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Abstract

Background: Despite growing interest in the clinical translation of polygenic risk scores (PRSs), it remains uncertain to what
extent genomic information can enhance the prediction of psychiatric outcomes beyond the data collected during clinical visits
alone.

Objective: This study aimed to assess the clinical utility of incorporating PRSs into a suicide risk prediction model trained on
electronic health records (EHRs) and patient-reported surveys among patients admitted to the emergency department.

Methods: Study participants were recruited from the psychiatric emergency department at Massachusetts General Hospital.
There were 333 adult patients of European ancestry who had high-quality genotype data available through their participation in
the Mass General Brigham Biobank. Multiple neuropsychiatric PRSs were added to a previously validated suicide prediction
model in a prospective cohort enrolled between February 4, 2015, and March 13, 2017. Data analysis was performed from July
11, 2022, to August 31, 2023. Suicide attempt was defined using diagnostic codes from longitudinal EHRs combined with 6-month
follow-up surveys. The clinical risk score for suicide attempt was calculated from an ensemble model trained using an EHR-based
suicide risk score and a brief survey, and it was subsequently used to define the baseline model. We generated PRSs for depression,
bipolar disorder, schizophrenia, suicide attempt, and externalizing traits using a Bayesian polygenic scoring method for European
ancestry participants. Model performance was evaluated using area under the receiver operator curve (AUC), area under the
precision-recall curve, and positive predictive values.
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Results: Of the 333 patients (n=178, 53.5% male; mean age 36.8, SD 13.6 years; n=333, 100% non-Hispanic and n=324, 97.3%
self-reported White), 28 (8.4%) had a suicide attempt within 6 months. Adding either the schizophrenia PRS or all PRSs to the
baseline model resulted in the numerically highest discrimination (AUC 0.86, 95% CI 0.73-0.99) compared to the baseline model
(AUC 0.84, 95% Cl 0.70-0.98). However, the improvement in model performance was not statistically significant.

Conclusions: In this study, incorporating genomic information into clinical prediction models for suicide attempt did not improve
patient risk stratification. Larger studies that include more diverse participants are required to validate whether the inclusion of
psychiatric PRSs in clinical prediction models can enhance the stratification of patients at risk of suicide attempts.

(JMIR Bioinform Biotech 2024;5:e58357) doi: 10.2196/58357
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Introduction

Between 2000 and 2018, suicide rates increased by 37%, making
suicide one of the leading causes of death in the United States
[1]. Data from US health care systems show that most
individuals who die by suicide in the United States had health
care visits in the month preceding their death, highlighting
opportunities for health care providers to identify and intervene
with those at risk for suicide-related behavior [2].

We previously developed and validated a prognostic model
combining electronic health records (EHRs) and a brief
patient-reported survey that was able to prospectively predict
short-term risk for suicide attempts after an emergency
department (ED) visit for psychiatric problems [3]. This study
was designed to extend our previous work by evaluating whether
adding polygenic risk scores (PRSs) for neuropsychiatric
phenotypes can improve the predictive performance of models
trained on clinical data (EHR + survey) alone.

The incorporation of PRSs into data-driven prediction models
could be justified if PRSs sufficiently improved predictive
performance and were paired with evidence-based interventions.
Although integrating PRSs into clinical workflows presents
implementation challenges, there is increasing momentum
toward the broad implementation of genomic information in
health care practice [4]. As the cost of genome sequencing
continues to decrease, genomic data are expected to ultimately
become a standard component of patient health care records.
The goal of this paper was to provide a first look at whether
such information might in fact provide predictive enhancements
that could justify its use.

Methods

Sample
Eligible patients for this study were those who participated in
our previous study [3] of adult patients visiting the ED between
February 4, 2015, and March 13, 2017; had their blood samples
genotyped through their participation in the Mass General
Brigham (MGB) Biobank [5] (88% self-reported White); and
had nonmissing information on suicide attempt(s) within 6
months following their ED discharge. In total, 333 patients with
genetically identified European ancestry met the eligibility
criteria and demonstrated a suicide attempt prevalence of 8.4%

(n=28) at the 6-month follow-up (n=178, 53.5% self-reported
male and n=324, 97.3% self-reported White). Although our
previous study [3] also examined suicide attempts at 1 month
after ED discharge, the event rate within this window was too
low to permit stable estimates. The study sample differed
significantly from the original cohort [3] by age (P<.001),
self-reported race (P<.001) and ethnicity (P=.06), insurance
type (P=.001), and patterns of health care utilization (P<.001;
see Multimedia Appendix 1 [3]). Details on recruitment,
informed consent process, and data collection can be found in
Boutin et al [5] (for the MGB Biobank study) and Nock et al
[3] (for the suicide prediction study).

Outcome
The primary outcome was any suicide attempt within 6 months
of the ED visit based on either follow-up surveys or a review
of linked EHRs [3]. For the latter, we used the International
Classification of Diseases, Ninth Revision (ICD-9) and
International Classification of Diseases, Tenth Revision
(ICD-10) to identify qualifying diagnostic codes for suicide
attempts that we previously validated [6,7].

Predictors
We extracted the predicted probabilities from the
best-performing ensemble model from our previous work [3]
for 6-month suicide attempts. This model incorporated
patient-reported surveys, a previously developed EHR-based
suicide risk score, and sociodemographic characteristics (eg,
age, sex, income, education, race and ethnicity, and employment
status). In addition, we generated PRSs for depression, bipolar
disorder, schizophrenia, suicide attempt, and externalizing traits
derived from the largest available European ancestry
genome-wide association study of these phenotypes using a
Bayesian polygenic risk scoring method called “PRS-CS” (see
Multimedia Appendices 2 and 3) [8]. We subsequently
residualized individual disorder PRSs for biological sex, age,
genomic chip, and the top 20 principal components for
population stratification to adjust for potential confounding.

Statistical Analysis
We first established the baseline model by fitting our previously
validated suicide risk score and calculated patient risk
stratification accuracy (measured using the area under the
receiver operating characteristic curve [AUC], area under the
precision-recall curve [AUPRC], and positive predictive value
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[PPV]). We then added each PRS to the baseline model to
evaluate whether adding individual disorder PRSs would
improve the AUC, AUPRC, or PPV. Lastly, we incorporated
all 5 PRSs to examine whether incorporating multiple
neuropsychiatric PRSs would increase the predetermined metrics
more than adding individual disorder PRSs to the baseline model
alone.

In addition to fitting logistic regression models, we used the
SuperLearner stacked generalization approach that combines
predictions across a range of algorithms, including those that
can capture nonlinear relationships (see Multimedia Appendix
4) [9]. We used 10-fold stratified cross-validation in a 70%
training sample (ntrain=235) to develop the models and evaluated
the models in a 30% holdout sample (nholdout=98). There were
no significant differences in sample characteristics and feature
distributions between the train and holdout samples (all P>.05;
see Multimedia Appendix 5). All statistical analyses were
conducted using R software (version 4.1.2; R Foundation for
Statistical Computing).

Ethical Considerations
The study procedures were approved by the Institutional Review
Boards of Harvard University and MGB (protocol code
2010P000246, approved on February 18, 2010). Additionally,
the MGB Biobank study was conducted in accordance with the
Declaration of Helsinki and approved by the MGB Institutional
Review Board (protocol code 2009P002312, approved on April
29, 2010), with no compensation provided to participants. This
study involves secondary analyses using de-identified data from

the original studies, which is covered under the initial consent
and IRB approval, without requiring additional consent.

Results

Model Discrimination
The baseline model for 6-month suicide attempts had an AUC
of 0.84 (95% CI 0.70-0.98; see Figure 1 and Multimedia
Appendix 6). Models that included individual disorder PRSs
alone had modest or poor AUC, with the schizophrenia PRS
having the highest AUC (0.58, 95% CI 0.41-0.76), followed by
the bipolar disorder PRS (0.56, 95% CI 0.39-0.73). When
individual disorder PRSs were added to the baseline model, the
logistic regression and the ensemble models that included the
schizophrenia PRS and clinical risk score had the highest AUC
(0.86, 95% CI 0.73-0.99), followed by ensemble models each
including the suicide PRS and externalizing disorder PRS, but
these provided only a modest numerical increase in AUC
compared to the baseline model alone (see Figure 1). In general,
there was no improvement in AUC when adding the PRS for
depression or bipolar disorder to the clinical risk score.
However, we observed a numerically higher AUC when the
depression PRS was incorporated using an ensemble approach
than using logistic regression. The ensemble model that included
the clinical risk score and all 5 PRSs had the same AUC (0.86,
95% CI 0.72-0.99) as the ensemble model including the
schizophrenia PRS and clinical risk score and had nearly the
same AUC as the logistic regression including the same set of
features.
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Figure 1. Patient risk stratification accuracy from SuperLearner models estimated using the train (in green) and holdout (in orange) samples. The y-axis
is sorted based on the AUC point estimates in the holdout sample. The red line represents the reference AUC point estimate from the baseline model
in the holdout sample and is depicted to facilitate visual comparison of AUC estimates across different model configurations. Baseline: baseline clinical
risk score for suicide attempt; BIP: bipolar disorder; DEP: depression; EXT: externalizing traits; PRS: polygenic risk score; SCZ: schizophrenia; SUI:
suicide attempt; w: with; w/o: without.

Model Performance
We examined precision-recall curves to see how PPV varies
across levels of sensitivity with the goal of explaining the
best-performing model, which included the clinical risk score
and schizophrenia PRS (see Figure 2). All models that included
the clinical risk score were comparable in identifying 40% to
50% of suicide attempt cases within 6 months after ED
discharge, indicating a higher sensitivity than the models only
including individual disorder PRSs (see Multimedia Appendix

7). Specifically, shown in Figure 2, the baseline model had a
higher PPV (26%-50%) than the other models when the
sensitivity was in the 0.05 to 0.35 range. The models including
the clinical risk score with or without PRSs had the same PPV
(13%-26%) when the sensitivity was in the 0.4 to 1.0 range,
and the model with the schizophrenia PRS alone had a lower
PPV (12%-18%). AUPRC was 0.42 for the baseline model but
reached 0.45 when the schizophrenia PRS was added, which is
consistent with the observed improvement in AUC with the
same model configuration.
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Figure 2. A precision-recall curve for predicting suicide attempt within 6 months after an ED discharge. AUPRC: area under the precision-recall curve;
ED: emergency department; PRS: polygenic risk score; SCZ: schizophrenia.

Discussion

Principal Findings
We found modest evidence suggesting that the integration of
the PRS for schizophrenia (but the PRSs for not the other related
phenotypes) might enhance the prediction of short-term risk for
suicide attempt in patients discharged from the ED; both the
AUC and AUPRC were numerically, although not significantly,
higher when the schizophrenia PRS was added to the baseline
clinical model. The improved predictive performance is likely
explained by the higher heritability and statistical power of the
schizophrenia PRS compared to the other PRSs examined in
this study (see Multimedia Appendix 8). However, while
heritability provides a compelling explanation, it does not fully
account for the schizophrenia findings, as the predictive power
of PRSs is also influenced by factors such as genetic architecture
and heterogeneity in phenotype ascertainment. Furthermore,

given the high dimensionality of the phenotypic features in the
suicide prediction model, the addition of 1 or more PRSs is
expected to have only a modest effect on prediction accuracy.

Limitations
Nevertheless, the nonsignificant improvement in performance
we observed should be interpreted in light of our limited study
sample size and statistical power of neuropsychiatric PRSs. Of
the PRSs we examined, only the schizophrenia PRS was well
powered (88%) to detect an association with suicide attempt in
the holdout sample.

Future Work
Future studies utilizing larger biobank samples will enable a
more robust and well-powered evaluation of the potential utility
of PRSs in enhancing patient risk stratification in high-risk
clinical settings. For instance, larger samples could facilitate
the training of separate, context-specific baseline models using
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EHR and survey data from patients with schizophrenia or bipolar
disorder, followed by the integration of the respective PRSs
into each model. Such an approach would provide a more
nuanced understanding of the clinical relevance of PRSs and
their potential role in improving risk stratification and patient
outcomes.

Conclusions
In conclusion, we did not observe a substantial benefit of adding
psychiatric PRSs to EHR and survey-based prediction models
of suicide attempt in an ED setting. Given the importance of
optimizing risk stratification to inform suicide prevention,
further studies in large, diverse samples are warranted to clarify
the value of incorporating genomic risk factors.
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