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Abstract

Background: Genetic data are widely considered inherently identifiable. However, genetic data sets come in many shapes and
sizes, and the feasibility of privacy attacks depends on their specific content. Assessing the reidentification risk of genetic data
is complex, yet there is a lack of guidelines or recommendations that support data processors in performing such an evaluation.

Objective: This study aims to gain a comprehensive understanding of the privacy vulnerabilities of genetic data and create a
summary that can guide data processors in assessing the privacy risk of genetic data sets.

Methods: We conducted a 2-step search, in which we first identified 21 reviews published between 2017 and 2023 on the topic
of genomic privacy and then analyzed all references cited in the reviews (n=1645) to identify 42 unique original research studies
that demonstrate a privacy attack on genetic data. We then evaluated the type and components of genetic data exploited for these
attacks as well as the effort and resources needed for their implementation and their probability of success.

Results: From our literature review, we derived 9 nonmutually exclusive features of genetic data that are both inherent to any
genetic data set and informative about privacy risk: biological modality, experimental assay, data format or level of processing,
germline versus somatic variation content, content of single nucleotide polymorphisms, short tandem repeats, aggregated sample
measures, structural variants, and rare single nucleotide variants.

Conclusions: On the basis of our literature review, the evaluation of these 9 features covers the great majority of privacy-critical
aspects of genetic data and thus provides a foundation and guidance for assessing genetic data risk.

(JMIR Bioinform Biotech 2024;5:e54332) doi: 10.2196/54332
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Introduction

Privacy Risks of Genetic Data
Genomics is a rapidly developing field with exabytes of genetic
data being generated, stored, and analyzed by public and private
institutions per year. These data drive scientific progress,
especially when they are shared with the scientific community
or among institutions. However, genetic data can provide

information about an individual’s identity together with sensitive
details, such as their ethnic background [1]; physical traits such
as eye color [2], hair and skin color [3], height [4]; and diseases
or susceptibility to diseases [5]. Therefore, even if personal
identifiers (eg, name, date of birth, or others) are removed,
sharing genetic data may violate the individual’s right to privacy.
In 2018, a seminal study demonstrated that it is possible to
reidentify individuals by name from genetic data alone [6]. The
authors matched genetic data of an anonymous female study
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participant to the genetic genealogy database GEDmatch and
identified her surname from matches with relatives who had
uploaded their data on GEDmatch. Such reidentification of
genetic data records using publicly available databases is highly
problematic and a growing threat to privacy as publicly available
genetic genealogy databases continue to grow. It is estimated
that a genetic database needs to cover “only 2% of the target
population to provide a third-cousin match to nearly any person”
in a matching attack, similar to the one demonstrated by Erlich
et al [6]. As of 2018, the probability for such a match was
estimated to be 60% for the platform GEDmatch. Through
similar methods of familial DNA searches, multiple individuals
have been identified in criminal cases, despite never having
shared their genetic data themselves [7,8]. Other attacks aim to
reveal sensitive information from genetic data. In 2009,
researchers discovered a genetic predisposition for Alzheimer
disease in the public genome of the famous molecular biologist
and Nobel laureate James Watson, although he had attempted
to prevent such an attack by withholding certain parts of the
data [9]. The high identifiability potential of genetic data
together with its sensitive content with regard to health (eg,
susceptibility to diseases such as Alzheimer disease or cancer)
and physical traits (refer to the studies by Erlich and Narayanan
[10], El Emam et al [11], and Mohammed Yakubu and Chen
[12] for a review) has raised public concern that genetic data
that are shared or published in the context of research or health
care could be misused [13]. For example, attackers could exploit
genetic data to obtain personal and sensitive information about
individuals, and this information could be misused by insurance
companies, mortgage providers, or employers to discriminate
on the basis of genetic information (eg, about disease
susceptibility) [14]. As an additional complication, DNA
sequence is heritable; therefore, leakage of an individual’s
genetic data can violate the privacy of whole families [15,16].

The Challenge of Anonymizing Genetic Data
Genetic data can be used to identify individuals because each
person’s DNA sequence differs uniquely from the standard
human reference genome. Although more than 99% of the DNA
sequence is identical across all humans, the remaining <1%
consists of distinct combinations of insertions, deletions,
duplications, translocations, and inversions of short or long
DNA fragments (refer to the study by Trost et al [17] for a
review). These genetic variations are not randomly distributed
across the genome but occur more frequently in specific variable
regions. Some variations are rare, while others (ie,
polymorphisms) are shared by a significant proportion of the
population. While some variations have no observable effect,
others influence gene transcription, expression, or the amino
acid sequence of a protein and have an effect on the phenotype,
for example, physical traits, metabolism, and disease
susceptibility. These variable regions with an effect on the
phenotype are of great interest to research; however, these can
also be effectively used for individual identification and the
inference of sensitive attributes. Even a small genetic data set
of only 30 highly variable genetic loci is likely to contain unique
records, and these could not only be linked to genetic records
in other data sets but also provide insights into health and
physical traits (refer to the studies by Erlich and Narayanan

[10], El Emam et al [11], and Mohammed Yakubu and Chen
[12] for a review). Furthermore, genetic variation is highly
intercorrelated (variation in one genomic region correlates with
variation in another) and correlated to other modalities (genetic
variation is associated with transcription, expression, epigenetic
regulation, etc), making it possible to link data records of the
same individual even across databases that do not contain the
same type of data (eg, match a genetic data sequence to a gene
expression record). Anonymizing genetic data while maintaining
its full utility remains an unsolved challenge, and there is no
consensus on whether it is even possible [18]. Many
privacy-enhancing technologies aim to reduce the information
content of genetic data or restrict access to it, such that only a
minimal amount of information is shared. An example is
genomic beacons, which allow only simple yes or no queries
to determine whether a specific variant is present in a study
cohort [19]. However, it has become evident that even this
limited amount of information can be exploited for privacy
attacks, and few queries to genomic beacons can suffice to
determine whether individuals (whose genome is known) are
present in a study cohort [20-23]. Similarly, proposals for
encryption and differential privacy approaches [24,25] have
often been countered by demonstrations of attacks [26-28], and
even synthetic genetic data may not fully protect the study
participants from privacy attacks [29] (refer to the study by
Mittos et al [30] for a review of privacy-enhancing
technologies). Thus, even a substantial reduction in information
content can often not completely eliminate all privacy risks of
genetic data [31].

The Risk Minimization Approach for Genetic Data
Privacy
Most legislations do not require to reduce the risk of individual
identification to zero, and several jurisdictions have decided to
take a risk-based approach and consider genetic data anonymous
if the risk of successful reidentification is below a predefined
acceptable threshold [32]. Therefore, genetic data processors
must find the balance between reducing information such that
reidentification is no longer reasonably likely, while maintaining
as much utility of the data as possible [33]. The challenge in
adopting this approach lies in the correct assessment of the
reidentification probability. Genetic data are complex and come
in various shapes or forms, making it difficult to standardize
reidentification assessments. Established methods such as
assessing k-anonymity are difficult to apply to genetic data
because of their high uniqueness, and many other methods fall
short because of the high intercorrelation of genetic data. Simple
measures such as assessing the number of single nucleotide
polymorphisms (SNPs) in genetic data ignore the importance
of the location of the SNPs in the genome, their frequencies in
the population, and the actual feasibility of cross-linking the
specific SNPs to identifiable information. For example, the
reidentification risk is much higher for SNPs that are commonly
included in the SNP assays used by direct-to-consumer genetic
testing (DTC-GT) providers than for less frequently studied
SNPs, as these are more difficult to link to publicly available
identifying information. In addition, genetic data may contain
SNP information even if this is not immediately evident, for
example, in the raw data of sequencing-based gene expression
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studies. Data processors who are not familiar with the intricacies
of genetic data find little guidance on performing an assessment
on genetic data that considers these factors. While several
genomic privacy metrics have been proposed, the great majority
focus on evaluating SNPs only [34] and neglect other known
privacy-critical aspects of genetic data as well as aspects of
feasibility (eg, the expertise, time, effort, availability of external
resources, and other requirements required for an attack).
However, the risk of severe privacy attacks on genetic data (ie,
where the identity of the data subject is revealed) greatly
depends on the specific content of the data as well as “soft
factors,” such as the availability of publicly accessible resources
to cross-link and infer quasi-identifying information and the
time, cost, and knowledge required to perform such an attack.
Given the foundational potential of genetic data to advance
research and health care, a risk-based approach that carefully
evaluates the true risk of reidentification on a case-by-case basis
for each data set in question is warranted, or else any type of
genetic data must be considered identifiable.

Methods

To get a comprehensive overview of the types and aspects of
genetic data sets that are vulnerable to reidentification attacks,
as well as the methods, databases, and know-how used for these
attacks, we searched for studies that demonstrate a privacy attack
on genetic data. We did not aim to establish an exhaustive
overview of all published privacy attacks but aimed to get a
comprehensive understanding of the most vulnerable features
of genetic data. Therefore, we first searched for recent reviews
published on the topic of genomic privacy using ProQuest.
Using the search terms (ti(*genom* OR *genetic*) AND
ti(privacy OR re-identification OR reidentification OR “data
security”)) and (pd(>20170101)) and (at.exact(“Review”)), we
identified 23 reviews, of which 3 (13%) were discarded because

they were off topic. One additional review was identified during
the literature research and added to the selection (refer to
Multimedia Appendix 1 [35-55] for an overview of the included
and excluded reviews), resulting in a final sample of 21 reviews.
In a second step, we extracted all references cited in the reviews
(n=1645) and identified all original research studies that
demonstrate a privacy attack on genetic data. After the removal
of 514 duplicates and 876 reference studies that did not contain
any description of information inference from human genetic
data, we first excluded 89 studies whose main contribution was
the presentation of privacy-preserving measures to exclude
privacy attacks that were performed only for the purpose of
proving the efficiency of the proposed counter methods. Next,
we excluded 120 studies that did not present original research
and were purely associative (ie, did not demonstrate how an
adversary gains knowledge that was not intended to be shared
from genetic data) as well as 4 studies that did not demonstrate
the attack on real data. This process resulted in the selection of
42 unique studies (refer to Figure 1 for an overview of the
process and Table S1 in Multimedia Appendix 1 for an overview
of the eligible attack studies). Extending on the framework by
Mohammed Yakubu and Chen [12] and Lu et al [56], we
categorized attacks into (1) identity tracing (attacker triangulates
the identity of an individual), (2) inference (attacker uses an
individual’s genetic data to infer sensitive attributes such as
disease or drug abuse or to infer additional data or cross-link
records across databases), and (3) membership attacks (attacker
uncovers membership of an individual in a data set). We
evaluated the type and components of genetic data exploited
for this attack as well as the effort and resources used for it
(time, expertise, databases, and computation power) and its
success rate if sufficient information was reported in the study.
The initial evaluation was conducted by one reviewer and
independently verified by another. Table S1 in Multimedia
Appendix 1 presents a detailed overview of the attack studies.
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Figure 1. Flowchart overview of the 2-step literature review process: identification of relevant reviews, followed by extraction and screening of
references.

Results

A Comprehensive Overview of Privacy Risks in
Genetic Data Sets
On the basis of our literature review, we created an overview
of the parts and aspects of genetic data that are commonly
exploited in privacy attacks and that should therefore be taken
into consideration when performing a risk assessment on genetic
data. The goal of this overview is to provide data processors,
who may not be experts in genomic data privacy, with essential
background knowledge about the privacy vulnerabilities
associated with genetic data. This understanding will help them
identify privacy-critical aspects and serve as a starting point for
conducting risk assessments on genetic data sets. Notably, the
reidentification risks associated with data that complement
genetic data (eg, clinical data and demographic data) as well as
aspects of the data environment (access and governance) are
crucial for a comprehensive risk assessment [57], but these
aspects are not in the scope of this research. From our literature
review, we synthesized 9 features that are both inherent to any
genetic data and informative about privacy risk (Figure 2). The
features are not mutually exclusive. Instead, they represent

different “views” on genetic data and highlight various aspects
that should be considered in a privacy risk assessment. For each
feature, we lay out why this feature is associated with privacy
risk by summarizing the relevant evidence in the scientific
literature, and we assess the criticality of these attacks. In
addition, we provide guiding questions that help to assess the
risk of a given data set. The features can be divided into three
groups:

1. The first 4 features are general categorizations of the
genomic data set and serve as a very rough estimate of the
amount of privacy-critical information in the data.

2. The next 3 features are specific genomic features that are
known to be a high risk for privacy. Their assessment is
critical for estimating the reidentification risk.

3. The last 2 features are genomic features that have not been
exploited for privacy attacks yet but should still be
considered and could present a risk if they are present to a
high degree in the data.

We summarize our findings in an overview figure, which lists
the 9 features and their relevance for privacy. While it is
challenging to define clear risk thresholds, there is a recognized
need for practical guidance and orientation. To address this, we
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provide a scale that ranges from lower to higher risk and offer
illustrative examples derived from the overview of privacy
attack studies. These scales and examples serve as the initial
guidance for risk assessment, emphasizing their purpose as
guiding principles rather than exact measurements. The
assessment of each individual feature is intricate and thoroughly
explained in the corresponding sections. In addition, while the

scales offer a framework to compare and assess different
features, it is crucial to consider all features comprehensively
to arrive at a conclusive assessment. Furthermore, the text
sections highlight important interactions that arise from the
comprehensive evaluation of these features.

Table S1 in Multimedia Appendix 1 presents a detailed
description of the original attack studies.

Figure 2. Overview of the privacy-critical features of genetic data sets, with exemplary values and key points to consider for risk assessment. CODIS:
Combined DNA Index System; SNP: single nucleotide polymorphism; SNV: single nucleotide variant; STR: short tandem repeat; WES: whole exome
sequencing; WGS: whole genome sequencing; Y-STR: short tandem repeat on the Y chromosome.

Evidence of Privacy Risks in Genetic Data

Part 1. General Assessment

Biological Modality

While most privacy attacks have been demonstrated on DNA
sequence data, other types of molecular data (eg, DNA
methylation data or data derived from RNA) are also considered
genetic data under General Data Protection Regulation, can also
be identifiable, and have also been exploited for attacks [58-67].

Attacks on these types of data are performed mainly by 3
mechanisms. The first mechanism is direct extraction of DNA
sequence from raw or low-processed data. This is possible,
because even if not of primary interest, DNA sequence
information is often a by-product of gene expression or DNA
methylation studies [68-70]. For example, Gürsoy et al [70]
demonstrated how genetic variants can be called from raw RNA
sequencing data. The second mechanism is inference of DNA
sequence, for example, through known associations of genetic
sequence and gene expression or other modalities. For example,
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Schadt et al [65] used gene expression data of individuals
(40,000 transcript counts) to infer genetic variants (1000 SNPs),
which allowed them to determine with high certainty whether
individuals with known SNPs were members of a gene
expression study cohort (N=378). They also assessed the success
rate of matching gene expression records to SNP records in a
simulated cohort of 300 million individuals and correctly
matched 97.1% of the records, demonstrating the feasibility of
cross-linking these data types, which since then has been
confirmed in additional studies [60,62,63]. Less literature has
been published on other types of data, such as protein or
epigenetic data (eg, DNA methylation), but similar proof of
concept of cross-linkage to SNP data has been demonstrated in
prior studies [58-60,63,64,66,67,71]. In the third mechanism,
sensitive information such as disease phenotypes, demographic
information, and behavioral traits is inferred from gene
expression, protein levels, or other modalities (eg, age [72],
cigarette smoking, and alcohol consumption [59] from DNA
methylation).

However, such inference and linkage are not error free. For
example, in the study by Schadt et al [65], the accuracy of the
imputed SNPs from gene expression data was low (average
Pearson correlation coefficient was 0.35 between true and
inferred genotype). It is not clear whether such imputed data
could be used for privacy attacks in the real world, such as in
an identity tracing attack (eg, via upload of the imputed genetic
data to GEDmatch or other). Considering that previous
successful identity tracing attacks have used >500,000 SNPs
[6], the inference of 1000 SNPs (with errors) may not be
sufficient for such an attack. If the reconstruction of a larger set
of SNPs were attempted, it is likely that the initial imputation
error would propagate and thereby reduce the probability of a
successful identity tracing attack. Furthermore, Schadt et al [65]
reported much lower matching performance if training and test
data stem from different array manufacturers, a scenario that is
likely to occur in real-world data. Finally, although biological
associations between genomic variants and gene expression are
publicly accessible, substantial expert knowledge is still required
for accessing this information and implementing the attack.
Similar limitations apply to all the aforementioned studies.
Altogether, data sets of RNA, protein, or epigenetic data,
especially if they are large (eg, genome-wide), do allow for
linkage and inference attacks. However, true reidentification
would require matching the inferred genetic or phenotypic
information to databases with identifying or quasi-identifying
information in a next step, and no such full identity tracing
attack starting with data other than DNA sequence has been
demonstrated yet.

The guiding questions in this context are as follows:

• Do the data contain DNA sequence information directly
(eg, DNA sequencing reads)? If yes, could the data be
processed such that sequence information is no longer
available (eg, report DNA methylation levels in percentage
instead of providing raw sequencing read files)?

• Could DNA sequence information be inferred from the data
(eg, via biological correlations such as expression or
methylation quantitative trait loci)?

• What sensitive information could be inferred from the data
(eg, age, sex, diseases, or physical traits)?

Experimental Assay

Knowing the experimental assay that was used to generate the
data can already provide a first estimate of its information
content and linkability. For example, sequencing-based assays
generally produce very rich data (eg, high genome coverage
and high precision, such as whole genome DNA sequencing),
whereas polymerase chain reaction–based genotyping assays
provide more sparse data (eg, information on only 1 nucleotide
of the DNA sequence). However, genome coverage alone (ie,
the percentage of all base pairs or loci of the genome covered
by the method) is not a reliable proxy for privacy risk. In some
circumstances, a data set with only 10 sequenced positions of
the DNA could in fact be more critical than a data set containing
hundreds of positions, if those 10 positions are in highly
identifiable loci. However, as a very rough indicator of
information content, we believe it is still valuable to consider
the genome coverage of the data as one of many factors in the
risk assessment. In many cases, the rule of thumb that more
sequence information equals higher information content and
hence risk of cross-linking, inference, and reidentification is
true. Nevertheless, these aspects need to be carefully evaluated
together with the biological modality of the data, the level of
processing, and the specific content of the data.

It is also important to consider that data produced with
frequently used methods, such as commercially available kits
(eg, SNP microarrays), often target the same genetic variants
that are also interrogated by DTC-GT companies and
genome-wide disease association studies and can thus more
easily be linked to public data and exploited for privacy attacks
than data generated with tailor-made, targeted analysis methods
(refer to the study by Lu et al [73] for an overview of genotyping
arrays commonly used by direct-to-consumer companies).
Finally, as nearby variants are more likely to be correlated, it
is also important to consider how the genetic information in the
data is spread across the genome. A targeted assay that reads
all SNPs within a specific gene likely carries less information
than an assay that interrogates the same number of SNPs
distributed across the full genome, as nearby SNPs are more
likely to be correlated [74]. In line with these arguments, the
great majority of published privacy attacks were performed on
data obtained from whole genome sequencing and commercially
available SNP microarrays (ie, rich, genome-wide data in the
order of hundreds of thousands of SNP loci from a commercial
assay).

The guiding questions in this context are as follows:

• Which method was used to generate the data? Does this
method produce rich or sparse data? (What percentage of
all base pairs or loci of the genome are covered by the
method?)

• How do the data produced with this method cover the
genome (ie, genome-wide vs targeted approach)?

• How likely is it that data generated with the same method
are present in publicly available databases (ie, commercial
assay vs custom)?
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Data Format or Level of Processing

The format of the data gives some indication on its processing
level and can thus help to estimate its information content.
Genetic data processing consists of cleaning, filtering,
normalizing, and reducing raw data to a version that contains
only the information that is relevant for its intended use.
Important standard formats in genomic sequencing experiments
sorted from raw to processed are .fasta and .fastq (raw
nucleobase reads); .bed, .bam, and .sam (reads aligned to
reference genome); .vcf and .maf files (deviations from the
reference genome only), whereas highly processed data are
often represented in tabular (.csv and .tsv) or otherwise
structured form (.json, .xml, or other) containing only variants
or regions of interest. Raw or low-processed data (.fasta, .fastq,
.bed, .bam, or .sam) often contain information that is not of
primary interest to research but can be exploited for
reidentification attacks (eg, raw read files from gene expression
studies can contain genomic variant information [63]). While
the possibilities for privacy attacks are greater in raw data, it is
important to note that the required effort and expert knowledge
for handling these data are usually higher than those for
processed data, where genetic variants such as SNPs do not
need to be extracted.

The guiding question in this context is as follows:

• If the data are in a raw or semiprocessed format, do the data
contain any information that is not directly relevant for their
intended use?

Germline Versus Somatic Variation Content

Genetic variants found in an individual’s genome can be
categorized into germline and somatic variants. This
categorization is specific to individuals and depends on the
heritability of the variant (ergo, its presence in the individual’s
reproductive tissues). Heritable variants are categorized as
germline (ie, present in germ and usually also in somatic cells)
and nonheritable variants are categorized as somatic (ie, present
in somatic cells only). In the context of genetic privacy, it is
important to understand that germline variation comprises all
variants that can be assumed to be present in every cell of the
body, are not expected to change much throughout the lifetime
of an individual, are inherited from parental DNA, and are
expected to be passed to the offspring. Such variation can inform
about identity, ancestry, and kinship and is, therefore, used by
DTC-GT providers, forensics, and genetic genealogy services.
The most prominent example for germline variation are SNPs,
as variation found at known SNP loci is generally assumed to
be germline. (However, the terms germline variants and SNPs
cannot be used interchangeably, as they refer to different
concepts: germline describes the heritability, and SNP describes
the type of variant and its frequency in the population.) Overall,
germline variants are not only highly relevant for individual
identification because of their stability and omnipresence across
tissues but are also of great interest for scientific research.
Associations of germline variants to disease, physical traits, or
other biomedical modalities are well studied, with results being
publicly accessible. As such, germline variants are vulnerable
to identity, inference, and linkage attacks, and indeed, all the
reviewed privacy attacks targeted germline variants.

In contrast, somatic variants are acquired during life (after
fertilization) and are usually present only in specific,
nonreproductive tissues or even only in single cells or cell
populations. They are intensively studied in the context of
diseases (eg, cancer), and as they are often found to be
associated with diseases, data on somatic variants could be used
to infer sensitive attributes about data subjects. However, their
low association with identity and use limited to clinical
diagnostics and scientific research makes it very difficult to
cross-link them to databases with identifying or quasi-identifying
information. DTC-GT companies, forensics services, or genetic
genealogy services do not use somatic variants to determine
identity, familial relations, or ancestry, as somatic variation is
neither stable nor present in all tissues and cells (usually found
only in a fraction of cells analyzed in a sample). A linkage attack
based on somatic variation would require a matching data record
of the same tissue, ideally taken at a similar time in life, which
is unlikely to exist for most cases (as somatic variant patterns
can change rapidly, eg, in cancer tissue). No identity tracing,
inference, or membership attack based on somatic variation data
has been published yet, and considering its low potential for
identifiability, somatic variation data can currently be considered
a low risk for reidentification attacks.

To determine whether a variant is germline or somatic, one
would ideally analyze multiple samples from one individual to
determine whether the variant is present in germ cells or only
in specific somatic cells. In practice, experts can assess the status
of a variant from its sequencing read signal (determining
whether it is present in all cells of the sample or only in a few),
genomic location, and type alone by comparing it to public
knowledge of known loci of germline and somatic variation or
through computational approaches [75]. In processed genetic
data, variants which are with high certainty germline have often
already been identified and are indicated as such (eg, SNPs are
identified by a specific reference SNP cluster ID, such as
“rs343543”), whereas somatic variants are described by standard
mutation nomenclature (eg, single nucleotide variants [SNVs]
are described by the Human Genome Variation Society
nomenclature, containing the reference genome used; the
genomic location of the variant; the nucleotide in the reference
sequence; and the detected nucleotide, such as
“NC_000023.9:g.32317682G>A”). Furthermore, the type of
tissue that was used to generate genetic data, most importantly
whether samples were taken from healthy or tumor tissue, can
also give some indication on the amount of germline variation
included in the data. When analyzing tumor tissue data, germline
variations such as SNPs are typically removed during
processing, as the focus is on studying somatic variation.
However, especially if the data are raw and unfiltered, they
often contain germline variants irrespective of whether they
were taken from healthy or tumor tissue and must hence be
considered a higher risk for reidentification. Therefore, while
data that are both derived from tumor tissues and highly
processed are often a low privacy risk, the amount of
information on germline variation that is contained in the data
needs to be assessed case by case. Public databases (eg, dbSNP,
hosted by the National Institutes of Health’s National Center
for Biotechnology Information) store information about the
genomic locations and population frequencies of SNPs and can
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be used to search data for this important type of germline
variation.

The guiding questions in this context are as follows:

• Was germline or somatic variation of primary interest when
generating or processing the data?

• If somatic variation was of primary interest, was germline
variation removed from the data?

Part 2. High-Risk Components

SNPs

SNPs are germline SNVs that are present in >1% of the
population. They are highly relevant features for individual
reidentification and the most privacy-critical component of
genetic data sets. Because SNPs usually have 2 different states
(ie, a common or reference and a rare nucleotide) and human
somatic cells have 2 DNA copies (ie, are diploid), an individual
usually has 1 of 3 different states at a SNP locus, often
represented as 0,1, and 2 (0 represents 2 copies of the common
variant [ie, homozygous for major allele], 1 represents 1 copy
of the common variant and 1 copy of the rare variant
[heterozygous], and 2 represents 2 copies of the rare variant
[homozygous for minor allele]). Knowing an individual’s state
at 30 to 80 statistically independent SNPs (or a random set of
approximately 300 SNPs) can suffice for individual
identification [76-79], yet commonly used SNP or genome
sequencing assays often read hundreds of thousands of SNPs
at once. As germline variation, SNPs are assumed to be stable
and present in every cell of the body, signifying that they can
identify individuals across samples taken at different times or
from different tissues. As they are heritable, DTC-GT providers
and forensic institutes compare SNP patterns of individuals to
determine familial relations and ancestry [80]. Furthermore,
SNPs are associated with physiological traits (eg, skin, hair and
eye color [2,3], facial features [81], BMI [82], and height [4]),
ethnicity [1], and susceptibility to diseases [5], making them
central to research and genetic testing (refer to the study by
Dabas et al [83] for a review of association of SNPs with
externally visible characteristics).

SNP data can be directly used for reidentification by matching
it to publicly accessible databases, as demonstrated in the
reidentification attack by Erlich et al [6], who uploaded SNP
data (700,000 SNPs) from an anonymous study participant to
the genetic genealogy website GEDmatch and identified the
participant’s surname through matches with relatives. Such
identity tracing attacks are possible because millions of people
send their DNA to DTC-GT companies such as AncestryDNA,
23andMe, FamilyTreeDNA, or MyHeritage [84], and many also
decide to share their genetic data on publicly accessible
websites, such as GEDmatch, the Personal Genome Project
[85], or OpenSNP [86]. Enabling individuals to identify and
contact relatives, learn about their ancestry, disease
predispositions, and contribute their data to research, these
platforms often contain genetic data accompanied by information
about an individual’s diseases and traits or even personal data
such as place of residence, age, sex, surname, or phone number.
In addition, there is a wealth of publicly accessible knowledge
on associations of SNPs with physical features, diseases, other

genetic variants or genetic modalities (eg, gene expression and
DNA methylation; eg, dbSNP database [87], the GWAS catalog
[5], the International Genome Sample Resource from the 1000
Genomes Project [88], and data from the HapMap project [89]),
which can and have been exploited for completion and inference
attacks (eg, inference of additional genetic variation in genomic
regions that were not studied originally, other biomedical
modalities such as gene expression and DNA methylation, or
physical attributes [9,90-96]). For example, Humbert et al [92]
predicted phenotypic traits (eye, hair and skin color, blood type,
and more) of individuals from their SNP data (20 SNPs) using
publicly available knowledge on SNP-phenotype associations
from the public database SNPedia and used this information to
cross-link individuals between genetic and phenotypic data sets.
In addition, Humbert et al [92] inferred additional and sensitive
information (eg, susceptibility to Alzheimer disease) from the
SNP data. However, this linkage attack had a success rate of
only 5% (ie, proportion of correctly matched individuals) in a
data set of 80 individuals and is likely to perform worse in more
realistic scenarios with larger data sets. Nyholt et al [9] imputed
the status of multiple risk variants for Alzheimer disease in the
published genome of Dr James Watson [94] from SNPs in
nearby genomic regions, although the respective gene had been
masked. Edge et al [90] cross-linked individuals in SNP and
short tandem repeat (STR) data sets, a highly identifiable type
of genetic variation that is used in forensics, by imputing STR
from SNP data (642,563 loci). In a highly debated study, Lippert
et al [93] developed a model to predict phenotypic traits (facial
structure, voice, eye color, skin color, age, sex, height, and BMI)
from whole genome sequencing (WGS) data containing >6
million SNPs and used it to cross-link high-resolution face
photographs of individuals to their genetic data in a cohort of
1061 study participants. In a real-life scenario, photos and
personal data from social media could be exploited for such an
attack and matched to the inferred phenotype. However, it has
been argued that the predictive power in this study stems mainly
from the estimation of the participant’s ancestry and sex [97]
and that the attack is unlikely to be successful in the real world
and with more realistic, lower-quality images [98]. Furthermore,
large, genome-wide association studies indicate that the
currently known associations between SNPs and facial structure,
voice, height, and BMI are too small to be useful for accurate
phenotype prediction on an individual level; however, this will
likely improve in the future. Nevertheless, other characteristics,
such as ancestry, eye, hair color, and skin color, can be inferred
from specific SNPs with high accuracy, and corresponding DNA
phenotyping kits are already commercially available and used
in forensics today [99]. As a small number of SNPs can already
uniquely identify an individual and SNPs are widely available
in public databases together with identifying and
quasi-identifying information, SNPs must be considered a high
risk for privacy and data sanitization efforts (eg, as proposed
by Emani et al [100]) should be used in any genetic data set
containing >20 SNPs.

The guiding questions in this context are as follows:

• How many SNPs do the data contain (directly or indirectly)?
• Are the SNPs in close proximity or spread across the

genome (nearby SNPs are more likely to be correlated and
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thus often contain less information than statistically
independent SNPs)?

• Are the interrogated SNPs frequently assessed in research
or by DTC-GT providers (ie, how likely is it that they can
be linked to publicly available, identifying data sets)? The
study by Lu et al [73] presents an overview of genotyping
arrays commonly used by direct-to-consumer companies.

• Are all SNPs relevant to the intended use of the data or
could some be removed from the data?

• What sensitive information could be inferred from the data
(eg, diseases and physical traits)?

• Could additional DNA sequence information be inferred
from the data (eg, association with STRs or other)?

STRs

The human genome contains more than half a million regions
of repetitive units of 2 to 6 bases, the so-called STRs or
microsatellites [101]. The number of repeats in these regions is
highly variable across individuals and can affect protein function
or expression or be linked to medical conditions or physical
traits [102]. Knowing the repeat numbers of as little as 10 to 30
STRs can suffice for individual identification. Because of their
high identifiability, STRs are used to determine identity and
kinship in forensics, law enforcement, paternity testing, and
genetic genealogy. For example, the Combined DNA Index
System (CODIS; a set of 20 STRs) is used to connect suspects
to crime scenes or establish identity of missing persons. While
CODIS STRs are usually not of interest in research studies or
genetic genealogy, STRs on the Y chromosome (ie, Y-STRs,
only present in male individuals) are included in several
DTC-GT kits, where they are used to identify relatives along
the paternal ancestry line (eg, “Y-STR Testing” by
FamilyTreeDNA). Consequently, several large databases of
STR loci with accompanying identifying and quasi-identifying
information exist (eg, mitoYDNA from mitoYDNA Ltd). In
addition, the CODIS forensic database and analysis software
contains genetic data and identifying information from >14
million individuals in the United States alone [103].

Several studies demonstrate reidentification attacks on Y-STRs.
Gitschier et al [104] provided first evidence for surname
inference from Y-STRs by matching genetic STR profiles of
anonymous study participants from the international HapMap
project [89] to 2 genetic genealogy databases (Ysearch and
Sorenson Molecular Genealogy Foundation [SGMF]). Later,
Gymrek et al [105] demonstrated that it is not only possible to
infer surnames from STR data (eg, 34 Y-STR loci extracted
from WGS data) but also to triangulate the actual identity of
data subjects with high probability using publicly accessible
genealogy databases, record search engines, obituaries, and
genealogical websites. The authors attempted this for 10 study
participants of the 1000 Genomes Project and correctly
identified 5 out of 10 individuals. It is important to note that
STR data can also be fortuitously included in genetic data
derived from targeted gene or WGS, even if they are not of
primary interest for the study. Moreover, STR markers can be
imputed from genetic data sets that do not even cover STR
regions by exploiting known associations between SNPs and
STRs [90]. While the authors of this study report a low
imputation accuracy for STRs from SNPs (likely too low to

reliably impute full STR profiles even from large SNP data),
they did demonstrate the ability to cross-link records across
SNP and STR databases. In detail, they correctly matched 90%
to 98% of paired SNP (642,563 loci) and STR data records (13
STRs) to each other, and such successful linkage has also been
demonstrated elsewhere [106].

Due to the high association of STRs with identity, any genetic
data that directly (eg, repeat numbers for specific STR regions)
or indirectly (eg, WGS data covering STR regions) contain >10
STR regions could be considered identifiable. However, the
actual risk of reidentification depends on the availability of STR
databases with identifying and quasi-identifying information
and the ability to cross-link records. It is important to note that
the databases used in the seminal study by Gymrek et al [105]
(ie, Ysearch and SGMF) are no longer available (Ysearch,
belonging to FamilyTreeDNA, closed in 2018, and SGMF,
belonging to Ancestry, was shut down in 2015), and access to
the CODIS database is restricted to criminal justice agencies
for law enforcement identification purposes. However, databases
from DTC-GT providers (eg, FamilyTreeDNA) and public
platforms (eg, mitoYDNA) are still available and allow
uploading results from third-party providers; therefore, an
attacker could fabricate a genetic testing result from STR data
[107,108] and reproduce the demonstrated surname inference
attacks. From information about possible surnames, sex, and
residence inferred from matches on the platform, the
triangulation of identity could be possible with the help of
additional publicly available resources [105,109]. However,
such an attack would only be possible on male data records (ie,
Y chromosome based) and is not guaranteed to find matches
that allow surname inference; the success rate in the
demonstrated attack was 11.9% (109/911 cases), and the 2
previous studies used >30 STR loci (all located in close vicinity
of each other and on the Y chromosome). Furthermore, the
know-how and effort necessary for such an attack is high.
Finally, even if genetic matches or surnames are identified, the
reconstruction of identity from surname is not trivial and can
take months to complete, as others have pointed out [110]. Still,
because of their high identifiability potential and their use in
DTC-GT, paternity testing, and forensics, STRs should be
removed from genetic data if they are not of primary interest
and otherwise considered a high risk for privacy.

The guiding questions in this context are as follows:

• Do the data directly or indirectly (eg, STRs in raw data and
STRs imputable from SNPs) contain >10 STR loci?

• Are these STR loci either (1) part of the CODIS system or
(2) on the Y chromosome (ie, high linkability)?

• Could additional DNA sequence information be inferred
from the data (eg, association with SNPs or other)?

Aggregated Sample Measures

Aggregated sample measures, that is, variables that are the result
of aggregating genetic data across multiple samples can also be
exploited for privacy attacks (reviewed by Craig et al [111]).
The most prominent examples are summary statistics from
association studies such as SNP frequencies, odds ratios, or
correlation coefficients. However, the limited information
content in these summary statistics usually only allows for
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membership attacks, that is, assessing whether an individual of
known genetic background is part of a study group or database
or not [112-114]. Multiple studies demonstrate such an attack
[113,115-119], although Homer et al [114] were the first to
explain how membership of an individual in a mixture can be
predicted from the reported SNP allele frequencies (ie, if SNPs
of that individual are known, in this case >10,000 SNPs). The
authors accomplished this by comparing the reported study
allele frequencies to allele frequencies in a reference cohort of
similar ancestry (obtained from public resources) and detecting
the bias introduced by the sample of interest. Their method
performed well even if the individual’s contribution to the
mixture was <1%, and this method can easily be extended to
predicting membership from aggregated data from a study
cohort. In response to that, the US National Institutes of Health
has restricted the publication of aggregate GWAS results in
their databases [120]; however, the feasibility of the attack has
been critically discussed. Its power depends on the size and
quality of the actual and reference cohorts, the number of
reported SNP allele frequencies, prior knowledge of the attacker,
and the fulfillment of several underlying assumptions, many of
which are likely not fulfilled in practice [115,116,121,122].
Aside from membership attacks, it was also shown that
aggregate results, such as linear models that have been fitted to
study data or polygenic risk scores, can be exploited to predict
sensitive attributes and genotypes via model inversion [28,123].
However, this attack required background information on the
data subject and on the distribution of variables in the study
data. Furthermore, its performance is limited by the predictive
power and complexity of the fitted model. Membership and
attribute inference attacks on aggregate data can reveal
demographic, genetic, and phenotypic information (such as
country or place of residence due to participation in a local
study, ethnicity, disease, age group, or presence of specific
genetic variants due to descriptions of inclusion or exclusion
criteria in the cohort) and can thus facilitate linkage and identity
tracing attacks, which is why they can be a risk for privacy.
However, no identity tracing attack based on aggregate data has
been demonstrated yet.

The guiding question in this context is as follows:

• What sensitive information could an attacker gain from
ascertaining the membership of an individual to the data
set (eg, geographic information, sex, disease, and age)?

Part 3. Low-Risk Components
No privacy attack has been demonstrated on these components,
but due to their high association with identifying and sensitive
attributes, we recommend including them in the risk assessment.

Rare SNVs

Rare SNVs are single nucleotide substitutions that are present
in <1% of the population. They may be somatic or germline
and can be associated with pathological conditions and thus
reveal sensitive information. Furthermore, while less informative
than common SNVs (ie, SNPs) from an information theoretical
standpoint, rare variants greatly increase the risk of
reidentification for the small subpopulation of variant carriers.
However, because of their low frequency in the population,

germline SNVs are rarely the target of large scientific studies
(eg, for phenotype or disease association) and have very limited
use for ancestry and disease susceptibility analysis. Therefore,
most DTC-GT providers and research studies specifically target
regions of common genetic variation (eg, SNPs) and either use
assays that do not detect SNVs or remove them during
preprocessing, making it very unlikely that a set of SNVs could
be linked to any database with quasi-identifying information.
No identity tracing, completion, or inference attack has been
published on SNVs yet; therefore, they can currently be viewed
as a low risk for reidentification, despite their high theoretical
potential for identifiability.

The guiding questions in this context are as follows:

• What sensitive information could be inferred from the data
(eg, diseases and physical traits)?

• Could additional DNA sequence information be inferred
from the data (eg, association with SNPs or other)?

• Are there any databases that could be used to cross-link the
data to identifiable data, and how accessible are the
databases?

Structural Variants

The study of structural variants (SVs) in the human genome is
in its early stages, but it is already clear that it accounts for even
more individual variation than SNPs [124,125]. The best-studied
type of SVs is copy number variation (CNV), that is, deletions
and duplications of regions larger than 50 base pairs. CNVs can
be used as measures of relatedness and identifiers of population
origin [126], have a strong impact on gene expression [127],
and could allow for the inference of physical features [128] and
pathological conditions [129], thereby revealing sensitive
information of data subjects. However, CNVs are still not well
studied, and sequencing technologies have only recently
progressed to a level that allows to capture their full scope in
the human genome (reviewed by Mahmoud et al [124]). Most
importantly, human CNV databases are very scarce in
comparison to databases of SNVs (refer to the study by Ho et
al [130] for an overview of the available human SV reference
sets), and they are currently not used for genetic genealogy
analyses, making it difficult to link CNVs across databases to
obtain identifying information. A privacy attack based on CNVs
or any other type of SV yet remains to be demonstrated. Finally,
it is important to note that many SVs that are assessed in medical
and research studies are somatic, that is, nonhereditary, not
present in all cells of the body, not stable, and thus not strongly
associated with identity. For example, tumor tissue is
characterized by frequent and dynamic changes in SVs (eg,
CNVs in tumor tissue, also referred to as CNAs), which are
likely neither directly nor indirectly identifiable. Therefore, the
risk of reidentification from SVs can currently be considered
low, but the growth of public databases and their use in
genealogical or clinical research should be monitored. The same
holds true for common SVs, such as CNVs that occur in >1%
of the population and are hence classified as polymorphisms
(ie, CNPs). Little is known about the population frequencies of
CNVs, and while public databases are growing, no privacy
attack based on CNPs has been demonstrated yet. Due to the
limited knowledge about CNPs or other common SVs in the
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population, their presence in genetic data is difficult to assess,
and they can be considered a low risk for reidentification at the
current time.

The guiding questions in this context are as follows:

• What sensitive information could be inferred from the data
(eg, diseases and physical traits)?

• Could additional DNA sequence information be inferred
from the data (eg, association with SNPs or other)?

• Are there any databases that could be used to cross-link the
data to identifiable data, and how accessible are the
databases?

Discussion

Limitations
It is important to acknowledge some key limitations of our
review. First, it is possible that we may have missed relevant
studies. This is particularly true for recent research, as our search
was confined to original studies referenced in existing reviews.
While the search strategy was designed to retrieve the most
pertinent studies, it carries the risk of overlooking lesser-known
or very recent studies. Therefore, we recommend conducting
periodic reviews to stay updated with scientific advancements
and changes in the availability of public genetic data that may
contain (indirectly) identifying information susceptible to
identity tracing attacks. Second, even under the assumption that
all relevant literature was considered, it is still possible that we
may have overlooked certain vulnerabilities. This is known as
the “proof of nonexistence fallacy”—the absence of evidence
for risk does not imply the absence of those risks. Finally, it
was necessary to balance our aim of providing a comprehensive
and evidence-based overview of genetic privacy vulnerabilities

with our aim of providing practical and useful guidance.
Therefore, we provide both a detailed assessment (refer to the
Results section and Table S1 in Multimedia Appendix 1) as
well as a simplified overview (Figure 2). However, this trade-off
necessitated compromises in practical utility on one hand and
scientific exhaustiveness on the other hand.

Conclusions
On the basis of the findings of this review, it can be argued that
the privacy risks of genetic data vary greatly between data sets.
Considering all genetic data at all times as information relating
to an identifiable natural person is not correct, and it is becoming
apparent that reidentification risk in genetic data must be
assessed on a case-by-case basis and under the consideration
of all the means reasonably likely to be used [131]. However,
while efforts are underway [132], no practical guidelines or
recommendations for performing such a reidentification risk
assessment on genetic data have been proposed yet. On the basis
of a review of the scientific literature on privacy attacks on
genetic data, we provide an overview of genetic data privacy
risks that can guide data processors in risk assessment by
providing the necessary background knowledge and an overview
of the existing evidence. We believe that a careful examination
of the 9 described features in the data set at hand (biological
modality or type of data, experimental assay, data format or
level of processing, germline vs somatic variation content,
content of SNPs, STRs, aggregated sample measures, rare SNVs,
and SVs) provides a strong foundation for a data risk assessment.
While completely eliminating the possibility of reidentification
is rarely achievable, a more practical approach of risk
minimization is warranted [133,134], accompanied by
organizational and technical measures to safeguard genetic data
from reidentification attack attempts and a transparent
communication of the remaining risks to data subjects.
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