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Abstract

Background: Current postpartum hemorrhage (PPH) risk stratification is based on traditional statistical models or expert opinion.
Machine learning could optimize PPH prediction by allowing for more complex modeling.

Objective: We sought to improve PPH prediction and compare machine learning and traditional statistical methods.

Methods: We developed models using the Consortium for Safe Labor data set (2002-2008) from 12 US hospitals. The primary
outcome was a transfusion of blood products or PPH (estimated blood loss of ≥1000 mL). The secondary outcome was a transfusion
of any blood product. Fifty antepartum and intrapartum characteristics and hospital characteristics were included. Logistic
regression, support vector machines, multilayer perceptron, random forest, and gradient boosting (GB) were used to generate
prediction models. The area under the receiver operating characteristic curve (ROC-AUC) and area under the precision/recall
curve (PR-AUC) were used to compare performance.

Results: Among 228,438 births, 5760 (3.1%) women had a postpartum hemorrhage, 5170 (2.8%) had a transfusion, and 10,344
(5.6%) met the criteria for the transfusion-PPH composite. Models predicting the transfusion-PPH composite using antepartum
and intrapartum features had the best positive predictive values, with the GB machine learning model performing best overall
(ROC-AUC=0.833, 95% CI 0.828-0.838; PR-AUC=0.210, 95% CI 0.201-0.220). The most predictive features in the GB model
predicting the transfusion-PPH composite were the mode of delivery, oxytocin incremental dose for labor (mU/minute), intrapartum
tocolytic use, presence of anesthesia nurse, and hospital type.

Conclusions: Machine learning offers higher discriminability than logistic regression in predicting PPH. The Consortium for
Safe Labor data set may not be optimal for analyzing risk due to strong subgroup effects, which decreases accuracy and limits
generalizability.

(JMIR Bioinform Biotech 2024;5:e52059) doi: 10.2196/52059

JMIR Bioinform Biotech 2024 | vol. 5 | e52059 | p. 1https://bioinform.jmir.org/2024/1/e52059
(page number not for citation purposes)

Ahmadzia et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

mailto:homa.ahmadzia@inova.org
http://dx.doi.org/10.2196/52059
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

postpartum hemorrhage; machine learning; prediction; maternal; predict; predictive; bleeding; hemorrhage; hemorrhaging; birth;
postnatal; blood; transfusion; antepartum; obstetric; obstetrics; women's health; gynecology; gynecological

Introduction

Maternal morbidity and mortality have been regarded as a
reflection of health care quality nationwide. Among
lower-income countries, postpartum hemorrhage (PPH) is
typically the most common cause of maternal mortality and
remains among the top causes in higher-income countries. In
the United States, hemorrhage accounted for 11.0% of deaths
between 2011 and 2016 [1-4]. To address maternal hemorrhage,
maternal hemorrhage protocols have been implemented, which
incorporate prospective PPH risk assessment to tailor PPH
prophylactic and management approaches for patients’
individual risk profiles. However, these protocols are often
based on observational studies that approximated the strength
of associations with hemorrhage via logistic regression (LR)
models and combined the results of multiple studies together
in a linear fashion [5-7]. However, “standard” LR assumes that
(1) there is a linear relationship between predictors and the log
odds of outcomes and (2) there are independent relationships
between predictors. Additionally, LR and related models often
perform poorly with large numbers of included variables [8,9].
Consequently, current risk stratification models fail to accurately
ascertain pregnant patients’ risk of hemorrhage [10]. Studies
attempting to validate existing LR and related models have
instead identified gaps in the efficacy of these models, as the
majority of patients with PPH and transfusions were stratified
in low or moderate risk groups [11,12].

Machine learning offers an advantage to current risk assessment
methods through its ability to create a robust model based on
larger numbers of predictors, with nonlinear relationships and
interactions between variables included in analyses [13]. Our

objective in this analysis was to create a validated prediction
model using machine learning for postpartum hemorrhage and
transfusion to optimize risk-based triage and inform policy
makers and stakeholders who aim to further reduce maternal
morbidity and mortality associated with hemorrhage.

Methods

Data Collection
Data for this analysis were extracted from the Consortium for
Safe Labor (CSL) data set created by the Eunice Kennedy
Shriver National Institute of Child Health and Human
Development (NICHD). It includes antepartum, intrapartum,
and postpartum medical histories of 224,438 women from 12
hospitals in the United States (Figure 1). Variables in this data
set include maternal demographics, reproductive history,
medical history, prenatal history of current pregnancy, labor
admission assessment, labor progression, labor and delivery
summary, maternal postpartum condition, and newborn
information. For this database, data were extracted
retrospectively from existing records for deliveries most recently
occurring at each site. Data were extracted electronically using
a method suitable to each hospital’s unique data systems. Data
transfer and integrity were managed by a data coordinating
center that created a central database. The data were deidentified
and are available for research under request from the NICHD.
Women with only 1 recorded pregnancy in the data set were
included for data analysis; if women had more than 1 pregnancy
during the study period, only the first one was used in the
analysis. We selected maternal, fetal, and pregnancy variables
as candidates to build the prediction model for transfusion risk.
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Figure 1. Flowchart of inclusion of women with transfusion or postpartum hemorrhage (or both).

Missing Data
Machine learning methods are known to generate errors in the
presence of missing values [14]. To avoid this, we imputed
values as follows: categorical variables with missing and
unknown values were assigned to an “unknown” category;
continuous variables with missing and unknown values were
coded to the median value. Continuous variables for maternal
age and BMI were coded into ordinal categories (age of <20,
between ≥20 and <40, between ≥40 and <45, and ≥45 years;
BMI of ≤20, between >20 and ≤40, between >40 and ≤50, and

>50 kg/m2). Imputing estimated blood loss (EBL) as the median
value (350 mL) meant that missing values were assumed to be
<1000 mL.

Feature Selection
We used the Cramér V index of nominal association for variable
selection [15]. Features were classified into antepartum and
intrapartum variables. Two different prediction models were
constructed: (1) an antenatal-only model intended to be used in
the clinic setting to inform appropriate patient referral and (2)
an intrapartum model that included both antepartum and
intrapartum characteristics. Individual antepartum and
intrapartum maternal variables included for model development
are shown in the Multimedia Appendix 1.

Outcomes
Separate models were constructed to predict 2 target outcomes.
The primary outcome was a composite including all patients
who received a transfusion of any blood product or had a PPH

defined by documented blood loss of ≥1000 mL during or after
delivery. Our secondary outcome was all patients who received
transfusion of any blood product. Both blood loss of ≥1000 mL
and blood transfusion are clinically significant metrics in
obstetric care. Transfusion alone represents patients who are at
risk for high maternal morbidity and mortality and is a clinically
important metric to evaluate in isolation; hence, it was evaluated
independently in a model as a secondary outcome.

Data Analysis
For each of the 4 combinations of predictors and outcomes (for
predictors, antepartum vs antepartum and intrapartum; for
outcomes, transfusion and blood loss greater than a liter versus
transfusion alone), the data were split so that 70% of the
observations were used for training and 30% were used for
testing, with both sets having the same outcome rate. We applied
a number of methods, including LR, support vector machines
(SVMs), multilayer perceptron (MLP), random forest (RF), and
gradient boosting (GB), as well as deep learning algorithms
including TensorFlow imbalanced (TFIM) and learned
embedding (Emb). Hyperparameters were tuned for each
algorithm using a customized grid search technique. The model
performance for each combination of outcome and algorithm
was measured using the Matthews correlation coefficient
(MCC), area under the receiver operating characteristic curve
(ROC-AUC), area under the precision/recall curve (PR-AUC),
and modified F-score skewed toward recall (F2). A modified
F2 score was chosen to minimize false negatives and thus
maximize the identification of patients at high risk for bleeding
and transfusion. Existing LR models and risk classification
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schemes perform poorly, and the majority of patients with
hemorrhage or transfusion are misclassified as low risk.
Misclassification of a “high risk” patient as “low risk” may have
important clinical implications. Additionally, interventions can
be implemented to minimize risk and enhance patient safety
(eg, type and cross, multiple intravenous access sites, provider
awareness, medications, etc). Models will then be evaluated for
those with the highest positive predictive value (PPV) given
these parameters. A model with the highest PPV will be
clinically useful to identify a high-risk patient population
without increasing the clinical burden on the hospital system
or patient with the abovementioned interventions. Algorithms
were processed and results were analyzed using Python (version
3.6; Python Software Foundation), Pandas (version 1.2; The
Pandas Development Team), scikit-learn (version 0.24;
scikit-learn Developers), and TensorFlow (version 2.2; Python
Software Foundation).

The primary study objective was to identify the strongest set of
pre- and intraoperative predictors of hemorrhage or transfusion
and the strongest modeling technique. Secondary objectives
included determining the level of agreement between metrics
for model evaluation and the extent to which any technique
produced results that are clinically useful. Given the
heterogeneity of this data set derived from multiple institutions,
a site-specific sensitivity analysis was performed.

Ethical Considerations
This analysis was exempt from review by the George
Washington University’s institutional review board
(NCR202746).

Results

Of 228,438 births included in the CSL cohort, we included
185,413 patients (Figure 1), having excluded patients with more
than 1 delivery (n=43,025). Maternal age ranged from 11 to 58
(median 27) years; 32% (n=60,193) of the participants were
publicly insured, 49% (n=90,466) were white non-Hispanic,
22% (n=41,780) were Black, and 17% (n=32,727) were
Hispanic. Of the 185,413 women included in the analysis, 71%
(n=131,130) had a vaginal delivery, and 29% (n=54,283) had
a cesarean delivery. In total, 5170 (3%) women experienced the
primary outcome of transfusion of any blood product, 5760
(3.11%) had a PPH defined by an estimated blood loss of ≥1000
mL, and 10,344 (6%) experienced the secondary composite
outcome of transfusion or estimated blood loss of loss of ≥1000
mL. Additional demographic data are summarized in Multimedia
Appendix 2.

After building the models in an iterative process, their
performance in predicting both the primary and secondary
outcomes was compared using a variety of metrics. The metrics
ROC-AUC, PR-AUC, MCC, and F2, as well as sensitivity and
specificity at a probability cut point of 50% are shown in Tables
1 and 2.

Table 1. Performance of machine learning and statistical models based on antepartum and intrapartum maternal variables at predicting transfusion or
postpartum hemorrhage (or both). Primary outcome: blood transfusion or blood loss of ≥1 L.

F2eMCCdPR-

AUCc
ROC-

AUCb
Specifici-
ty

Sensitivi-
ty

Positive pre-
dictive value

False nega-

tivesa, n

False posi-

tivesa, n

True nega-

tivesa, n

True posi-

tivesa, n

Algorithm

0.4190.2600.2100.8330.6630.8890.135626318650GBf

0.4090.2610.2040.8300.6410.8570.138605339650RFg

0.4060.2460.1810.8130.6870.8210.1346492961046Embh

0.4020.2450.1490.8080.6450.8750.127609335749MLPi

0.4030.2450.1940.8220.6550.8610.129619323848TFIMj

0.3970.2420.1590.8040.6300.8860.124595349649SVMk

0.3930.2380.1770.8130.6680.8300.1296313141046LRl

aValues are normalized per 1000, so they are easier to compare across different models; the actual N value is 55,624.
bROC-AUC: area under the receiver operating characteristic curve.
cPR-AUC: area under the precision-recall curve.
dMCC: Matthews correlation coefficient.
eF2: modified F-score skewed toward recall.
fGB: gradient boosting.
gRF: random forest.
hEmb: learned embedding.
iMLP: multilayer perceptron.
jTFIM: TensorFlow imbalanced.
kSVM: support vector machine.
lLR: logistic regression.
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Table 2. Performance of machine learning and statistical models based on antepartum and intrapartum maternal variables in predicting transfusion or
postpartum hemorrhage (or both). Secondary outcome: blood transfusion.

F2eMCCdPR-

AUCc
ROC-

AUCb
Specifici-
ty

Sensitivi-
ty

Positive pre-
dictive value

False nega-

tivesa, n

False posi-

tivesa, n

True nega-

tivesa, n

True posi-

tivesa, n

Algorithm

0.3250.2340.1110.8600.7580.8660.093737235424GBf

0.3190.2320.1070.8620.7420.8870.090721251325RFg

0.3090.2150.0960.8370.7710.7890.090750223622Embh

0.3180.2270.0950.8450.7560.8490.091735237424MLPi

0.3190.2290.1110.8550.7530.8590.091732240424TFIMj

0.3200.2300.1160.8520.7490.8710.091728244424SVMk

0.3170.2280.1110.8530.7430.8760.089722250324LRl

aValues are normalized per 1000, so they are easier to compare across different models; the actual N value is 55,624.
bROC-AUC: area under the receiver operating characteristic curve.
cPR-AUC: area under the precision-recall curve.
dMCC: Matthews correlation coefficient.
eF2: modified F-score skewed toward recall.
fGB: gradient boosting.
gRF: random forest.
hEmb: learned embedding.
iMLP: multilayer perceptron.
jTFIM: TensorFlow imbalanced.
kSVM: support vector machine.
lLR: logistic regression.

For both the primary and secondary outcomes, models developed
using antepartum and intrapartum maternal variables (see
Multimedia Appendix 1 for a list of variables) to predict the
primary outcome performed better with higher PPVs than those
solely using antepartum maternal variables (Multimedia
Appendices 3 and 4). For the primary composite outcome, the

machine learning technique GB using intrapartum maternal
variables had the highest PPV (PR-AUC=0.21, 95% CI
0.20-0.22; ROC-AUC=0.83, 95% CI 0.828-0.838; Figure 2).
For the secondary outcome of transfusion alone, there was little
difference in model performance when comparing several
performance metrics.
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Figure 2. Receiver operating characteristic and precision/recall curves for different models using intrapartum maternal variables predicting transfusion
or postpartum hemorrhage.

The remainder of our results focus on the model with the highest
PPV: the intrapartum model (containing both antepartum and
intrapartum variables) evaluating our primary outcome of a
composite of blood loss of more than 1000 mL or transfusion.
Both RF and GB had significantly higher PPVs for predicting
the composite transfusion or PPH when compared with LR
(PR-AUC=0.18, 95% CI 0.17-0.19; ROC-AUC=0.81, 95% CI
0.808-0.818).

Figure 3 reveals the calibration curves for the models
constructed with intrapartum maternal variables and predicting
the transfusion-PPH composite. Calibration curves portray the
predicted PPH risk versus the observed PPH rate across a range
of predicted PPH values. There was better agreement between
the models with a lower fraction of positives, and none of the
models were able to reach the standard curve—for all models,
the predicted PPH risk overestimated the observed PPH rate
across the range of predicted values.
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Figure 3. Calibration curves for models using intrapartum maternal variables to predict transfusion or postpartum hemorrhage (or both). Emb: learned
embedding; GB: gradient boosting; LR: logistic regression; MLP: multilayer perceptron; RF: random forest; SVC: support vector machine; TFIM:
TensorFlow imbalanced.

Figure 4 displays the top 25 predictive variables included for
model development using antepartum and intrapartum features
for the prediction of the transfusion-PPH composite. As the
machine learning GB model was the best performing model
overall, the variables in Figure 4 are in order of variable
importance within the GB model. The top 10 variables from
most predictive rate to least predictive rate for intrapartum
prediction of the transfusion-PPH composite using the GB model
are mode of delivery, oxytocin incremental dose for labor
(mU/minute), intrapartum tocolytic use, use of anesthesia nurse,
hospital type, a trial of labor after prior cesarean delivery,

insurance, most serious diabetes control, education, and history
of prior cesarean sections. The results of the models for
antepartum-only models are listed in Multimedia Appendix 3.
The ROC-AUC and PR-AUC did not perform as well for the
models using antepartum-only variables, though this was less
obvious for the models predicting transfusion only (Multimedia
Appendix 4). Of note, upon further sensitivity analysis, we also
determined that some of the top variables in the model were
site-specific (ie, oxytocin incremental dose for labor, intrapartum
tocolytic use, use of anesthesia nurse, and hospital type) for
transfusion outcomes specifically (data not included).

Figure 4. Top 25 predictors based on each model using intrapartum maternal factors predicting transfusion or postpartum hemorrhage (or both). GB:
gradient boosting; LR: logistic regression; MLP: multilayer perceptron; RF: random forest; SVC: support vector machine.
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Discussion

Principal Findings
In this study, LR and machine learning techniques were analyzed
and compared to develop prediction models for PPH and
transfusions. We found that the machine learning techniques,
particularly GB, performed best to predict PPH when PPH was
defined as blood transfusion or blood loss of greater than 1 L.
However, all prediction models had difficulties with calibration
when predicting the rare outcome of transfusion alone.

Clinical Implications
Risk assessment for PPH has been shown in a pre-post study
to reduce rates of blood transfusion and PPH [16]. However,
the risk stratification approaches most commonly used for PPH
in the United States were developed and implemented on the
basis of expert opinion, and subsequent validation studies have
revealed the limitations of these tools [17,18]. Validation studies
using the California Maternal Quality Care Collaborative
(CMQCC) risk assessment tool found that while the tool
generated populations with different rates of hemorrhage among
those stratified to low, medium, and high-risk groups, the rate
of PPH among women stratified in the high-risk group for PPH
was only 22% [19]. Others have found that the AUC-ROC for
the CMQCC and Association of Women's Health, Obstetric and
Neonatal Nurses’ (AWHONN’s) tools for predicting severe
PPH, defined by transfusion of at least 4 units packed red blood
cells during postpartum period, were relatively modest at 0.77
and 0.69, respectively [20]. Furthermore, parameters that are
included in PPH risk models based on univariate association
with PPH risk may not be independent predictors when
incorporated into multivariate models [20]. For these reasons,
improvements in PPH risk models are a promising target for
improving PPH care.

A previously published risk assessment for PPH using the CSL
data set demonstrated exceptional model performance, but model
performance was drastically lower in an external validation
cohort [21,22]. This study augments the findings of these prior
studies via incorporation of antepartum and intrapartum risk
factors. Nonetheless, additional work is needed before such a
model can be implemented in clinical practice. In particular, it
will be important to develop prediction models that are
implementable either through straightforward bedside data entry
or can be automated via real-time data capture from electronic
medical records, which are well validated in a variety of hospital
settings, and ideally, which are paired with recommended
risk-based interventions to reduce hemorrhage risk and mitigate
the occurrence of hemorrhage. In our study, among the top
predictors were variables that reflect patients’ access to care
and resources, such as hospital type and insurance. This
highlights the possible need for a layered prediction model,
which may help stratify patients who may need to be transferred
to a tertiary care center with more resources (using an
antepartum model focusing on patient factors along with hospital
factors to designate risk).

Research Implications
For all the intrapartum methods that we tested for predicting
transfusion or hemorrhage, the ROC-AUC values were greater
than 0.80, which is often cited as a threshold indicating adequate
discrimination. However, this conclusion is misleading because
in a situation where incidence of the outcome is low (here, it
was ~3% for transfusion or hemorrhage alone), the PPV, also
known as “precision,” is likely to be quite low. Our precision
for the best-performing model was ~13%, meaning that of those
predicted to be positive for the outcome, 13% were positive and
87% were negative. This may be satisfactory for clinical uses
where preventive interventions have very low cost (in terms of
both financial cost and added risk to the patient) but would not
be acceptable when the intervention is of higher risk or is more
expensive. In this situation, the PR-AUC provided a more
realistic measure of model quality. Precision/recall plots show
PPV (aka precision) as a function of sensitivity (aka recall);
thus, they account for true positives in positive predictions. In
contrast, the ROC-AUC emphasizes specificity, which is likely
to be very high when true positives are rare [23,24]. The metric
with the largest difference between the best and
worst-performing models is PR-AUC (0.16 vs 0.21). This metric
could be used more frequently in modeling studies when the
occurrence of the outcome of interest is ≤6%.

Strengths and Limitations
The strengths of this study include the use of a large, national
multicenter data set to develop a data-driven model that can
predict PPH using antepartum and intrapartum factors using
cutting-edge machine learning techniques. Furthermore, we
considered both commonly used end points such as estimated
blood loss greater than 1 L and clinically relevant end points
such as transfusion; this led us to conclude that due to a less
frequent occurrence and transfusion practice, variation made it
more challenging to develop a reliable model for transfusion
only.

Limitations of the study include the low reported precision of
algorithms. Sensitivity is prioritized for prediction, as clinically
missing PPH has more consequences than a false positive.
Therefore, the algorithms are trained to be biased toward
predicting positives resulting in lower false negative rates at
the risk of higher false positive rates and decreased precision.
As a result, as shown in the calibration plots, the models
systematically overstate hemorrhage risk. In this study, the
outcomes of interest were either a composite of transfusion or
blood loss of ≥1 L or transfusion only. Our PPH definition was
based on the American College of Obstetricians and
Gynecologists’ reVITALize program’s definition of PPH as
blood loss of ≥1 L or loss of blood with clinical signs of
hypovolemia within 24 hours of delivery. This definition
deviates from older traditional definitions that defined PPH as
≥500 mL for vaginal delivery and 1000 mL for cesarean delivery
[25]. Therefore, clinical care could have been guided by older
definitions, as the CSL data set was collected between 2002
and 2008 [21]. However, a strength of our study is the use of
EBL rather than a clinical designation of PPH so that we only
include patients who were designated to have an EBL above
the current threshold for PPH, that is, 1000 mL. Beyond that,
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measures of EBL have been shown to be imprecise with low
volumes overestimated and high volumes of blood loss
underestimated [26]. Furthermore, transfusion was used as a
proxy for PPH, and transfusion thresholds vary depending on
the institution and provider. In addition, the machine learning
algorithms are limited by the variables measured and accurately
recorded in the data set.

Conclusions
In conclusion, machine learning and data-driven statistical
modeling may offer more objective and discriminative prediction
of PPH based on individual antepartum and intrapartum patient
features, compared to expert opinion, and may improve upon
traditional regression models. This can increase the opportunity
for precision medicine and improved clinical care to reduce the
burden of PPH as a leading cause of maternal morbidity and
mortality.
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than 0.8 acceptable, 0.8 to less than 0.9 excellent, 0.9 or greater outstanding), gPR_AUC (precision recall_area under the curve),
hMCC=Matthews correlation coefficient, iF2= modified F-score skewed towards recall), jGradient boosting, kRandom forests,
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