique salt bridges between residues
R346 and K356 with the S309 heavy chain residue E108. All
the variants share the same polar interaction between E340 and
S309 heavy chain A104 except for variant Delta-21J. All
Omicron subvariants showed the same interaction pattern except
for BA.2.75 with 1 missing polar interaction between T343 and
S309 heavy chain S109. Variant Gamma showed more
hydrophobic interactions with the light chain of S309. All polar
interactions are represented in Figure 3 and detailed interactions
are listed in Multimedia Appendix 1.
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Figure 3. Variations of the polar interactions between the monoclonal antibody sotrovimab (S309) and different SARS-CoV-2 variants and subvariants.
The monoclonal antibody's heavy chain (magenta), light chain (cyan), SARS-CoV-2 S spike protein–receptor-binding domain (RBD; green). *Residue
numbering: BA.1, BA.2, BA.2.12.1 (D337 and T342)/BA.4, BA.5, BQ.1 (D335 and T340)/XBB, and XBB.1.

Evaluation of the Binding Affinity of S309 With 9
SARS-CoV-2 Variants by Comparing Their Binding
Affinity With the Original SARS-CoV-2 Wuhan
Reference Strain
The thermodynamic stability of the generated complexes was
measured via computational prediction of ΔG using the
CSM-AB tool. ΔG reflects energy differences between coupled
and decoupled antibody-antigen complexes. This difference in
energy indicates complex stability where a negative normalized
energy (ΔG<0) indicates spontaneous and exergonic reactions
and hence more stable complexes and more efficient
protein–ligand interactions. Thus, the lower the value of ΔG,
the more stable the (antibody-antigen) complex. In our model,
we found that the NAb S309 has a binding affinity of –8.26
kcal/mol with SARS-CoV and –7.13.26 kcal/mol with
SARS-CoV-2, indicating a loss in binding affinity. However,
comparing SARS-CoV-2 variants to the binding affinity of the
first Wuhan strain showed an improvement in the binding
affinity of S309 with variants Alpha, Beta, Gamma, and Kappa.
This improvement in affinity, when compared to the interaction
profile, can be related to the increased number of polar and
hydrophobic interactions and more similar interaction profiles
with SARS-CoV than with the original SARS-CoV-2 Wuhan
strain. In contrast, variant Delta showed a substantial decrease
in binding affinity as it exhibited only 1 polar interaction. All
Omicron subvariants shared similar interaction profiles;

however, they exhibited different binding affinities. Although
they showed a significant decrease in binding affinity compared
to original SARS-CoV-2 Wuhan strain, they can be clustered
in 2 groups: those with a G339H mutation (BA.2.75, XBB, and
XBB.1) and those with a G339D mutation (BA.1, BA.2, BA.4/5,
BQ.1, and BA.2.12.1; Figure 4 and Multimedia Appendix 1).
The data show that the H339 residue slightly enhanced binding
affinity compared to the D residue substitution. This residue is
located in the middle of the interaction loop and hence plays a
marked role in maintaining the complex’s stability and binding
affinity. In addition, our results are in line with the reported
effect of the G339D mutation and its role in escaping antibody
neutralization [41,44,45].

Furthermore, to test the impact of a mutation in residue G339,
we analyzed the effect of reverse mutagenesis. We used the
generated models and in silico tools to test the effect of reverse
mutation at residue G339 on complex stability in subvariants
BA2.75, XBB, and XBB.1. They have an aspartic acid residue
at position 339. By reversing this residue to either glycine or
histidine (G339 or H339), we calculated the effect in the form
of the ΔG value. Our results showed an increase in the stability
of the SARS-CoV-2/S309 complex and hence enhanced binding
affinity with the glycine residue. However, reverse mutagenesis
to histidine has no to a very low effect, except for subvariant
BA.2.12.1 where there was a slight increase in binding affinity
(Table 2).
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Figure 4. Binding energy (ΔG) of the severe acute respiratory syndrome coronavirus (SARS-CoV) and different SARS-CoV-2 variants (represented
in affinity percentage in comparison to SARS-CoV-2).

Table 2. Gibbs free energy (ΔG) analysis of the effect of the D339 reverse mutation on the binding affinity of SARS-CoV-2 Omicron subvariants with
the neutralizing antibody sotrovimab.

Effect on binding affinityD339H substitution

ΔG (kcal/mol)

D339G substitution

ΔG (kcal/mol)

D339

ΔG (kcal/mol)

SARS-CoV-2 Omicron subvariant

Increase–6.92–6.83–4.7BA.1

Increase–6.59–6.18–3.38BA.2

Increase–7.15–6.96–3.87BA.4/BA.5

Increase–6.59–6.19–3.39BA.2.12.1

Increase–7.29–6.92–3.86BQ.1

Evaluation of S309’s Binding Affinity to
Experimentally Tested SARS-CoV-2 Variants and
Some Hypothetical SARS-CoV-2 Variants
The effect of several amino acid substitutions in the NAb S309
epitope have been tested experimentally using the enzyme-linked
immunosorbent assay and/or pseudovirus neutralization assays.
These mutations resulted in resistance to neutralization by S309,
leading to antibody escape. These key substitutions include
R346S and P337L, G339D, N440K, and S371L [40,41]. Here

we used our developed method to evaluate this effect
computationally. By generating models with the newly reported
mutations and CSM-AB tool, we predicted the effect of the
reported mutations on the binding affinity of the complex and
hence on neutralizing effect of S309. Interestingly, our
computational results are comparable with the experimentally
reported effect of these mutations on the S309 evasion from
monoclonal antibodies. Additionally, we predicted a possible
effect of hypothetical mutations on some of the proteoglycan
epitopes (Table 3).
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Table 3. Prediction of the effect of the newly reported SARS-CoV-2 subvariants and some experimentally tested spike mutations on the binding affinity
with sotrovimab.

Binding affinity in
reference to the
original SARS-CoV-
2 Wuhan strain (%)

Effect on
binding affini-
ty

Gibbs free
energy
(Kcal/mol)

New subvariantsReferencesMutationsGibbs free
energy
(kcal/mol)

Parent model,
variants, and sub-
variants

Newly reported SARS-CoV-2 variants and subvariants

39.97Decrease–2.85BF.7Qu et al [39]R346T–3.87BA.4/5

39.55Decrease–2.82BQ.1.1Qu et al [39]R346T–3.86BQ.1

69.99Increase–4.99BA.1.1Manjunath et al
[34], Liu et al
[35], and Mar-
tins et al [36]

R346K–4.7BA.1

69.99Increase–4.99BA.3Stanford Univer-
sity [22]

L371F and D405N–4.7BA.1

47.41Increase–4.13BA.2.3.20Stanford Univer-
sity [22]

K444R, N450D,
L452M, N460K,
A484R, and
R493Q

–3.38BA.2

81.77Increase–5.83BM.1.1.1Stanford Univer-
sity [22]

D339H, R346T,
G446S, N460K,
F486S, F490S, and
R493Q

–3.38BA.2

54.14Decrease–3.86BA.5.6.2Stanford Univer-
sity [22]

K444T–3.87BA.4/5

85.83No effect–6.12AY.1Stanford Univer-
sity [22]

K417N–6.12DELTA-21J

90.74Decrease–6.27BA.2.75.2Qu et al [39]R346T and F486S–6.96BA.2.75

80.36Decrease–5.73CH.1.1 (Orthrus)Neher [38]R346T, K444T,
L452R, and F486S

–6.96BA.2.75

86.26No effect–6.15XBB.1.5 (Kraken)Yue et al [37]S486P–6.15XBB.1

Experimental

101.4Increase–7.23—aMagnus et al
[40]

R346K–7.13Wuhan

87.1Decrease–6.21—Magnus et al
[40]

R346S–7.13Wuhan

97.75Decrease–6.97—Magnus et al
[40]

R346T–7.13Wuhan

94.39Decrease–6.73—Magnus et al
[40]

P337L–7.13Wuhan

76.45Decrease–5.45—Magnus et al
[40]

P337L and R346K–7.13Wuhan

46.84Decrease–3.34—Cao et al [41]H339D–6.96Omicron
BA.2.75

91.44Decrease–6.52—Cao et al [41]R346K–6.96Omicron
BA.2.75

91.58Decrease–6.53—Cao et al [41]S371L–6.96Omicron
BA.2.75

95.51Decrease–6.81—Cao et al [41]Q493R–6.96Omicron
BA.2.75

aNot applicable.
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Discussion

Principal Findings
Antibody-based therapies have proven effective against
SARS-CoV-2 infection and appear to be the most promising
approach to control the COVID-19 pandemic. A number of
neutralizing monoclonal antibodies used in the clinical setting
have shown highly favorable results, particularly in stopping
disease progression [46,47]. However, the constant emergence
of new virus variants has hindered the potency of available
anti–SARS-CoV-2 antibodies and urged the continuous
development of improved, more effective NAbs. In this study,
we describe an in silico rapid method that we developed to
predict a possible effect of newly emerged mutations on the
efficacy of available neutralizing anti–SARS-CoV-2 antibodies.
We used the monoclonal antibody S309 as an example. S309
recognizes a proteoglycan epitope embedded in a structural loop
located on the outer side the SARS-CoV-2 spike protein and
encompasses residues 334-441 (Multimedia Appendix 1). This
specific epitope location permits the binding to RBD in both
the up and down configurations without affecting binding to
the ACE2 receptor. Indeed, this epitope does not overlap with
the ACE2 binding site. However, several newly emerged RBD
mutations were reported to have an impact on the neutralizing
effect of S309. To further explore this, we developed this
computational method to evaluate and compare the
neutralization potential of S309 against different SARS-CoV-2
variants and possible new emerging mutations (Figure 1).

Using bioinformatics tools, we developed spike models for
several new SARS-CoV-2 variants and evaluated the effect of
several emerged mutations on the interaction with the
neutralizing monoclonal antibody S309 used for the treatment
of mild-to-moderate COVID-19. In addition, by applying this
method, we foresee the effect of some predicted or not yet
observed mutations. Interestingly, the predicted significantly
decreased computational neutralization values of the monoclonal
antibody S309 (from 10% to 50%) for some new Omicron
subvariants are confirmed by the newly published clinical results
indicating a reduction in its effectiveness against these same
new Omicron subvariants and possible immune evasion
[39,48-51]. Early on, S309 was clinically considered one of the
most effective monoclonal antibodies against all SARS-CoV-2
variants [7]. However, this statement has been proven wrong
as recent convergent evolution of Omicron and its subvariants
has led to a new set of spike mutations within the S309 epitope,
and, consequently, the new subvariants became increasingly
resistant [52]. Several mutations were identified to be critical,

and others are yet to be investigated. For example, a substitution
in the nonpolar G339 residue located at the center of the
antibody epitope to the acidic charged aspartic acid residue
(G339D) has been shown to have a remarkable impact on the
binding affinity of Omicron’s subvariants [44,53], with a
predicted reduction in neutralization power of 30% for BA.1;
45% for BA.4, BA.5, and BQ.1; 50% for BA.2.12.1 and BA.2;
and 60% for BF.7 and BQ.1.1. We reported a similar effect in
our proposed computational method and we found that the
impact was less intense with the G339H mutation (Table 2 and
Multimedia Appendix 1). However, the combination of multiple
mutations in Omicron subvariants has a more profound effect
on binding affinity, indicating increased antibody resistance.
This effect was clearly detected in the subsequent, potentially
dominant new subvariants BM.1.1.1, BA.2.3.20, and CH.1.1
(Orthrus) [54] (Table 3). Furthermore, to test our method, we
examined some experimentally evaluated mutations in residues
P337, R346, G339, and S371 that are located in the S309
epitope, and once more, our computational method was
compatible with the experimental results (Table 3). This reduced
susceptibility of S309 with mutations in residues P337, R346,
and other residues has been experimentally recognized
[13,40,41]. Considering the clinical observations of the
efficiency of Sotrovimab in neutralizing SARS-CoV,
SARS-CoV-2 variants, and Omicron subvariants, a 50%
reduction in binding affinity, compared to that in the reference
model, may be considered the cutoff for determining whether
a monoclonal antibody will neutralize a new variant, using the
method described in this paper. Comparison of the predicted
values of the evaluation of neutralizing power with a larger
number of clinical observations about the efficiency of a
neutralizing monoclonal antibody would help refine this
theoretical cutoff value and further validates the method.
Ultimately, molecular dynamics simulations can be performed
to more accurately define the most stable conformation of
monoclonal antibody/spike protein–RBD complexes.

Conclusions
This in silico method provides significant insights into possible
antibody escape following the emergence of new SARS-CoV-2
mutants and helps evaluate the usefulness of existing NAbs in
combating new emerging variants and subvariants. This method
is straightforward, rapid, and applicable ahead of obtaining
statistically significant clinical observations. In addition, this
method highlights the advantages of computational approaches
in viral the rapid surveillance and for the development of novel
monoclonal antibody therapies.

 

Acknowledgments
All authors declared that they had insufficient or no funding to support open access publication of this manuscript, including from
affiliated organizations or institutions, funding agencies, or other organizations. JMIR Publications provided APF support for the
publication of this article.

Data Availability
All data generated or analyzed in this study are included in this published article and in Multimedia Appendix 1.

JMIR Bioinform Biotech 2024 | vol. 5 | e58018 | p.88https://bioinform.jmir.org/2024/1/e58018
(page number not for citation purposes)

Ashoor et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Authors' Contributions
DA carried out the in silico analysis, designed the methodology, curated the data, and drafted and edited the manuscript. MM
designed the illustrations and figures. M-DF conceptualized the study, analyzed the data, drafted and edited the manuscript, and
supervised the study.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Additional information.
[DOCX File , 304 KB - bioinform_v5i1e58018_app1.docx ]

References
1. van Dorp L, Acman M, Richard D, Shaw LP, Ford CE, Ormond L, et al. Emergence of genomic diversity and recurrent

mutations in SARS-CoV-2. Infect Genet Evol 2020 Sep;83:104351 [FREE Full text] [doi: 10.1016/j.meegid.2020.104351]
[Medline: 32387564]

2. Amicone M, Borges V, Alves MJ, Isidro J, Zé-Zé L, Duarte S, et al. Mutation rate of SARS-CoV-2 and emergence of
mutators during experimental evolution. Evol Med Public Health 2022;10(1):142-155 [FREE Full text] [doi:
10.1093/emph/eoac010] [Medline: 35419205]

3. Focosi D, Quiroga R, McConnell S, Johnson MC, Casadevall A. Convergent evolution in SARS-CoV-2 spike creates a
variant soup from which new COVID-19 waves emerge. Int J Mol Sci 2023 Jan 23;24(3):2264 [FREE Full text] [doi:
10.3390/ijms24032264] [Medline: 36768588]

4. Emergency Use Authorization. Food and Drug Administration. URL: https://www.fda.gov/
emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization#coviddrugs
[accessed 2024-09-17]

5. COVID-19 medicines. European Medicines Agency. URL: https://www.ema.europa.eu/en/human-regulatory/overview/
public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/covid-19-treatments [accessed 2024-09-17]

6. Hastie KM, Li H, Bedinger D, Schendel SL, Dennison SM, Li K, CoVIC-DB team1, et al. Defining variant-resistant epitopes
targeted by SARS-CoV-2 antibodies: a global consortium study. Science 2021 Oct 22;374(6566):472-478 [FREE Full text]
[doi: 10.1126/science.abh2315] [Medline: 34554826]

7. Mittal A, Khattri A, Verma V. Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants.
PLoS Pathog 2022 Feb 17;18(2):e1010260 [FREE Full text] [doi: 10.1371/journal.ppat.1010260] [Medline: 35176090]

8. Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, et al. SARS-CoV-2 neutralizing antibody
structures inform therapeutic strategies. Nature 2020 Dec 12;588(7839):682-687 [FREE Full text] [doi:
10.1038/s41586-020-2852-1] [Medline: 33045718]

9. Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, et al. Mapping neutralizing and
immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology.
Cell 2020 Nov 12;183(4):1024-1042.e21 [FREE Full text] [doi: 10.1016/j.cell.2020.09.037] [Medline: 32991844]

10. Pinto D, Park Y, Beltramello M, Walls AC, Tortorici MA, Bianchi S, et al. Cross-neutralization of SARS-CoV-2 by a
human monoclonal SARS-CoV antibody. Nature 2020 Jul 18;583(7815):290-295. [doi: 10.1038/s41586-020-2349-y]
[Medline: 32422645]

11. Kumar S, Karuppanan K, Subramaniam G. Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) of SARS-CoV-2
spike infectivity and pathogenicity: a comparative sequence and structural-based computational assessment. J Med Virol
2022 Oct;94(10):4780-4791 [FREE Full text] [doi: 10.1002/jmv.27927] [Medline: 35680610]

12. McCallum M, Czudnochowski N, Rosen LE, Zepeda SK, Bowen JE, Walls AC, et al. Structural basis of SARS-CoV-2
Omicron immune evasion and receptor engagement. Science 2022 Feb 25;375(6583):864-868 [FREE Full text] [doi:
10.1126/science.abn8652] [Medline: 35076256]

13. Heo Y. Sotrovimab: first approval. Drugs 2022 Mar 14;82(4):477-484 [FREE Full text] [doi: 10.1007/s40265-022-01690-7]
[Medline: 35286623]

14. Ashoor D, Ben Khalaf N, Marzouq M, Jarjanazi H, Chlif S, Fathallah MD. A computational approach to evaluate the
combined effect of SARS-CoV-2 RBD mutations and ACE2 receptor genetic variants on infectivity: the COVID-19
host-pathogen nexus. Front Cell Infect Microbiol 2021 Aug 9;11:707194 [FREE Full text] [doi: 10.3389/fcimb.2021.707194]
[Medline: 34434902]

15. Zhao Z, Zhou J, Tian M, Huang M, Liu S, Xie Y, et al. Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation
and lead to a non-RBM-binding monoclonal antibody escape. Nat Commun 2022 Aug 24;13(1):4958 [FREE Full text]
[doi: 10.1038/s41467-022-32665-7] [Medline: 36002453]

JMIR Bioinform Biotech 2024 | vol. 5 | e58018 | p.89https://bioinform.jmir.org/2024/1/e58018
(page number not for citation purposes)

Ashoor et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=bioinform_v5i1e58018_app1.docx&filename=3b689f937b390e0f31a45a1fdb0075b0.docx
https://jmir.org/api/download?alt_name=bioinform_v5i1e58018_app1.docx&filename=3b689f937b390e0f31a45a1fdb0075b0.docx
https://europepmc.org/abstract/MED/32387564
http://dx.doi.org/10.1016/j.meegid.2020.104351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32387564&dopt=Abstract
https://europepmc.org/abstract/MED/35419205
http://dx.doi.org/10.1093/emph/eoac010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35419205&dopt=Abstract
https://www.mdpi.com/resolver?pii=ijms24032264
http://dx.doi.org/10.3390/ijms24032264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36768588&dopt=Abstract
https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization#coviddrugs
https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization#coviddrugs
https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/covid-19-treatments
https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/covid-19-treatments
https://www.science.org/doi/abs/10.1126/science.abh2315?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1126/science.abh2315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34554826&dopt=Abstract
https://dx.plos.org/10.1371/journal.ppat.1010260
http://dx.doi.org/10.1371/journal.ppat.1010260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35176090&dopt=Abstract
https://europepmc.org/abstract/MED/33045718
http://dx.doi.org/10.1038/s41586-020-2852-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33045718&dopt=Abstract
https://air.unimi.it/handle/2434/861677
http://dx.doi.org/10.1016/j.cell.2020.09.037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32991844&dopt=Abstract
http://dx.doi.org/10.1038/s41586-020-2349-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32422645&dopt=Abstract
https://europepmc.org/abstract/MED/35680610
http://dx.doi.org/10.1002/jmv.27927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35680610&dopt=Abstract
https://www.science.org/doi/abs/10.1126/science.abn8652?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1126/science.abn8652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35076256&dopt=Abstract
https://europepmc.org/abstract/MED/35286623
http://dx.doi.org/10.1007/s40265-022-01690-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35286623&dopt=Abstract
https://europepmc.org/abstract/MED/34434902
http://dx.doi.org/10.3389/fcimb.2021.707194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34434902&dopt=Abstract
https://doi.org/10.1038/s41467-022-32665-7
http://dx.doi.org/10.1038/s41467-022-32665-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36002453&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


16. Lv Z, Deng Y, Ye Q, Cao L, Sun C, Fan C, et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a
potent therapeutic antibody. Science 2020 Sep 18;369(6510):1505-1509 [FREE Full text] [doi: 10.1126/science.abc5881]
[Medline: 32703908]

17. Gupta A, Gonzalez-Rojas Y, Juarez E, Crespo Casal M, Moya J, Falci DR, et al. Early treatment for Covid-19 with
SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med 2021 Nov 18;385(21):1941-1950. [doi:
10.1056/nejmoa2107934]

18. Gupta A, Gonzalez-Rojas Y, Juarez E, Crespo Casal M, Moya J, Rodrigues Falci D, COMET-ICE Investigators. Effect of
sotrovimab on hospitalization or death among high-risk patients with mild to moderate COVID-19: a randomized clinical
trial. JAMA 2022 Apr 05;327(13):1236-1246 [FREE Full text] [doi: 10.1001/jama.2022.2832] [Medline: 35285853]

19. Ashoor D, Marzouq M, Trabelsi K, Chlif S, Abotalib N, Khalaf NB, et al. How concerning is a SARS-CoV-2 variant of
concern? Computational predictions and the variants labeling system. Front Cell Infect Microbiol 2022 Aug 10;12:868205
[FREE Full text] [doi: 10.3389/fcimb.2022.868205] [Medline: 36034694]

20. Protein Data Bank. RCSB. URL: https://www.rcsb.org/ [accessed 2024-09-17]
21. Hodcroft E. CoVariants. CoVariants. URL: https://covariants.org/ [accessed 2024-09-17]
22. SARS-CoV-2 Variants. Stanford University: Coronavirus Antiviral & Resistance Database. URL: https://covdb.stanford.edu/

variants/omicron_ba_1_3/ [accessed 2024-09-17]
23. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of

protein structures and complexes. Nucleic Acids Res 2018 Jul 02;46(W1):W296-W303 [FREE Full text] [doi:
10.1093/nar/gky427] [Medline: 29788355]

24. DeLano W. The PyMOL Molecular Graphics System. PyMOL. 2002. URL: http://www.pymol.org/ [accessed 2024-09-17]
25. Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its

host cell receptor ACE2. PLoS Pathog 2018 Aug 13;14(8):e1007236 [FREE Full text] [doi: 10.1371/journal.ppat.1007236]
[Medline: 30102747]

26. Dejnirattisai W, Zhou D, Ginn HM, Duyvesteyn HME, Supasa P, Case JB, et al. The antigenic anatomy of SARS-CoV-2
receptor binding domain. Cell 2021 Apr 15;184(8):2183-2200.e22 [FREE Full text] [doi: 10.1016/j.cell.2021.02.032]
[Medline: 33756110]

27. Mannar D, Saville JW, Sun Z, Zhu X, Marti MM, Srivastava SS, et al. SARS-CoV-2 variants of concern: spike protein
mutational analysis and epitope for broad neutralization. Nat Commun 2022 Aug 18;13(1):4696 [FREE Full text] [doi:
10.1038/s41467-022-32262-8] [Medline: 35982054]

28. Wang Y, Liu C, Zhang C, Wang Y, Hong Q, Xu S, et al. Structural basis for SARS-CoV-2 Delta variant recognition of
ACE2 receptor and broadly neutralizing antibodies. Nat Commun 2022 Feb 15;13(1):871 [FREE Full text] [doi:
10.1038/s41467-022-28528-w] [Medline: 35169135]

29. Saville JW, Mannar D, Zhu X, Srivastava SS, Berezuk AM, Demers J, et al. Structural and biochemical rationale for
enhanced spike protein fitness in delta and kappa SARS-CoV-2 variants. Nat Commun 2022 Feb 08;13(1):742 [FREE Full
text] [doi: 10.1038/s41467-022-28324-6] [Medline: 35136050]

30. The GROMOS Software for (Bio)Molecular Simulation. Volume 1: About the GROMOS package: Overview. The GROMOS
Software for (Bio)Molecular Simulation. Volume 1: About the GROMOS package: Overview. 2023. URL: https://www.
gromos.net/gromos11_pdf_manuals/vol1.pdf [accessed 2024-09-17]

31. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling.
Electrophoresis 1997 Dec 14;18(15):2714-2723. [doi: 10.1002/elps.1150181505] [Medline: 9504803]

32. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf
Model 2011 Oct 24;51(10):2778-2786. [doi: 10.1021/ci200227u] [Medline: 21919503]

33. Myung Y, Pires DEV, Ascher DB. CSM-AB: graph-based antibody-antigen binding affinity prediction and docking scoring
function. Bioinformatics 2022 Jan 27;38(4):1141-1143. [doi: 10.1093/bioinformatics/btab762] [Medline: 34734992]

34. Manjunath R, Gaonkar SL, Saleh EAM, Husain K. A comprehensive review on Covid-19 Omicron (B.1.1.529) variant.
Saudi J Biol Sci 2022 Sep;29(9):103372 [FREE Full text] [doi: 10.1016/j.sjbs.2022.103372] [Medline: 35855306]

35. Liu X, Xiong J, Sun Z, Hu J, Thilakavathy K, Chen M, et al. Omicron: a chimera of two early SARS-CoV-2 lineages.
Signal Transduct Target Ther 2022 Mar 17;7(1):90 [FREE Full text] [doi: 10.1038/s41392-022-00949-5] [Medline:
35301279]

36. Martins M, do Nascimento GM, Nooruzzaman M, Yuan F, Chen C, Caserta LC, et al. The omicron variant BA.1.1 presents
a lower pathogenicity than B.1 D614G and delta variants in a feline model of SARS-CoV-2 infection. J Virol 2022 Sep
14;96(17):e0096122 [FREE Full text] [doi: 10.1128/jvi.00961-22] [Medline: 36000850]

37. Yue C, Song W, Wang L, Jian F, Chen X, Gao F, et al. Enhanced transmissibility of XBB.1.5 is contributed by both strong
ACE2 binding and antibody evasion. bioRxiv Preprint posted online January 5, 2023. [doi: 10.1101/2023.01.03.522427]

38. Neher R. Variant report 2022-12-22. GitHub. URL: https://github.com/neherlab/SARS-CoV-2_variant-reports/blob/
d2d531c6deb12e52e5a6fde9af25f2cce023302b/reports/variant_report_2022-12-22.md [accessed 2024-09-17]

39. Qu P, Evans JP, Faraone JN, Zheng Y, Carlin C, Anghelina M, et al. Enhanced neutralization resistance of SARS-CoV-2
Omicron subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2. Cell Host Microbe 2023 Jan 11;31(1):9-17.e3 [FREE
Full text] [doi: 10.1016/j.chom.2022.11.012] [Medline: 36476380]

JMIR Bioinform Biotech 2024 | vol. 5 | e58018 | p.90https://bioinform.jmir.org/2024/1/e58018
(page number not for citation purposes)

Ashoor et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

https://www.science.org/doi/abs/10.1126/science.abc5881?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1126/science.abc5881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32703908&dopt=Abstract
http://dx.doi.org/10.1056/nejmoa2107934
https://europepmc.org/abstract/MED/35285853
http://dx.doi.org/10.1001/jama.2022.2832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35285853&dopt=Abstract
https://europepmc.org/abstract/MED/36034694
http://dx.doi.org/10.3389/fcimb.2022.868205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36034694&dopt=Abstract
https://www.rcsb.org/
https://covariants.org/
https://covdb.stanford.edu/variants/omicron_ba_1_3/
https://covdb.stanford.edu/variants/omicron_ba_1_3/
https://europepmc.org/abstract/MED/29788355
http://dx.doi.org/10.1093/nar/gky427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29788355&dopt=Abstract
http://www.pymol.org/
https://dx.plos.org/10.1371/journal.ppat.1007236
http://dx.doi.org/10.1371/journal.ppat.1007236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30102747&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0092-8674(21)00221-X
http://dx.doi.org/10.1016/j.cell.2021.02.032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33756110&dopt=Abstract
https://doi.org/10.1038/s41467-022-32262-8
http://dx.doi.org/10.1038/s41467-022-32262-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35982054&dopt=Abstract
https://doi.org/10.1038/s41467-022-28528-w
http://dx.doi.org/10.1038/s41467-022-28528-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35169135&dopt=Abstract
https://doi.org/10.1038/s41467-022-28324-6
https://doi.org/10.1038/s41467-022-28324-6
http://dx.doi.org/10.1038/s41467-022-28324-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35136050&dopt=Abstract
https://www.gromos.net/gromos11_pdf_manuals/vol1.pdf
https://www.gromos.net/gromos11_pdf_manuals/vol1.pdf
http://dx.doi.org/10.1002/elps.1150181505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9504803&dopt=Abstract
http://dx.doi.org/10.1021/ci200227u
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21919503&dopt=Abstract
http://dx.doi.org/10.1093/bioinformatics/btab762
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34734992&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1319-562X(22)00288-1
http://dx.doi.org/10.1016/j.sjbs.2022.103372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35855306&dopt=Abstract
https://doi.org/10.1038/s41392-022-00949-5
http://dx.doi.org/10.1038/s41392-022-00949-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35301279&dopt=Abstract
https://journals.asm.org/doi/abs/10.1128/jvi.00961-22?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1128/jvi.00961-22
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36000850&dopt=Abstract
http://dx.doi.org/10.1101/2023.01.03.522427
https://github.com/neherlab/SARS-CoV-2_variant-reports/blob/d2d531c6deb12e52e5a6fde9af25f2cce023302b/reports/variant_report_2022-12-22.md
https://github.com/neherlab/SARS-CoV-2_variant-reports/blob/d2d531c6deb12e52e5a6fde9af25f2cce023302b/reports/variant_report_2022-12-22.md
https://linkinghub.elsevier.com/retrieve/pii/S1931-3128(22)00568-6
https://linkinghub.elsevier.com/retrieve/pii/S1931-3128(22)00568-6
http://dx.doi.org/10.1016/j.chom.2022.11.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36476380&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


40. Magnus CL, Hiergeist A, Schuster P, Rohrhofer A, Medenbach J, Gessner A, et al. Targeted escape of SARS-CoV-2 from
monoclonal antibody S309, the precursor of sotrovimab. Front Immunol 2022 Aug 24;13:966236 [FREE Full text] [doi:
10.3389/fimmu.2022.966236] [Medline: 36090991]

41. Cao Y, Wang J, Jian F, Xiao T, Song W, Yisimayi A, et al. Omicron escapes the majority of existing SARS-CoV-2
neutralizing antibodies. Nature 2022 Feb 23;602(7898):657-663. [doi: 10.1038/s41586-021-04385-3] [Medline: 35016194]

42. Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models.
Bioinformatics 2011 Feb 01;27(3):343-350 [FREE Full text] [doi: 10.1093/bioinformatics/btq662] [Medline: 21134891]

43. Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. QMEANDisCo-distance constraints applied on
model quality estimation. Bioinformatics 2020 Mar 01;36(6):1765-1771 [FREE Full text] [doi: 10.1093/bioinformatics/btz828]
[Medline: 31697312]

44. Asif A, Ilyas I, Abdullah M, Sarfraz S, Mustafa M, Mahmood A. The comparison of mutational progression in SARS-CoV-2:
a short updated overview. JMP 2022 Oct 06;3(4):201-218. [doi: 10.3390/jmp3040018]

45. Huang M, Wu L, Zheng A, Xie Y, He Q, Rong X, et al. Atlas of currently available human neutralizing antibodies against
SARS-CoV-2 and escape by Omicron sub-variants BA.1/BA.1.1/BA.2/BA.3. Immunity 2022 Aug 09;55(8):1501-1514.e3
[FREE Full text] [doi: 10.1016/j.immuni.2022.06.005] [Medline: 35777362]

46. van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, Derde L, Leavis H, van Crevel R, et al. A guide to
immunotherapy for COVID-19. Nat Med 2022 Jan 21;28(1):39-50. [doi: 10.1038/s41591-021-01643-9] [Medline: 35064248]

47. Cheng ZJ, Li B, Zhan Z, Zhao Z, Xue M, Zheng P, et al. Clinical application of antibody immunity against SARS-CoV-2:
comprehensive review on immunoassay and immunotherapy. Clin Rev Allergy Immunol 2023 Feb 15;64(1):17-32 [FREE
Full text] [doi: 10.1007/s12016-021-08912-y] [Medline: 35031959]

48. Aggarwal NR, Beaty LE, Bennett TD, Carlson NE, Mayer DA, Molina KC, et al. Change in effectiveness of sotrovimab
for preventing hospitalization and mortality for at-risk COVID-19 outpatients during an Omicron BA.1 and
BA.1.1-predominant phase. Int J Infect Dis 2023 Mar;128:310-317 [FREE Full text] [doi: 10.1016/j.ijid.2022.10.002]
[Medline: 36229005]

49. Arora P, Kempf A, Nehlmeier I, Schulz SR, Cossmann A, Stankov MV, et al. Augmented neutralisation resistance of
emerging omicron subvariants BA.2.12.1, BA.4, and BA.5. Lancet Infect Dis 2022 Aug;22(8):1117-1118. [doi:
10.1016/s1473-3099(22)00422-4]

50. Imai M, Ito M, Kiso M, Yamayoshi S, Uraki R, Fukushi S, et al. Efficacy of antiviral agents against omicron subvariants
BQ.1.1 and XBB. N Engl J Med 2023 Jan 05;388(1):89-91. [doi: 10.1056/nejmc2214302]

51. Cox M, Peacock TP, Harvey WT, Hughes J, Wright DW, COVID-19 Genomics UK (COG-UK) Consortium, et al.
SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies. Nat Rev Microbiol 2023 Feb
28;21(2):112-124 [FREE Full text] [doi: 10.1038/s41579-022-00809-7] [Medline: 36307535]

52. COVID-19 weekly epidemiological update, edition 119, 23 November 2022. World Health Organization. 2022. URL:
https://iris.who.int/handle/10665/364724 [accessed 2024-09-17]

53. Willett BJ, Grove J, MacLean OA, Wilkie C, De Lorenzo G, Furnon W, PITCH Consortium, COVID-19 Genomics UK
(COG-UK) Consortium, et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat
Microbiol 2022 Aug;7(8):1161-1179. [doi: 10.1038/s41564-022-01143-7] [Medline: 35798890]

54. Mohapatra RK, Mahal A, Kutikuppala LS, Pal M, Kandi V, Sarangi AK, et al. Renewed global threat by the novel
SARS-CoV-2 variants ‘XBB, BF.7, BQ.1, BA.2.75, BA.4.6’: a discussion. Front Virol 2022 Dec 23;2:104. [doi:
10.3389/fviro.2022.1077155]

Abbreviations
ΔG: Gibbs free energy
ACE2: angiotensin-converting enzyme 2
Fv: variable domain
NAb: neutralizing antibody
NCBI: National Center for Biotechnology Information
RBD: receptor-binding domain
S309: sotrovimab
SARS: severe acute respiratory syndrome
SARS-CoV: severe acute respiratory syndrome coronavirus

JMIR Bioinform Biotech 2024 | vol. 5 | e58018 | p.91https://bioinform.jmir.org/2024/1/e58018
(page number not for citation purposes)

Ashoor et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

https://europepmc.org/abstract/MED/36090991
http://dx.doi.org/10.3389/fimmu.2022.966236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36090991&dopt=Abstract
http://dx.doi.org/10.1038/s41586-021-04385-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35016194&dopt=Abstract
https://europepmc.org/abstract/MED/21134891
http://dx.doi.org/10.1093/bioinformatics/btq662
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21134891&dopt=Abstract
https://europepmc.org/abstract/MED/31697312
http://dx.doi.org/10.1093/bioinformatics/btz828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31697312&dopt=Abstract
http://dx.doi.org/10.3390/jmp3040018
https://linkinghub.elsevier.com/retrieve/pii/S1074-7613(22)00265-5
http://dx.doi.org/10.1016/j.immuni.2022.06.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35777362&dopt=Abstract
http://dx.doi.org/10.1038/s41591-021-01643-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35064248&dopt=Abstract
https://europepmc.org/abstract/MED/35031959
https://europepmc.org/abstract/MED/35031959
http://dx.doi.org/10.1007/s12016-021-08912-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35031959&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1201-9712(22)00540-9
http://dx.doi.org/10.1016/j.ijid.2022.10.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36229005&dopt=Abstract
http://dx.doi.org/10.1016/s1473-3099(22)00422-4
http://dx.doi.org/10.1056/nejmc2214302
https://europepmc.org/abstract/MED/36307535
http://dx.doi.org/10.1038/s41579-022-00809-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36307535&dopt=Abstract
https://iris.who.int/handle/10665/364724
http://dx.doi.org/10.1038/s41564-022-01143-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35798890&dopt=Abstract
http://dx.doi.org/10.3389/fviro.2022.1077155
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by H Yan; submitted 04.03.24; peer-reviewed by A Hosny, V Nagesh; comments to author 02.04.24; revised version received
07.04.24; accepted 19.04.24; published 10.10.24.

Please cite as:
Ashoor D, Marzouq M, Fathallah MD
Comparison of the Neutralization Power of Sotrovimab Against SARS-CoV-2 Variants: Development of a Rapid Computational Method
JMIR Bioinform Biotech 2024;5:e58018
URL: https://bioinform.jmir.org/2024/1/e58018 
doi:10.2196/58018
PMID:39388246

©Dana Ashoor, Maryam Marzouq, M-Dahmani Fathallah. Originally published in JMIR Bioinformatics and Biotechnology
(https://bioinform.jmir.org), 10.10.2024. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Bioinformatics and Biotechnology, is properly cited. The
complete bibliographic information, a link to the original publication on https://bioinform.jmir.org/, as well as this copyright and
license information must be included.

JMIR Bioinform Biotech 2024 | vol. 5 | e58018 | p.92https://bioinform.jmir.org/2024/1/e58018
(page number not for citation purposes)

Ashoor et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

https://bioinform.jmir.org/2024/1/e58018
http://dx.doi.org/10.2196/58018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39388246&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Machine Learning Models for Prediction of Maternal Hemorrhage
and Transfusion: Model Development Study

Homa Khorrami Ahmadzia1,2*, MD, MPH; Alexa C Dzienny3, BS; Mike Bopf4*, MS; Jaclyn M Phillips1, MD; Jerome

Jeffrey Federspiel5*, MD, PhD; Richard Amdur6, PhD; Madeline Murguia Rice7, PhD; Laritza Rodriguez4, MD, PhD
1Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, George Washington University, Washington, DC, United States
2Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Inova Health System, Falls Church, VA, United States
3The George Washington University School of Medicine and Health Sciences,, Washington DC, DC, United States
4Lister Hill National Center for Biomedical Communications, U.S. National Library of Medicine, Bethesda, MD, United States
5Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Duke University, Durham, NC, United States
6Medical Faculty Associates, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
7George Washington University Biostatistics Center, Washington, DC, United States
*these authors contributed equally

Corresponding Author:
Homa Khorrami Ahmadzia, MD, MPH
Division of Maternal-Fetal Medicine
Department of Obstetrics and Gynecology
Inova Health System
3300 Gallows Road
Falls Church, VA, 22042
United States
Phone: 1 571 472 0920
Email: homa.ahmadzia@inova.org

Abstract

Background: Current postpartum hemorrhage (PPH) risk stratification is based on traditional statistical models or expert opinion.
Machine learning could optimize PPH prediction by allowing for more complex modeling.

Objective: We sought to improve PPH prediction and compare machine learning and traditional statistical methods.

Methods: We developed models using the Consortium for Safe Labor data set (2002-2008) from 12 US hospitals. The primary
outcome was a transfusion of blood products or PPH (estimated blood loss of ≥1000 mL). The secondary outcome was a transfusion
of any blood product. Fifty antepartum and intrapartum characteristics and hospital characteristics were included. Logistic
regression, support vector machines, multilayer perceptron, random forest, and gradient boosting (GB) were used to generate
prediction models. The area under the receiver operating characteristic curve (ROC-AUC) and area under the precision/recall
curve (PR-AUC) were used to compare performance.

Results: Among 228,438 births, 5760 (3.1%) women had a postpartum hemorrhage, 5170 (2.8%) had a transfusion, and 10,344
(5.6%) met the criteria for the transfusion-PPH composite. Models predicting the transfusion-PPH composite using antepartum
and intrapartum features had the best positive predictive values, with the GB machine learning model performing best overall
(ROC-AUC=0.833, 95% CI 0.828-0.838; PR-AUC=0.210, 95% CI 0.201-0.220). The most predictive features in the GB model
predicting the transfusion-PPH composite were the mode of delivery, oxytocin incremental dose for labor (mU/minute), intrapartum
tocolytic use, presence of anesthesia nurse, and hospital type.

Conclusions: Machine learning offers higher discriminability than logistic regression in predicting PPH. The Consortium for
Safe Labor data set may not be optimal for analyzing risk due to strong subgroup effects, which decreases accuracy and limits
generalizability.

(JMIR Bioinform Biotech 2024;5:e52059)   doi:10.2196/52059
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Introduction

Maternal morbidity and mortality have been regarded as a
reflection of health care quality nationwide. Among
lower-income countries, postpartum hemorrhage (PPH) is
typically the most common cause of maternal mortality and
remains among the top causes in higher-income countries. In
the United States, hemorrhage accounted for 11.0% of deaths
between 2011 and 2016 [1-4]. To address maternal hemorrhage,
maternal hemorrhage protocols have been implemented, which
incorporate prospective PPH risk assessment to tailor PPH
prophylactic and management approaches for patients’
individual risk profiles. However, these protocols are often
based on observational studies that approximated the strength
of associations with hemorrhage via logistic regression (LR)
models and combined the results of multiple studies together
in a linear fashion [5-7]. However, “standard” LR assumes that
(1) there is a linear relationship between predictors and the log
odds of outcomes and (2) there are independent relationships
between predictors. Additionally, LR and related models often
perform poorly with large numbers of included variables [8,9].
Consequently, current risk stratification models fail to accurately
ascertain pregnant patients’ risk of hemorrhage [10]. Studies
attempting to validate existing LR and related models have
instead identified gaps in the efficacy of these models, as the
majority of patients with PPH and transfusions were stratified
in low or moderate risk groups [11,12].

Machine learning offers an advantage to current risk assessment
methods through its ability to create a robust model based on
larger numbers of predictors, with nonlinear relationships and
interactions between variables included in analyses [13]. Our

objective in this analysis was to create a validated prediction
model using machine learning for postpartum hemorrhage and
transfusion to optimize risk-based triage and inform policy
makers and stakeholders who aim to further reduce maternal
morbidity and mortality associated with hemorrhage.

Methods

Data Collection
Data for this analysis were extracted from the Consortium for
Safe Labor (CSL) data set created by the Eunice Kennedy
Shriver National Institute of Child Health and Human
Development (NICHD). It includes antepartum, intrapartum,
and postpartum medical histories of 224,438 women from 12
hospitals in the United States (Figure 1). Variables in this data
set include maternal demographics, reproductive history,
medical history, prenatal history of current pregnancy, labor
admission assessment, labor progression, labor and delivery
summary, maternal postpartum condition, and newborn
information. For this database, data were extracted
retrospectively from existing records for deliveries most recently
occurring at each site. Data were extracted electronically using
a method suitable to each hospital’s unique data systems. Data
transfer and integrity were managed by a data coordinating
center that created a central database. The data were deidentified
and are available for research under request from the NICHD.
Women with only 1 recorded pregnancy in the data set were
included for data analysis; if women had more than 1 pregnancy
during the study period, only the first one was used in the
analysis. We selected maternal, fetal, and pregnancy variables
as candidates to build the prediction model for transfusion risk.
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Figure 1. Flowchart of inclusion of women with transfusion or postpartum hemorrhage (or both).

Missing Data
Machine learning methods are known to generate errors in the
presence of missing values [14]. To avoid this, we imputed
values as follows: categorical variables with missing and
unknown values were assigned to an “unknown” category;
continuous variables with missing and unknown values were
coded to the median value. Continuous variables for maternal
age and BMI were coded into ordinal categories (age of <20,
between ≥20 and <40, between ≥40 and <45, and ≥45 years;
BMI of ≤20, between >20 and ≤40, between >40 and ≤50, and

>50 kg/m2). Imputing estimated blood loss (EBL) as the median
value (350 mL) meant that missing values were assumed to be
<1000 mL.

Feature Selection
We used the Cramér V index of nominal association for variable
selection [15]. Features were classified into antepartum and
intrapartum variables. Two different prediction models were
constructed: (1) an antenatal-only model intended to be used in
the clinic setting to inform appropriate patient referral and (2)
an intrapartum model that included both antepartum and
intrapartum characteristics. Individual antepartum and
intrapartum maternal variables included for model development
are shown in the Multimedia Appendix 1.

Outcomes
Separate models were constructed to predict 2 target outcomes.
The primary outcome was a composite including all patients
who received a transfusion of any blood product or had a PPH

defined by documented blood loss of ≥1000 mL during or after
delivery. Our secondary outcome was all patients who received
transfusion of any blood product. Both blood loss of ≥1000 mL
and blood transfusion are clinically significant metrics in
obstetric care. Transfusion alone represents patients who are at
risk for high maternal morbidity and mortality and is a clinically
important metric to evaluate in isolation; hence, it was evaluated
independently in a model as a secondary outcome.

Data Analysis
For each of the 4 combinations of predictors and outcomes (for
predictors, antepartum vs antepartum and intrapartum; for
outcomes, transfusion and blood loss greater than a liter versus
transfusion alone), the data were split so that 70% of the
observations were used for training and 30% were used for
testing, with both sets having the same outcome rate. We applied
a number of methods, including LR, support vector machines
(SVMs), multilayer perceptron (MLP), random forest (RF), and
gradient boosting (GB), as well as deep learning algorithms
including TensorFlow imbalanced (TFIM) and learned
embedding (Emb). Hyperparameters were tuned for each
algorithm using a customized grid search technique. The model
performance for each combination of outcome and algorithm
was measured using the Matthews correlation coefficient
(MCC), area under the receiver operating characteristic curve
(ROC-AUC), area under the precision/recall curve (PR-AUC),
and modified F-score skewed toward recall (F2). A modified
F2 score was chosen to minimize false negatives and thus
maximize the identification of patients at high risk for bleeding
and transfusion. Existing LR models and risk classification
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schemes perform poorly, and the majority of patients with
hemorrhage or transfusion are misclassified as low risk.
Misclassification of a “high risk” patient as “low risk” may have
important clinical implications. Additionally, interventions can
be implemented to minimize risk and enhance patient safety
(eg, type and cross, multiple intravenous access sites, provider
awareness, medications, etc). Models will then be evaluated for
those with the highest positive predictive value (PPV) given
these parameters. A model with the highest PPV will be
clinically useful to identify a high-risk patient population
without increasing the clinical burden on the hospital system
or patient with the abovementioned interventions. Algorithms
were processed and results were analyzed using Python (version
3.6; Python Software Foundation), Pandas (version 1.2; The
Pandas Development Team), scikit-learn (version 0.24;
scikit-learn Developers), and TensorFlow (version 2.2; Python
Software Foundation).

The primary study objective was to identify the strongest set of
pre- and intraoperative predictors of hemorrhage or transfusion
and the strongest modeling technique. Secondary objectives
included determining the level of agreement between metrics
for model evaluation and the extent to which any technique
produced results that are clinically useful. Given the
heterogeneity of this data set derived from multiple institutions,
a site-specific sensitivity analysis was performed.

Ethical Considerations
This analysis was exempt from review by the George
Washington University’s institutional review board
(NCR202746).

Results

Of 228,438 births included in the CSL cohort, we included
185,413 patients (Figure 1), having excluded patients with more
than 1 delivery (n=43,025). Maternal age ranged from 11 to 58
(median 27) years; 32% (n=60,193) of the participants were
publicly insured, 49% (n=90,466) were white non-Hispanic,
22% (n=41,780) were Black, and 17% (n=32,727) were
Hispanic. Of the 185,413 women included in the analysis, 71%
(n=131,130) had a vaginal delivery, and 29% (n=54,283) had
a cesarean delivery. In total, 5170 (3%) women experienced the
primary outcome of transfusion of any blood product, 5760
(3.11%) had a PPH defined by an estimated blood loss of ≥1000
mL, and 10,344 (6%) experienced the secondary composite
outcome of transfusion or estimated blood loss of loss of ≥1000
mL. Additional demographic data are summarized in Multimedia
Appendix 2.

After building the models in an iterative process, their
performance in predicting both the primary and secondary
outcomes was compared using a variety of metrics. The metrics
ROC-AUC, PR-AUC, MCC, and F2, as well as sensitivity and
specificity at a probability cut point of 50% are shown in Tables
1 and 2.

Table 1. Performance of machine learning and statistical models based on antepartum and intrapartum maternal variables at predicting transfusion or
postpartum hemorrhage (or both). Primary outcome: blood transfusion or blood loss of ≥1 L.

F2eMCCdPR-

AUCc
ROC-

AUCb
Specifici-
ty

Sensitivi-
ty

Positive pre-
dictive value

False nega-

tivesa, n

False posi-

tivesa, n

True nega-

tivesa, n

True posi-

tivesa, n

Algorithm

0.4190.2600.2100.8330.6630.8890.135626318650GBf

0.4090.2610.2040.8300.6410.8570.138605339650RFg

0.4060.2460.1810.8130.6870.8210.1346492961046Embh

0.4020.2450.1490.8080.6450.8750.127609335749MLPi

0.4030.2450.1940.8220.6550.8610.129619323848TFIMj

0.3970.2420.1590.8040.6300.8860.124595349649SVMk

0.3930.2380.1770.8130.6680.8300.1296313141046LRl

aValues are normalized per 1000, so they are easier to compare across different models; the actual N value is 55,624.
bROC-AUC: area under the receiver operating characteristic curve.
cPR-AUC: area under the precision-recall curve.
dMCC: Matthews correlation coefficient.
eF2: modified F-score skewed toward recall.
fGB: gradient boosting.
gRF: random forest.
hEmb: learned embedding.
iMLP: multilayer perceptron.
jTFIM: TensorFlow imbalanced.
kSVM: support vector machine.
lLR: logistic regression.
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Table 2. Performance of machine learning and statistical models based on antepartum and intrapartum maternal variables in predicting transfusion or
postpartum hemorrhage (or both). Secondary outcome: blood transfusion.

F2eMCCdPR-

AUCc
ROC-

AUCb
Specifici-
ty

Sensitivi-
ty

Positive pre-
dictive value

False nega-

tivesa, n

False posi-

tivesa, n

True nega-

tivesa, n

True posi-

tivesa, n

Algorithm

0.3250.2340.1110.8600.7580.8660.093737235424GBf

0.3190.2320.1070.8620.7420.8870.090721251325RFg

0.3090.2150.0960.8370.7710.7890.090750223622Embh

0.3180.2270.0950.8450.7560.8490.091735237424MLPi

0.3190.2290.1110.8550.7530.8590.091732240424TFIMj

0.3200.2300.1160.8520.7490.8710.091728244424SVMk

0.3170.2280.1110.8530.7430.8760.089722250324LRl

aValues are normalized per 1000, so they are easier to compare across different models; the actual N value is 55,624.
bROC-AUC: area under the receiver operating characteristic curve.
cPR-AUC: area under the precision-recall curve.
dMCC: Matthews correlation coefficient.
eF2: modified F-score skewed toward recall.
fGB: gradient boosting.
gRF: random forest.
hEmb: learned embedding.
iMLP: multilayer perceptron.
jTFIM: TensorFlow imbalanced.
kSVM: support vector machine.
lLR: logistic regression.

For both the primary and secondary outcomes, models developed
using antepartum and intrapartum maternal variables (see
Multimedia Appendix 1 for a list of variables) to predict the
primary outcome performed better with higher PPVs than those
solely using antepartum maternal variables (Multimedia
Appendices 3 and 4). For the primary composite outcome, the

machine learning technique GB using intrapartum maternal
variables had the highest PPV (PR-AUC=0.21, 95% CI
0.20-0.22; ROC-AUC=0.83, 95% CI 0.828-0.838; Figure 2).
For the secondary outcome of transfusion alone, there was little
difference in model performance when comparing several
performance metrics.
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Figure 2. Receiver operating characteristic and precision/recall curves for different models using intrapartum maternal variables predicting transfusion
or postpartum hemorrhage.

The remainder of our results focus on the model with the highest
PPV: the intrapartum model (containing both antepartum and
intrapartum variables) evaluating our primary outcome of a
composite of blood loss of more than 1000 mL or transfusion.
Both RF and GB had significantly higher PPVs for predicting
the composite transfusion or PPH when compared with LR
(PR-AUC=0.18, 95% CI 0.17-0.19; ROC-AUC=0.81, 95% CI
0.808-0.818).

Figure 3 reveals the calibration curves for the models
constructed with intrapartum maternal variables and predicting
the transfusion-PPH composite. Calibration curves portray the
predicted PPH risk versus the observed PPH rate across a range
of predicted PPH values. There was better agreement between
the models with a lower fraction of positives, and none of the
models were able to reach the standard curve—for all models,
the predicted PPH risk overestimated the observed PPH rate
across the range of predicted values.
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Figure 3. Calibration curves for models using intrapartum maternal variables to predict transfusion or postpartum hemorrhage (or both). Emb: learned
embedding; GB: gradient boosting; LR: logistic regression; MLP: multilayer perceptron; RF: random forest; SVC: support vector machine; TFIM:
TensorFlow imbalanced.

Figure 4 displays the top 25 predictive variables included for
model development using antepartum and intrapartum features
for the prediction of the transfusion-PPH composite. As the
machine learning GB model was the best performing model
overall, the variables in Figure 4 are in order of variable
importance within the GB model. The top 10 variables from
most predictive rate to least predictive rate for intrapartum
prediction of the transfusion-PPH composite using the GB model
are mode of delivery, oxytocin incremental dose for labor
(mU/minute), intrapartum tocolytic use, use of anesthesia nurse,
hospital type, a trial of labor after prior cesarean delivery,

insurance, most serious diabetes control, education, and history
of prior cesarean sections. The results of the models for
antepartum-only models are listed in Multimedia Appendix 3.
The ROC-AUC and PR-AUC did not perform as well for the
models using antepartum-only variables, though this was less
obvious for the models predicting transfusion only (Multimedia
Appendix 4). Of note, upon further sensitivity analysis, we also
determined that some of the top variables in the model were
site-specific (ie, oxytocin incremental dose for labor, intrapartum
tocolytic use, use of anesthesia nurse, and hospital type) for
transfusion outcomes specifically (data not included).

Figure 4. Top 25 predictors based on each model using intrapartum maternal factors predicting transfusion or postpartum hemorrhage (or both). GB:
gradient boosting; LR: logistic regression; MLP: multilayer perceptron; RF: random forest; SVC: support vector machine.
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Discussion

Principal Findings
In this study, LR and machine learning techniques were analyzed
and compared to develop prediction models for PPH and
transfusions. We found that the machine learning techniques,
particularly GB, performed best to predict PPH when PPH was
defined as blood transfusion or blood loss of greater than 1 L.
However, all prediction models had difficulties with calibration
when predicting the rare outcome of transfusion alone.

Clinical Implications
Risk assessment for PPH has been shown in a pre-post study
to reduce rates of blood transfusion and PPH [16]. However,
the risk stratification approaches most commonly used for PPH
in the United States were developed and implemented on the
basis of expert opinion, and subsequent validation studies have
revealed the limitations of these tools [17,18]. Validation studies
using the California Maternal Quality Care Collaborative
(CMQCC) risk assessment tool found that while the tool
generated populations with different rates of hemorrhage among
those stratified to low, medium, and high-risk groups, the rate
of PPH among women stratified in the high-risk group for PPH
was only 22% [19]. Others have found that the AUC-ROC for
the CMQCC and Association of Women's Health, Obstetric and
Neonatal Nurses’ (AWHONN’s) tools for predicting severe
PPH, defined by transfusion of at least 4 units packed red blood
cells during postpartum period, were relatively modest at 0.77
and 0.69, respectively [20]. Furthermore, parameters that are
included in PPH risk models based on univariate association
with PPH risk may not be independent predictors when
incorporated into multivariate models [20]. For these reasons,
improvements in PPH risk models are a promising target for
improving PPH care.

A previously published risk assessment for PPH using the CSL
data set demonstrated exceptional model performance, but model
performance was drastically lower in an external validation
cohort [21,22]. This study augments the findings of these prior
studies via incorporation of antepartum and intrapartum risk
factors. Nonetheless, additional work is needed before such a
model can be implemented in clinical practice. In particular, it
will be important to develop prediction models that are
implementable either through straightforward bedside data entry
or can be automated via real-time data capture from electronic
medical records, which are well validated in a variety of hospital
settings, and ideally, which are paired with recommended
risk-based interventions to reduce hemorrhage risk and mitigate
the occurrence of hemorrhage. In our study, among the top
predictors were variables that reflect patients’ access to care
and resources, such as hospital type and insurance. This
highlights the possible need for a layered prediction model,
which may help stratify patients who may need to be transferred
to a tertiary care center with more resources (using an
antepartum model focusing on patient factors along with hospital
factors to designate risk).

Research Implications
For all the intrapartum methods that we tested for predicting
transfusion or hemorrhage, the ROC-AUC values were greater
than 0.80, which is often cited as a threshold indicating adequate
discrimination. However, this conclusion is misleading because
in a situation where incidence of the outcome is low (here, it
was ~3% for transfusion or hemorrhage alone), the PPV, also
known as “precision,” is likely to be quite low. Our precision
for the best-performing model was ~13%, meaning that of those
predicted to be positive for the outcome, 13% were positive and
87% were negative. This may be satisfactory for clinical uses
where preventive interventions have very low cost (in terms of
both financial cost and added risk to the patient) but would not
be acceptable when the intervention is of higher risk or is more
expensive. In this situation, the PR-AUC provided a more
realistic measure of model quality. Precision/recall plots show
PPV (aka precision) as a function of sensitivity (aka recall);
thus, they account for true positives in positive predictions. In
contrast, the ROC-AUC emphasizes specificity, which is likely
to be very high when true positives are rare [23,24]. The metric
with the largest difference between the best and
worst-performing models is PR-AUC (0.16 vs 0.21). This metric
could be used more frequently in modeling studies when the
occurrence of the outcome of interest is ≤6%.

Strengths and Limitations
The strengths of this study include the use of a large, national
multicenter data set to develop a data-driven model that can
predict PPH using antepartum and intrapartum factors using
cutting-edge machine learning techniques. Furthermore, we
considered both commonly used end points such as estimated
blood loss greater than 1 L and clinically relevant end points
such as transfusion; this led us to conclude that due to a less
frequent occurrence and transfusion practice, variation made it
more challenging to develop a reliable model for transfusion
only.

Limitations of the study include the low reported precision of
algorithms. Sensitivity is prioritized for prediction, as clinically
missing PPH has more consequences than a false positive.
Therefore, the algorithms are trained to be biased toward
predicting positives resulting in lower false negative rates at
the risk of higher false positive rates and decreased precision.
As a result, as shown in the calibration plots, the models
systematically overstate hemorrhage risk. In this study, the
outcomes of interest were either a composite of transfusion or
blood loss of ≥1 L or transfusion only. Our PPH definition was
based on the American College of Obstetricians and
Gynecologists’ reVITALize program’s definition of PPH as
blood loss of ≥1 L or loss of blood with clinical signs of
hypovolemia within 24 hours of delivery. This definition
deviates from older traditional definitions that defined PPH as
≥500 mL for vaginal delivery and 1000 mL for cesarean delivery
[25]. Therefore, clinical care could have been guided by older
definitions, as the CSL data set was collected between 2002
and 2008 [21]. However, a strength of our study is the use of
EBL rather than a clinical designation of PPH so that we only
include patients who were designated to have an EBL above
the current threshold for PPH, that is, 1000 mL. Beyond that,
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measures of EBL have been shown to be imprecise with low
volumes overestimated and high volumes of blood loss
underestimated [26]. Furthermore, transfusion was used as a
proxy for PPH, and transfusion thresholds vary depending on
the institution and provider. In addition, the machine learning
algorithms are limited by the variables measured and accurately
recorded in the data set.

Conclusions
In conclusion, machine learning and data-driven statistical
modeling may offer more objective and discriminative prediction
of PPH based on individual antepartum and intrapartum patient
features, compared to expert opinion, and may improve upon
traditional regression models. This can increase the opportunity
for precision medicine and improved clinical care to reduce the
burden of PPH as a leading cause of maternal morbidity and
mortality.
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Abstract

Background: Carcinoma of unknown primary (CUP) is a subset of metastatic cancers in which the primary tissue source of
the cancer cells remains unidentified. CUP is the eighth most common malignancy worldwide, accounting for up to 5% of all
malignancies. Representing an exceptionally aggressive metastatic cancer, the median survival is approximately 3 to 6 months.
The tissue in which cancer arises plays a key role in our understanding of sensitivities to various forms of cell death. Thus, the
lack of knowledge on the tissue of origin (TOO) makes it difficult to devise tailored and effective treatments for patients with
CUP. Developing quick and clinically implementable methods to identify the TOO of the primary site is crucial in treating patients
with CUP. Noncoding RNAs may hold potential for origin identification and provide a robust route to clinical implementation
due to their resistance against chemical degradation.

Objective: This study aims to investigate the potential of microRNAs, a subset of noncoding RNAs, as highly accurate biomarkers
for detecting the TOO through data-driven, machine learning approaches for metastatic cancers.

Methods: We used microRNA expression data from The Cancer Genome Atlas data set and assessed various machine learning
approaches, from simple classifiers to deep learning approaches. As a test of our classifiers, we evaluated the accuracy on a
separate set of 194 primary tumor samples from the Sequence Read Archive. We used permutation feature importance to determine
the potential microRNA biomarkers and assessed them with principal component analysis and t-distributed stochastic neighbor
embedding visualizations.

Results: Our results show that it is possible to design robust classifiers to detect the TOO for metastatic samples on The Cancer
Genome Atlas data set, with an accuracy of up to 97% (351/362), which may be used in situations of CUP. Our findings show
that deep learning techniques enhance prediction accuracy. We progressed from an initial accuracy prediction of 62.5% (226/362)
with decision trees to 93.2% (337/362) with logistic regression, finally achieving 97% (351/362) accuracy using deep learning
on metastatic samples. On the Sequence Read Archive validation set, a lower accuracy of 41.2% (77/188) was achieved by the
decision tree, while deep learning achieved a higher accuracy of 80.4% (151/188). Notably, our feature importance analysis
showed the top 3 most important features for predicting TOO to be microRNA-10b, microRNA-205, and microRNA-196b, which
aligns with previous work.

Conclusions: Our findings highlight the potential of using machine learning techniques to devise accurate tests for detecting
TOO for CUP. Since microRNAs are carried throughout the body via extracellular vesicles secreted from cells, they may serve
as key biomarkers for liquid biopsy due to their presence in blood plasma. Our work serves as a foundation toward developing
blood-based cancer detection tests based on the presence of microRNA.
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Introduction

Carcinoma of unknown primary (CUP) originates when a patient
presents at diagnosis with malignant disease across the body;
yet, the cancer cells tissue of origin (TOO) remains
unidentifiable. Thus, CUP is a unique subset of metastasized
cancer representing an advanced stage in which cancer has
gained the ability to thrive in new tissue sites and has spread
from the primary tumor site. In the United States, an estimated
31,490 people were diagnosed with cases of cancer of unknown
TOO in 2008. This accounts for nearly 3%-5% of all cancer
cases [1] and given the lack of knowledge on tissue response
to current therapeutics the median survival of patients remains
only 3-9 months [2]. In many cases of CUP, the primary site is
never identified, preventing the use of treatment that can be
effective for the true TOO [3,4]. It has been demonstrated that
pinpointing the primary site can significantly increase survival
rates by enabling precise and targeted treatment [5].

Unfortunately, primary tumor identification poses various
challenges. Techniques such as serum tumor markers and
imaging tests are used to identify the TOO, although only 30%
of these tests are successful. Moreover, some positive findings
can be misleading [6] and CUP diagnostic workups are often
time-consuming, expensive, and unsuccessful [7]. These
difficulties have spurred interest in using genetic expression
data, such as microRNA, to identify the TOO.

MicroRNAs belong to a class of noncoding regulatory RNAs,
small single-stranded RNA molecules that are between 19 and
25 nucleotides long and are involved in the regulation of gene
expression of mRNAs. MicroRNAs hold promise as informative
biomarkers for cancer due to their significant involvement in
cellular processes such as cell division, apoptosis, proliferation,
and oncogenesis [8]. Beyond their intracellular role in gene
regulation, microRNAs may be carried throughout the body via
extracellular vesicles secreted from cells and have been
identified in the blood. Additionally, microRNA, unlike mRNA,
is characterized by resistance to extreme temperatures and pH.
This makes microRNAs far more stable biomarkers [9,10].

Previous work [11] demonstrates that microRNA expression is
more informative in classifying tumor samples by their origin
in comparison to mRNA. Specifically, microRNAs are better
at classifying poorly differentiated tumors [12]. Moreover,
microRNAs have shown great potential for identifying TOO
for cancers of unknown primary origin [13]. MicroRNAs have
been investigated as prognostic and diagnostic biomarkers
extensively in the research community and have even been
found to be deregulated in numerous cancers [14].

With the wide availability of large data sets containing gene
expression data, computational techniques such as machine
learning have emerged as promising tools for improving TOO

detection. Machine learning implementations have increased
accuracy in predicting cancer and have the potential to improve
the diagnosis, prognosis, and therapy selection for patients with
cancer [15]. The 3 traditional machine learning models are
decision trees, random forests, and logistic regression. Decision
trees [16] attempt to partition the training set into subsets that
contain samples of only one class, thereby predicting the class
of interest. Random forests are ensemble classifiers, combining
multiple trees for higher accuracy [17]. In contrast, logistic
regression is a predictive algorithm to find a model that can
predict categorical output [18]. Deep learning is a subset of
machine learning designed to mimic the human brain through
the use of artificial neural networks by using many layers and
larger data sets. Generally, deep learning techniques are well
suited for discovering and recognizing complex patterns in data
that traditional machine learning methods can often miss. The
increasing incorporation of deep learning in health care along
with the availability of highly characterized cancer data sets has
further accelerated research into the applications of deep
learning in the analysis of the biology of cancer [19].

Given the complexities of diagnosing a TOO from a cancer that
has spread throughout the body, previous investigators have
applied machine learning methods to determine TOO for
metastasized cancers [20,21]. Longstanding techniques of
microarrays and polymerase chain reaction have been used for
the generation of machine learning models for CUP detection,
including support vector machines with 89% accuracy [22] and
the k-nearest neighbor algorithm with 82% accuracy [23,24].
LoCUP, a TOO classifier, was the first machine learning model
using a multinomial logistic regression classifier with ridge
penalties to incorporate tumor purity and reached a 95.8%
accuracy [25]. Cup AI Dx [20] used mRNA gene expression
data from The Cancer Genome Atlas (TCGA) data set to train
a network based on the popular inception model [22] to identify
the TOO, achieving an accuracy of 96.7% on a validation set
of 354 TCGA metastatic samples. The TOD-CUP method [21]
addressed the variation in mRNA platforms and used a gene
expression rank–based majority vote algorithm to achieve an
overall accuracy of 94%. Early work with microRNAs and
nondeep learning machine learning algorithms showed 84%
accuracy with k-nearest neighbor models [26] and binary
decision trees at 85% [27]. However, the investigation of deep
learning machine learning models may improve these accuracies
with TOO detection by microRNA. MicroRNAs are also at the
forefront of extracellular vesicle liquid biopsy development and
may be better suited for the noninvasive classification of TOO
[28].

This study sets out to explore the possibility of developing a
model for using microRNA profiles from metastatic tissues to
determine the TOO through the application of deep learning
techniques. Successful TOO detection from microRNAs will
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provide a route for cancer detection without requiring samples
from the primary tumor site in cases of CUP malignancies. We
hypothesize that we would be able to predict the origin of
metastatic tumors with higher accuracy than previous reports
by leveraging larger data sets of microRNA profiles from both
normal and primary site tissues to train the model.

The data for this project were collected from TCGA data set
[29] and the Sequence Read Archive (SRA) [30] from
microRNA tissue expression database. The TCGA data set
contains samples from 18 different cancer types representing
9648 samples, of which 365 were metastatic, 633 were solid
normal, and 8650 were from the primary tumor site. Each
sample consisted of microRNA expression data, available as
RPM (reads per million mapped reads), as well as metadata
including age and gender. We split TCGA data set into a
combined primary tumor or solid normal samples training set
and a metastatic sample test set. We then further split the
primary tumor and solid normal samples into a training and
validation set with a 9:1 ratio. The training set consisted of 8355
samples and the validation set consisted of 928 samples.

We use 2 data sets for evaluating the performance of our models.
The SRA test data set consisted of 194 samples from 5 different
cancer types, all of which were from the primary tumor. We
also used the metastatic samples from TCGA data set as our
final test data set, which contained samples from 6 cancer types.
We developed 4 machine learning models, a decision tree
classifier, random forest, logistic regression, and finally, a deep
learning model. Our deep learning model performed with the
highest accuracy, achieving an accuracy of 97% in detecting
TOO for metastatic samples and 80.4% on the nonmetastatic
SRA cohort. Feature importance analysis revealed the top 3
differentiating microRNA targets as microRNA-10b,

microRNA-196b, and microRNA-205, which confirms prior
investigations on microRNAs associated with metastatic cancer
[31-33].

Methods

Data Sets
In Figure 1, we outline the data preprocessing pipeline. Our
study analyzed published data and did not generate any new
sequencing data. TCGA data were obtained [29]. Data were
further filtered by querying the Genomics Data Commons via
the Application Programming Interfaces specified [34]. We
restricted the tissue type to be one of the primary tumors, solid
tissue normal, or metastatic. We further restricted the data to
microRNA transcriptome profiling and picked data
corresponding to 18 types of cancer each containing a sufficient
number of samples, obtaining 9648 files (Figure 2 and Table
S1 in Multimedia Appendix 1).

To obtain the SRA data, we used the microRNA tissue
expression database portal and restricted the cancer types to 6
types of cancer, seen in further detail in Figure 2. We obtained
207 samples, each containing expression data for 2656
microRNAs. After removing samples with missing features,
194 samples were remaining.

We selected microRNA features that were expressed in at least
50% (4824/9648) of the samples, which reduced the number of
features in the TCGA data set from 1889 to 562. We then picked
the common features between the SRA data set and the TCGA
data set, reducing this number to 497. On both data sets, we
normalized the RPM of the selected features per sample to sum
to a million. We then transformed the RPM values using the
transformation log(RPM + 1) to restrict the range of the input.
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Figure 1. Overview of our data processing pipeline. Data from the TCGA GDC portal and SRA miTED portal was obtained. Underexpressed microRNA
and samples containing missing features from the miTED data were filtered. Common features were selected between both data sets, reducing the
number of microRNA to 497. Features were normalized as reads per million per sample and log-transformed. TCGA data set was split into (1) the
primary tissue and solid normal set and (2) the metastatic test set. The first, combined, set was further split into a training and validation set. GDC:
Genomics Data Commons; miTED: microRNA tissue expression database; SRA: Sequence Read Archive; TCGA: The Cancer Genome Atlas.
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Figure 2. The Cancer Genome Atlas (TCGA) data set distribution across tissue of origin (TOO). Distribution of the different cancer samples in the
TCGA data set that are from the primary tumor site, solid tissue, or metastatic. Note that metastatic samples primarily corresponded to the skin as the
TOO.

Training Procedure
For the implementation of decision tree, random forest, and
logistic regression classifiers, the sklearn package was used
[35]. We used classification accuracy as the primary metric to
evaluate our models. Deep learning models were created with
PyTorch (Meta AI) [36]. To optimize and train our neural
network, we used Adam optimizer and trained for 50 epochs.
Since our objective was classification, we used softmax with
cross-entropy loss [37] to optimize the model. We used the
validation set to determine the hyperparameters of the models
and picked the best-performing model for further evaluation on
the test set. Feature importance was calculated with sklearn’s
permutation feature importance function.

Ethical Considerations
This study was conducted in accordance with the ethical
standards of the Salve Regina University ethical standards. The
research study was reviewed by the institutional review board
of Salve Regina University and was determined to be exempt
from further review as per criteria contained in Title 45 CFR
§46.104(d) section 4ii of federal regulations. As such, the study
used only publicly available deidentified or anonymized data,
and the project was reviewed (Exemption #Wise.2024.6.11).

Results

In order to develop a model to detect TOO, we set out to find
the best-performing machine learning model for determining
the TOO from the TCGA primary tumor and solid normal tissue
cohorts. The models were then tested on the validation set, and
we could accurately determine the TOO based on primary or
normal microRNA profiles, with an accuracy of over 90% for
15 of 18 different tissue types using deep learning (Table 1 and
Table S2 in Multimedia Appendix 1).

We can note that the deep learning model performs consistently
the highest on the validation set, with logistic regression and
random forest classifiers providing comparable performance.

We then set out to apply our best-performing deep learning
model and evaluate its performance on the SRA test set that

contains microRNA expression data from primary tumors (Table
2). We accurately determined the TOO with an accuracy of over
90% (90/100) for 3 of the 5 cancer types but saw a decrease in
accuracy for bladder and colorectal cancer.

Finally, we analyzed our deep learning model on microRNA
expression data from metastatic tissue samples in the TCGA
data set (Table 3). We accurately determined the TOO with an
accuracy of over 85% (308/362) for all cancer types with an
average of 97% (351/362).

Since random forest and logistic regression classifiers provided
comparable performance on the primary or normal validation
set, we compared the classifier accuracy on both test sets for
all created models (Table 4).

The input features of our models consist of microRNA
expression data common to TCGA and SRA data sets. Figure
3 describes the overall architecture of the model, which consists
of 2 linear layers. The second layer has 18 outputs,
corresponding to each cancer type. The cancer type corresponds
to the output with the maximum value.

We used dropout for the input layer [38] as it is a common
technique to improve model accuracy and reduce overfitting.
We also augmented our input data with noise.

To evaluate the performance of our models, we computed
confusion matrices for performance on metastatic samples
(Figure S2A and S2B in Multimedia Appendix 1) and plotted
the receiver operating characteristic curves for performance on
metastatic skin cancer (Figure S2C and S2D in Multimedia
Appendix 1), as the majority of the metastatic samples were
obtained from skin cancer cases. We observed that the deep
learning model performed significantly better than our decision
tree model, which was consistent when evaluated on the SRA
validation cohort (Figure S3 in Multimedia Appendix 1). To
illustrate the effectiveness of our models, we created Sankey
plots representing the deep learning model performance on
metastatic samples from the TCGA data set and primary tissue
sites from the SRA data set (Figure 4).

JMIR Bioinform Biotech 2024 | vol. 5 | e56538 | p.108https://bioinform.jmir.org/2024/1/e56538
(page number not for citation purposes)

Raghu et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Model accuracies on the validation test set. Performance of 4 models for the identification of tissue of origin. The validation set consists of
both primary tumor and solid normal tissue samples from The Cancer Genome Atlas data set.

Deep learning (%)Logistic regression (%)Random forest (%)Decision tree (%)Cancer type

99.296.999.291.6Breast (n=131)

94.590.410076.7Uterus (n=73)

10093.891.689.6Ovary (n=48)

10010010094.5Prostrate (n=54)

88.994.494.561.1Testis (n=18)

98.282.995.781.1Lung (n=117)

10099.110094.8Kidney (n=116)

88.588.595.771.4Bladder (n=35)

83.354.129.233.3Esophagus (n=24)

10097.610097.6Liver (n=42)

10095.29555.0Pancreas (n=20)

10010085.742.8Pleura (n=7)

10094.798.285.6Colorectal (n=57)

10010010066.6Skin (n=6)

91.175.597.882.2Stomach (n =45)

100100100100Brain (n=47)

93.778.178.162.5Cervix (n=32)

10010010098.1Thyroid (n=55)

97.296.495.384.6Overall—across cancer types

Table 2. Performance of our deep learning model for the identification of tissue of origin on the primary tissue site cohorts from the SRAa.

SRA test accuracy—deep learning (%)Cancer type

91.6Breast (n=44)

100Prostrate (n=37)

100Lung (n=19)

80Bladder (n=10)

58.9Colorectal (n=78)

N/AbSkin (n=0)

80.4Overall—across cancer types

aSRA: Sequence Read Archive.
bN/A: not applicable.
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Table 3. Performance of our deep learning model for the identification of tissue of origin in metastatic tumor tissue.

TCGAa metastatic test accuracy—deep learning (%)Cancer type

85.7Breast (n=7)

100Prostrate (n=1)

N/AbLung (n=0)

100Bladder (n=1)

100Colorectal (n=1)

97.4Skin (n=352)

97Overall—across cancer types

aTCGA: The Cancer Genome Atlas.
bN/A: not applicable.

Table 4. Accuracy of developed models on metastatic and SRAa test sets. The accuracy for all 4 models is presented on the TCGAb metastatic and
SRA cohorts. The decision tree classifier had a depth of 14 and the random forest had a depth of 19.

Accuracy on SRA test set (%)Accuracy on TCGA metastatic test set (%)Classifier

41.262.5Decision tree

74.294.2Random forest

71.693.2Logistic regression

80.497Deep learning

aSRA: Sequence Read Archive.
bTCGA: The Cancer Genome Atlas.

Figure 3. A schematic of the machine learning model architecture. MiRNA: microRNA.
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Figure 4. Sankey plot for deep learning model on Sequence Read Archive (SRA) and The Cancer Genome Atlas (TCGA) test data sets. (A) On the
TCGA data set, our deep learning model is able to correctly classify 333 out of 343 metastatic skin cancer samples, demonstrating high accuracy. (B)
On the SRA test data set, we show representative plots for breast and colon cancers, showing high accuracy for breast cancer tissue of origin identification.
(C) The model performance on colon cancer is less accurate due to microRNA expression consistently overlapping for colon and stomach cancers [40].

These results confirm our hypotheses and show that we were
able to predict the TOO with high accuracy using deep learning.
Furthermore, our findings demonstrated that deep learning
techniques significantly increase the accuracy in comparison to
decision tree, logistic regression, and random forest models.

To reveal the significance of individual features, we performed
feature importance analysis using the permutation feature
importance method (Figure 5A). The top 3 microRNAs
contributing to our deep learning model based on our combined
normal and primary site training set are microRNA-10b,
microRNA-196, and microRNA-205. MicroRNA-10b has been
shown to function as a metastasis-promoting factor in many
cancer types. In fact, it was one of the first microRNAs to have
been discovered with aberrant expression in cancer cells [31].
MicroRNA-196 has been linked to the progression of many

cancers, notably metastatic colorectal cancer [32], while
microRNA-205 expression is downregulated in metastatic breast
and prostate cancer [33].

To further understand the significance of the identified important
features, we compute a heat map (Figure 5B) showing the
microRNA expression values for the top 10 microRNA features
for samples in the training data set. Visually, it is apparent that
the microRNA features can be used to distinguish the cancer
type. To further validate this, we perform principal component
analysis and t-SNE analysis using only the top 10 features
(Figures 5C and 5D). We note that the t-SNE plot shows a clear
separation of features into distinct clusters corresponding to
each cancer type, showing the significance of the features for
detecting the TOO.
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Figure 5. MicroRNA feature importance visualizations. (A) Permutation feature importance for the top 3 microRNA candidates. A bar graph of the
importance values for the 3 top microRNA candidates for the logistic regression model. (B) MicroRNA expression heatmap. MicroRNA expression
values for the top 10 most important features (as determined by permutation feature importance) for a subset of samples. The top 10 microRNA features
can cluster cancer type. Low mir-205 and mir-944 and a high mir-10b are indicative of colorectal cancer. Similarly, low expressions for microRNA-429,
microRNA-483, microRNA-215, microRNA-944, microRNA-1247, microRNA-375, and microRNA-205 are indicative of kidney cancer. (C) PCA
visualization. (D) t-SNE visualization. PCA and t-SNE visualization of data corresponding to the 6 cancer types with the most samples in our data set,
using only the top 10 microRNA features. In the PCA plot, note that there is significant overlap between the cancer types, while in the t-SNE plot, the
cancer types are well separated, suggesting that with 10 microRNA features, machine learning models may correctly identify patterns and predict tissue
of origin. PCA: principal component analysis; t-SNE: t-distributed stochastic neighbor embedding.

Discussion

Principal Findings
In these investigations, while using successively more powerful
classifiers, we were able to detect the TOO on solely metastatic
cancer samples with accuracies ranging from 62.5% (226/362)
with a decision tree to 97% (351/362) with a deep learning
model. Our methods show that one can leverage larger amounts
of gene expression data for primary and solid tissue normal
tumor samples (~10,000 samples) to come up with accurate
classifiers to determine TOO for metastatic cancer (currently
limited to ~300 samples). In order to verify the robustness of
our model, we assessed its performance on primary tumor data
from the SRA and obtained accuracies ranging from 41.2%
(77/188) with decision tree to 80.4% (151/188) when using deep
learning. Our methods have also identified promising microRNA
candidates, reaffirming prior research in this field and
demonstrating the potential of machine learning.

The predominant failure of our model on the SRA test cohort
was within colorectal cancer as can be seen in Figure 4C. Many
colorectal samples were incorrectly classified as stomach or
gastric cancer. This is consistent with previous research in this
area as microRNA expression profiles for gastrointestinal
cancers show significant overlap [39]. In addition, colorectal

and stomach cancer are often synchronous with probabilities
ranging from 20.1% to 37.2% [40].

We used permutation feature importance, a model-agnostic
metric that permutes features across samples in the test set to
assess the change in model accuracy. The results are in line with
existing research in this area and serve as a good indicator of
the feasibility of machine learning techniques to identify
promising biomarkers.

Limitations
To effectively use our model in clinical care, accuracy must be
improved further. Our model currently performs with an
accuracy of 97% (351/362). While this may seem impressive,
clinical classifiers should be highly accurate so that there are a
negligible number of cases with errors in identifying TOO. To
improve the accuracy, the accumulation of larger data sets is
necessary, and as the noncoding genome continues to reveal
significant contributions to cancer, we predict that available
data sets will expand. A further limitation to our study is that
the available microRNA metastatic data sets are predominantly
skin cancer. Thus, access to a larger, more varied, data set would
improve our assessment of model performance. Furthermore,
in order to develop a truly noninvasive method of TOO
identification relevant to all cancers, it would be ideal to extend
our method to microRNA expression data from blood samples.
Detecting the TOO through blood-based microRNA biomarkers
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would significantly impact the diagnosis and treatment of
patients with CUP. Additionally, our model cannot differentiate
between tumor and solid tissue normal samples, as it was
designed to identify the TOO specifically.

Conclusions
To summarize, our developed machine learning models can
accurately identify the TOO with high accuracy from microRNA
expression data when trained on primary tumor and solid tissue

samples. Importantly, our results identified key microRNA
differentiators of tissue type. Our models are robust and perform
well across different data sets (TCGA and the SRA data set).
We look forward to developing further deep learning models
that can accurately detect TOO as microRNA data sets expand,
with the goal of having a noninvasive test for diagnosing the
presence of cancer and determining cancer TOO with high
accuracy.
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Abstract

Background: Despite growing interest in the clinical translation of polygenic risk scores (PRSs), it remains uncertain to what
extent genomic information can enhance the prediction of psychiatric outcomes beyond the data collected during clinical visits
alone.

Objective: This study aimed to assess the clinical utility of incorporating PRSs into a suicide risk prediction model trained on
electronic health records (EHRs) and patient-reported surveys among patients admitted to the emergency department.

Methods: Study participants were recruited from the psychiatric emergency department at Massachusetts General Hospital.
There were 333 adult patients of European ancestry who had high-quality genotype data available through their participation in
the Mass General Brigham Biobank. Multiple neuropsychiatric PRSs were added to a previously validated suicide prediction
model in a prospective cohort enrolled between February 4, 2015, and March 13, 2017. Data analysis was performed from July
11, 2022, to August 31, 2023. Suicide attempt was defined using diagnostic codes from longitudinal EHRs combined with 6-month
follow-up surveys. The clinical risk score for suicide attempt was calculated from an ensemble model trained using an EHR-based
suicide risk score and a brief survey, and it was subsequently used to define the baseline model. We generated PRSs for depression,
bipolar disorder, schizophrenia, suicide attempt, and externalizing traits using a Bayesian polygenic scoring method for European
ancestry participants. Model performance was evaluated using area under the receiver operator curve (AUC), area under the
precision-recall curve, and positive predictive values.
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Results: Of the 333 patients (n=178, 53.5% male; mean age 36.8, SD 13.6 years; n=333, 100% non-Hispanic and n=324, 97.3%
self-reported White), 28 (8.4%) had a suicide attempt within 6 months. Adding either the schizophrenia PRS or all PRSs to the
baseline model resulted in the numerically highest discrimination (AUC 0.86, 95% CI 0.73-0.99) compared to the baseline model
(AUC 0.84, 95% Cl 0.70-0.98). However, the improvement in model performance was not statistically significant.

Conclusions: In this study, incorporating genomic information into clinical prediction models for suicide attempt did not improve
patient risk stratification. Larger studies that include more diverse participants are required to validate whether the inclusion of
psychiatric PRSs in clinical prediction models can enhance the stratification of patients at risk of suicide attempts.

(JMIR Bioinform Biotech 2024;5:e58357)   doi:10.2196/58357

KEYWORDS

polygenic risk score; suicide risk prediction; suicide attempt; predictive algorithms; genomics; genotypes; electronic health record;
machine learning

Introduction

Between 2000 and 2018, suicide rates increased by 37%, making
suicide one of the leading causes of death in the United States
[1]. Data from US health care systems show that most
individuals who die by suicide in the United States had health
care visits in the month preceding their death, highlighting
opportunities for health care providers to identify and intervene
with those at risk for suicide-related behavior [2].

We previously developed and validated a prognostic model
combining electronic health records (EHRs) and a brief
patient-reported survey that was able to prospectively predict
short-term risk for suicide attempts after an emergency
department (ED) visit for psychiatric problems [3]. This study
was designed to extend our previous work by evaluating whether
adding polygenic risk scores (PRSs) for neuropsychiatric
phenotypes can improve the predictive performance of models
trained on clinical data (EHR + survey) alone.

The incorporation of PRSs into data-driven prediction models
could be justified if PRSs sufficiently improved predictive
performance and were paired with evidence-based interventions.
Although integrating PRSs into clinical workflows presents
implementation challenges, there is increasing momentum
toward the broad implementation of genomic information in
health care practice [4]. As the cost of genome sequencing
continues to decrease, genomic data are expected to ultimately
become a standard component of patient health care records.
The goal of this paper was to provide a first look at whether
such information might in fact provide predictive enhancements
that could justify its use.

Methods

Sample
Eligible patients for this study were those who participated in
our previous study [3] of adult patients visiting the ED between
February 4, 2015, and March 13, 2017; had their blood samples
genotyped through their participation in the Mass General
Brigham (MGB) Biobank [5] (88% self-reported White); and
had nonmissing information on suicide attempt(s) within 6
months following their ED discharge. In total, 333 patients with
genetically identified European ancestry met the eligibility
criteria and demonstrated a suicide attempt prevalence of 8.4%

(n=28) at the 6-month follow-up (n=178, 53.5% self-reported
male and n=324, 97.3% self-reported White). Although our
previous study [3] also examined suicide attempts at 1 month
after ED discharge, the event rate within this window was too
low to permit stable estimates. The study sample differed
significantly from the original cohort [3] by age (P<.001),
self-reported race (P<.001) and ethnicity (P=.06), insurance
type (P=.001), and patterns of health care utilization (P<.001;
see Multimedia Appendix 1 [3]). Details on recruitment,
informed consent process, and data collection can be found in
Boutin et al [5] (for the MGB Biobank study) and Nock et al
[3] (for the suicide prediction study).

Outcome
The primary outcome was any suicide attempt within 6 months
of the ED visit based on either follow-up surveys or a review
of linked EHRs [3]. For the latter, we used the International
Classification of Diseases, Ninth Revision (ICD-9) and
International Classification of Diseases, Tenth Revision
(ICD-10) to identify qualifying diagnostic codes for suicide
attempts that we previously validated [6,7].

Predictors
We extracted the predicted probabilities from the
best-performing ensemble model from our previous work [3]
for 6-month suicide attempts. This model incorporated
patient-reported surveys, a previously developed EHR-based
suicide risk score, and sociodemographic characteristics (eg,
age, sex, income, education, race and ethnicity, and employment
status). In addition, we generated PRSs for depression, bipolar
disorder, schizophrenia, suicide attempt, and externalizing traits
derived from the largest available European ancestry
genome-wide association study of these phenotypes using a
Bayesian polygenic risk scoring method called “PRS-CS” (see
Multimedia Appendices 2 and 3) [8]. We subsequently
residualized individual disorder PRSs for biological sex, age,
genomic chip, and the top 20 principal components for
population stratification to adjust for potential confounding.

Statistical Analysis
We first established the baseline model by fitting our previously
validated suicide risk score and calculated patient risk
stratification accuracy (measured using the area under the
receiver operating characteristic curve [AUC], area under the
precision-recall curve [AUPRC], and positive predictive value
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[PPV]). We then added each PRS to the baseline model to
evaluate whether adding individual disorder PRSs would
improve the AUC, AUPRC, or PPV. Lastly, we incorporated
all 5 PRSs to examine whether incorporating multiple
neuropsychiatric PRSs would increase the predetermined metrics
more than adding individual disorder PRSs to the baseline model
alone.

In addition to fitting logistic regression models, we used the
SuperLearner stacked generalization approach that combines
predictions across a range of algorithms, including those that
can capture nonlinear relationships (see Multimedia Appendix
4) [9]. We used 10-fold stratified cross-validation in a 70%
training sample (ntrain=235) to develop the models and evaluated
the models in a 30% holdout sample (nholdout=98). There were
no significant differences in sample characteristics and feature
distributions between the train and holdout samples (all P>.05;
see Multimedia Appendix 5). All statistical analyses were
conducted using R software (version 4.1.2; R Foundation for
Statistical Computing).

Ethical Considerations
The study procedures were approved by the Institutional Review
Boards of Harvard University and MGB (protocol code
2010P000246, approved on February 18, 2010). Additionally,
the MGB Biobank study was conducted in accordance with the
Declaration of Helsinki and approved by the MGB Institutional
Review Board (protocol code 2009P002312, approved on April
29, 2010), with no compensation provided to participants. This
study involves secondary analyses using de-identified data from

the original studies, which is covered under the initial consent
and IRB approval, without requiring additional consent.

Results

Model Discrimination
The baseline model for 6-month suicide attempts had an AUC
of 0.84 (95% CI 0.70-0.98; see Figure 1 and Multimedia
Appendix 6). Models that included individual disorder PRSs
alone had modest or poor AUC, with the schizophrenia PRS
having the highest AUC (0.58, 95% CI 0.41-0.76), followed by
the bipolar disorder PRS (0.56, 95% CI 0.39-0.73). When
individual disorder PRSs were added to the baseline model, the
logistic regression and the ensemble models that included the
schizophrenia PRS and clinical risk score had the highest AUC
(0.86, 95% CI 0.73-0.99), followed by ensemble models each
including the suicide PRS and externalizing disorder PRS, but
these provided only a modest numerical increase in AUC
compared to the baseline model alone (see Figure 1). In general,
there was no improvement in AUC when adding the PRS for
depression or bipolar disorder to the clinical risk score.
However, we observed a numerically higher AUC when the
depression PRS was incorporated using an ensemble approach
than using logistic regression. The ensemble model that included
the clinical risk score and all 5 PRSs had the same AUC (0.86,
95% CI 0.72-0.99) as the ensemble model including the
schizophrenia PRS and clinical risk score and had nearly the
same AUC as the logistic regression including the same set of
features.
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Figure 1. Patient risk stratification accuracy from SuperLearner models estimated using the train (in green) and holdout (in orange) samples. The y-axis
is sorted based on the AUC point estimates in the holdout sample. The red line represents the reference AUC point estimate from the baseline model
in the holdout sample and is depicted to facilitate visual comparison of AUC estimates across different model configurations. Baseline: baseline clinical
risk score for suicide attempt; BIP: bipolar disorder; DEP: depression; EXT: externalizing traits; PRS: polygenic risk score; SCZ: schizophrenia; SUI:
suicide attempt; w: with; w/o: without.

Model Performance
We examined precision-recall curves to see how PPV varies
across levels of sensitivity with the goal of explaining the
best-performing model, which included the clinical risk score
and schizophrenia PRS (see Figure 2). All models that included
the clinical risk score were comparable in identifying 40% to
50% of suicide attempt cases within 6 months after ED
discharge, indicating a higher sensitivity than the models only
including individual disorder PRSs (see Multimedia Appendix

7). Specifically, shown in Figure 2, the baseline model had a
higher PPV (26%-50%) than the other models when the
sensitivity was in the 0.05 to 0.35 range. The models including
the clinical risk score with or without PRSs had the same PPV
(13%-26%) when the sensitivity was in the 0.4 to 1.0 range,
and the model with the schizophrenia PRS alone had a lower
PPV (12%-18%). AUPRC was 0.42 for the baseline model but
reached 0.45 when the schizophrenia PRS was added, which is
consistent with the observed improvement in AUC with the
same model configuration.
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Figure 2. A precision-recall curve for predicting suicide attempt within 6 months after an ED discharge. AUPRC: area under the precision-recall curve;
ED: emergency department; PRS: polygenic risk score; SCZ: schizophrenia.

Discussion

Principal Findings
We found modest evidence suggesting that the integration of
the PRS for schizophrenia (but the PRSs for not the other related
phenotypes) might enhance the prediction of short-term risk for
suicide attempt in patients discharged from the ED; both the
AUC and AUPRC were numerically, although not significantly,
higher when the schizophrenia PRS was added to the baseline
clinical model. The improved predictive performance is likely
explained by the higher heritability and statistical power of the
schizophrenia PRS compared to the other PRSs examined in
this study (see Multimedia Appendix 8). However, while
heritability provides a compelling explanation, it does not fully
account for the schizophrenia findings, as the predictive power
of PRSs is also influenced by factors such as genetic architecture
and heterogeneity in phenotype ascertainment. Furthermore,

given the high dimensionality of the phenotypic features in the
suicide prediction model, the addition of 1 or more PRSs is
expected to have only a modest effect on prediction accuracy.

Limitations
Nevertheless, the nonsignificant improvement in performance
we observed should be interpreted in light of our limited study
sample size and statistical power of neuropsychiatric PRSs. Of
the PRSs we examined, only the schizophrenia PRS was well
powered (88%) to detect an association with suicide attempt in
the holdout sample.

Future Work
Future studies utilizing larger biobank samples will enable a
more robust and well-powered evaluation of the potential utility
of PRSs in enhancing patient risk stratification in high-risk
clinical settings. For instance, larger samples could facilitate
the training of separate, context-specific baseline models using
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EHR and survey data from patients with schizophrenia or bipolar
disorder, followed by the integration of the respective PRSs
into each model. Such an approach would provide a more
nuanced understanding of the clinical relevance of PRSs and
their potential role in improving risk stratification and patient
outcomes.

Conclusions
In conclusion, we did not observe a substantial benefit of adding
psychiatric PRSs to EHR and survey-based prediction models
of suicide attempt in an ED setting. Given the importance of
optimizing risk stratification to inform suicide prevention,
further studies in large, diverse samples are warranted to clarify
the value of incorporating genomic risk factors.
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Abstract

Background: An increasing body of literature highlights the integration of machine learning with genomic data in psychiatry,
particularly for complex mental health disorders such as schizophrenia. These advanced techniques offer promising potential for
uncovering various facets of these disorders. A comprehensive review of the current applications of machine learning in conjunction
with genomic data within this context can significantly enhance our understanding of the current state of research and its future
directions.

Objective: This study aims to conduct a systematic scoping review of the use of machine learning algorithms with genomic
data in the field of schizophrenia.

Methods: To conduct a systematic scoping review, a search was performed in the electronic databases MEDLINE, Web of
Science, PsycNet (PsycINFO), and Google Scholar from 2013 to 2024. Studies at the intersection of schizophrenia, genomic
data, and machine learning were evaluated.

Results: The literature search identified 2437 eligible articles after removing duplicates. Following abstract screening, 143
full-text articles were assessed, and 121 were subsequently excluded. Therefore, 21 studies were thoroughly assessed. Various
machine learning algorithms were used in the identified studies, with support vector machines being the most common. The
studies notably used genomic data to predict schizophrenia, identify schizophrenia features, discover drugs, classify schizophrenia
amongst other mental health disorders, and predict the quality of life of patients.

Conclusions: Several high-quality studies were identified. Yet, the application of machine learning with genomic data in the
context of schizophrenia remains limited. Future research is essential to further evaluate the portability of these models and to
explore their potential clinical applications.

(JMIR Bioinform Biotech 2024;5:e62752)   doi:10.2196/62752

KEYWORDS

schizophrenia; genomic data; machine learning; artificial intelligence; classification techniques; psychiatry; mental health;
genomics; predictions; ML; psychiatric; synthesis; review methods; searches; scoping review; prediction models
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Introduction

Schizophrenia is a complex mental health disorder that can have
a significant negative impact on patients’ resilience, quality of
life, and self-esteem [1]. Considering the heterogenous nature
of schizophrenia, several fields of research, such as genomics,
also use the terminology psychotic disorder spectrum to refer
to schizophrenia-like disorders [2]. Furthermore, while
untreated, this mental health condition can lead to violence and
violent offending [3]. A recent review of the literature estimated
that schizophrenia has the highest societal cost among all mental
health diseases. Indeed, reports from 10 countries estimated
schizophrenia-related costs per person per year to be around
US $2004-$94,229, with considerable variability amongst
countries [4]. Despite several treatments being available, such
as antipsychotics (dopamine receptor antagonists and partial
agonists), up to 20%-30% of patients will remain
treatment-resistant, and further approaches, such as cognitive
behavioral therapy, will be used as adjuncts [5-7]. Various
studies have explored the diverging clinical presentations of
patients with schizophrenia and developed complexity estimators
to aid clinicians in understanding the neuropathological
processes involved in this complex illness [8,9]. Among recent
research, several key factors have been identified as being linked
to the development of the disorder, such as the length of the
first psychotic episode, hormonal variations, as well as the
presence of negative symptoms [10]. Despite the current
knowledge that early interventions can help in the prognosis of
patients diagnosed with schizophrenia, no prediction model is
used in clinical practice as they usually do not account for
variance between individuals [11].

To account for this variance and the dimensional aspects of
schizophrenia, there have been tremendous efforts to gather
genomic data and in-depth knowledge of neurobiological aspects
of this disorder [12]. The entirety of the genetic information
contained in an organism’s DNA is referred to as genomic data
[13-15]. This comprises details on gene structure, function, and
variation in addition to the nucleotide sequence (adenine,
thymine, cytosine, and guanine) found in the genome [16].
Genomic data is used to research the genetic contributions to
traits, diseases, and biological processes [17]. It includes a
variety of genetic information, such as single nucleotide
polymorphisms (SNPs), copy number variations (CNVs), and
gene expression patterns [18]. Worldwide collaborations have
resulted in genome-wide association studies (GWAS) in over
56,000 schizophrenia cases and 78,000 controls, which identified
270 distinct genetic loci and polygenic risk scores, which can
currently explain around 7.7% of the variance in schizophrenia
case-control status [19]. Despite over 300 studies on gene
expression in schizophrenia conducted over the past 15 years,
none has consistently identified specific genes that contribute
to schizophrenia risk [20]. Due to the complexity of
schizophrenia, novel approaches are essential to better
understand its neurobiological basis and improve outcome
predictions, as it involves a network of genetic, neural,
behavioral, and environmental factors [21].

Among novel approaches, machine learning has been
increasingly used in the latest decade for various applications

in medicine [22]. Machine learning is a branch of artificial
intelligence that deals with teaching computers how to learn
from and make predictions or judgments based on data through
the use of statistical models and algorithms [23,24]. It focuses
on creating systems that, through experience, may naturally
perform better on a given task without having to be specifically
designed to do so [25]. Data used by machine learning
algorithms are referred to as model features [26]. Recent
advancements in the field of data science have demonstrated
that precision and genomic medicine combined with artificial
intelligence have the potential to improve patient health care
[27]. Examples of such advancements are the possibility of
conducting variant calling, genome annotation and variant
classification, and phenotype-to-genotype correspondence by
using machine learning algorithms [28]. While existing literature
reviews have explored specific applications of machine learning
using genomic data for schizophrenia, none, to our knowledge,
have comprehensively examined the diverse uses of machine
learning at the intersection of these three fields, which could
enhance the understanding of schizophrenia, thereby justifying
the necessity for a thorough literature review. [29,30]. By
identifying the broader applications of machine learning in this
context, this overview will help researchers and clinicians
pinpoint gaps in current research and pave the way for future
applications of machine learning in the study of schizophrenia
using genomic data.

This study aims to identify the various applications of machine
learning algorithms using genomic data in the field of
schizophrenia. By examining these approaches, this research
offers an initial exploration into the methods being investigated
to address the complexities of schizophrenia, a significant yet
challenging mental illness. Therefore, this scoping review aimed
to provide a comprehensive overview of these applications,
highlighting key areas for future development at the intersection
of machine learning, genomic data, and schizophrenia, with the
potential to enhance clinical approaches.

Methods

Search Strategies
A comprehensive scoping search was conducted to identify
recent studies across several electronic databases, including
MEDLINE (PubMed), Web of Science, PsycNet (PsycINFO),
and Google Scholar, covering the period from 2013 to 2024.
The review was conducted using the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) guidelines. The search strategy
used both text words and MeSH (Medical Subject Headings)
terms, focusing on schizophrenia (eg, “schizophrenia” or
“schizophrenic”), genomic data (eg, “genes,” “genetic,” or
“genomic”), and machine learning (eg, “artificial intelligence”
or “machine learning”). These topics were selected to align with
the study’s objectives. Detailed search strategies are provided
in Multimedia Appendix 1. The search methodology was
developed by the corresponding author, with searches executed
by AH and cross-validated by MB. No restrictions were applied
regarding setting or geography. The PRISMA checklist is
provided in Multimedia Appendix 2.
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Study Eligibility
Studies were included based on the following criteria: (1) the
population of interest consisted of patients diagnosed with
schizophrenia or the study of schizophrenia, (2) the study used
a machine learning approach, and (3) the machine learning
model incorporated genomic data features to find specific
outcomes. Studies were included regardless of whether they
used a single algorithm or multiple algorithms. Excluded from
consideration were unpublished literature and studies using
artificial intelligence algorithms outside the scope of machine
learning. Examples of artificial intelligence algorithms outside
the scope of machine learning include search algorithms, expert
systems that are not data-driven, and heuristic-based systems.
Studies that used machine learning solely to reduce data from
genomic datasets were excluded. The search was limited to
sources in English and French. Gray literature was not included.

Data Extraction
Data extraction was performed using a standardized form in
Microsoft Excel and was independently counter-verified for
consistency and integrity by two authors (AH and MB). Any
disagreements regarding the inclusion or exclusion of a study
were mutually resolved by the authors. The systematically
extracted information included authors, population (sample),
primary uses (or intent) of the machine learning algorithms,
types of genomic data, types of machine learning algorithm
used, main model performances, and key outcomes identified.

Quality Assessment
The quality of the identified studies was evaluated using the
Newcastle-Ottawa Scale for nonrandomized controlled studies
and the Cochrane Risk of Bias Tool for randomized controlled
trials [31,32]. The Newcastle-Ottawa Scale is a tool used to
assess the quality of cohort and case-control studies. It evaluates
studies based on three main domains: selection of study groups,
comparability of groups, and ascertainment of exposure or
outcome [31]. Each domain includes specific criteria, and studies

are awarded stars for meeting these criteria, with a maximum
of 9 stars indicating the highest quality [31]. The Cochrane Risk
of Bias Tool is a comprehensive framework used to assess the
risk of bias in randomized controlled trials [32]. It evaluates 7
specific domains: random sequence generation, allocation
concealment, blinding of participants and personnel, blinding
of outcome assessment, incomplete outcome data, selective
reporting, and other potential sources of bias [32]. Each domain
is rated as having a low, high, or unclear risk of bias based on
predefined criteria [32]. In this scoping review, studies with 1-4
stars on the Newcastle-Ottawa Scale or a high risk of bias by
the Cochrane Risk of Bias Tool will be identified as low in
quality, 4-6 stars as moderate, and 7-9 stars (or low risk of bias)
as high.

Results

Description of Studies
The scoping review evaluated studies at the intersection of
schizophrenia, genomic data, and machine learning. Initially,
the literature search identified 2437 eligible articles after
removing duplicates. A total of 814 studies were excluded based
on a first analysis of the titles and abstract. Following a second
round of abstract screening, 143 full-text articles were
thoroughly assessed, with 122 subsequently excluded. This left
21 studies for detailed analysis. A flowchart illustrating the
inclusion process is provided in Figure 1, and the specific details
of the included studies are available in Multimedia Appendix
3. The studies meeting the inclusion criteria included various
algorithms for different tasks. The most common application
of machine learning was predicting schizophrenia using genomic
data (n=10), followed by identifying features to enhance the
understanding of schizophrenia (n=6), drug discovery for
patients with schizophrenia (n=2), classifying schizophrenia
amongst other mental health disorders (n=2), and predicting the
quality of life and global functioning of patients with
schizophrenia (n=1).
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart for the inclusion of studies.

Algorithms Used
Several algorithms have been identified in the 21 included
studies. The algorithms the most frequently used were support
vector machine classifiers (SVM; n=14), random forest (RF)
algorithms (n=9), various implementations of neural networks
(NN; n=7), and eXtreme Gradient Boosting (XGboost; n=5).
Definitions of these popular algorithms are listed below:

• RF: It constitutes an ensemble learning technique. During
training, it creates several decision trees and outputs the
class, which is the average of the classes of each individual
tree [33]. By merging the predictions of several trees, each
trained on a different sample of the data, this method
increases accuracy and helps avoid overfitting [33].

• SVM: It is an algorithm for supervised machine learning
that is applied to regression and classification problems
[34]. Finding the ideal hyperplane to divide the data into
distinct classes is the fundamental notion behind SVM [34].
Different kernels (a function that quantifies the similarity
between a pair of data points) can be used to enhance the
performance of the SVM to best fit the data points [35].

• NN: These algorithms are modeled after the composition
and operations of the human brain [36]. They are made up
of networked layers of nodes, also called neurons, that
process and change incoming data to create outputs [36].

• XGboost: It is founded on the gradient boosting principle,
which entails building an ensemble of weak learners
(usually decision trees) in a stepwise manner [37]. Every
new tree seeks to fix the mistakes committed by the ones
that came before it [37].

The remaining algorithms can be found in Multimedia Appendix
3.

Predicting Schizophrenia
Prediction of schizophrenia was identified as the main objective
of 10 studies, all of which were deemed of high quality as per
the Newcastle-Ottawa Scale ratings. The data used in these
studies included differentially expressed genes, polygenic risk
scores, genotype and human leukocyte antigen alleles, gene
expression microarray data, single nucleotide polymorphisms,
long non-coding RNAs, DNA methylation in blood, exomes,
and G72 protein levels.
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Li et al [38] used differentially expressed gene data from the
Gene Expression Omnibus database, applying RF and SVM
algorithms, and identified 15 key genes correlated with immune
cell infiltration, achieving high diagnostic accuracy for
schizophrenia with an area under the curve (AUC) of 0.77 in
their test set. Another study, by Bracher-Smith et al [39], used
data from the UK Biobank, applied machine learning algorithms
such as least absolute shrinkage and selection operator,
ridge-penalized logistic regression, SVM, RF, XGboost, NN,
and stacked models, and found that while machine learning
models incorporating polygenic risk scores and demographic
factors showed good discrimination (AUC=0.71), they did not
significantly outperform logistic regression in predicting
schizophrenia. However, they reported that permutation features
importance identified polygenic risk score for schizophrenia
(PRS-SZ) as the most important predictor of schizophrenia [39].

Using data from the iPSYCH2012 case cohort, another study
integrated genetics and registry data with a deep learning
approach to stratify 19,636 patients with schizophrenia with or
without major depressive disorder into clinically distinct
subgroups characterized by unique disorder severities and
comorbidity signatures, with predictive models achieving AUCs
of 0.55 to 0.97, and therefore emphasized the importance of
data-driven stratification for improving psychiatric diagnosis
and prognosis [40]. Similarly, Qi et al [41] analyzed gene
expression datasets from untreated schizophrenia patients and
controls, identified 14 key gene probes, and used artificial NN
to achieve diagnostic accuracy of 91.2% in training and 87.9%
in testing and highlighted the potential of machine learning in
identifying clinically useful biomarkers for schizophrenia.
Another study introduced a sparse deep NN approach for
identifying interpretable features for schizophrenia case–control
classification using gray matter volume and single nucleotide
polymorphism data, demonstrating slightly improved
performance over traditional methods and highlighting key brain
regions related to schizophrenia [42].

Studies with smaller sample sizes also reported several genomic
data-enhanced methodologies to predict schizophrenia. Zhu et
al [43] demonstrated that a machine learning model using the
expression levels of 6 genes (GNAI1, FYN, PRKCA, YWHAZ,
PRKCB, and LYN) in peripheral blood effectively distinguish
schizophrenia patients from healthy controls, with the SVM
model achieving the highest accuracy (AUC=0.993). Another
study also reported the importance of long non-coding RNAs
as they provided higher accuracy than coding genes in
distinguishing schizophrenia from healthy controls [44].

Also focusing on predicting schizophrenia, a machine learning
classifier based on DNA methylation in blood, specifically using
correlated regions of systemic interindividual epigenetic
variation (CoRSIV) regions and sparse partial least squares
regression for discrimination analysis (SPLS-DA), effectively
distinguishes schizophrenia patients from controls with a highly
positive predictive value (PPV) of 80%, outperforming models
based on polygenic risk scores (PRS) [45]. Another machine
learning implementation used whole exome sequencing data to
identify individuals at high risk for schizophrenia, achieving an
accuracy of 85.7% with the XGBoost algorithm and providing
further insights into the genetic basis of the disorder [46].

Finally, the last identified study used machine learning
algorithms to demonstrate that G72 protein levels alone, without
incorporating G72 genetic variations, are effective in
distinguishing patients with schizophrenia from healthy controls
with high specificity (0.9503) and sensitivity (0.8765) [47].

Identifying Features of Schizophrenia
A total of 6 included studies aimed at identifying features of
schizophrenia or phenotyping using machine learning and
genomic data, all of which were assessed as being of high
quality. Feng et al [48] identified 6 candidate genes (SFN,
KDM5B, MYLK, IRF3, IRF7, and ID1) with diagnostic
significance for schizophrenia using machine learning on gene
expression data. Another study by Zhu et al [49] attempted to
identify immune-related biomarkers in peripheral blood in
patients diagnosed with schizophrenia and reported that the
mRNA expression of CLIC3 was significantly decreased in the
schizophrenia samples compared with the healthy controls. By
using machine learning methods to analyze RNA sequencing
data from the dorsolateral prefrontal cortex and amygdala in a
postmortem investigation, Liu et al [50] aimed to identify
driving biological signals representing schizophrenia. In doing
so, they identified 18 genes added to known
schizophrenia-associated pathways and expanded the gene
network. These results provide a more comprehensive
understanding of schizophrenia pathogenesis [50].

De Rosa et al [51] identified biological signals representing
schizophrenia in brain tissues of the dorsolateral prefrontal
cortex and hippocampus samples from postmortem brains of
nonpsychiatric controls and patients with schizophrenia. Using
an RF approach, they found 103 additional gene interactions
were expanded to schizophrenia-associated networks, which
were shared amongst both the dorsolateral prefrontal cortex and
amygdala regions [51]. Another study by Feng and Shen [52]
used neural networks using programmed cell-death-related genes
as features and found 10 candidate hub genes (DPF2, ATG7,
GSK3A, TFDP2, ACVR1, CX3CR1, AP4M1, DEPDC5, NR4A2,
and IKBKB). Finally, a study on fresh frozen postmortem brain
tissue aimed to identify DNA methylation patterns specific to
patients with schizophrenia.

A cohort of 73 subjects diagnosed with schizophrenia and 52
control samples was analyzed using an unsupervised machine
learning approach. As the results were not convincing, the
authors reported that, if there are methylation changes associated
with schizophrenia, they are diverse, complex, and have a small
effect size [53].

Drug Discovery
A total of 2 studies reported the use of machine learning
specifically for drug discovery (or related issues) for patients
diagnosed with schizophrenia. Both of them were deemed of
high quality. The first study focusing on 2307 patients with
schizophrenia from the Chinese Antipsychotics
Pharmacogenomics Consortium, 1379 from the Chinese
Antipsychotics Pharmacogenetics Consortium, 275 healthy
controls used several SVM and RF implementations and
identified 6 risk genes for schizophrenia (LINC01795, DDHD2,
SBNO1, KCNG2, SEMA7A, and RUFY1), which are involved
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in cortical morphology and were identified as having
genetic-epigenetic interactions linked to treatment response
[54]. The other study, by Zhao and So [55], used the expression
database ConnectivityMap that contains transcriptomic changes
for HL60, PC3, and MCF over several machine learning
implementations and reported that the predictive performance
of their 5 approaches in cross-validation did not differ
substantially, with SVM slightly outperforming the others while
stating that repositioning hits are enriched for psychiatric
medications considered in clinical trials [55].

Classifying Schizophrenia Among Other Mental Health
Disorders
A total of 2 studies aiming at classifying schizophrenia amongst
other mental disorders using machine learning were identified.

The first study by Yang et al [56] aimed at distinguishing
schizophrenia from individuals with bipolar disorder, major
depressive disorders, and healthy controls. To do so, the authors
used differentially expressed genes from 268 individuals (67
patients with schizophrenia, 40 patients with bipolar disorder,
57 patients with major depressive disorders, and 104 healthy
controls) over an SVM implementation that achieved an AUC
of 0.96 for the schizophrenia group and of 0.71 for the
independent set of the classification model. They reported that
their model has a strong capacity to classify samples among
multiple groups of mental illnesses [56]. Considering the opacity
of the implementation, the quality was assessed as moderate
for this study.

The other study, by Saardar et al [57], used the dbGaP database
(schizophrenia) and the NDAR database (autism spectrum
disorder) to compare whole exomes to differentiate between
schizophrenia and autism using an XGboost model. They
achieved an average validation accuracy of over 5 folds was
88% for both the single nucleotide variants-based model and
gene-based model and reported that the ion transmembrane
transport, neurotransmitter transport, and microtubule or
cytoskeleton processes were of importance for schizophrenia
[57]. The quality of this study was determined to be high based
on our assessment.

Predicting Quality-of-Life and Global Functioning
Only one of the included studies focused on predicting the
quality of life and global functioning of patients diagnosed with
schizophrenia. This study was of high quality as per the quality
assessment. Using data from 302 patients with schizophrenia
in the Taiwanese population, Lin et al [58] compared a bagged
ensemble of several machine learning algorithms to different
permutations of these algorithms to predict functional outcomes
of patients with schizophrenia. Their analysis revealed that the
bagging ensemble algorithm with feature selection outperformed
other predictive algorithms in forecasting the quality-of-life
functional outcome of schizophrenia using the G72 rs2391191
and MET rs2237717 SNPs [58].

Discussion

Principal Results
This scoping review aimed to identify the different ways
machine learning algorithms can be applied to genomic data in
the study of schizophrenia. A total of 21 studies were fully
analyzed, and 5 uses of machine learning algorithms on genomic
data were identified: predicting schizophrenia, identifying
features of schizophrenia, drug discovery, classifying
schizophrenia amongst other mental health disorders, and
predicting quality-of-life and global functioning. The studies
were overall of high quality.

Comparison With Previous Work
The application of predictive models to forecast mental health
disorders, such as schizophrenia, is gaining importance in
medical research [59]. These models hold the potential to
significantly assist clinicians in patient evaluation, particularly
given the heterogeneity inherent to schizophrenia [60]. However,
as observed in the identified studies, these models vary greatly
in their implementation with diverging accuracy and validation
methodologies. It is important to consider the implementation
of these models as well as their accuracy and the techniques
used to cross-validate the model, especially when using genomic
data, as this could hinder their external validity [61]. The results
found in the identified studies reinforce the premise that the
genetic architecture of schizophrenia has proven to be very
complex, heterogeneous, and polygenic and that a vast array of
features could be integrated to improve predictive models [62].
Similarly, finding genomic-related risk factors of schizophrenia
in such a model could help in distinguishing between this disease
and other mental disorders, which may explain why classifying
schizophrenia among other mental health disorders was one of
the identified uses.

It is unsurprising that machine learning has been used to identify
features of schizophrenia, as this has been done in other medical
fields. Using candidate genes, it can be possible for clinicians
to better understand common diseases and complex traits [63].
In psychiatry, psychiatric genomics is a rapidly advancing field
that shows great promise for enhancing risk prediction,
prevention, diagnosis, treatment selection, and the understanding
of the pathogenesis of patients’ symptoms [64]. As an example,
some genes and functional genomic data linked to complex
features of schizophrenia demonstrated that specific alleles may
confer risk to the disorder by directly affecting synaptic function
in adulthood [65].

As for drug discovery, literature reviews on the subject support
that machine learning techniques can improve decision-making
in pharmaceutical data across various applications [66,67]. It
is also reported that combining machine learning techniques
with genomic data has the potential to speed up the process and
reduce failure rates in drug discovery and development [67].
This may explain why two studies focused specifically on
schizophrenia in the context of drug discovery were identified.
There is an increasing effort to develop pharmaceutical
treatments, given the 20%-30% rate of treatment resistance
observed in patients with this disorder [4].
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Finally, quality-of-life assessment and functioning of patients
with schizophrenia is trending in this field, which may explain
why this use was identified in one study [68,69]. Another recent
study on quality of life and genome-wide analyses of quality
of life in psychosis, which used linear regression on 3684
participants (including 1119 psychosis patients), reported that
numerous clinical and genetic associations with quality of life
can be used in the daily care of these patients and enhance their
overall well-being. These findings support the idea that more
work should be conducted in this area in the future [70].

In the future, the information gathered by the use of machine
learning in this area may provide the basis for more research
projects. Through the identification of current knowledge gaps,
scientists can narrow their attention and investigate novel genetic
and biological markers that may have escaped their notice in
the past in the development of machine learning models. This
information may pave the way for the development of innovative
therapeutic approaches, individualized treatment programs, and
a better comprehension of the fundamental pathology of
schizophrenia. To effectively handle the intricate problems
presented by schizophrenia, machine learning techniques might
need to be integrated with genomic data as they develop, and
the genes identified in this review might help researchers select
key features to enhance their mathematical models. This addition
might lead to advancements in both basic science and therapeutic
applications.

Limitations of This Study
This scoping review highlighted the various applications of
machine learning algorithms using genomic data in the field of
schizophrenia. Despite the relevance of this recension, it has a
few limitations. The heterogeneity of diagnostic criteria for
schizophrenia is a significant concern, as it is not addressed in
half of the studies reviewed. Furthermore, the limited number

of studies identified indicates the novelty of this field,
necessitating future reviews to confirm findings. There is also
a lack of external validation in samples differing from the
training sample, such as those from different nationalities,
raising questions about the generalizability of the results.
Notably, no studies have concretely tested these algorithms in
clinical settings, particularly for the prediction of schizophrenia,
which remains an unmet need in the research. Due to the
heterogeneity of the identified studies and the varying metrics
used to assess precision and validate the machine learning
models, performance comparisons were not conducted.
Furthermore, studies on generic models using genomic data to
predict overall mental health, rather than specifically focusing
on schizophrenia, were excluded, as well as unpublished
literature. This may have led to the omission of a small portion
of relevant studies.

Conclusions
Considering the heterogeneity of clinical presentations observed
in schizophrenia, genomic data combined with machine learning
algorithms have been implemented to address several facets of
this disorder. From the 21 studies analyzed, 5 main uses were
identified: predicting schizophrenia, identifying schizophrenia
features, discovering drugs, classifying schizophrenia amongst
other mental health disorders, and predicting the quality of life
of patients. These uses have potential implications as they could
assist clinicians in providing a more personalized approach to
their patients diagnosed with schizophrenia, considering the
complexity of this diagnosis. There is still a limited amount of
literature on the subject, and this study provides a first overview
of machine learning applications of genomic data for
schizophrenia. Future research is essential to further evaluate
the portability of the models identified and their potential clinical
applications.
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Abbreviations
AUC: area under the curve
CNV: copy number variation
CoRSIV: correlated regions of systemic interindividual epigenetic variation
GWAS: genome-wide association studies
MeSH: Medical Subject Headings
NN: neural networks
PPV: positive predictive value
PRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping
Reviews
PRS: polygenic risk scores
PRS-SZ: polygenic risk score for schizophrenia
RF: random forest
SNP: single nucleotide polymorphism
SPLS-DA: sparse partial least squares regression for discrimination analysis
SVM: support vector machine
XGboost: eXtreme Gradient Boosting
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Abstract

Background: Environmentally sensitive pathogens exhibit ecological and evolutionary responses to climate change that result
in the emergence and global expansion of well-adapted variants. It is imperative to understand the mechanisms that facilitate
pathogen emergence and expansion, as well as the drivers behind the mechanisms, to understand and prepare for future pandemic
expansions.

Objective: The unique, rapid, global expansion of a clonal complex of Vibrio parahaemolyticus (a marine bacterium causing
gastroenteritis infections) named Vibrio parahaemolyticus sequence type 3 (VpST3) provides an opportunity to explore the
eco-evolutionary drivers of pathogen expansion.

Methods: The global expansion of VpST3 was reconstructed using VpST3 genomes, which were then classified into metrics
characterizing the stages of this expansion process, indicative of the stages of emergence and establishment. We used machine
learning, specifically a random forest classifier, to test a range of ecological and evolutionary drivers for their potential in predicting
VpST3 expansion dynamics.

Results: We identified a range of evolutionary features, including mutations in the core genome and accessory gene presence,
associated with expansion dynamics. A range of random forest classifier approaches were tested to predict expansion classification
metrics for each genome. The highest predictive accuracies (ranging from 0.722 to 0.967) were achieved for models using a
combined eco-evolutionary approach. While population structure and the difference between introduced and established isolates
could be predicted to a high accuracy, our model reported multiple false positives when predicting the success of an introduced
isolate, suggesting potential limiting factors not represented in our eco-evolutionary features. Regional models produced for 2
countries reporting the most VpST3 genomes had varying success, reflecting the impacts of class imbalance.

Conclusions: These novel insights into evolutionary features and ecological conditions related to the stages of VpST3 expansion
showcase the potential of machine learning models using genomic data and will contribute to the future understanding of the
eco-evolutionary pathways of climate-sensitive pathogens.

(JMIR Bioinform Biotech 2024;5:e62747)   doi:10.2196/62747
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Introduction

Background
Climate change is likely to impact environmentally sensitive
pathogens in terms of shifts in seasonality, expansion of suitable
habitats, and the emergence and global dispersal of well-adapted
variants. This has already been observed for Vibrio
parahaemolyticus [1], a marine bacterium inhabiting coastal
waters that causes acute gastroenteritis when transmitted to
humans by ingestion of contaminated seafood, contributing to
a large percentage of foodborne infections worldwide. Recent
decades have seen this highly adaptable bacterium spread
globally and increasingly cause outbreaks [1].

Before the 1990s, Vibrio infections were considered an exotic
outcome of travel to Asia, where Vibrio bacteria were
historically considered endemic. Up to this point, only particular
strains of Vibrio cholerae had been designated as epidemic
variants, characterized by global expansion and pandemic
potential. However, transcontinental spread has now been
reported for 2 V parahaemolyticus clonal types: sequence type
3 from Southeast Asia and, more recently, sequence type 36

from the Pacific Northwest [2,3]. The first of these instances,
involving the clonal type Vibrio parahaemolyticus sequence
type 3 (VpST3), was identified in 1996, when the unique variant,
which had not been previously reported, was found to be
responsible for up to 80% of the cases in a notable increase of
V parahaemolyticus infections in Calcutta (now Kolkata), India,
in 1996 [4]. This outbreak was unusual, with all recovered
isolates clustered into a single homogeneous group, unlike
previous outbreaks [3]. Similar isolates were then observed
from outbreaks in distinct locations around the world, including
Peru, Japan, Russia, Chile, and the United States [5-8] (Figure
1 [4-15]), where the variant was emerging concurrently. This
included regions with conditions previously considered adverse
for the presence of such pathogens. The epidemic radiations
that followed in these diverse regions were the first observed
for V parahaemolyticus and resulted in the variant supplanting
local populations and rapidly becoming the most dominant V
parahaemolyticus variant globally. As a consequence of this
expansion, V parahaemolyticus became the second human
pathogenic Vibrio species with an epidemic nature and, along
with V cholerae, the only Vibrio species with strains capable
of worldwide expansions and causing infections at a global
level.

Figure 1. Timeline and map of Vibrio parahaemolyticus sequence type 3 (VpST3) initial expansion based on reported isolates and outbreaks in the
literature (shapefile provided by Database of Global Administrative Areas).

This process of expansion results from an epidemic bacterial
population structure, as described in the study by Smith et al
[16]. Upon a background of numerous rapidly recombining
genotypes, a limited number of very frequent genotypes are
superimposed, known as clonal complexes, that have originated
from highly adaptive ancestral genotypes [16]. The mechanisms
behind the rise of these clonal complexes are largely unknown;
yet, it is imperative to identify the conditions that allow a

pathogen to emerge in such diverse locations and become
dominant, as well as the drivers behind these processes, to
understand and prepare for future pandemic expansions. When
considering environmentally sensitive pathogens such as Vibrio,
possible drivers can be categorized as either ecological or
evolutionary. Evolutionary drivers include the processes of
adaptation, mutations that increase fitness, or the uptake or
horizontal transfer of beneficial accessory genes. Both ends of
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the spectrum of genetic diversity—generalists and
specialists—are associated with pandemic expansions.
Ecological drivers can range from the local environment, which
affects pathogen survival and growth, to environmental corridors
and transport mechanisms. Importantly, these ecological and
evolutionary drivers are not exclusive and, instead, interact
significantly, with this interplay known as “eco-evolutionary.”
A key example of this would be adaptative selection occurring
after arrival to a distinct marine environment. While more
studies are considering the coeffect of ecological and
evolutionary factors on larger species (such as vertebrates and
invertebrates), little attention has been paid to environmentally
sensitive pathogens. Focusing on these pathogens would provide
novel insights into how particular pathogenic strains emerge
[17].

V parahaemolyticus is a uniquely placed species, with a history
of pandemic expansion that facilitates the study of such
eco-evolutionary drivers. First, Vibrio are phylogenetically
diverse with highly variable genomic backgrounds shaped by
recombination and horizontal gene transfer [3], from which
specialized variants can emerge. Second, V parahaemolyticus
exhibits well-characterized environmental thresholds and
tolerances, rapidly responding to changes in its marine
environment, such as water temperature [18-23] and salinity
[18,21,24-26]. Notably, anomalously high temperatures were
observed between 1996 and 1998 [27,28] around the emergence
of VpST3—pertinent amid the preference of Vibrio for warmer
waters. From a combined eco-evolutionary perspective, Vibrio
have high genome plasticity, which facilitates rapid adaptation
in response to environmental changes [29], resulting in a large
diversity of causative strains and resulting infection dynamics
[30,31]. It would be simplistic to assume that all these diverse
V parahaemolyticus variants respond to environmental change
homogeneously, opening up the eco-evolutionary response
landscape for exploration.

Study Objectives
We reconstructed this global expansion using publicly available
genome sequences of VpST3 from clinical and environmental
sources, isolated from around the world over the period of
expansion of this clone, to identify population structure and
demographic shifts indicative of the different stages of
expansion, including emergence and establishment. We
investigated the possible drivers of the expansion and our ability
to predict the dynamics of VpST3 by testing a range of
evolutionary and ecological drivers in a combined approach
using machine learning models to elucidate the complex
mechanisms that, when combined, may facilitate such a rapid,
global expansion. Machine learning has been credited for its
ability to harness the predictive power of evolution, using pattern
recognition to uncover complex associations between biological
processes [32]; therefore, it is well-placed for the novel
exploration of interacting eco-evolutionary mechanisms in
combination. Understanding the evolutionary features and
ecological conditions related to the stages of pathogen expansion
is a crucial step in understanding future eco-evolutionary
pathways of climate-sensitive pathogens.

Methods

The protocol for preprocessing evolutionary and ecological data
into a data frame for machine learning analysis is summarized
in a graphical representation in Figure S1 in Multimedia
Appendix 1.

Ethical Considerations
Ethical approval was not sought for the present study because
it consisted of neither human nor animal experimentation and
all genomic datasets used had been previously made publicly
available with reference to their ethical approval in the papers
associated with these submissions.

Genomic Data
Raw sequencing datasets from a collection of 311 VpST3
isolates, representing a range of geographic areas, were acquired
from public databases for genomic analyses (Table S1 in
Multimedia Appendix 1). The 311 isolates covered a temporal
range from 1996 to 2021, with 162 (52.1%) from Asia, 78
(25.1%) from North America, and 71 (22.8%) from South
America. A series of genetic markers were used to confirm that
the isolates were VpST3 using multilocus sequence typing in
MLST (version 2.11) [33]. Our analysis was restricted to isolates
that were submitted with accompanying isolation date and
location details because such metadata were required for the
downstream linkage with environmental variables. The raw
sequences were processed using default parameters within
Bactopia (version 2.0.2) [34], including quality filtering,
assembly, and annotation. Core single nucleotide polymorphisms
(SNPs) were identified across all sequences using parsnp
(version 1.5.6) [35] to create a core genome alignment, mapped
to the V parahaemolyticus reference genome RIMD2210633.
Gubbins (version 3.1.6) [36] was used to remove recombining
regions to provide a final nonrecombining core genome
alignment.

Phylogenetic Analysis
TempEst (version 1.5.3) [37] was used to confirm a temporal
signal and conformation to a molecular clock, followed by
BEAST2 (version 2.7.6) [38] analysis to reconstruct the global
phylogenetic dynamics of V parahaemolyticus, using BEAUti
[39] and a structured coalescent within a MultiTypeTree
template [40]. After sensitivity analyses on a range of models,
the selected model used a relaxed log normal clock model and
a general time reversible (GTR) substitution model, with a
normal distribution substitution rate prior. The tip dates and
discrete location attributes were used to situate the genomic
evolution in space and time. The Markov chain Monte Carlo
was run for 250 million states until all outputs converged
(effective sample size >200), confirmed by Tracer (version
1.7.1) [41]. The final maximum clade credibility tree was
generated using TreeAnnotator within BEAST2.

Encoding of Expansion Dynamics
The Bayesian phylogenetic analysis and subsequent tree
structure informed the designation of a variety of classifications
representing VpST3 dynamics. These classifications included
populations within the collection, temporal divergence, the
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success of introductions, and the stages of expansion. We
assigned each of these classifications to each of the 311 isolates,
using set criteria applied to the phylogenetic tree (Textbox 1),

and converted them into binary or categorical features to provide
target variables for machine learning analysis.

Textbox 1. Criteria for encoding the numerical and categorical variables of expansion dynamics. The terms in parentheses refer to the column names
of the expansion dynamics in the data frame input.

Populations (wave)

Populations within the Vibrio parahaemolyticus sequence type 3 (VpST3) collection were identified using TreeStructure (version 0.1.0) [42], which
identifies genealogical patterns to infer population structure from time-scaled phylogenies by performing 100,000 tree simulations with a significance
threshold set at P<.001

Temporal evolution (earlylate)

Very few VpST3 isolates were recovered in 2003, after the initial global population expansion; therefore, we specified this year as a split between the
early colonizers found before this date and the later isolates recovered after the expansion

Success (success)

Failed introductions were monophyletic branches that did not split into further nodes in the phylogenetic tree, while successful introductions were
those that saw downstream nodes in the same reported location

Stages of expansion (stages)

We split expansion into five defined stages: (1) initial introduction (the first node or nodes in a clade), (2) established population (the nodes in the
clade after this introduction), (3) secondary introduction (the first node or nodes in a clade in a new location from the original introduction), (4)
secondary establishment (the nodes in the clade after this introduction in the new location), and (5) bottleneck (the last node of a clade or a location
within the clade)

Stages of expansion: binary (stages_binary)

A simplified version of the previous stages of expansion classification, reducing it to a binary classification of introduced isolates (the first instances
in a clade or location) and established isolates (those that followed these introductory nodes within this clade)

Extraction of Evolutionary Driver Data
Genomic analysis was used to extract features representing
possible evolutionary drivers for each isolate. Quantifying the
gene content variation in the accessory pangenome in natural
populations is important to understand the plasticity and
adaptability of populations to environmental perturbations [43].
To obtain a metric of total genes present in each isolate, we
used Roary (version 3.13.0) [44] to construct the pangenome
and annotate each gene present in each isolate. We used Scoary
(version 1.6.16) [45] to identify shell genes (present in 15%-95%
of the population) whose presence was statistically associated
(P<.01) with the previously assigned labels representing
introduction, establishment, or success. We retained a selection
of these that were common accessory genes (with a presence
ranging from 5% to 95% across the isolates in the collection),
annotated their function, and generated features representing
the binary presence or absence features. We used
single-likelihood ancestor counting within HyPhy (version
2.5.48) [46] to estimate the ratio of nonsynonymous to
synonymous substitutions (dN/dS) and identify sites under
significant diversifying or purifying selection (P<.05) in the
genes of interest.

SNP mutations of relevance to the expansion process were
selected using pcadapt (version 4.3.3) [47] for outlier detection
based on population structure. The outliers were inferred based
on principal component analysis, using the parameter K=2 and
a desired false discovery rate threshold of 0.1 (q-threshold) to
identify discriminatory SNP mutations associated with local
adaptation. These SNPs were annotated to predict functional
effects on genes using SnpEff (version 5.1) [48] and the V
parahaemolyticus RIMD2210633 genome annotations as a

reference. SNPs predicted to have nonsynonymous missense
variants were retained for downstream analyses. We recorded
the base found at this position for every isolate to assess whether
these mutations would help the model define the evolutionary
classification. To convert these into numerical values fit for
machine learning applications, we reclassified the letters
representing bases into numbers (A=1, C=2, T=3, G=4, and
N-polymorphic=5).

Extraction of Ecological Driver Data
Time series data for sea surface temperature (SST) and
salinity—2 of the most well-reported environmental drivers of
V parahaemolyticus in the marine environment [49] —were
acquired from the European Centre for Medium-Range Weather
Forecasts Reanalysis version 5 [50] and the Met Office Hadley
Centre’s EN4.2.2 quality-controlled ocean dataset [51,52],
respectively, covering the period from 1995 to 2021. We zonally
extracted the climate time series data for the country of isolate
recovery, using Database of Global Administrative Areas
country zones provided as shapefiles, extending into coastal
waters by 2 decimal degrees to extract the local conditions of
the marine environment. Although the climate data were
available at a monthly resolution, the majority of the genomic
isolates only contained an annual resolution. Instead of
averaging across the whole year, we created metrics for
maximum, minimum, and mean values for each season across
the year, alongside generated lagged variables from the previous
year. Alongside environmental drivers, the seafood industry,
including fisheries [53], seafood consumption and trade [54],
and fish market contamination [55], has been previously
hypothesized as a possible mechanism for the emergence and
spread of Vibrio bacteria. We therefore extracted shellfish import
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data for each country from the FishStatJ database of the Food
and Agricultural Organization of the United Nations as annual
totals measured in 100 kg of net product weight [56] to explore
the potential of this driver.

Machine Learning Approach
We combined the ecological and evolutionary driver metrics
and the classification for each of the criteria into a single data
frame for each isolate, with a total of 311 data points.

For our machine learning analysis, we chose a random forest
classifier model, an ensemble learning method that uses
bootstrapping across decision tree classifiers, due to its high
interpretability and implemented the models using the Python
module scikit-learn (version 1.3.0) [57]. For each expansion
dynamic, we created three separate models: 1 model used only
the evolutionary drivers as features, a second only ecological
drivers as features, and a final model used both ecological and
evolutionary drivers in a combined approach. We trained the
random forest classifier (using 100 estimators, setting the
maximum number of features to consider for best split to the
square root of the total number of features, and using bootstrap
samples to build trees) on a randomly selected subset of 70.1%
(218/311) of the data, retaining the remaining 29.9% (93/311)
as an unseen test dataset. In total, there were 109 features used
to predict each evolutionary dynamic (Table S2 in Multimedia
Appendix 1), of which 60 (55%) represented evolutionary
drivers, and 49 (45%) represented ecological drivers. The
classification output classes were either binary or categorical
based on the expansion dynamic being predicted.

To test the accuracy of these predictions and provide insight
into our ability to predict the expansion dynamics of VpST3,
we reported 4 accuracy metrics, both per class and across all
predictions, when the models were applied to the unseen test
data. These metrics included precision (positive prediction rate,
affected by false positives), recall (sensitivity rate, affected by
false negatives), the F1-score (a harmonic mean of precision
and sensitivity, often used for comparative machine learning
performance assessments), and overall accuracy (taking into
account all components). We calculated the feature importance
for all ecological and evolutionary drivers involved in each
model using the Gini importance attribute within the random
forest implementation in scikit-learn (version 1.3.0) (57), which
is computed by the mean and SD of the accumulating impurity
decrease within each tree due to the addition of each specific
feature.

To assess the collinearity effects from cross-correlations between
the ecological and evolutionary driver metrics contained in our

model, we calculated the Spearman rank correlation coefficient
between the driver variables. During model development of the
individual ecological and evolutionary models, we selected
features that did not exhibit significant (P<.05) collinearity.
However, collinearity between evolutionary and ecological
features in the combined model was explored, rather than
omitted, to gain greater insight into potential eco-evolutionary
associations. These significant relationships were visualized in
a heat map using the seaborn (version 0.12.2) Python library
[58].

Region-Specific Analysis
To explore the potential to understand the successful expansion
of VpST3 in particular regions, we developed 2 region-specific
models representing an endemic area and an area where VpST3
emerged: China and Peru, respectively. These regions were
chosen because they reported the most VpST3 isolates within
their respective continents and consist of distinct geographic
characteristics to establish whether a regional focus on an area
with specific local conditions to drive eco-evolutionary
dynamics improves our ability to predict successful expansions.
These models were trained and tested on regional subsets of the
original data frame, with the same model parameters and
features.

Results

Phylogeny Characterization
The phylogeny revealed an evolutionary population structure
within the VpST3 genomes, with multiple introductions into
geographically distinct locations, including secondary migrations
and introductions. Our phylogenetic analysis found 3 clear
population “waves” within VpST3, comprising 56 (18%), 131
(42.1%), and 124 (39.9%) of the 311 isolates (Figure 2A). In
terms of temporal evolution, of the 311 isolates, 73 (23.5%)
were classified as early colonizers (before 2003), and 238
(76.5%) were isolated after the initial expansion after 2003
(Figure 2B). Regarding expansion success, of the 311 isolates,
86 (27.7%) were classified as unsuccessful and 225 (72.3%) as
successful (Figure 2C). With regard to the stages of expansion,
of the 311 isolates, under a binary classification, 121 (38.9%)
were classified as introduced, with 190 (61.1%) being classified
as established (Figure 2D). When this was scaled up to the 5
stages of classification, of the 311 isolates, 49 (15.8%) were
classified as initial introductions, 131 (42.1%) as established,
52 (16.7%) as secondary introductions, 58 (18.6%) as
secondarily established, and finally 21 (6.8%) as representing
bottlenecked populations (Figure 2E).
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Figure 2. Maximum clade credibility tree with branches color coded by expansion dynamic metrics: (A) population waves, (B) temporal evolution,
(C) expansion success, and (D and E) stages of expansion.

Evolutionary Features Extracted
We detected 194 potential adaptive SNP outliers within the
collection of genomic isolates, of which 44 (22.7%) were
predicted to be missense variants, altering an amino acid within
a protein, with predicted moderate effects on particular genes
(Table S3 in Multimedia Appendix 1). These SNPs were chosen
as evolutionary features for the machine learning analysis.
Overall, the total number of genes in each isolate ranged from

4292 to 4735, with no clear temporal signal (R2=0.08). We
identified 400 accessory genes present in 15% to 95% of the
entire VpST3 collection and reduced these to 15 (3.8%) genes
of interest as evolutionary features for the machine learning
analysis (Table 1). This selection was based on genes that were
associated with particular expansion metrics; the presence of
all 15 selected genes was significantly associated (P<.01) with

the binary classification delineating introduced and established
isolates, and 5 (33%) were further associated with the successful
classification metric. Annotation of these genes of interest found
that most (n=5, 33%) were functionally associated with survival
in the environment and tolerance to environmental conditions
(Table 1). In addition, some of them (n=8, 53%) were involved
in bacterial transport mechanisms, such as putrescine pathways,
that promote biofilm formation. On 4 occasions, 2 versions of
a gene with a similar function were identified within this
group—for pilT, ttcA, CARB β-lactamase, and DeoR family
transcriptional regulators. Of these 15 accessory genes, no
evidence for positive diversifying selection was found (as
determined by HyPhy single-likelihood ancestor counting [46]);
however, 10 (67%) genes had evidence of negative, purifying
selection (P value threshold <.10), ranging from 1 to 17 sites
under purifying selection.
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Table 1. Significant associations identified between accessory gene presence and key expansion dynamics.

Significance of presence association with classification la-
bels, P value

FunctionAnnotation

SuccessEstablishmentIntroduction

<.001<.001<.001Enzyme used for methylglyoxal detoxification, contributes
to bacterial survival in the environment [59]

Lactoylglutathione lyase

<.001<.001<.001Recombinant protein, involved in putrescine pathways [60]HTHa-type transcriptional
regulator (puuR)

—b<.001<.001Proteins that regulate transcription in bacteria, activated in
response to different environmental conditions

RNA polymerase sigma
factor (RpoS)

—<.001<.001Involved in the transport (motility) of the bacteria itself,
biofilms, and virulence [61]

Type IV pilus twitching
motility protein (pilT)

<.001<.001<.001Antiporters (in this case moving sodium ions in or out of a
cell) play an important role in tolerance to salt stress [62]

Sodium:proton antiporter

<.001<.001<.001Involved in biofilm production by converting N-carbamoylpu-
trescine to putrescine [63]

N-carbamoylputrescine
amidase (aguB)

<.001<.001<.001Involved in a putrescine pathway [64]Agmatine deiminase
(aguC)

—<.001<.001Primarily drives the sensing of environmental stimuli and
life cycle responses [65]

DeoR family transcription-
al regulator

—<.001<.001Involved in the transport (motility) of the bacteria itself,
biofilms, and virulence [61]

Type IV pilus twitching
motility protein (pilT)

—<.001<.001Expresses β-lactamase for resistance to antibiotic penicillins
[66]

Carbenicillin-hydrolyzing
class A beta-lactamase
CARB-23

—<.001<.001Modulates pathogenicity: motility, invasiveness, biofilm
formation ability, and virulence [67]

Ribonuclease III (rnc)

—<.001<.001Involved in bacterial growth, resistance to biocides, biofilm
formation, and swimming motility [68]

tRNA 2-thiocytidine(32)
synthetase (ttcA)

—<.001<.001Expresses β-lactamase for resistance to antibiotic penicillins
[66]

Carbenicillin-hydrolyzing
class A beta-lactamase
CARB-23

—<.001<.001Primarily drives the sensing of environmental stimuli and
life cycle responses [65]

DeoR family transcription-
al regulator

—<.001<.001Involved in bacterial growth, resistance to biocides, biofilm
formation, and swimming motility [68]

tRNA 2-thiocytidine(32)
synthetase (ttcA)

aHTH: helix-turn-helix.
bNot applicable.

Predictive Power
Overall accuracies for the different expansion metrics ranged
from 0.722 to 0.967 for models using a combined
eco-evolutionary approach (Figure 3). In our analysis, a
combined eco-evolutionary approach almost always improved
the accuracy of predicting expansion dynamics compared to
using evolutionary or ecological drivers in isolation (Table 2).
This was notably apparent for the predictions of the population
structure within the phylogeny, in terms of the identification of
3 clear groups, in which evolutionary and ecological features

individually produced accuracies of 0.733 and 0.744,
respectively, but the combined approach increased the accuracy
to 0.922. The only exception occurred when characterizing the
success of emergence, where the ecological-only approach
achieved the same accuracy as the combined approach. We
could distinguish which isolates would be “successfully
introduced” to an accuracy of 82% using both ecological and
evolutionary data, but 13% of these were false positives,
suggesting that our analysis could have overlooked a limiting
factor that prevents an isolate from successfully establishing in
an area.
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Figure 3. Confusion matrices visualizing the predictions of random forest classifier models for each expansion dynamic when applied to unseen test
datasets: (A) population waves, (B) temporal evolution, (C) expansion success, (D) binary stages of expansion, and (E) categorical stages of expansion.
(B, C, and D) For binary expansion dynamics, the matrix represents (clockwise from top left) true negatives, false positives, true positives, and false
negatives. (A and E) For categorical expansion dynamics, the matrix shows correct class membership and misclassified class memberships for each
category.
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Table 2. Accuracy metrics of random forest classifier models predicting unseen test data of each expansion dynamic.

Ecological features onlyEvolutionary features onlyCombined eco-evolutionary approachExpansion dy-
namics

Overall
accuracy

F1-scoreRecallPrecisionOverall
accuracy

F1-scoreRecallPrecisionOverall
accuracy

F1-scoreRecallPrecision

0.7440.7330.922Populations

0.6000.4500.9000.4860.4500.5290.8330.7500.938Wave 1

0.7560.9190.6420.6760.6760.6760.9090.9460.875Wave 2

0.8000.7270.8890.9280.9700.8890.9851.0000.971Wave 3

0.7190.6990.8100.6970.6980.6980.9090.8990.928Unweight-
ed average

0.7370.7440.7900.7330.7260.7330.7210.9200.9220.924Weighted
average

0.9560.7670.967Temporal evolution

0.9261.0000.8620.5710.5600.5830.9431.0000.893Early (be-
fore 2002)

0.9680.9381.0000.8400.8460.8330.9760.9541.000Late (after
2003)

0.9470.9690.9310.7060.7030.7080.9600.9770.946Unweight-
ed average

0.9560.9560.9620.7650.7670.7640.9670.9670.970Weighted
average

0.7330.5110.722Stages of expansion

0.5560.5880.5260.4120.4120.4120.5710.5880.556Initial intro-
duction

0.8950.8500.9440.5900.5750.6050.8950.8500.944Established
population

0.7500.7500.7500.2400.2500.2310.6900.8330.588Secondary
introduc-
tion

0.8000.8000.8000.7100.7330.6880.7690.6670.909Secondary
established
population

0.1430.1670.1250.3330.3330.3330.1430.1670.125Population
bottleneck

0.6290.6310.6290.4570.4610.4540.6140.6210.624Unweight-
ed average

0.7450.7330.7610.5120.5110.5140.7350.7220.763Weighted
average

0.9110.6670.922Stages of expansion (binary)

0.8920.9170.8680.5830.5830.5830.9070.9440.872Introduc-
tion

0.9250.9070.9420.7220.7220.7220.9330.9070.961Establish-
ment

0.9080.9120.9050.6530.6530.65330.9200.9260.916Unweight-
ed average

0.9110.9110.9130.6670.6670.6670.9230.9220.925Weighted
average

0.8220.7110.822Success

0.6670.5710.8000.4800.4290.5450.6670.5710.800Unsuccess-
ful

0.8790.9350.8290.8000.8390.7650.8790.9350.829Successful
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Ecological features onlyEvolutionary features onlyCombined eco-evolutionary approachExpansion dy-
namics

Overall
accuracy

F1-scoreRecallPrecisionOverall
accuracy

F1-scoreRecallPrecisionOverall
accuracy

F1-scoreRecallPrecision

0.7730.7530.8140.6400.6340.6550.7730.7530.814Unweight-
ed average

0.8130.8220.8200.7000.7110.6960.8130.8220.820Weighted
average

Classes that were particularly difficult to predict, with the lowest
accuracies reported, were genetic bottlenecks (which were
almost always misclassified as initial introductions) and the
eco-evolutionary drivers that result in an isolate’s failure to
establish successfully. It was harder to predict initial
introductions compared to predicting established populations
using the categorical “stages of expansion” metric, but when
this was reduced to a binary problem, accuracy increased by
0.2, suggesting that separating the stages into initial and
secondary introductions (from an established population to a
new area) hindered the prediction process.

Exploring the spatiotemporal presence of the errors identified
when testing our eco evolutionary models on 90 unseen data
points (Table S4 in Multimedia Appendix 1) revealed that the
raw highest frequency of errors was found in Asia compared to
other continents; however, the relative error rate considering
the number of Asian isolates (n=50, 56% of the 90 data points)
was the lowest across continents. Notable successes include a
strong ability to predict population structure in Asia (in which
all 50 samples were accurately predicted) and a low error rate
(5.8%) when predicting successful expansions into the United
States. Success was more difficult to predict in geographic
locations with little representation in the test dataset; or example,
there was 1 isolate each from Canada, Japan, Mexico, and
Singapore in the test dataset, and only the success of the
Canadian isolate was successfully predicted. Temporally, a
greater number of errors occurred earlier in the time series,
during the initial expansion period of VpST3.

Eco-Evolutionary Feature Importance
In general, ecological metrics performed stronger than
evolutionary metrics individually (Figure S2 in Multimedia

Appendix 1). Some of the notably important eco-evolutionary
drivers included 3 accessory genes, which were almost always
present in introduced isolates (and subsequently eroded) and
which provided salt stress tolerance, survival advantages, and
biofilm formation for motility, as well as summer maximum
sea temperatures from both the year of isolate discovery and
the year prior. Of the 109 total features used for training and
prediction, the 10 (9.2%) strongest predictive features for each
metric, based on feature importance, were collated into a data
frame (Figure 4). A small range of these ecological and
evolutionary metrics featured within the 10 most important
features across all 5 expansion dynamics. For 1 expansion
dynamic only—temporal evolution—the strongest predictive
features were all environmental features, suggesting that the
influence of environmental temporal trends outweighed that of
the evolutionary drivers. The total number of genes was an
important feature for 4 (80%) of the 5 predicted expansion
dynamics and located in the top 3 most important features for
each of these, suggesting that genetic diversity was a key
distinguishing factor between the classes. In addition, the
maximum temperatures during June, July, and August were
strong predictor variables, appearing in the top 10 features of
all models. Lagged sea temperature effects also offered
significant information, notably the SSTs during June, July, and
August from the previous year. Although salinity variables did
not often appear in the top 10 features, the average salinity
during September, October, and November was a useful
predictor for classifying the stages of expansion and assessing
the success chances of an isolate. Shellfish imports featured as
important predictors in classifying population waves and the
stages of expansion. Accessory gene presences were stronger
predictors in classifying population waves and the chance of
success than the stages of expansion themselves.
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Figure 4. Feature importance for each of the expansion dynamic predictions within each random forest classifier model (where 1 indicates the most
important and 10 the 10th most important). DJF: December-January-February; HTH: helix-turn-helix; JJA: June-July-August; MAM: March-April-May;
SON: September-October-November; SST: sea surface temperature.

In terms of notable relationships identified, the success of an
isolate was generally associated with higher average and
maximum SSTs, particularly during June, July, and August.
The presence of certain accessory genes, including puuR, aguB,
and aguC, was more important in the classification of
“introduced” isolates than in the classification of “established”
isolates. The isolates that were predicted to be “introduced” (as

opposed to “established”) almost always had these genes present
compared to greater variation in the isolates that were predicted
to be “established.” This was even more evident in predicting
the population to which an isolate belonged, where multiple
accessory genes were absent in the third and most recent
population wave. Shellfish imports emerged as an important
driver in the distinction of the 3 separate populations, with a
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higher prediction range seen for isolates belonging to the third
population wave.

Cross-Correlation Between Ecological and
Evolutionary Drivers
We explored the relationships between the ecological and
evolutionary features included in the model and found multiple
significant correlations (Figure S3 in Multimedia Appendix 1).
Notably, the selected accessory genes exhibited strong
correlations with the SST metrics (both positive and negative)
as well as with shellfish imports; some genes also correlated
with the salinity metrics. In addition, some adaptive SNPs
exhibited correlations; for example, the SNP at position 597
had slight negative associations with maximum SSTs and slight
positive associations with minimum salinities. The total number
of genes had slight positive associations with most of the SST
metrics.

Region-Specific Eco-Evolutionary Models
When generating region-specific models to identify which
isolates would be specifically successful in China or Peru, as

representative countries, we found the model predictions for
China to be largely more accurate, with accuracies ranging from
0.778 to 0.917, compared to model predictions for Peru, with
accuracies ranging from 0.529 to 0.706 (Table 3). However,
while the model was able to successfully classify successful
isolates in China, it had difficulty in classifying the unsuccessful
isolates, with poor specificity. The Peru model had more
balanced predictions between these 2 classes. In both cases, the
ecological features–only model was the best approach, providing
the best accuracy. Total gene diversity was the top feature for
the combined eco-evolutionary approach (and the evolutionary
features–only model). For Peru, the remainder of the top 10
important features were ecological features; however, for China
it was an even split between ecological and evolutionary drivers,
including the type IV pilus twitching motility protein and the
SNP at position 603 (Table S3 in Multimedia Appendix 1),
which had not appeared previously among the important
features. In the ecological features–only model, the top features
were December to February minimum sea temperatures and
June to August average temperatures a year prior for China and
Peru, respectively.

Table 3. Accuracy metrics of region-specific random forest classifier models predicting unseen test data of each expansion dynamic.

Ecological features onlyEvolutionary features onlyCombined eco-evolutionary approachExpansion dynam-
ics

AccuracyF1-scoreRecallPrecisionAccuracyF1-scoreRecallPrecisionAccuracyF1-scoreRecallPrecision

0.9170.7780.889Success in China

0.4000.2501.0000.2000.2500.1670.3300.2500.500Unsuccess-
ful

0.9551.0000.9140.8710.8440.9000.9390.9690.912Successful

0.6780.6250.9570.5350.5470.5330.6360.6090.706Unweighted
average

0.8940.9170.9240.7960.7780.8190.8720.8890.866Weighted
average

0.7060.6470.529Success in Peru

0.6670.6250.7140.5000.3750.7500.4290.3750.500Unsuccess-
ful

0.7370.7780.7000.7270.8890.6150.6000.6670.545Successful

0.7020.7010.7070.6140.6320.6830.5140.5210.523Unweighted
average

0.7040.7060.7070.6200.6470.6790.5190.5290.524Weighted
average

Discussion

Principal Findings
Our analysis suggests that VpST3, as a clonal complex,
exhibited a high degree of efficacy in propagation during its
expansion, evidenced by the numerous introductions in
geographically distinct places at similar times. We found
evolutionary features that provided mechanisms for this process,
including accessory genes linked to functions that facilitate
motility and biofilm formation for attachment-based transport
mechanisms. The total number of genes within an isolate was
an important predictor in the machine learning models for most

expansion dynamics. Although we found no trend in gene
numbers over time, the model associated higher gene numbers
with isolates classified as within established populations,
evidenced by a higher prediction range for established isolates.
This suggests that isolates that became established could have
acquired genes specific to survival in the local conditions, with
this plasticity allowing it to colonize new geographic regions.
The declining presence of certain accessory genes (puuR, aguB,
and aguC) under purifying selection signals suggests that the
genes involved in initial introduction may become less useful
for population establishment, resulting in reduced selection
pressure for these genes. This is corroborated by the prediction
ranges of our model for “introduced” isolates, in which these
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genes were both important features and characterized as almost
always present in introduced isolates.

Assessment of the Eco-Evolutionary Approach
Our analysis has confirmed the hypothesis that considering
ecological and evolutionary features in a combined approach
to explore the drivers of pathogen expansion yields higher
accuracy than dealing with these drivers individually. This is a
novel use of the framework described in the study by Campbell
et al [17] for characterizing V parahaemolyticus expansion
dynamics.

From the ecological perspective, SST was a strong predictor
variable, as expected from well-established interactions between
V parahaemolyticus and SST [69]; however, maximum
temperatures during June, July, and August emerged as the
strongest driver, alongside lagged effects from the previous
year. More than two-thirds of our genomic isolates (240/311,
77.2%) were isolated in the northern hemisphere, where these
months would be the warmest; this period has previously been
described as the “Vibrio season” [69]—the characteristics of
this season each year seem to drive expansion. In addition, the
importance of SSTs in September, October, and November as
well as in March, April, and May is pertinent to recent studies
that have found expansions in seasonal suitability into cooler
months, approximately a 1-month increase every 30 years [70].
Although the period from June to August is the coldest in the
southern hemisphere for the South American isolates, it could
still drive expansion dynamics when the maximum sea
temperatures exceed the minimum for V parahaemolyticus
survival in the environment, allowing the bacteria to persist in
their environmental reservoirs until optimum conditions resume,
a phenomenon known as overwintering [71]. Sea temperatures
can drive both survival and community composition changes
[22,72], with mostly positive associations between SST and the
successful established isolates in our analyses. In laboratory
studies, increases in seawater temperature have been found to
upregulate the expression of virulence factors involved in
adhesion processes, such as biofilm formation [73], which could
facilitate transport mechanisms via attachment to marine
organisms that aid expansion and settlement in new areas.

Generally, the models using evolutionary features only had a
lower predictive potential; however, the inclusion of
evolutionary features improved the ecological models when
combined. The evolutionary features themselves potentially did
not offer enough predictive information independently, but
when linked to the specific local environmental conditions in
which the evolutionary processes provide survival benefits, the
evolutionary features were able to provide useful information
within the model on pathogen expansion. The evolutionary
features might lack meaning outside of ecological contexts or
indeed play a different biological role in different ecological
contexts. This is supported by the cross-correlations identified
between several evolutionary features and the associated
environmental conditions (Figure S3 in Multimedia Appendix
1), indicating that these interacting factors themselves, in the
form of dynamic evolutionary responses to environmental
conditions, can provide predictors of pathogen expansion. This
justifies the inclusion of both ecological and evolutionary

features in the same predictive model to account for the
interactions between them. We observed a specific
eco-evolutionary mechanism in our analysis, where SSTs were
significantly associated with the presence of multiple accessory
genes (Figure S3 in Multimedia Appendix 1), which could
indicate an introduced selection pressure in the environment,
with changes in SST representing a myriad of implications for
the microbial community. However, it is important to note that
these cross-correlations provide limited information and could
also be purely reflecting the strength of the temporal trends of
accessory gene presence, as the result of 2 concurrent or
diverging trends, with sea temperature gradually increasing over
the time period and accessory gene presence either increasing
or decreasing steadily.

Shellfish imports were an important driver for the classification
of the third population wave, which could allude to a population
opportunistically taking advantage of shellfish movements as
a transport mechanism. This would explain why this population
has purged multiple accessory genes offering transport
mechanisms, such as biofilm pathways. While the role of live
aquatic animal transport in contributing to V parahaemolyticus
expansion is currently unclear, studies have found that this
method of transport introduces new populations, facilitates the
exchange of genetic material, and promotes adaptation [74].
Further analysis will need to explore whether this subpopulation
has undergone innovation to improve host-pathogen attachment
mechanisms, particularly involving shellfish.

Few of the SNP mutations identified during outlier detection
featured heavily in model decisions, despite our methodology
aiming to identify mutations affecting proteins that could
promote expansion dynamics. While we encoded the SNPs as
categorical features in our machine learning analysis, alternative
encoding techniques, such as one-hot encoding, have been
explored, and it was found that including information on not
only the mutation but also the position of mutation can improve
accuracy [75]. Further analysis or different approaches should
be explored to improve the identification of mutations critical
to expansion processes.

While the models were designed generically to predict a range
of expansion metrics, they could be further refined for specific
purposes. There were several instances of a large discrepancy
between recall and precision, particularly for smaller,
underrepresented classes such as bottlenecks, which is a
common issue in machine learning when dealing with
imbalanced datasets. The models here were not developed
individually to obtain the greatest accuracy, as the aim was to
facilitate the comparison of accuracy metrics when combining
ecological and evolutionary features. However, these imbalances
can be remedied on a per-model basis in the future using
techniques such as class weights to assign higher weights to
minority classes during training or through oversampling (of
the minority classes) and undersampling (of the majority
classes), as demonstrated by DeLuca et al [76]. The difficulties
in separating initial introductions and bottlenecks can be
simplified into understanding why a particular introduction is
successful or unsuccessful. We did find a potential limiting
factor when predicting this success as a separate expansion
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metric, resulting in a high proportion of false positives where
unsuccessful isolates were misclassified as successful.

We propose that a potential limiting factor here could be
plankton presence, which has been found to offer nutrients for
growth and host protection [77], which was not included in the
analysis. This is relevant given the biofilm-related accessory
genes identified, which facilitate attachment to plankton, in
which these eco-evolutionary factors could combine to provide
further information on isolate success. Similarly, plankton
abundance was found to significantly increase the presence of
2 major virulence factors of V parahaemolyticus, tdh and trh
[78], underlining another eco-evolutionary mechanism driving
V parahaemolyticus dynamics. There are difficulties in
quantifying marine plankton presence for such a global
collection spanning decades. Earth Observation data offers a
suitable source for ecological driver data in the future, providing
consistent time series data at a sufficient resolution; however,
satellite observations of plankton (using chlorophyll-a
concentration as a proxy) are only available from late 1997; the
key preceding year that represents the pivotal early introductions
of the expansion of VpST3 is missing.

The spatiotemporal trends of error counts discussed (Table S4
in Multimedia Appendix 1) offer insights into model limitations
and areas for future improvement, such as improving our
predictive capabilities during the initial emergence of a pathogen
strain and in geographic regions reporting few isolates (as is
common during initial expansion).

Regional Predictive Performance for a Globally
Expanding Pathogen
The difference in accuracy between the China and Peru regional
models is likely due to the consequences of class imbalances.
The Chinese isolates had a much higher proportion of successful
isolates (108/120, 90%) than Peru (27/55, 49%), which meant
that, although we were able to predict successful isolates with
high precision and recall, it was very difficult to predict the
minority class of unsuccessful isolates (F1-score=0.33). Such
class imbalances result in overfitting of the majority class,
enabling the model to achieve a high accuracy of 90% even if
it simply predicted all isolates to be successful. This can be seen
in the China model using only ecological features, in which the
majority class (successful isolates) was predicted perfectly due
to 97% (35/36) of the data points being predicted as successful.
Further evidence for overfitting is provided by a large difference
between the area under the receiver operating characteristic
curve values of the training and test data, which were 0.860 and
0.949, respectively. To overcome such overfitting during the
future development of regional models, per-class and alternative
accuracy metrics need to be considered and imbalances
addressed through methods previously outlined. In the Peru
model, the number of successful and unsuccessful isolates were
much more balanced, resulting in lower but more balanced
per-class accuracy metrics. Currently, this would suggest that
we can predict the success of a pathogenic variant isolate more
accurately in an endemic region than in an emerging one but at
the expense of possible overfitting, providing areas for
improvement. In both cases, we found that ecological drivers
alone were the best approach, suggesting that the evolutionary

features were introducing noise into the model. This suggests
that focusing on common features in the whole group that might
facilitate expansion on a global scale might not be as valuable
as more region-specific evolutionary drivers, such as those
representative of adaptation to local conditions of a particular
region, which would need to be extracted for a more successful
regional approach.

However, it is important to note that while models can be
improved specifically for particular geographic regions, for
example, based on the ranges of local environmental conditions,
this comes at the expense of declining applicability. Such
applicability could be seen as a priority for a globally expanding
pathogen such as VpST3, requiring a model that is able to
function in a range of distinct geographic regions. Future work
could mediate this trade-off through the introduction of regional
encoders as features [24] or through engineering environmental
features to be more comparable, such as through normalized
anomalies rather than raw values.

Future Predictive Potential
While this analysis focused on the 3 continents reporting the
most VpST3 isolates (Asia, North America, and South America),
in the future, the focus will need to shift to countries that lie on
the periphery of the environmental tolerance ranges of V
parahaemolyticus, representing the potential locations of future
expansion. These include Europe, which, in recent years, has
observed the emergence of Vibrio lineages and increases in
vibriosis incidence as an emerging public health issue [79].
Increased genomic surveillance is required in these countries
to test the ability of this framework to identify expansion
potential into these new regions.

In addition, the eco-evolutionary analysis was limited by the
annual resolution of the genomic isolate metadata and shellfish
movement data. The majority of the isolates in our collection
were submitted to public databases with limited metadata,
specifying only a country and a year; however, higher-resolution
metadata, such as a district and a day, week, or month, as
suggested by Campbell et al [17], would greatly improve the
specificity of the related ecological data that we could then
append to this isolate, which is available at a very high
resolution. This is particularly necessary to account for the rapid
evolutionary timescales on which bacteria such as Vibrio
function [29]. Future models would benefit from higher
spatiotemporal–resolution datasets for machine learning training
that facilitate the characterization of more specific
eco-evolutionary drivers and increase predictive accuracy.

Conclusions
This pilot study provides a precedent for combining ecological
and evolutionary driver data using machine learning to predict
pathogen expansion metrics. This both aids our understanding
of historic expansion and, through further refinement and
development, could be operationalized into a trained database
through which a new recovered isolate could be submitted and
predictions made as to its introduction or establishment potential
to track pathogen expansion in near real time. The current
limitations preventing such operationalization include sufficient
genomic surveillance, data accessibility, and interdisciplinary
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analysis requirements. Accuracy would need to be refined to
the appropriate confidence values based on user requirements
of model sensitivity. Further exploration of applicability to a
range of climate-sensitive pathogens will require sufficient
genomic surveillance, which is currently limited by poor

spatiotemporal resolution. Combining state-of-the art analyses
of both ecological and evolutionary pathogen drivers will
provide new insights into future eco-evolutionary pathways of
climate-sensitive pathogens.
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Abstract

The integration of chatbots in oncology underscores the pressing need for human-centered artificial intelligence (AI) that addresses
patient and family concerns with empathy and precision. Human-centered AI emphasizes ethical principles, empathy, and
user-centric approaches, ensuring technology aligns with human values and needs. This review critically examines the ethical
implications of using large language models (LLMs) like GPT-3 and GPT-4 (OpenAI) in oncology chatbots. It examines how
these models replicate human-like language patterns, impacting the design of ethical AI systems. The paper identifies key strategies
for ethically developing oncology chatbots, focusing on potential biases arising from extensive datasets and neural networks.
Specific datasets, such as those sourced from predominantly Western medical literature and patient interactions, may introduce
biases by overrepresenting certain demographic groups. Moreover, the training methodologies of LLMs, including fine-tuning
processes, can exacerbate these biases, leading to outputs that may disproportionately favor affluent or Western populations while
neglecting marginalized communities. By providing examples of biased outputs in oncology chatbots, the review highlights the
ethical challenges LLMs present and the need for mitigation strategies. The study emphasizes integrating human-centric values
into AI to mitigate these biases, ultimately advocating for the development of oncology chatbots that are aligned with ethical
principles and capable of serving diverse patient populations equitably.

(JMIR Bioinform Biotech 2024;5:e64406)   doi:10.2196/64406

KEYWORDS

artificial intelligence; humanistic AI; ethical AI; human-centered AI; machine learning; large language models; natural language
processing; oncology chatbot; transformer-based model; ChatGPT; health care

Introduction

Overview
The development of oncology chatbots underscores the critical
need for systems grounded in human-centered artificial
intelligence (AI) principles that prioritize empathy, accuracy,
and personalized patient support. In the context of oncology,
where patients and their families often face significant emotional
and informational challenges, these chatbots are essential tools
for addressing their unique concerns [1-6]. However, as the

adoption of large language models (LLMs) such as GPT-3 and
GPT-4 becomes increasingly common in health care, the ethical
considerations surrounding their use have grown in importance.
It is vital that oncology chatbots adhere to ethical standards that
ensure fairness, transparency, accountability, and respect for
user privacy and autonomy. These systems should be designed
to serve diverse user groups, particularly those from
underrepresented communities, by avoiding biases and ensuring
equitable treatment [7,8]. Human-centered AI in oncology
focuses on creating systems that prioritize the needs and
experiences of patients and health care providers, thereby
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enhancing care, empathy, and support. Ethical AI extends
beyond mere technical functionality; it involves embedding
principles that safeguard the well-being, dignity, and rights of
patients. This includes building trust through transparency,
securing patient data, and delivering accurate and bias-free
information [9-12].

This review explores the integration of generative AI and LLMs
into oncology chatbots, aiming to create tools that embody these
human-centered AI principles. The customization and
personalization of chatbots are essential to meet the specific
needs of each user, transforming traditional chatbots from basic
information providers into empathetic, patient-focused tools
that significantly enhance the care experience [1,13,14]. The
primary goal of this review is to examine the challenges and
ethical concerns associated with deploying AI in sensitive health
care settings, particularly oncology. As these technologies
become more widespread, it is crucial to ensure that they align
with human-centered ethical principles. This study is motivated
by the need to address potential biases in AI systems, which
could inadvertently harm the very patients they are designed to
support.

The paper contributes to the field by identifying and analyzing
key ethical challenges associated with oncology chatbots, with
a specific focus on biases in the datasets used to train these
models. Unlike previous studies that provide broad discussions
on AI ethics, this review specifically addresses the unique ethical
dilemmas faced in oncology, where the stakes are exceptionally
high. The study also offers practical strategies for developers
and health care providers to enhance the ethical development
of AI, proposing a framework for human-centered AI in
oncology. The findings of this study reveal that oncology
chatbots often endure biases rooted in their training data, leading
to unfair or ineffective outcomes. To address these issues, the
paper provides strategic recommendations, such as using more
diverse and representative datasets, implementing continuous
monitoring, and refining training methodologies. These
measures aim to ensure that AI-driven tools in oncology are not
only effective but also ethically sound. In comparison to existing
literature, this study offers a focused analysis of the ethical
implications specific to oncology chatbots, an area that has been
relatively underexplored. By providing a detailed examination
of the sources of bias and presenting practical solutions, this
paper advances the conversation on ethical AI in health care,
particularly within the critical field of oncology.

Enhancing Oncology Chatbots With Ethical and
Human-Centered AI
In oncology, ethical principles like beneficence, nonmaleficence,
autonomy, and justice are crucial to ensure patient well-being.
Oncology chatbots, designed to support patients and families,
must adhere to these guidelines. For example, a chatbot for
patients with breast cancer can provide personalized treatment
information and emotional support, ensuring that the information
is accurate, culturally sensitive, and delivered with empathy
[13]. Such chatbots can significantly ease the burden on patients
by offering timely and relevant information. However, these
chatbots also face ethical challenges, particularly in maintaining
privacy and data security. For instance, a pediatric oncology

chatbot must securely handle sensitive data, requiring robust
encryption and transparent data usage policies [14].
Additionally, regular updates and monitoring are essential to
prevent biases or inaccuracies that could harm patients.
Transparency is another critical concern. Oncology chatbots
must clearly disclose their AI nature to users. For instance, in
end-of-life care, failing to inform users that they are interacting
with an AI could lead to mistrust and harm the health care
organization’s reputation. A proactive approach with clear
self-disclosure at the start of interactions is essential to maintain
trust [15]. In health care domains like nephrology, similar ethical
considerations apply, with a focus on patient consent, privacy,
and bias mitigation. In educational settings, oncology chatbots
can also be valuable, but they must follow ethical frameworks
to ensure accurate information delivery and fair AI operation.
By adhering to these principles, oncology chatbots can
effectively bridge learning gaps while maintaining trust and
integrity [6,16-18].

Designing Ethical and Trustworthy Oncology Chatbots
With Human-Centered AI
Ethical chatbots, therefore, need to adhere to certain principles.
They should prioritize transparency, providing users with clear
indications when they are interacting with AI rather than a
human. Respecting user privacy, obtaining informed consent,
mitigating biases, ensuring data security, and promoting
responsible AI use in education are central to developing ethical
chatbots. By integrating ethical frameworks and considering
societal impact, chatbots can contribute positively while
upholding ethical standards in their interactions with users.

There are 2 concerns to build an ethical oncology chatbot in
human-centered AI—first, it has to build trust in the users.
Second, how can it build trust? Building a human-centered
approach to AI-driven chatbots involves a strategic integration
of several key elements. First, the design should prioritize the
user’s needs and expectations. Rather than merely dispensing
information mechanically, the chatbot should discern and
address human needs relevantly. This personalized approach
fosters a more trustworthy relationship between the user and
the AI. Trust emerges as a pivotal concern in the development
of AI chatbots.

Second, essential strategies can be used to cultivate trust in the
oncology chatbots. The first involves personalization tailored
to each user, enhancing the sense of individual relevance and
reliability [19]. The second entails infusing the oncology chatbot
with a human-like persona, creating a relatable and approachable
interaction for users [20]. Implementing these qualities in the
design of AI chatbots requires a thoughtful technical strategy.
While the focus here is less on technical aspects and more on
user experience and interaction, achieving personalization
involves machine learning algorithms capable of understanding
and adapting to individual user preferences [21]. Meanwhile,
instilling a human-like persona necessitates sophisticated natural
language processing (NLP) techniques and dialogue design that
emulate human conversational patterns [22]. In essence, the
development of human-centered AI chatbots revolves around
creating an experience that seamlessly integrates technical
prowess with an empathetic understanding of human needs
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through web-based inputs with the users. By bridging the gap
between technological sophistication and human-like interaction,
these chatbots can truly serve as effective companions in
addressing users’ queries and needs.

Ethical Challenges in Implementing
Transformer-Based AI Models for Health Care
Enhancement
One way is in the design of transformers. In 2019, transformers
were used to create LLMs such as Bidirectional Encoder
Representations from Transformers (BERT) and GPT-2 [23].
The integration of AI technologies, specifically LLMs, holds
immense potential for improving efficiency and decision support
in health care settings. However, ethical considerations become
paramount when deploying such models, especially in critical
domains like health care.

GPT-4, the underlying model of ChatGPT, has demonstrated
significant potential in conversational AI applications [24]. This
advancement has sparked discussions about the ethical
implications of deploying such powerful models in health care.
One primary concern is the potential inaccuracies in generated
content. LLMs can produce convincing yet incorrect
information, posing a risk of errors in medical records.
Compounding this issue is the opacity of training data, making
it challenging to assess accuracy effectively [25]. To address
this concern, it is crucial for LLMs like GPT-4 to train on precise
and validated medical datasets [26].

The growing integration of AI chatbots, exemplified by tools
such as ChatGPT and Google Bard, in health care, introduces
critical security implications [27,28]. While these AI-driven
systems hold significant promise for improving patient care and
public health, their reliance on massive datasets, including
sensitive patient information, raises concerns about data security.
During the pandemic, health care chatbots have become
extensively used, addressing tasks like appointment scheduling
and providing health information [29]. However, this increased
usage magnifies security risks and privacy challenges that
remain understudied. AI chatbots, like ChatGPT, also pose
unique challenges in ensuring patient privacy and compliance
with regulations such as the Health Insurance Portability and
Accountability Act (HIPAA) [30]. Recent viewpoints in medical
journals highlight the need for providers to navigate HIPAA
compliance while safeguarding patient data [31]. Additionally,
the safety of medical AI chatbots in patient interactions becomes
a paramount consideration, necessitating measures to protect
patient data, maintain information accuracy, and ensure user
understanding [32]. Ethical considerations, including privacy
and data security concerns, further complicate the widespread
adoption of conversational AI in health care, emphasizing the
need for comprehensive guidelines and robust encryption
methods to build trust and safeguard sensitive health information
in this era of AI-driven health care communication. Another
critical ethical consideration is model bias [33]. LLMs may
inadvertently perpetuate biases present in their training data,
leading to medically inaccurate and discriminatory responses.
Biases can stem from various sources such as sampling,
programming, and compliance, necessitating careful
consideration to avoid perpetuating harmful stereotypes. Striking

a balance between model accuracy and unbiased responses is
essential for responsible deployment in health care settings.

Privacy, a fundamental principle in health care, adds another
layer of ethical complexity when using public LLMs. The
potential risks associated with data sharing must be mitigated
through strict agreements and HIPAA-compliant training
protocols. Ensuring patient privacy is paramount in the
implementation of AI technologies in health care [34].

Despite the potential benefits of using AI technologies,
particularly transformer-based models, in health care, careful
consideration of ethical principles is crucial. Addressing
concerns related to accuracy, bias, and privacy will facilitate
responsible and patient-centered implementation, benefiting
both health care professionals and patients.

The insights from the Megatron transformer underscore the
ethical considerations in deploying transformer models like
ChatGPT [35]. Trained on vast datasets, Megatron suggests
AI’s incapacity to independently ensure ethical behavior,
emphasizing its tool-like nature dependent on human usage.
Addressing the potential biases in transformer models, especially
in health care, demands a focus on fairness metrics, proactive
bias detection, and diverse training data. Continuous user
feedback becomes crucial for iterative refinement, and
bias-awareness training for stakeholders fosters a culture of
ethical responsibility. Integrating these strategies into the
deployment of transformer models is imperative, ensuring more
equitable and inclusive AI-generated content across diverse
applications.

Ethical Considerations in Deploying LLMs in Health
Care and Education
Using LLMs raises ethical considerations, including the potential
for biased outputs, breaches of privacy, and the risk of misuse.
These may have serious implications in medical settings.
Addressing these concerns requires the adoption of transparent
development practices, the responsible handling of data, and
the integration of fairness mechanisms.

The integration of LLMs, such as ChatGPT, in medical practice
and research raises crucial ethical issues concerning bias, trust,
authorship, equitability, and privacy [32]. Although this
technology has the potential to revolutionize medicine and
medical research, being mindful of its potential consequences
is essential. An outright ban on the use of this technology would
be shortsighted. Instead, establishing guidelines that aim to
responsibly and effectively use LLMs is crucial.

LLMs, like BioGPT [36] and LaMDA (Google Brain) [37], are
currently under exploration for various applications in the
medical field, showcasing versatility in tasks such as text
generation, summarization, and aiding in clinical documentation
and academic writing. The integration of LLMs, including
oncology chatbots powered by ChatGPT, holds promise for
streamlining essential health care tasks, including template
creation, summarizing academic content, and enhancing the
clarity of clinical notes. This potential introduces significant
time-saving and efficiency gains in medical settings.
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However, the incorporation of LLMs, particularly oncology
chatbots, into health care applications also presents ethical
challenges that demand careful consideration to ensure
responsible use. Recent research underscores concerns related
to the attribution of credit and rights for content generated by
LLMs. Users may encounter difficulties in fully claiming credit
for positive outcomes while potentially facing responsibility
for unintended consequences, such as the generation of
misinformation. This highlights the pressing need for updated
perspectives on responsibility and the establishment of clear
guidelines addressing issues like authorship, disclosure,
educational applications, and intellectual property in the context
of oncology chatbots and LLMs in general. Navigating the
ethical implications of integrating oncology chatbots and LLMs
into the medical field requires a comprehensive approach to
foster responsible and transparent use of these powerful
language models in health care settings.

In the field of education, LLMs show potential in automating
tasks such as question generation, feedback provision, and essay
grading. However, concerns about practicality and ethics,
including technological readiness, transparency, and privacy
considerations, must be addressed. A systematic scoping review
identifies these challenges and recommends updating
innovations with state-of-the-art models, open-sourcing models
or systems, and adopting a human-centered approach in
development. Therefore, the ethical considerations surrounding
the use of LLMs in various fields in medicine and education,
necessitate a careful and responsible approach. Establishing
clear guidelines such as ensuring transparency and incorporating
human oversight are essential steps in harnessing the benefits
of LLMs while mitigating potential risks.

As a research group focused on human-centered AI and the
ethical integration of AI principles into medical and oncology
chatbots [1-6], particularly leveraging LLMs [32], our analysis
delves into the historical evolution and the transformative
potential of LLMs. We aim to spotlight the continuum of
advancements in computational theory that has shaped our
technological landscape, emphasizing the pivotal role of
integrating humanistic and ethical considerations into AI for
health care.

LLMs and NLP Unveil New Potential for
Human-Centered AI in Oncology
Chatbots

Neural Networks and Machine Learning
Neural networks, fundamental to modern AI, emulate the
structure and functioning of the human brain, forming the basis
for various applications [38]. In the medical context, the
integration of LLMs like ChatGPT brings forth unprecedented
possibilities. LLMs are part of the NLP domain and are built
on architectures such as GPT and BERT [23,39]. Unlike

rule-based models, LLMs learn unsupervised from extensive
text data during pretraining, gaining a profound understanding
of syntax, grammar, and context. Fine-tuning follows, adapting
their knowledge for tasks like text generation and sentiment
analysis.

Within the broader landscape of human-centered AI, the
principles of neural networks and machine learning persist. The
capacity of neural networks to capture complex patterns in data,
combined with machine learning algorithms, remains
instrumental. In the realm of human-centered AI, LLMs and
NLP play a crucial role. NLP focuses on enabling machines to
comprehend and generate human language, aligning with the
principles of human-centered AI [40]. LLMs, as a significant
advancement in NLP, excel in understanding and generating
human-like language, enhancing natural interactions between
AI systems and users. In the context of oncology chatbots, the
integration of LLMs is pivotal. These advanced models empower
chatbots to comprehend medical queries, respond
empathetically, and adapt to diverse communication styles,
ultimately improving the user experience in health care
interactions. The use of LLMs in oncology chatbots not only
fosters effective communication but also reinforces the
human-centered aspect by creating more empathetic and
context-aware interactions within the medical domain.

LLMs in Oncology Chatbot
LLMs have achieved remarkable breakthroughs, innovating the
field of NLP with their capacity to generate human-like text
and excel in a multitude of NLP tasks. A compelling example
is their application in the development of oncology chatbots
[23,32,41]. These chatbots have the ability to communicate with
users in a natural and coherent manner, offering invaluable
assistance to both health care professionals and patients. LLMs
have enabled oncology chatbots to generate human-like
responses, providing users with a web-based and intuitive
experience. These chatbots can understand complex medical
queries, extract relevant information from patients’descriptions
of their symptoms, and generate responses that are not only
accurate but also easily comprehensible to laypersons. This
human-like text-generation capability significantly enhances
the user experience, fostering trust and improving
communication between patients and health care providers [42].

Furthermore, LLMs empower oncology chatbots to perform
diverse NLP tasks within the health care domain. They can
extract critical information from medical records, assisting in
patient diagnosis and treatment recommendations. These
chatbots can also provide medication information, offer guidance
on healthy lifestyles, and even support mental health through
empathetic conversations [43,44]. Their versatility makes them
invaluable tools in health care, augmenting the capabilities of
medical professionals and providing accessible, round-the-clock
health care information and support. Figure 1 shows the various
applications of an oncology chatbot powered by LLMs.
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Figure 1. Various applications of an LLM-powered oncology chatbot. LLM: large language model.

Applications and Implications of LLMs for
Human-Centered AI in Oncology
Chatbots

Practical Applications of LLMs in Human-Centered
AI
LLMs have demonstrated extensive practical applications across
diverse domains, showcasing their versatility and transformative
potential within the framework of human-centered AI. In the
realm of language translation, these models have markedly
enhanced the precision and fluency of machine translation
systems [45]. They adeptly translate text among multiple
languages, fostering seamless cross-cultural communication
and bolstering global business operations. Within text
generation, LLMs exhibit proficiency in crafting human-like
text for multifarious purposes, aiding content creation by
drafting papers, generating marketing copy, or assisting authors
in producing creative content [46]. Moreover, LLMs find use
in chatbots and web-based assistants, delivering natural and

contextually sensitive responses in customer support, health
care, and various other industries [47,48]. An illustration in
Figure 2 depicts an example of the RT Bot used in radiotherapy
education, epitomizing the integration of LLMs within the
sphere of human-centered AI applications.

In software development, LLMs have demonstrated their
prowess in code generation and code completion tasks. They
can assist programmers by generating code snippets, fixing
bugs, and enhancing productivity [49]. Moreover, in data
analytics, LLMs are used for natural language querying of
databases, simplifying data exploration and analysis for
nontechnical users [50]. Moreover, LLMs are invaluable in the
health care sector, where they aid in medical record analysis,
diagnosis support, and drug discovery [51]. They can sift
through vast amounts of medical literature to extract relevant
information and assist health care professionals in making
informed decisions. LLMs are also used in sentiment analysis
and social media monitoring, helping businesses gauge public
opinion, and adapt their strategies accordingly [52].
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Figure 2. The RT Bot providing education in radiotherapy.

Humanistic and Ethical AI
Humanistic AI refers to the approach in AI development that
prioritizes human values, well-being, and understanding in the
design and implementation of AI systems [53]. It emphasizes
creating AI technologies that align with human principles,
fostering empathy, compassion, and a deeper understanding of
human needs and emotions. On the other hand, ethical AI
involves adhering to moral principles and guidelines in the
development and deployment of AI systems [54]. It encompasses
considerations of fairness, transparency, accountability, privacy,
and the societal impact of AI applications. Ethical AI aims to
ensure that AI technologies benefit individuals and communities
while minimizing potential harm or biases. Incorporating
humanistic and ethical AI principles into oncology chatbots is
crucial. Humanistic AI prioritizes empathy and understanding
of human needs, while ethical AI ensures fairness, transparency,
and accountability. This dual focus not only aligns with societal
expectations but also safeguards against biases and harm,
ensuring AI benefits individuals and communities in the medical
domain [55-57].

The development of LLMs and oncology chatbots is deeply
intertwined with the concepts of humanistic and ethical AI.
LLMs, such as GPT-3 and GPT-4, are designed to generate
human-like text and have been applied to various domains,
including health care [58]. Oncology chatbots powered by LLMs
aim to provide assistance, information, and even preliminary

diagnosis to users [59]. Humanistic AI in oncology chatbots
based on LLMs involves creating interfaces and interactions
that are more empathetic, understandable, and accommodating
to human emotions and concerns [60]. It seeks to imbue these
AI systems with a human touch, making them more relatable
and comforting for users seeking medical information or support.
Ethical considerations in the development of LLM-based
oncology chatbots are crucial. These AI systems must maintain
patient privacy, ensure the accuracy and reliability of
information provided, mitigate biases in data and responses,
and offer transparent explanations for their suggestions or advice
[61]. In addition, ethical AI in this context involves clearly
delineating the capabilities and limitations of oncology chatbots
to users, ensuring informed decision-making and responsible
use of the technology.

Humanistic and ethical AI principles guide the responsible
development and deployment of LLM-based oncology chatbots,
promoting trust, reliability, and user satisfaction while
addressing societal concerns and ethical implications associated
with these AI-driven health care solutions [62].

Societal and Ethical Implications of LLMs in Deploying
Oncology Chatbots
The deployment of LLMs in the health care sector, particularly
in the form of oncology chatbots, presents both significant
benefits and ethical challenges. On one hand, oncology chatbots
powered by LLMs can enhance access to health care information
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and provide quick assistance to users with medical queries.
They offer a convenient means for individuals to seek
information about symptoms, treatments, or health care
recommendations. However, ethical concerns emerge when
considering issues of privacy, security, and misinformation [63].
Oncology chatbots may inadvertently expose sensitive patient
information if not properly secured, raising concerns about data
breaches and privacy violations. Moreover, LLMs can
potentially propagate medical misinformation, leading to
incorrect self-diagnoses or treatment decisions [64]. The
responsible development and deployment of oncology chatbots
must involve robust data protection measures, continuous
monitoring for accuracy, and adherence to medical ethics
guidelines to ensure that these technological advancements
contribute positively to health care while mitigating potential
risks. Balancing the benefits of LLM-powered oncology chatbots
with these ethical considerations is essential for their responsible
and effective use in the health care domain [32]. Above all, the
training datasets can be biased, and fall short of the
underrepresented communities such as women, aboriginal
people, persons with disabilities, and members of visible
minorities [65,66]. The oncology chatbots still have to be trained
to answer the needs of these communities.

Challenges and Limitations

Incorporating Humanistic and Ethical Principles Into
LLM-Driven Oncology Chatbots
The application of LLMs in oncology chatbots not only presents
a promising avenue for enhancing health care accessibility and
support but also introduces critical ethical considerations within
the realm of human-centered AI [20]. Despite the potential
benefits, the integration of these systems raises significant
ethical concerns and safety considerations. One prevalent issue
pertains to the potential perpetuation of biases and
discrimination within these AI systems. LLMs, learning from
extensive datasets that may inherently contain societal biases,
risk generating skewed recommendations or responses that
could adversely affect specific demographics, thus perpetuating
health care disparities [67,68]. Moreover, the deployment of
AI-driven chatbots might inadvertently impede individuals’
autonomy, recourse, and rights by overshadowing or dismissing
their unique health care needs or preferences [69]. Transparency
also remains a significant challenge, as these models often
generate outcomes that are nontransparent, difficult to explain,
or seemingly unjustifiable, making it challenging for users to
comprehend or challenge the decisions made by the AI [32].
Furthermore, there are concerns regarding user privacy breaches,
as personal health information shared with these chatbots may
not always be adequately secured [70]. Additionally, the reliance
on AI-driven interactions might risk isolation and the
deterioration of the patient-doctor relationship, potentially
undermining the crucial social connections essential for holistic

health care [71]. Ensuring the reliability and safety of outcomes
produced by these chatbots remains a concern, as inaccuracies
or poor-quality responses could have detrimental consequences
on patient health and well-being [72,73]. Mitigating these ethical
challenges and ensuring the safety of LLM-based oncology
chatbots necessitate robust frameworks, stringent regulations,
and ongoing scrutiny to address potential harms and uphold
ethical standards within the domain of human-centered AI in
health care. Figure 3 shows a proposed framework of a
radiotherapy chatbot based on ChatGPT. The chatbot is anchored
by a robust core powered by ChatGPT, interfacing seamlessly
with a meticulously curated database of verified medical
information [74]. The model undergoes domain-specific training
to enhance its comprehension of radiotherapy intricacies, while
a continuous feedback loop ensures that validated data inform
its responses and are cross-verified for accuracy. To enhance
ethical AI practices, the framework should incorporate bias
mitigation strategies by diversifying data sources, ensuring
transparency about the chatbot’s capabilities and limitations,
implementing robust user privacy measures, establishing
continuous ethical reviews, providing user education on
verifying information, and creating accessible feedback
mechanisms for reporting inaccuracies. This iterative approach
fosters a dynamic, reliable, and ethically responsible ecosystem
for delivering accurate and up-to-date information within the
scope of radiotherapy [75].

Therefore, integrating humanistic and ethical principles into
LLM-based oncology chatbots stands as a significant challenge
in contemporary AI development [76]. Achieving this
integration requires a comprehensive approach. First, prioritizing
patient confidentiality and data security remains pivotal.
Implementing robust encryption measures and stringent access
controls can effectively mitigate risks associated with sensitive
medical information [77]. Second, infusing empathy and
sensitivity into the chatbot’s responses poses a significant hurdle.
It necessitates the development of algorithms capable of
understanding and empathetically responding to patients’
emotional states, demanding extensive research into sentiment
analysis and contextually appropriate language generation [78].
Moreover, carefully considering the ethical implications of
decision-making in medical scenarios is crucial. Collaborative
efforts among AI developers, ethicists, and medical professionals
are vital to embed ethical guidelines into the chatbot’s
algorithms, ensuring alignment with medical ethics and patient
welfare [14,79,80]. Striking a balance between technical
functionality and ethical considerations is key to fostering trust
and acceptance of LLM-based oncology chatbots in the health
care ecosystem. Continuous vigilance, ongoing refinement, and
transparent communication about the chatbot’s capabilities and
limitations are essential steps in responsibly integrating
humanistic and ethical principles into this advancing technology
[63,81].
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Figure 3. Schematic diagram showing the framework of medical chatbot based on large language model–based ChatGPT, focused on radiotherapy,
ensuring accuracy, compliance, and continuous refinement.

Approaches to Mitigate Bias in LLM-Driven Oncology
Chatbots
To avoid potential bias in LLM-based oncology chatbots, it is
crucial to adopt a comprehensive approach. First, ensure that
the training data are diverse and representative of the entire
population the chatbot aims to assist. This involves incorporating
information from various demographic groups, ethnicities,
genders, and socioeconomic backgrounds to prevent the model
from learning and perpetuating biases present in specific subsets
of data [82,83]. Moreover, ethical data collection practices
should be a priority, with developers implementing strict
guidelines to eliminate unintentional biases. Transparently
communicate ethical standards to users and stakeholders to

foster trust and accountability in the development process [84].
Incorporating bias detection and correction algorithms during
both the training and deployment phases is essential [85,86].
These mechanisms should be designed to identify and rectify
biased outputs in real time, with regular updates to adapt to
evolving data and user interactions. In addition, transparency
is key in addressing bias; therefore, the chatbot should be
designed to provide clear explanations for its decisions. This
not only enhances user trust but also enables health care
professionals to understand the reasoning behind the chatbot’s
recommendations. Continuous monitoring and evaluation are
also important to the chatbot’s success [87,88]. Regularly assess
its performance over time, ensuring that potential biases are
identified and corrected promptly. User feedback integration
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further enhances the system, allowing diverse user groups to
report biases and contribute to ongoing improvements [1,2].
Furthermore, collaboration with health care professionals is
paramount. Involving experts in the development and validation
processes helps refine the chatbot’s responses, ensuring accuracy
and minimizing biases that may arise from a lack of medical

context [32]. Finally, regulatory compliance with health care
and data protection standards is vital. Adhering to established
regulations ensures that the chatbot operates within ethical and
legal boundaries, building trust among users and health care
providers alike [89]. Table 1 summarizes the strategies for
mitigating bias in LLM-based oncology chatbots.

Table 1. Strategies for mitigating bias in large language model–based oncology chatbots.

DescriptionStrategies

Use data that reflect the diversity of the target populationDiverse and representative training data

Implement strict ethical guidelines for data collectionEthical data collection practices

Integrate algorithms to identify and correct biased outputsBias detection and correction algorithms

Design the chatbot to provide clear explanations for decisionsExplainability and transparency

Continuously monitor and evaluate the chatbot’s performanceUser feedback integration

Encourage user feedback to identify and address biasesCollaboration with health care professionals

Involve health care experts in development and validationPrivacy-preserving models

Adhere to health care and data protection regulationsRegulatory compliance

Navigating the AI Frontier: Challenges and Ethical
Considerations
The rise of LLMs, exemplified by GPT-4, has sparked both
excitement and apprehension. Geoffrey Hinton, a prominent
figure in deep learning, acknowledges their potential to surpass
human intelligence [90]. However, this rapid progress raises
ethical and safety concerns. Despite having significantly fewer
connections than the human brain, LLMs exhibit remarkable
learning capabilities. Their ability to generalize from limited
examples challenges conventional wisdom. Hinton argues that
their occasional errors and hallucinations are features, akin to
human imperfections. His fears extend beyond mere intelligence;
he emphasizes the risk of AI misuse by malicious actors.
Whether in elections or warfare, AI’s capacity to create subgoals
and manipulate environments demands urgent attention.
Responsible development and regulation are imperative. Hinton
envisions a hybrid intelligence—a fusion of learning and
communication—where machines outperform humans in both
domains. This transformative era requires collective action and
societal discussions akin to historical agreements on chemical
weapons. As AI development outpaces regulation, Hinton
questions whether our existing social structures can handle the
implications. Responsible AI deployment necessitates
interdisciplinary collaboration and thoughtful governance. While
some may dismiss Hinton’s concerns, the stakes are high. As
we navigate the path toward AI advancement, we must grapple
with the potential consequences and strive for ethical,
human-centered progress.

Concerns of Datasets in LLMs or NLP for Ethical and
Human-Centered AI
The ethical considerations surrounding the datasets used in
training LLMs and NLP systems are critical for advancing

human-centered AI, particularly in the context of oncology
chatbots. The datasets used for training these models often
reflect societal biases, which can lead to ethical dilemmas when
the outputs of these chatbots are applied in real-world health
care settings [57]. For instance, commonly used datasets like
the Common Crawl, Wikipedia, and clinical databases may
overrepresent affluent, Western demographics while
underrepresenting minority groups, non-Western cultures, and
marginalized communities. This bias can result in oncology
chatbots that are less effective in serving diverse patient
populations, potentially exacerbating health disparities.
Moreover, the ethical implications of dataset bias become
evident when examining specific LLMs like GPT-3 and GPT-4.
These models are often fine-tuned on domain-specific datasets,
which can inadvertently amplify existing biases. For example,
if an oncology chatbot is trained predominantly on datasets from
high-income health care systems, it may lack the cultural
competency required to address the needs of patients from
low-income or diverse backgrounds [91]. Such a scenario not
only limits the chatbot’s effectiveness but also raises concerns
regarding equity in health care delivery. Table 2 outlines how
to address the concerns related to datasets in LLM or NLP for
ethical and human-centered AI, specifically in the context of
oncology chatbots. This table provides examples of datasets,
identifies potential biases, and suggests strategies for mitigating
these biases. By systematically addressing these issues, we seek
to illuminate the vital importance of ethical dataset selection
and its influence on developing effective, human-centered
oncology chatbots. Our findings underscore the need for
continuous evaluation and modification of datasets to reduce
bias, ensuring that LLMs accurately represent and serve the
diverse populations they aim to support in the field of oncology.
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Table 2. Overview of dataset, potential biases, and strategies for mitigation in large language model or natural language processing medical chatbot.

Strategies for mitigationPotential biasesDescriptionDataset

Ensure diverse sourcing and include localized
health care data from various regions

Overrepresentation of Western cul-
tures, socioeconomic status

A large dataset collected from web
pages across the internet

Common Crawl

Use guidelines for inclusive contributions and
diversify contributor base

Gender and racial biases due to con-
tributor demographics

Open-source encyclopedia with con-
tent generated by volunteers

Wikipedia

Incorporate data from a variety of health care
settings, including rural and underserved areas

Predominantly includes data from ur-
ban hospitals; underrepresents rural
populations

Critical care database with deidenti-
fied health data

MIMIC-III

Filter and include tweets from diverse socioeco-
nomic backgrounds and global populations

Possible bias in language and topics
relevant to affluent groups

Tweets related to health topics used
for sentiment analysis

Health-related Twit-
ter data

Prioritize inclusion of diverse populations in
future trials and datasets

Limited representation of minority
groups in trial participants

Data from clinical trials used to eval-
uate treatments

Clinical trials data

Integrate literature from diverse geographical
regions and cultural contexts

Predominantly Western-centric stud-
ies may neglect non-Western medical
practices

Biomedical literature and research
papers

PubMed studies

Standardize data collection practices to ensure
comprehensive representation

Disparities in data collection practices
may overlook marginalized groups

Deidentified patient data for training
models

Patient health
records

Future Directions

While LLMs have undoubtedly showcased remarkable
capabilities, it is crucial to recognize their inherent limitations,
especially when applied in the context of oncology chatbots.
One of the most pronounced constraints is the absence of
genuine understanding [92]. LLMs excel at producing coherent
and contextually relevant text, yet they lack true comprehension
or reasoning abilities. In the realm of oncology chatbots, this
limitation can manifest in responses based solely on patterns
from their training data, without a deep grasp of medical
principles [93]. Furthermore, there is the risk of unintentionally
generating misleading or inaccurate content, a particularly
critical concern in health care, where erroneous information can
carry significant consequences [94]. Therefore, the deployment
of oncology chatbots should be approached as a supplementary
aid alongside human medical professionals [95]. It is imperative
to navigate their limitations thoughtfully while maintaining
vigilant oversight to ensure the precision and reliability of the
information they furnish.

Ongoing research in the realm of LLMs is dedicated to
confronting their limitations and enhancing their reliability,
interpretability, and ethical standing. One particularly promising
avenue focuses on the development of more resilient training
datasets that seek to mitigate bias and encompass a broader
spectrum of perspectives and languages [96]. Researchers are
actively exploring methods to render LLMs more interpretable,
facilitating users in comprehending and trusting their
decision-making processes. Additionally, there is a mounting
emphasis on ethical considerations, including the establishment
of guidelines and regulations governing LLM deployment,
content generation, and the protection of data privacy [97].
Upholding transparency, accountability, and fairness in LLMs
is fundamental to their responsible use. Future directions may
encompass the creation of hybrid models that combine the
strengths of LLMs with other AI techniques, ultimately
enhancing their reliability while diminishing the likelihood of
generating misleading information [98]. As LLMs assume an

increasingly central role across diverse domains, ongoing
research and ethical considerations are pivotal forces shaping
their development and deployment for the betterment of society.

Future directions for LLMs focus on several key areas of
advancement. These include enhancing the models’ ability to
understand context, nuances, and user intent in natural language,
which will lead to more effective human-computer interactions.
There is also a growing emphasis on integrating text-based
models with vision and audio capabilities, enabling richer and
more comprehensive communication. Addressing and reducing
biases in LLMs is critical to ensuring fairness and inclusivity
in generated content, while customization and fine-tuning of
models are becoming increasingly important for specific
applications. Efforts are also being made to develop more
energy-efficient LLM architectures and training methods, which
would reduce their environmental impact and make them
accessible on low-power devices. Real-time conversational AI
is another area of focus, with the goal of enabling more
seamless, natural, and context-aware interactions.
Privacy-preserving models are being researched to protect user
data, and human-AI collaboration is being advanced to enhance
productivity and creativity. Ethical guidelines and regulations
are being established to ensure the responsible and safe use of
LLMs [99]. In education, LLMs are being used to create
personalized and adaptive learning experiences. In the medical
field, these models are expanding their role in research,
diagnostics, and patient care, with a strong emphasis on adhering
to medical ethics and ensuring compliance with standards such
as patient confidentiality and informed consent. Finally, the
creative capabilities of LLMs are being explored, pushing the
boundaries in generating content across various artistic domains.

The integration of LLMs into the domain of oncology chatbots
raises intriguing opportunities and concerns, underscoring the
significance of human-centered AI within health care
applications. While LLMs offer a powerful tool for enhancing
human-computer interactions, particularly in health care settings,
their application necessitates careful consideration and balance
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[100,101]. Historically, expert systems have played a pivotal
role in decision support and knowledge representation within
these applications. The incorporation of LLMs introduces a
novel dimension to this landscape by capitalizing on their
remarkable capacity to comprehend and generate human
language. However, it is crucial to recognize that akin to expert
systems, LLMs possess inherent limitations. While excelling
at processing extensive data and generating coherent responses,
their actual grasp of intricate medical principles may be
constrained. Therefore, the primary challenge lies in harnessing
the capabilities of LLMs while ensuring that their responses
align with medical accuracy, ethical considerations, and the
ethos of human-centered AI in health care.

Conclusions

The emergence of LLMs signifies a transformative leap in
computational paradigms, highlighting the central role of
human-centered AI in this progression. Models such as GPT-3
and GPT-4 have not only revolutionized machine learning but
have also profoundly influenced oncology chatbots through
their advanced language processing capabilities. However, as
technological advancements persist, the ethical
dimensions—particularly concerning biases and

misinformation—require meticulous attention. Integrating
humanistic and ethical principles into the development of LLMs,
especially within oncology chatbots, is crucial for responsible
AI integration. Envisioning a future where machines possess
unparalleled language abilities alongside adept management of
ethical complexities demands a proactive ethical framework.

This comprehensive review explores the evolution, applications,
and future trajectories of LLMs in health care and beyond. It is
essential to acknowledge the inherent limitations and dynamic
nature of technology, suggesting that the landscape of LLMs is
rapidly evolving. Future directions outlined herein may witness
significant changes or novel developments shortly. Therefore,
ongoing research efforts should continuously update and expand
this review, encompassing newer LLM iterations, exploring
specific health care applications, and conducting empirical
studies to validate practical implications and real-world efficacy.

Furthermore, deeper exploration into the ethical implications
and societal impacts of widespread LLM implementation
remains a critical avenue for future inquiry. Continued research
endeavors in these areas will not only enhance our
comprehension and use of LLMs but also address emerging
challenges and opportunities, aligning with the foundational
principles of human-centered AI.
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