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Abstract

Background: Carcinoma of unknown primary (CUP) is a subset of metastatic cancers in which the primary tissue source of
the cancer cells remains unidentified. CUP is the eighth most common malignancy worldwide, accounting for up to 5% of all
malignancies. Representing an exceptionally aggressive metastatic cancer, the median survival is approximately 3 to 6 months.
The tissue in which cancer arises plays a key role in our understanding of sensitivities to various forms of cell death. Thus, the
lack of knowledge on the tissue of origin (TOO) makes it difficult to devise tailored and effective treatments for patients with
CUP. Developing quick and clinically implementable methods to identify the TOO of the primary site is crucial in treating patients
with CUP. Noncoding RNAs may hold potential for origin identification and provide a robust route to clinical implementation
due to their resistance against chemical degradation.

Objective: This study aims to investigate the potential of microRNAs, a subset of noncoding RNAs, as highly accurate biomarkers
for detecting the TOO through data-driven, machine learning approaches for metastatic cancers.

Methods: We used microRNA expression data from The Cancer Genome Atlas data set and assessed various machine learning
approaches, from simple classifiers to deep learning approaches. As a test of our classifiers, we evaluated the accuracy on a
separate set of 194 primary tumor samples from the Sequence Read Archive. We used permutation feature importance to determine
the potential microRNA biomarkers and assessed them with principal component analysis and t-distributed stochastic neighbor
embedding visualizations.

Results: Our results show that it is possible to design robust classifiers to detect the TOO for metastatic samples on The Cancer
Genome Atlas data set, with an accuracy of up to 97% (351/362), which may be used in situations of CUP. Our findings show
that deep learning techniques enhance prediction accuracy. We progressed from an initial accuracy prediction of 62.5% (226/362)
with decision trees to 93.2% (337/362) with logistic regression, finally achieving 97% (351/362) accuracy using deep learning
on metastatic samples. On the Sequence Read Archive validation set, a lower accuracy of 41.2% (77/188) was achieved by the
decision tree, while deep learning achieved a higher accuracy of 80.4% (151/188). Notably, our feature importance analysis
showed the top 3 most important features for predicting TOO to be microRNA-10b, microRNA-205, and microRNA-196b, which
aligns with previous work.

Conclusions: Our findings highlight the potential of using machine learning techniques to devise accurate tests for detecting
TOO for CUP. Since microRNAs are carried throughout the body via extracellular vesicles secreted from cells, they may serve
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as key biomarkers for liquid biopsy due to their presence in blood plasma. Our work serves as a foundation toward developing
blood-based cancer detection tests based on the presence of microRNA.

(JMIR Bioinform Biotech 2024;5:e56538) doi: 10.2196/56538
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Introduction

Carcinoma of unknown primary (CUP) originates when a patient
presents at diagnosis with malignant disease across the body;
yet, the cancer cells tissue of origin (TOO) remains
unidentifiable. Thus, CUP is a unique subset of metastasized
cancer representing an advanced stage in which cancer has
gained the ability to thrive in new tissue sites and has spread
from the primary tumor site. In the United States, an estimated
31,490 people were diagnosed with cases of cancer of unknown
TOO in 2008. This accounts for nearly 3%-5% of all cancer
cases [1] and given the lack of knowledge on tissue response
to current therapeutics the median survival of patients remains
only 3-9 months [2]. In many cases of CUP, the primary site is
never identified, preventing the use of treatment that can be
effective for the true TOO [3,4]. It has been demonstrated that
pinpointing the primary site can significantly increase survival
rates by enabling precise and targeted treatment [5].

Unfortunately, primary tumor identification poses various
challenges. Techniques such as serum tumor markers and
imaging tests are used to identify the TOO, although only 30%
of these tests are successful. Moreover, some positive findings
can be misleading [6] and CUP diagnostic workups are often
time-consuming, expensive, and unsuccessful [7]. These
difficulties have spurred interest in using genetic expression
data, such as microRNA, to identify the TOO.

MicroRNAs belong to a class of noncoding regulatory RNAs,
small single-stranded RNA molecules that are between 19 and
25 nucleotides long and are involved in the regulation of gene
expression of mRNAs. MicroRNAs hold promise as informative
biomarkers for cancer due to their significant involvement in
cellular processes such as cell division, apoptosis, proliferation,
and oncogenesis [8]. Beyond their intracellular role in gene
regulation, microRNAs may be carried throughout the body via
extracellular vesicles secreted from cells and have been
identified in the blood. Additionally, microRNA, unlike mRNA,
is characterized by resistance to extreme temperatures and pH.
This makes microRNAs far more stable biomarkers [9,10].

Previous work [11] demonstrates that microRNA expression is
more informative in classifying tumor samples by their origin
in comparison to mRNA. Specifically, microRNAs are better
at classifying poorly differentiated tumors [12]. Moreover,
microRNAs have shown great potential for identifying TOO
for cancers of unknown primary origin [13]. MicroRNAs have
been investigated as prognostic and diagnostic biomarkers
extensively in the research community and have even been
found to be deregulated in numerous cancers [14].

With the wide availability of large data sets containing gene
expression data, computational techniques such as machine
learning have emerged as promising tools for improving TOO
detection. Machine learning implementations have increased
accuracy in predicting cancer and have the potential to improve
the diagnosis, prognosis, and therapy selection for patients with
cancer [15]. The 3 traditional machine learning models are
decision trees, random forests, and logistic regression. Decision
trees [16] attempt to partition the training set into subsets that
contain samples of only one class, thereby predicting the class
of interest. Random forests are ensemble classifiers, combining
multiple trees for higher accuracy [17]. In contrast, logistic
regression is a predictive algorithm to find a model that can
predict categorical output [18]. Deep learning is a subset of
machine learning designed to mimic the human brain through
the use of artificial neural networks by using many layers and
larger data sets. Generally, deep learning techniques are well
suited for discovering and recognizing complex patterns in data
that traditional machine learning methods can often miss. The
increasing incorporation of deep learning in health care along
with the availability of highly characterized cancer data sets has
further accelerated research into the applications of deep
learning in the analysis of the biology of cancer [19].

Given the complexities of diagnosing a TOO from a cancer that
has spread throughout the body, previous investigators have
applied machine learning methods to determine TOO for
metastasized cancers [20,21]. Longstanding techniques of
microarrays and polymerase chain reaction have been used for
the generation of machine learning models for CUP detection,
including support vector machines with 89% accuracy [22] and
the k-nearest neighbor algorithm with 82% accuracy [23,24].
LoCUP, a TOO classifier, was the first machine learning model
using a multinomial logistic regression classifier with ridge
penalties to incorporate tumor purity and reached a 95.8%
accuracy [25]. Cup AI Dx [20] used mRNA gene expression
data from The Cancer Genome Atlas (TCGA) data set to train
a network based on the popular inception model [22] to identify
the TOO, achieving an accuracy of 96.7% on a validation set
of 354 TCGA metastatic samples. The TOD-CUP method [21]
addressed the variation in mRNA platforms and used a gene
expression rank–based majority vote algorithm to achieve an
overall accuracy of 94%. Early work with microRNAs and
nondeep learning machine learning algorithms showed 84%
accuracy with k-nearest neighbor models [26] and binary
decision trees at 85% [27]. However, the investigation of deep
learning machine learning models may improve these accuracies
with TOO detection by microRNA. MicroRNAs are also at the
forefront of extracellular vesicle liquid biopsy development and
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may be better suited for the noninvasive classification of TOO
[28].

This study sets out to explore the possibility of developing a
model for using microRNA profiles from metastatic tissues to
determine the TOO through the application of deep learning
techniques. Successful TOO detection from microRNAs will
provide a route for cancer detection without requiring samples
from the primary tumor site in cases of CUP malignancies. We
hypothesize that we would be able to predict the origin of
metastatic tumors with higher accuracy than previous reports
by leveraging larger data sets of microRNA profiles from both
normal and primary site tissues to train the model.

The data for this project were collected from TCGA data set
[29] and the Sequence Read Archive (SRA) [30] from
microRNA tissue expression database. The TCGA data set
contains samples from 18 different cancer types representing
9648 samples, of which 365 were metastatic, 633 were solid
normal, and 8650 were from the primary tumor site. Each
sample consisted of microRNA expression data, available as
RPM (reads per million mapped reads), as well as metadata
including age and gender. We split TCGA data set into a
combined primary tumor or solid normal samples training set
and a metastatic sample test set. We then further split the
primary tumor and solid normal samples into a training and
validation set with a 9:1 ratio. The training set consisted of 8355
samples and the validation set consisted of 928 samples.

We use 2 data sets for evaluating the performance of our models.
The SRA test data set consisted of 194 samples from 5 different
cancer types, all of which were from the primary tumor. We
also used the metastatic samples from TCGA data set as our
final test data set, which contained samples from 6 cancer types.
We developed 4 machine learning models, a decision tree
classifier, random forest, logistic regression, and finally, a deep
learning model. Our deep learning model performed with the
highest accuracy, achieving an accuracy of 97% in detecting

TOO for metastatic samples and 80.4% on the nonmetastatic
SRA cohort. Feature importance analysis revealed the top 3
differentiating microRNA targets as microRNA-10b,
microRNA-196b, and microRNA-205, which confirms prior
investigations on microRNAs associated with metastatic cancer
[31-33].

Methods

Data Sets
In Figure 1, we outline the data preprocessing pipeline. Our
study analyzed published data and did not generate any new
sequencing data. TCGA data were obtained [29]. Data were
further filtered by querying the Genomics Data Commons via
the Application Programming Interfaces specified [34]. We
restricted the tissue type to be one of the primary tumors, solid
tissue normal, or metastatic. We further restricted the data to
microRNA transcriptome profiling and picked data
corresponding to 18 types of cancer each containing a sufficient
number of samples, obtaining 9648 files (Figure 2 and Table
S1 in Multimedia Appendix 1).

To obtain the SRA data, we used the microRNA tissue
expression database portal and restricted the cancer types to 6
types of cancer, seen in further detail in Figure 2. We obtained
207 samples, each containing expression data for 2656
microRNAs. After removing samples with missing features,
194 samples were remaining.

We selected microRNA features that were expressed in at least
50% (4824/9648) of the samples, which reduced the number of
features in the TCGA data set from 1889 to 562. We then picked
the common features between the SRA data set and the TCGA
data set, reducing this number to 497. On both data sets, we
normalized the RPM of the selected features per sample to sum
to a million. We then transformed the RPM values using the
transformation log(RPM + 1) to restrict the range of the input.
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Figure 1. Overview of our data processing pipeline. Data from the TCGA GDC portal and SRA miTED portal was obtained. Underexpressed microRNA
and samples containing missing features from the miTED data were filtered. Common features were selected between both data sets, reducing the
number of microRNA to 497. Features were normalized as reads per million per sample and log-transformed. TCGA data set was split into (1) the
primary tissue and solid normal set and (2) the metastatic test set. The first, combined, set was further split into a training and validation set. GDC:
Genomics Data Commons; miTED: microRNA tissue expression database; SRA: Sequence Read Archive; TCGA: The Cancer Genome Atlas.
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Figure 2. The Cancer Genome Atlas (TCGA) data set distribution across tissue of origin (TOO). Distribution of the different cancer samples in the
TCGA data set that are from the primary tumor site, solid tissue, or metastatic. Note that metastatic samples primarily corresponded to the skin as the
TOO.

Training Procedure
For the implementation of decision tree, random forest, and
logistic regression classifiers, the sklearn package was used
[35]. We used classification accuracy as the primary metric to
evaluate our models. Deep learning models were created with
PyTorch (Meta AI) [36]. To optimize and train our neural
network, we used Adam optimizer and trained for 50 epochs.
Since our objective was classification, we used softmax with
cross-entropy loss [37] to optimize the model. We used the
validation set to determine the hyperparameters of the models
and picked the best-performing model for further evaluation on
the test set. Feature importance was calculated with sklearn’s
permutation feature importance function.

Ethical Considerations
This study was conducted in accordance with the ethical
standards of the Salve Regina University ethical standards. The
research study was reviewed by the institutional review board
of Salve Regina University and was determined to be exempt
from further review as per criteria contained in Title 45 CFR
§46.104(d) section 4ii of federal regulations. As such, the study
used only publicly available deidentified or anonymized data,
and the project was reviewed (Exemption #Wise.2024.6.11).

Results

In order to develop a model to detect TOO, we set out to find
the best-performing machine learning model for determining
the TOO from the TCGA primary tumor and solid normal tissue
cohorts. The models were then tested on the validation set, and
we could accurately determine the TOO based on primary or
normal microRNA profiles, with an accuracy of over 90% for
15 of 18 different tissue types using deep learning (Table 1 and
Table S2 in Multimedia Appendix 1).

We can note that the deep learning model performs consistently
the highest on the validation set, with logistic regression and
random forest classifiers providing comparable performance.

We then set out to apply our best-performing deep learning
model and evaluate its performance on the SRA test set that

contains microRNA expression data from primary tumors (Table
2). We accurately determined the TOO with an accuracy of over
90% (90/100) for 3 of the 5 cancer types but saw a decrease in
accuracy for bladder and colorectal cancer.

Finally, we analyzed our deep learning model on microRNA
expression data from metastatic tissue samples in the TCGA
data set (Table 3). We accurately determined the TOO with an
accuracy of over 85% (308/362) for all cancer types with an
average of 97% (351/362).

Since random forest and logistic regression classifiers provided
comparable performance on the primary or normal validation
set, we compared the classifier accuracy on both test sets for
all created models (Table 4).

The input features of our models consist of microRNA
expression data common to TCGA and SRA data sets. Figure
3 describes the overall architecture of the model, which consists
of 2 linear layers. The second layer has 18 outputs,
corresponding to each cancer type. The cancer type corresponds
to the output with the maximum value.

We used dropout for the input layer [38] as it is a common
technique to improve model accuracy and reduce overfitting.
We also augmented our input data with noise.

To evaluate the performance of our models, we computed
confusion matrices for performance on metastatic samples
(Figure S2A and S2B in Multimedia Appendix 1) and plotted
the receiver operating characteristic curves for performance on
metastatic skin cancer (Figure S2C and S2D in Multimedia
Appendix 1), as the majority of the metastatic samples were
obtained from skin cancer cases. We observed that the deep
learning model performed significantly better than our decision
tree model, which was consistent when evaluated on the SRA
validation cohort (Figure S3 in Multimedia Appendix 1). To
illustrate the effectiveness of our models, we created Sankey
plots representing the deep learning model performance on
metastatic samples from the TCGA data set and primary tissue
sites from the SRA data set (Figure 4).
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Table 1. Model accuracies on the validation test set. Performance of 4 models for the identification of tissue of origin. The validation set consists of
both primary tumor and solid normal tissue samples from The Cancer Genome Atlas data set.

Deep learning (%)Logistic regression (%)Random forest (%)Decision tree (%)Cancer type

99.296.999.291.6Breast (n=131)

94.590.410076.7Uterus (n=73)

10093.891.689.6Ovary (n=48)

10010010094.5Prostrate (n=54)

88.994.494.561.1Testis (n=18)

98.282.995.781.1Lung (n=117)

10099.110094.8Kidney (n=116)

88.588.595.771.4Bladder (n=35)

83.354.129.233.3Esophagus (n=24)

10097.610097.6Liver (n=42)

10095.29555.0Pancreas (n=20)

10010085.742.8Pleura (n=7)

10094.798.285.6Colorectal (n=57)

10010010066.6Skin (n=6)

91.175.597.882.2Stomach (n =45)

100100100100Brain (n=47)

93.778.178.162.5Cervix (n=32)

10010010098.1Thyroid (n=55)

97.296.495.384.6Overall—across cancer types

Table 2. Performance of our deep learning model for the identification of tissue of origin on the primary tissue site cohorts from the SRAa.

SRA test accuracy—deep learning (%)Cancer type

91.6Breast (n=44)

100Prostrate (n=37)

100Lung (n=19)

80Bladder (n=10)

58.9Colorectal (n=78)

N/AbSkin (n=0)

80.4Overall—across cancer types

aSRA: Sequence Read Archive.
bN/A: not applicable.

JMIR Bioinform Biotech 2024 | vol. 5 | e56538 | p. 6https://bioinform.jmir.org/2024/1/e56538
(page number not for citation purposes)

Raghu et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Performance of our deep learning model for the identification of tissue of origin in metastatic tumor tissue.

TCGAa metastatic test accuracy—deep learning (%)Cancer type

85.7Breast (n=7)

100Prostrate (n=1)

N/AbLung (n=0)

100Bladder (n=1)

100Colorectal (n=1)

97.4Skin (n=352)

97Overall—across cancer types

aTCGA: The Cancer Genome Atlas.
bN/A: not applicable.

Table 4. Accuracy of developed models on metastatic and SRAa test sets. The accuracy for all 4 models is presented on the TCGAb metastatic and
SRA cohorts. The decision tree classifier had a depth of 14 and the random forest had a depth of 19.

Accuracy on SRA test set (%)Accuracy on TCGA metastatic test set (%)Classifier

41.262.5Decision tree

74.294.2Random forest

71.693.2Logistic regression

80.497Deep learning

aSRA: Sequence Read Archive.
bTCGA: The Cancer Genome Atlas.

Figure 3. A schematic of the machine learning model architecture. MiRNA: microRNA.
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Figure 4. Sankey plot for deep learning model on Sequence Read Archive (SRA) and The Cancer Genome Atlas (TCGA) test data sets. (A) On the
TCGA data set, our deep learning model is able to correctly classify 333 out of 343 metastatic skin cancer samples, demonstrating high accuracy. (B)
On the SRA test data set, we show representative plots for breast and colon cancers, showing high accuracy for breast cancer tissue of origin identification.
(C) The model performance on colon cancer is less accurate due to microRNA expression consistently overlapping for colon and stomach cancers [40].

These results confirm our hypotheses and show that we were
able to predict the TOO with high accuracy using deep learning.
Furthermore, our findings demonstrated that deep learning
techniques significantly increase the accuracy in comparison to
decision tree, logistic regression, and random forest models.

To reveal the significance of individual features, we performed
feature importance analysis using the permutation feature
importance method (Figure 5A). The top 3 microRNAs
contributing to our deep learning model based on our combined
normal and primary site training set are microRNA-10b,
microRNA-196, and microRNA-205. MicroRNA-10b has been
shown to function as a metastasis-promoting factor in many
cancer types. In fact, it was one of the first microRNAs to have
been discovered with aberrant expression in cancer cells [31].
MicroRNA-196 has been linked to the progression of many

cancers, notably metastatic colorectal cancer [32], while
microRNA-205 expression is downregulated in metastatic breast
and prostate cancer [33].

To further understand the significance of the identified important
features, we compute a heat map (Figure 5B) showing the
microRNA expression values for the top 10 microRNA features
for samples in the training data set. Visually, it is apparent that
the microRNA features can be used to distinguish the cancer
type. To further validate this, we perform principal component
analysis and t-SNE analysis using only the top 10 features
(Figures 5C and 5D). We note that the t-SNE plot shows a clear
separation of features into distinct clusters corresponding to
each cancer type, showing the significance of the features for
detecting the TOO.

JMIR Bioinform Biotech 2024 | vol. 5 | e56538 | p. 8https://bioinform.jmir.org/2024/1/e56538
(page number not for citation purposes)

Raghu et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. MicroRNA feature importance visualizations. (A) Permutation feature importance for the top 3 microRNA candidates. A bar graph of the
importance values for the 3 top microRNA candidates for the logistic regression model. (B) MicroRNA expression heatmap. MicroRNA expression
values for the top 10 most important features (as determined by permutation feature importance) for a subset of samples. The top 10 microRNA features
can cluster cancer type. Low mir-205 and mir-944 and a high mir-10b are indicative of colorectal cancer. Similarly, low expressions for microRNA-429,
microRNA-483, microRNA-215, microRNA-944, microRNA-1247, microRNA-375, and microRNA-205 are indicative of kidney cancer. (C) PCA
visualization. (D) t-SNE visualization. PCA and t-SNE visualization of data corresponding to the 6 cancer types with the most samples in our data set,
using only the top 10 microRNA features. In the PCA plot, note that there is significant overlap between the cancer types, while in the t-SNE plot, the
cancer types are well separated, suggesting that with 10 microRNA features, machine learning models may correctly identify patterns and predict tissue
of origin. PCA: principal component analysis; t-SNE: t-distributed stochastic neighbor embedding.

Discussion

Principal Findings
In these investigations, while using successively more powerful
classifiers, we were able to detect the TOO on solely metastatic
cancer samples with accuracies ranging from 62.5% (226/362)
with a decision tree to 97% (351/362) with a deep learning
model. Our methods show that one can leverage larger amounts
of gene expression data for primary and solid tissue normal
tumor samples (~10,000 samples) to come up with accurate
classifiers to determine TOO for metastatic cancer (currently
limited to ~300 samples). In order to verify the robustness of
our model, we assessed its performance on primary tumor data
from the SRA and obtained accuracies ranging from 41.2%
(77/188) with decision tree to 80.4% (151/188) when using deep
learning. Our methods have also identified promising microRNA
candidates, reaffirming prior research in this field and
demonstrating the potential of machine learning.

The predominant failure of our model on the SRA test cohort
was within colorectal cancer as can be seen in Figure 4C. Many
colorectal samples were incorrectly classified as stomach or
gastric cancer. This is consistent with previous research in this
area as microRNA expression profiles for gastrointestinal
cancers show significant overlap [39]. In addition, colorectal

and stomach cancer are often synchronous with probabilities
ranging from 20.1% to 37.2% [40].

We used permutation feature importance, a model-agnostic
metric that permutes features across samples in the test set to
assess the change in model accuracy. The results are in line with
existing research in this area and serve as a good indicator of
the feasibility of machine learning techniques to identify
promising biomarkers.

Limitations
To effectively use our model in clinical care, accuracy must be
improved further. Our model currently performs with an
accuracy of 97% (351/362). While this may seem impressive,
clinical classifiers should be highly accurate so that there are a
negligible number of cases with errors in identifying TOO. To
improve the accuracy, the accumulation of larger data sets is
necessary, and as the noncoding genome continues to reveal
significant contributions to cancer, we predict that available
data sets will expand. A further limitation to our study is that
the available microRNA metastatic data sets are predominantly
skin cancer. Thus, access to a larger, more varied, data set would
improve our assessment of model performance. Furthermore,
in order to develop a truly noninvasive method of TOO
identification relevant to all cancers, it would be ideal to extend
our method to microRNA expression data from blood samples.
Detecting the TOO through blood-based microRNA biomarkers
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would significantly impact the diagnosis and treatment of
patients with CUP. Additionally, our model cannot differentiate
between tumor and solid tissue normal samples, as it was
designed to identify the TOO specifically.

Conclusions
To summarize, our developed machine learning models can
accurately identify the TOO with high accuracy from microRNA
expression data when trained on primary tumor and solid tissue

samples. Importantly, our results identified key microRNA
differentiators of tissue type. Our models are robust and perform
well across different data sets (TCGA and the SRA data set).
We look forward to developing further deep learning models
that can accurately detect TOO as microRNA data sets expand,
with the goal of having a noninvasive test for diagnosing the
presence of cancer and determining cancer TOO with high
accuracy.
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