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Abstract

Background: Environmentally sensitive pathogens exhibit ecological and evolutionary responses to climate change that result
in the emergence and global expansion of well-adapted variants. It is imperative to understand the mechanisms that facilitate
pathogen emergence and expansion, as well as the drivers behind the mechanisms, to understand and prepare for future pandemic
expansions.

Objective: The unique, rapid, global expansion of a clonal complex of Vibrio parahaemolyticus (a marine bacterium causing
gastroenteritis infections) named Vibrio parahaemolyticus sequence type 3 (VpST3) provides an opportunity to explore the
eco-evolutionary drivers of pathogen expansion.

Methods: The global expansion of VpST3 was reconstructed using VpST3 genomes, which were then classified into metrics
characterizing the stages of this expansion process, indicative of the stages of emergence and establishment. We used machine
learning, specifically a random forest classifier, to test a range of ecological and evolutionary drivers for their potential in predicting
VpST3 expansion dynamics.

Results: We identified a range of evolutionary features, including mutations in the core genome and accessory gene presence,
associated with expansion dynamics. A range of random forest classifier approaches were tested to predict expansion classification
metrics for each genome. The highest predictive accuracies (ranging from 0.722 to 0.967) were achieved for models using a
combined eco-evolutionary approach. While population structure and the difference between introduced and established isolates
could be predicted to a high accuracy, our model reported multiple false positives when predicting the success of an introduced
isolate, suggesting potential limiting factors not represented in our eco-evolutionary features. Regional models produced for 2
countries reporting the most VpST3 genomes had varying success, reflecting the impacts of class imbalance.

Conclusions: These novel insights into evolutionary features and ecological conditions related to the stages of VpST3 expansion
showcase the potential of machine learning models using genomic data and will contribute to the future understanding of the
eco-evolutionary pathways of climate-sensitive pathogens.
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KEYWORDS

pathogen expansion; climate change; machine learning; ecology; evolution; vibrio parahaemolyticus; sequencing; sequence type
3; VpST3; genomics

JMIR Bioinform Biotech 2024 | vol. 5 | e62747 | p. 1https://bioinform.jmir.org/2024/1/e62747
(page number not for citation purposes)

Campbell et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

mailto:jaime.martinez.urtaza@uab.cat
http://dx.doi.org/10.2196/62747
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Background
Climate change is likely to impact environmentally sensitive
pathogens in terms of shifts in seasonality, expansion of suitable
habitats, and the emergence and global dispersal of well-adapted
variants. This has already been observed for Vibrio
parahaemolyticus [1], a marine bacterium inhabiting coastal
waters that causes acute gastroenteritis when transmitted to
humans by ingestion of contaminated seafood, contributing to
a large percentage of foodborne infections worldwide. Recent
decades have seen this highly adaptable bacterium spread
globally and increasingly cause outbreaks [1].

Before the 1990s, Vibrio infections were considered an exotic
outcome of travel to Asia, where Vibrio bacteria were
historically considered endemic. Up to this point, only particular
strains of Vibrio cholerae had been designated as epidemic
variants, characterized by global expansion and pandemic
potential. However, transcontinental spread has now been
reported for 2 V parahaemolyticus clonal types: sequence type
3 from Southeast Asia and, more recently, sequence type 36

from the Pacific Northwest [2,3]. The first of these instances,
involving the clonal type Vibrio parahaemolyticus sequence
type 3 (VpST3), was identified in 1996, when the unique variant,
which had not been previously reported, was found to be
responsible for up to 80% of the cases in a notable increase of
V parahaemolyticus infections in Calcutta (now Kolkata), India,
in 1996 [4]. This outbreak was unusual, with all recovered
isolates clustered into a single homogeneous group, unlike
previous outbreaks [3]. Similar isolates were then observed
from outbreaks in distinct locations around the world, including
Peru, Japan, Russia, Chile, and the United States [5-8] (Figure
1 [4-15]), where the variant was emerging concurrently. This
included regions with conditions previously considered adverse
for the presence of such pathogens. The epidemic radiations
that followed in these diverse regions were the first observed
for V parahaemolyticus and resulted in the variant supplanting
local populations and rapidly becoming the most dominant V
parahaemolyticus variant globally. As a consequence of this
expansion, V parahaemolyticus became the second human
pathogenic Vibrio species with an epidemic nature and, along
with V cholerae, the only Vibrio species with strains capable
of worldwide expansions and causing infections at a global
level.

Figure 1. Timeline and map of Vibrio parahaemolyticus sequence type 3 (VpST3) initial expansion based on reported isolates and outbreaks in the
literature (shapefile provided by Database of Global Administrative Areas).

This process of expansion results from an epidemic bacterial
population structure, as described in the study by Smith et al
[16]. Upon a background of numerous rapidly recombining
genotypes, a limited number of very frequent genotypes are
superimposed, known as clonal complexes, that have originated
from highly adaptive ancestral genotypes [16]. The mechanisms
behind the rise of these clonal complexes are largely unknown;
yet, it is imperative to identify the conditions that allow a

pathogen to emerge in such diverse locations and become
dominant, as well as the drivers behind these processes, to
understand and prepare for future pandemic expansions. When
considering environmentally sensitive pathogens such as Vibrio,
possible drivers can be categorized as either ecological or
evolutionary. Evolutionary drivers include the processes of
adaptation, mutations that increase fitness, or the uptake or
horizontal transfer of beneficial accessory genes. Both ends of
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the spectrum of genetic diversity—generalists and
specialists—are associated with pandemic expansions.
Ecological drivers can range from the local environment, which
affects pathogen survival and growth, to environmental corridors
and transport mechanisms. Importantly, these ecological and
evolutionary drivers are not exclusive and, instead, interact
significantly, with this interplay known as “eco-evolutionary.”
A key example of this would be adaptative selection occurring
after arrival to a distinct marine environment. While more
studies are considering the coeffect of ecological and
evolutionary factors on larger species (such as vertebrates and
invertebrates), little attention has been paid to environmentally
sensitive pathogens. Focusing on these pathogens would provide
novel insights into how particular pathogenic strains emerge
[17].

V parahaemolyticus is a uniquely placed species, with a history
of pandemic expansion that facilitates the study of such
eco-evolutionary drivers. First, Vibrio are phylogenetically
diverse with highly variable genomic backgrounds shaped by
recombination and horizontal gene transfer [3], from which
specialized variants can emerge. Second, V parahaemolyticus
exhibits well-characterized environmental thresholds and
tolerances, rapidly responding to changes in its marine
environment, such as water temperature [18-23] and salinity
[18,21,24-26]. Notably, anomalously high temperatures were
observed between 1996 and 1998 [27,28] around the emergence
of VpST3—pertinent amid the preference of Vibrio for warmer
waters. From a combined eco-evolutionary perspective, Vibrio
have high genome plasticity, which facilitates rapid adaptation
in response to environmental changes [29], resulting in a large
diversity of causative strains and resulting infection dynamics
[30,31]. It would be simplistic to assume that all these diverse
V parahaemolyticus variants respond to environmental change
homogeneously, opening up the eco-evolutionary response
landscape for exploration.

Study Objectives
We reconstructed this global expansion using publicly available
genome sequences of VpST3 from clinical and environmental
sources, isolated from around the world over the period of
expansion of this clone, to identify population structure and
demographic shifts indicative of the different stages of
expansion, including emergence and establishment. We
investigated the possible drivers of the expansion and our ability
to predict the dynamics of VpST3 by testing a range of
evolutionary and ecological drivers in a combined approach
using machine learning models to elucidate the complex
mechanisms that, when combined, may facilitate such a rapid,
global expansion. Machine learning has been credited for its
ability to harness the predictive power of evolution, using pattern
recognition to uncover complex associations between biological
processes [32]; therefore, it is well-placed for the novel
exploration of interacting eco-evolutionary mechanisms in
combination. Understanding the evolutionary features and
ecological conditions related to the stages of pathogen expansion
is a crucial step in understanding future eco-evolutionary
pathways of climate-sensitive pathogens.

Methods

The protocol for preprocessing evolutionary and ecological data
into a data frame for machine learning analysis is summarized
in a graphical representation in Figure S1 in Multimedia
Appendix 1.

Ethical Considerations
Ethical approval was not sought for the present study because
it consisted of neither human nor animal experimentation and
all genomic datasets used had been previously made publicly
available with reference to their ethical approval in the papers
associated with these submissions.

Genomic Data
Raw sequencing datasets from a collection of 311 VpST3
isolates, representing a range of geographic areas, were acquired
from public databases for genomic analyses (Table S1 in
Multimedia Appendix 1). The 311 isolates covered a temporal
range from 1996 to 2021, with 162 (52.1%) from Asia, 78
(25.1%) from North America, and 71 (22.8%) from South
America. A series of genetic markers were used to confirm that
the isolates were VpST3 using multilocus sequence typing in
MLST (version 2.11) [33]. Our analysis was restricted to isolates
that were submitted with accompanying isolation date and
location details because such metadata were required for the
downstream linkage with environmental variables. The raw
sequences were processed using default parameters within
Bactopia (version 2.0.2) [34], including quality filtering,
assembly, and annotation. Core single nucleotide polymorphisms
(SNPs) were identified across all sequences using parsnp
(version 1.5.6) [35] to create a core genome alignment, mapped
to the V parahaemolyticus reference genome RIMD2210633.
Gubbins (version 3.1.6) [36] was used to remove recombining
regions to provide a final nonrecombining core genome
alignment.

Phylogenetic Analysis
TempEst (version 1.5.3) [37] was used to confirm a temporal
signal and conformation to a molecular clock, followed by
BEAST2 (version 2.7.6) [38] analysis to reconstruct the global
phylogenetic dynamics of V parahaemolyticus, using BEAUti
[39] and a structured coalescent within a MultiTypeTree
template [40]. After sensitivity analyses on a range of models,
the selected model used a relaxed log normal clock model and
a general time reversible (GTR) substitution model, with a
normal distribution substitution rate prior. The tip dates and
discrete location attributes were used to situate the genomic
evolution in space and time. The Markov chain Monte Carlo
was run for 250 million states until all outputs converged
(effective sample size >200), confirmed by Tracer (version
1.7.1) [41]. The final maximum clade credibility tree was
generated using TreeAnnotator within BEAST2.

Encoding of Expansion Dynamics
The Bayesian phylogenetic analysis and subsequent tree
structure informed the designation of a variety of classifications
representing VpST3 dynamics. These classifications included
populations within the collection, temporal divergence, the
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success of introductions, and the stages of expansion. We
assigned each of these classifications to each of the 311 isolates,
using set criteria applied to the phylogenetic tree (Textbox 1),

and converted them into binary or categorical features to provide
target variables for machine learning analysis.

Textbox 1. Criteria for encoding the numerical and categorical variables of expansion dynamics. The terms in parentheses refer to the column names
of the expansion dynamics in the data frame input.

Populations (wave)

Populations within the Vibrio parahaemolyticus sequence type 3 (VpST3) collection were identified using TreeStructure (version 0.1.0) [42], which
identifies genealogical patterns to infer population structure from time-scaled phylogenies by performing 100,000 tree simulations with a significance
threshold set at P<.001

Temporal evolution (earlylate)

Very few VpST3 isolates were recovered in 2003, after the initial global population expansion; therefore, we specified this year as a split between the
early colonizers found before this date and the later isolates recovered after the expansion

Success (success)

Failed introductions were monophyletic branches that did not split into further nodes in the phylogenetic tree, while successful introductions were
those that saw downstream nodes in the same reported location

Stages of expansion (stages)

We split expansion into five defined stages: (1) initial introduction (the first node or nodes in a clade), (2) established population (the nodes in the
clade after this introduction), (3) secondary introduction (the first node or nodes in a clade in a new location from the original introduction), (4)
secondary establishment (the nodes in the clade after this introduction in the new location), and (5) bottleneck (the last node of a clade or a location
within the clade)

Stages of expansion: binary (stages_binary)

A simplified version of the previous stages of expansion classification, reducing it to a binary classification of introduced isolates (the first instances
in a clade or location) and established isolates (those that followed these introductory nodes within this clade)

Extraction of Evolutionary Driver Data
Genomic analysis was used to extract features representing
possible evolutionary drivers for each isolate. Quantifying the
gene content variation in the accessory pangenome in natural
populations is important to understand the plasticity and
adaptability of populations to environmental perturbations [43].
To obtain a metric of total genes present in each isolate, we
used Roary (version 3.13.0) [44] to construct the pangenome
and annotate each gene present in each isolate. We used Scoary
(version 1.6.16) [45] to identify shell genes (present in 15%-95%
of the population) whose presence was statistically associated
(P<.01) with the previously assigned labels representing
introduction, establishment, or success. We retained a selection
of these that were common accessory genes (with a presence
ranging from 5% to 95% across the isolates in the collection),
annotated their function, and generated features representing
the binary presence or absence features. We used
single-likelihood ancestor counting within HyPhy (version
2.5.48) [46] to estimate the ratio of nonsynonymous to
synonymous substitutions (dN/dS) and identify sites under
significant diversifying or purifying selection (P<.05) in the
genes of interest.

SNP mutations of relevance to the expansion process were
selected using pcadapt (version 4.3.3) [47] for outlier detection
based on population structure. The outliers were inferred based
on principal component analysis, using the parameter K=2 and
a desired false discovery rate threshold of 0.1 (q-threshold) to
identify discriminatory SNP mutations associated with local
adaptation. These SNPs were annotated to predict functional
effects on genes using SnpEff (version 5.1) [48] and the V
parahaemolyticus RIMD2210633 genome annotations as a

reference. SNPs predicted to have nonsynonymous missense
variants were retained for downstream analyses. We recorded
the base found at this position for every isolate to assess whether
these mutations would help the model define the evolutionary
classification. To convert these into numerical values fit for
machine learning applications, we reclassified the letters
representing bases into numbers (A=1, C=2, T=3, G=4, and
N-polymorphic=5).

Extraction of Ecological Driver Data
Time series data for sea surface temperature (SST) and
salinity—2 of the most well-reported environmental drivers of
V parahaemolyticus in the marine environment [49] —were
acquired from the European Centre for Medium-Range Weather
Forecasts Reanalysis version 5 [50] and the Met Office Hadley
Centre’s EN4.2.2 quality-controlled ocean dataset [51,52],
respectively, covering the period from 1995 to 2021. We zonally
extracted the climate time series data for the country of isolate
recovery, using Database of Global Administrative Areas
country zones provided as shapefiles, extending into coastal
waters by 2 decimal degrees to extract the local conditions of
the marine environment. Although the climate data were
available at a monthly resolution, the majority of the genomic
isolates only contained an annual resolution. Instead of
averaging across the whole year, we created metrics for
maximum, minimum, and mean values for each season across
the year, alongside generated lagged variables from the previous
year. Alongside environmental drivers, the seafood industry,
including fisheries [53], seafood consumption and trade [54],
and fish market contamination [55], has been previously
hypothesized as a possible mechanism for the emergence and
spread of Vibrio bacteria. We therefore extracted shellfish import
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data for each country from the FishStatJ database of the Food
and Agricultural Organization of the United Nations as annual
totals measured in 100 kg of net product weight [56] to explore
the potential of this driver.

Machine Learning Approach
We combined the ecological and evolutionary driver metrics
and the classification for each of the criteria into a single data
frame for each isolate, with a total of 311 data points.

For our machine learning analysis, we chose a random forest
classifier model, an ensemble learning method that uses
bootstrapping across decision tree classifiers, due to its high
interpretability and implemented the models using the Python
module scikit-learn (version 1.3.0) [57]. For each expansion
dynamic, we created three separate models: 1 model used only
the evolutionary drivers as features, a second only ecological
drivers as features, and a final model used both ecological and
evolutionary drivers in a combined approach. We trained the
random forest classifier (using 100 estimators, setting the
maximum number of features to consider for best split to the
square root of the total number of features, and using bootstrap
samples to build trees) on a randomly selected subset of 70.1%
(218/311) of the data, retaining the remaining 29.9% (93/311)
as an unseen test dataset. In total, there were 109 features used
to predict each evolutionary dynamic (Table S2 in Multimedia
Appendix 1), of which 60 (55%) represented evolutionary
drivers, and 49 (45%) represented ecological drivers. The
classification output classes were either binary or categorical
based on the expansion dynamic being predicted.

To test the accuracy of these predictions and provide insight
into our ability to predict the expansion dynamics of VpST3,
we reported 4 accuracy metrics, both per class and across all
predictions, when the models were applied to the unseen test
data. These metrics included precision (positive prediction rate,
affected by false positives), recall (sensitivity rate, affected by
false negatives), the F1-score (a harmonic mean of precision
and sensitivity, often used for comparative machine learning
performance assessments), and overall accuracy (taking into
account all components). We calculated the feature importance
for all ecological and evolutionary drivers involved in each
model using the Gini importance attribute within the random
forest implementation in scikit-learn (version 1.3.0) (57), which
is computed by the mean and SD of the accumulating impurity
decrease within each tree due to the addition of each specific
feature.

To assess the collinearity effects from cross-correlations between
the ecological and evolutionary driver metrics contained in our

model, we calculated the Spearman rank correlation coefficient
between the driver variables. During model development of the
individual ecological and evolutionary models, we selected
features that did not exhibit significant (P<.05) collinearity.
However, collinearity between evolutionary and ecological
features in the combined model was explored, rather than
omitted, to gain greater insight into potential eco-evolutionary
associations. These significant relationships were visualized in
a heat map using the seaborn (version 0.12.2) Python library
[58].

Region-Specific Analysis
To explore the potential to understand the successful expansion
of VpST3 in particular regions, we developed 2 region-specific
models representing an endemic area and an area where VpST3
emerged: China and Peru, respectively. These regions were
chosen because they reported the most VpST3 isolates within
their respective continents and consist of distinct geographic
characteristics to establish whether a regional focus on an area
with specific local conditions to drive eco-evolutionary
dynamics improves our ability to predict successful expansions.
These models were trained and tested on regional subsets of the
original data frame, with the same model parameters and
features.

Results

Phylogeny Characterization
The phylogeny revealed an evolutionary population structure
within the VpST3 genomes, with multiple introductions into
geographically distinct locations, including secondary migrations
and introductions. Our phylogenetic analysis found 3 clear
population “waves” within VpST3, comprising 56 (18%), 131
(42.1%), and 124 (39.9%) of the 311 isolates (Figure 2A). In
terms of temporal evolution, of the 311 isolates, 73 (23.5%)
were classified as early colonizers (before 2003), and 238
(76.5%) were isolated after the initial expansion after 2003
(Figure 2B). Regarding expansion success, of the 311 isolates,
86 (27.7%) were classified as unsuccessful and 225 (72.3%) as
successful (Figure 2C). With regard to the stages of expansion,
of the 311 isolates, under a binary classification, 121 (38.9%)
were classified as introduced, with 190 (61.1%) being classified
as established (Figure 2D). When this was scaled up to the 5
stages of classification, of the 311 isolates, 49 (15.8%) were
classified as initial introductions, 131 (42.1%) as established,
52 (16.7%) as secondary introductions, 58 (18.6%) as
secondarily established, and finally 21 (6.8%) as representing
bottlenecked populations (Figure 2E).
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Figure 2. Maximum clade credibility tree with branches color coded by expansion dynamic metrics: (A) population waves, (B) temporal evolution,
(C) expansion success, and (D and E) stages of expansion.

Evolutionary Features Extracted
We detected 194 potential adaptive SNP outliers within the
collection of genomic isolates, of which 44 (22.7%) were
predicted to be missense variants, altering an amino acid within
a protein, with predicted moderate effects on particular genes
(Table S3 in Multimedia Appendix 1). These SNPs were chosen
as evolutionary features for the machine learning analysis.
Overall, the total number of genes in each isolate ranged from

4292 to 4735, with no clear temporal signal (R2=0.08). We
identified 400 accessory genes present in 15% to 95% of the
entire VpST3 collection and reduced these to 15 (3.8%) genes
of interest as evolutionary features for the machine learning
analysis (Table 1). This selection was based on genes that were
associated with particular expansion metrics; the presence of
all 15 selected genes was significantly associated (P<.01) with

the binary classification delineating introduced and established
isolates, and 5 (33%) were further associated with the successful
classification metric. Annotation of these genes of interest found
that most (n=5, 33%) were functionally associated with survival
in the environment and tolerance to environmental conditions
(Table 1). In addition, some of them (n=8, 53%) were involved
in bacterial transport mechanisms, such as putrescine pathways,
that promote biofilm formation. On 4 occasions, 2 versions of
a gene with a similar function were identified within this
group—for pilT, ttcA, CARB β-lactamase, and DeoR family
transcriptional regulators. Of these 15 accessory genes, no
evidence for positive diversifying selection was found (as
determined by HyPhy single-likelihood ancestor counting [46]);
however, 10 (67%) genes had evidence of negative, purifying
selection (P value threshold <.10), ranging from 1 to 17 sites
under purifying selection.
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Table 1. Significant associations identified between accessory gene presence and key expansion dynamics.

Significance of presence association with classification la-
bels, P value

FunctionAnnotation

SuccessEstablishmentIntroduction

<.001<.001<.001Enzyme used for methylglyoxal detoxification, contributes
to bacterial survival in the environment [59]

Lactoylglutathione lyase

<.001<.001<.001Recombinant protein, involved in putrescine pathways [60]HTHa-type transcriptional
regulator (puuR)

—b<.001<.001Proteins that regulate transcription in bacteria, activated in
response to different environmental conditions

RNA polymerase sigma
factor (RpoS)

—<.001<.001Involved in the transport (motility) of the bacteria itself,
biofilms, and virulence [61]

Type IV pilus twitching
motility protein (pilT)

<.001<.001<.001Antiporters (in this case moving sodium ions in or out of a
cell) play an important role in tolerance to salt stress [62]

Sodium:proton antiporter

<.001<.001<.001Involved in biofilm production by converting N-carbamoylpu-
trescine to putrescine [63]

N-carbamoylputrescine
amidase (aguB)

<.001<.001<.001Involved in a putrescine pathway [64]Agmatine deiminase
(aguC)

—<.001<.001Primarily drives the sensing of environmental stimuli and
life cycle responses [65]

DeoR family transcription-
al regulator

—<.001<.001Involved in the transport (motility) of the bacteria itself,
biofilms, and virulence [61]

Type IV pilus twitching
motility protein (pilT)

—<.001<.001Expresses β-lactamase for resistance to antibiotic penicillins
[66]

Carbenicillin-hydrolyzing
class A beta-lactamase
CARB-23

—<.001<.001Modulates pathogenicity: motility, invasiveness, biofilm
formation ability, and virulence [67]

Ribonuclease III (rnc)

—<.001<.001Involved in bacterial growth, resistance to biocides, biofilm
formation, and swimming motility [68]

tRNA 2-thiocytidine(32)
synthetase (ttcA)

—<.001<.001Expresses β-lactamase for resistance to antibiotic penicillins
[66]

Carbenicillin-hydrolyzing
class A beta-lactamase
CARB-23

—<.001<.001Primarily drives the sensing of environmental stimuli and
life cycle responses [65]

DeoR family transcription-
al regulator

—<.001<.001Involved in bacterial growth, resistance to biocides, biofilm
formation, and swimming motility [68]

tRNA 2-thiocytidine(32)
synthetase (ttcA)

aHTH: helix-turn-helix.
bNot applicable.

Predictive Power
Overall accuracies for the different expansion metrics ranged
from 0.722 to 0.967 for models using a combined
eco-evolutionary approach (Figure 3). In our analysis, a
combined eco-evolutionary approach almost always improved
the accuracy of predicting expansion dynamics compared to
using evolutionary or ecological drivers in isolation (Table 2).
This was notably apparent for the predictions of the population
structure within the phylogeny, in terms of the identification of
3 clear groups, in which evolutionary and ecological features

individually produced accuracies of 0.733 and 0.744,
respectively, but the combined approach increased the accuracy
to 0.922. The only exception occurred when characterizing the
success of emergence, where the ecological-only approach
achieved the same accuracy as the combined approach. We
could distinguish which isolates would be “successfully
introduced” to an accuracy of 82% using both ecological and
evolutionary data, but 13% of these were false positives,
suggesting that our analysis could have overlooked a limiting
factor that prevents an isolate from successfully establishing in
an area.
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Figure 3. Confusion matrices visualizing the predictions of random forest classifier models for each expansion dynamic when applied to unseen test
datasets: (A) population waves, (B) temporal evolution, (C) expansion success, (D) binary stages of expansion, and (E) categorical stages of expansion.
(B, C, and D) For binary expansion dynamics, the matrix represents (clockwise from top left) true negatives, false positives, true positives, and false
negatives. (A and E) For categorical expansion dynamics, the matrix shows correct class membership and misclassified class memberships for each
category.
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Table 2. Accuracy metrics of random forest classifier models predicting unseen test data of each expansion dynamic.

Ecological features onlyEvolutionary features onlyCombined eco-evolutionary approachExpansion dy-
namics

Overall
accuracy

F1-scoreRecallPrecisionOverall
accuracy

F1-scoreRecallPrecisionOverall
accuracy

F1-scoreRecallPrecision

0.7440.7330.922Populations

0.6000.4500.9000.4860.4500.5290.8330.7500.938Wave 1

0.7560.9190.6420.6760.6760.6760.9090.9460.875Wave 2

0.8000.7270.8890.9280.9700.8890.9851.0000.971Wave 3

0.7190.6990.8100.6970.6980.6980.9090.8990.928Unweight-
ed average

0.7370.7440.7900.7330.7260.7330.7210.9200.9220.924Weighted
average

0.9560.7670.967Temporal evolution

0.9261.0000.8620.5710.5600.5830.9431.0000.893Early (be-
fore 2002)

0.9680.9381.0000.8400.8460.8330.9760.9541.000Late (after
2003)

0.9470.9690.9310.7060.7030.7080.9600.9770.946Unweight-
ed average

0.9560.9560.9620.7650.7670.7640.9670.9670.970Weighted
average

0.7330.5110.722Stages of expansion

0.5560.5880.5260.4120.4120.4120.5710.5880.556Initial intro-
duction

0.8950.8500.9440.5900.5750.6050.8950.8500.944Established
population

0.7500.7500.7500.2400.2500.2310.6900.8330.588Secondary
introduc-
tion

0.8000.8000.8000.7100.7330.6880.7690.6670.909Secondary
established
population

0.1430.1670.1250.3330.3330.3330.1430.1670.125Population
bottleneck

0.6290.6310.6290.4570.4610.4540.6140.6210.624Unweight-
ed average

0.7450.7330.7610.5120.5110.5140.7350.7220.763Weighted
average

0.9110.6670.922Stages of expansion (binary)

0.8920.9170.8680.5830.5830.5830.9070.9440.872Introduc-
tion

0.9250.9070.9420.7220.7220.7220.9330.9070.961Establish-
ment

0.9080.9120.9050.6530.6530.65330.9200.9260.916Unweight-
ed average

0.9110.9110.9130.6670.6670.6670.9230.9220.925Weighted
average

0.8220.7110.822Success

0.6670.5710.8000.4800.4290.5450.6670.5710.800Unsuccess-
ful

0.8790.9350.8290.8000.8390.7650.8790.9350.829Successful
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Ecological features onlyEvolutionary features onlyCombined eco-evolutionary approachExpansion dy-
namics

Overall
accuracy

F1-scoreRecallPrecisionOverall
accuracy

F1-scoreRecallPrecisionOverall
accuracy

F1-scoreRecallPrecision

0.7730.7530.8140.6400.6340.6550.7730.7530.814Unweight-
ed average

0.8130.8220.8200.7000.7110.6960.8130.8220.820Weighted
average

Classes that were particularly difficult to predict, with the lowest
accuracies reported, were genetic bottlenecks (which were
almost always misclassified as initial introductions) and the
eco-evolutionary drivers that result in an isolate’s failure to
establish successfully. It was harder to predict initial
introductions compared to predicting established populations
using the categorical “stages of expansion” metric, but when
this was reduced to a binary problem, accuracy increased by
0.2, suggesting that separating the stages into initial and
secondary introductions (from an established population to a
new area) hindered the prediction process.

Exploring the spatiotemporal presence of the errors identified
when testing our eco evolutionary models on 90 unseen data
points (Table S4 in Multimedia Appendix 1) revealed that the
raw highest frequency of errors was found in Asia compared to
other continents; however, the relative error rate considering
the number of Asian isolates (n=50, 56% of the 90 data points)
was the lowest across continents. Notable successes include a
strong ability to predict population structure in Asia (in which
all 50 samples were accurately predicted) and a low error rate
(5.8%) when predicting successful expansions into the United
States. Success was more difficult to predict in geographic
locations with little representation in the test dataset; or example,
there was 1 isolate each from Canada, Japan, Mexico, and
Singapore in the test dataset, and only the success of the
Canadian isolate was successfully predicted. Temporally, a
greater number of errors occurred earlier in the time series,
during the initial expansion period of VpST3.

Eco-Evolutionary Feature Importance
In general, ecological metrics performed stronger than
evolutionary metrics individually (Figure S2 in Multimedia

Appendix 1). Some of the notably important eco-evolutionary
drivers included 3 accessory genes, which were almost always
present in introduced isolates (and subsequently eroded) and
which provided salt stress tolerance, survival advantages, and
biofilm formation for motility, as well as summer maximum
sea temperatures from both the year of isolate discovery and
the year prior. Of the 109 total features used for training and
prediction, the 10 (9.2%) strongest predictive features for each
metric, based on feature importance, were collated into a data
frame (Figure 4). A small range of these ecological and
evolutionary metrics featured within the 10 most important
features across all 5 expansion dynamics. For 1 expansion
dynamic only—temporal evolution—the strongest predictive
features were all environmental features, suggesting that the
influence of environmental temporal trends outweighed that of
the evolutionary drivers. The total number of genes was an
important feature for 4 (80%) of the 5 predicted expansion
dynamics and located in the top 3 most important features for
each of these, suggesting that genetic diversity was a key
distinguishing factor between the classes. In addition, the
maximum temperatures during June, July, and August were
strong predictor variables, appearing in the top 10 features of
all models. Lagged sea temperature effects also offered
significant information, notably the SSTs during June, July, and
August from the previous year. Although salinity variables did
not often appear in the top 10 features, the average salinity
during September, October, and November was a useful
predictor for classifying the stages of expansion and assessing
the success chances of an isolate. Shellfish imports featured as
important predictors in classifying population waves and the
stages of expansion. Accessory gene presences were stronger
predictors in classifying population waves and the chance of
success than the stages of expansion themselves.
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Figure 4. Feature importance for each of the expansion dynamic predictions within each random forest classifier model (where 1 indicates the most
important and 10 the 10th most important). DJF: December-January-February; HTH: helix-turn-helix; JJA: June-July-August; MAM: March-April-May;
SON: September-October-November; SST: sea surface temperature.

In terms of notable relationships identified, the success of an
isolate was generally associated with higher average and
maximum SSTs, particularly during June, July, and August.
The presence of certain accessory genes, including puuR, aguB,
and aguC, was more important in the classification of
“introduced” isolates than in the classification of “established”
isolates. The isolates that were predicted to be “introduced” (as

opposed to “established”) almost always had these genes present
compared to greater variation in the isolates that were predicted
to be “established.” This was even more evident in predicting
the population to which an isolate belonged, where multiple
accessory genes were absent in the third and most recent
population wave. Shellfish imports emerged as an important
driver in the distinction of the 3 separate populations, with a
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higher prediction range seen for isolates belonging to the third
population wave.

Cross-Correlation Between Ecological and
Evolutionary Drivers
We explored the relationships between the ecological and
evolutionary features included in the model and found multiple
significant correlations (Figure S3 in Multimedia Appendix 1).
Notably, the selected accessory genes exhibited strong
correlations with the SST metrics (both positive and negative)
as well as with shellfish imports; some genes also correlated
with the salinity metrics. In addition, some adaptive SNPs
exhibited correlations; for example, the SNP at position 597
had slight negative associations with maximum SSTs and slight
positive associations with minimum salinities. The total number
of genes had slight positive associations with most of the SST
metrics.

Region-Specific Eco-Evolutionary Models
When generating region-specific models to identify which
isolates would be specifically successful in China or Peru, as

representative countries, we found the model predictions for
China to be largely more accurate, with accuracies ranging from
0.778 to 0.917, compared to model predictions for Peru, with
accuracies ranging from 0.529 to 0.706 (Table 3). However,
while the model was able to successfully classify successful
isolates in China, it had difficulty in classifying the unsuccessful
isolates, with poor specificity. The Peru model had more
balanced predictions between these 2 classes. In both cases, the
ecological features–only model was the best approach, providing
the best accuracy. Total gene diversity was the top feature for
the combined eco-evolutionary approach (and the evolutionary
features–only model). For Peru, the remainder of the top 10
important features were ecological features; however, for China
it was an even split between ecological and evolutionary drivers,
including the type IV pilus twitching motility protein and the
SNP at position 603 (Table S3 in Multimedia Appendix 1),
which had not appeared previously among the important
features. In the ecological features–only model, the top features
were December to February minimum sea temperatures and
June to August average temperatures a year prior for China and
Peru, respectively.

Table 3. Accuracy metrics of region-specific random forest classifier models predicting unseen test data of each expansion dynamic.

Ecological features onlyEvolutionary features onlyCombined eco-evolutionary approachExpansion dynam-
ics

AccuracyF1-scoreRecallPrecisionAccuracyF1-scoreRecallPrecisionAccuracyF1-scoreRecallPrecision

0.9170.7780.889Success in China

0.4000.2501.0000.2000.2500.1670.3300.2500.500Unsuccess-
ful

0.9551.0000.9140.8710.8440.9000.9390.9690.912Successful

0.6780.6250.9570.5350.5470.5330.6360.6090.706Unweighted
average

0.8940.9170.9240.7960.7780.8190.8720.8890.866Weighted
average

0.7060.6470.529Success in Peru

0.6670.6250.7140.5000.3750.7500.4290.3750.500Unsuccess-
ful

0.7370.7780.7000.7270.8890.6150.6000.6670.545Successful

0.7020.7010.7070.6140.6320.6830.5140.5210.523Unweighted
average

0.7040.7060.7070.6200.6470.6790.5190.5290.524Weighted
average

Discussion

Principal Findings
Our analysis suggests that VpST3, as a clonal complex,
exhibited a high degree of efficacy in propagation during its
expansion, evidenced by the numerous introductions in
geographically distinct places at similar times. We found
evolutionary features that provided mechanisms for this process,
including accessory genes linked to functions that facilitate
motility and biofilm formation for attachment-based transport
mechanisms. The total number of genes within an isolate was
an important predictor in the machine learning models for most

expansion dynamics. Although we found no trend in gene
numbers over time, the model associated higher gene numbers
with isolates classified as within established populations,
evidenced by a higher prediction range for established isolates.
This suggests that isolates that became established could have
acquired genes specific to survival in the local conditions, with
this plasticity allowing it to colonize new geographic regions.
The declining presence of certain accessory genes (puuR, aguB,
and aguC) under purifying selection signals suggests that the
genes involved in initial introduction may become less useful
for population establishment, resulting in reduced selection
pressure for these genes. This is corroborated by the prediction
ranges of our model for “introduced” isolates, in which these
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genes were both important features and characterized as almost
always present in introduced isolates.

Assessment of the Eco-Evolutionary Approach
Our analysis has confirmed the hypothesis that considering
ecological and evolutionary features in a combined approach
to explore the drivers of pathogen expansion yields higher
accuracy than dealing with these drivers individually. This is a
novel use of the framework described in the study by Campbell
et al [17] for characterizing V parahaemolyticus expansion
dynamics.

From the ecological perspective, SST was a strong predictor
variable, as expected from well-established interactions between
V parahaemolyticus and SST [69]; however, maximum
temperatures during June, July, and August emerged as the
strongest driver, alongside lagged effects from the previous
year. More than two-thirds of our genomic isolates (240/311,
77.2%) were isolated in the northern hemisphere, where these
months would be the warmest; this period has previously been
described as the “Vibrio season” [69]—the characteristics of
this season each year seem to drive expansion. In addition, the
importance of SSTs in September, October, and November as
well as in March, April, and May is pertinent to recent studies
that have found expansions in seasonal suitability into cooler
months, approximately a 1-month increase every 30 years [70].
Although the period from June to August is the coldest in the
southern hemisphere for the South American isolates, it could
still drive expansion dynamics when the maximum sea
temperatures exceed the minimum for V parahaemolyticus
survival in the environment, allowing the bacteria to persist in
their environmental reservoirs until optimum conditions resume,
a phenomenon known as overwintering [71]. Sea temperatures
can drive both survival and community composition changes
[22,72], with mostly positive associations between SST and the
successful established isolates in our analyses. In laboratory
studies, increases in seawater temperature have been found to
upregulate the expression of virulence factors involved in
adhesion processes, such as biofilm formation [73], which could
facilitate transport mechanisms via attachment to marine
organisms that aid expansion and settlement in new areas.

Generally, the models using evolutionary features only had a
lower predictive potential; however, the inclusion of
evolutionary features improved the ecological models when
combined. The evolutionary features themselves potentially did
not offer enough predictive information independently, but
when linked to the specific local environmental conditions in
which the evolutionary processes provide survival benefits, the
evolutionary features were able to provide useful information
within the model on pathogen expansion. The evolutionary
features might lack meaning outside of ecological contexts or
indeed play a different biological role in different ecological
contexts. This is supported by the cross-correlations identified
between several evolutionary features and the associated
environmental conditions (Figure S3 in Multimedia Appendix
1), indicating that these interacting factors themselves, in the
form of dynamic evolutionary responses to environmental
conditions, can provide predictors of pathogen expansion. This
justifies the inclusion of both ecological and evolutionary

features in the same predictive model to account for the
interactions between them. We observed a specific
eco-evolutionary mechanism in our analysis, where SSTs were
significantly associated with the presence of multiple accessory
genes (Figure S3 in Multimedia Appendix 1), which could
indicate an introduced selection pressure in the environment,
with changes in SST representing a myriad of implications for
the microbial community. However, it is important to note that
these cross-correlations provide limited information and could
also be purely reflecting the strength of the temporal trends of
accessory gene presence, as the result of 2 concurrent or
diverging trends, with sea temperature gradually increasing over
the time period and accessory gene presence either increasing
or decreasing steadily.

Shellfish imports were an important driver for the classification
of the third population wave, which could allude to a population
opportunistically taking advantage of shellfish movements as
a transport mechanism. This would explain why this population
has purged multiple accessory genes offering transport
mechanisms, such as biofilm pathways. While the role of live
aquatic animal transport in contributing to V parahaemolyticus
expansion is currently unclear, studies have found that this
method of transport introduces new populations, facilitates the
exchange of genetic material, and promotes adaptation [74].
Further analysis will need to explore whether this subpopulation
has undergone innovation to improve host-pathogen attachment
mechanisms, particularly involving shellfish.

Few of the SNP mutations identified during outlier detection
featured heavily in model decisions, despite our methodology
aiming to identify mutations affecting proteins that could
promote expansion dynamics. While we encoded the SNPs as
categorical features in our machine learning analysis, alternative
encoding techniques, such as one-hot encoding, have been
explored, and it was found that including information on not
only the mutation but also the position of mutation can improve
accuracy [75]. Further analysis or different approaches should
be explored to improve the identification of mutations critical
to expansion processes.

While the models were designed generically to predict a range
of expansion metrics, they could be further refined for specific
purposes. There were several instances of a large discrepancy
between recall and precision, particularly for smaller,
underrepresented classes such as bottlenecks, which is a
common issue in machine learning when dealing with
imbalanced datasets. The models here were not developed
individually to obtain the greatest accuracy, as the aim was to
facilitate the comparison of accuracy metrics when combining
ecological and evolutionary features. However, these imbalances
can be remedied on a per-model basis in the future using
techniques such as class weights to assign higher weights to
minority classes during training or through oversampling (of
the minority classes) and undersampling (of the majority
classes), as demonstrated by DeLuca et al [76]. The difficulties
in separating initial introductions and bottlenecks can be
simplified into understanding why a particular introduction is
successful or unsuccessful. We did find a potential limiting
factor when predicting this success as a separate expansion
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metric, resulting in a high proportion of false positives where
unsuccessful isolates were misclassified as successful.

We propose that a potential limiting factor here could be
plankton presence, which has been found to offer nutrients for
growth and host protection [77], which was not included in the
analysis. This is relevant given the biofilm-related accessory
genes identified, which facilitate attachment to plankton, in
which these eco-evolutionary factors could combine to provide
further information on isolate success. Similarly, plankton
abundance was found to significantly increase the presence of
2 major virulence factors of V parahaemolyticus, tdh and trh
[78], underlining another eco-evolutionary mechanism driving
V parahaemolyticus dynamics. There are difficulties in
quantifying marine plankton presence for such a global
collection spanning decades. Earth Observation data offers a
suitable source for ecological driver data in the future, providing
consistent time series data at a sufficient resolution; however,
satellite observations of plankton (using chlorophyll-a
concentration as a proxy) are only available from late 1997; the
key preceding year that represents the pivotal early introductions
of the expansion of VpST3 is missing.

The spatiotemporal trends of error counts discussed (Table S4
in Multimedia Appendix 1) offer insights into model limitations
and areas for future improvement, such as improving our
predictive capabilities during the initial emergence of a pathogen
strain and in geographic regions reporting few isolates (as is
common during initial expansion).

Regional Predictive Performance for a Globally
Expanding Pathogen
The difference in accuracy between the China and Peru regional
models is likely due to the consequences of class imbalances.
The Chinese isolates had a much higher proportion of successful
isolates (108/120, 90%) than Peru (27/55, 49%), which meant
that, although we were able to predict successful isolates with
high precision and recall, it was very difficult to predict the
minority class of unsuccessful isolates (F1-score=0.33). Such
class imbalances result in overfitting of the majority class,
enabling the model to achieve a high accuracy of 90% even if
it simply predicted all isolates to be successful. This can be seen
in the China model using only ecological features, in which the
majority class (successful isolates) was predicted perfectly due
to 97% (35/36) of the data points being predicted as successful.
Further evidence for overfitting is provided by a large difference
between the area under the receiver operating characteristic
curve values of the training and test data, which were 0.860 and
0.949, respectively. To overcome such overfitting during the
future development of regional models, per-class and alternative
accuracy metrics need to be considered and imbalances
addressed through methods previously outlined. In the Peru
model, the number of successful and unsuccessful isolates were
much more balanced, resulting in lower but more balanced
per-class accuracy metrics. Currently, this would suggest that
we can predict the success of a pathogenic variant isolate more
accurately in an endemic region than in an emerging one but at
the expense of possible overfitting, providing areas for
improvement. In both cases, we found that ecological drivers
alone were the best approach, suggesting that the evolutionary

features were introducing noise into the model. This suggests
that focusing on common features in the whole group that might
facilitate expansion on a global scale might not be as valuable
as more region-specific evolutionary drivers, such as those
representative of adaptation to local conditions of a particular
region, which would need to be extracted for a more successful
regional approach.

However, it is important to note that while models can be
improved specifically for particular geographic regions, for
example, based on the ranges of local environmental conditions,
this comes at the expense of declining applicability. Such
applicability could be seen as a priority for a globally expanding
pathogen such as VpST3, requiring a model that is able to
function in a range of distinct geographic regions. Future work
could mediate this trade-off through the introduction of regional
encoders as features [24] or through engineering environmental
features to be more comparable, such as through normalized
anomalies rather than raw values.

Future Predictive Potential
While this analysis focused on the 3 continents reporting the
most VpST3 isolates (Asia, North America, and South America),
in the future, the focus will need to shift to countries that lie on
the periphery of the environmental tolerance ranges of V
parahaemolyticus, representing the potential locations of future
expansion. These include Europe, which, in recent years, has
observed the emergence of Vibrio lineages and increases in
vibriosis incidence as an emerging public health issue [79].
Increased genomic surveillance is required in these countries
to test the ability of this framework to identify expansion
potential into these new regions.

In addition, the eco-evolutionary analysis was limited by the
annual resolution of the genomic isolate metadata and shellfish
movement data. The majority of the isolates in our collection
were submitted to public databases with limited metadata,
specifying only a country and a year; however, higher-resolution
metadata, such as a district and a day, week, or month, as
suggested by Campbell et al [17], would greatly improve the
specificity of the related ecological data that we could then
append to this isolate, which is available at a very high
resolution. This is particularly necessary to account for the rapid
evolutionary timescales on which bacteria such as Vibrio
function [29]. Future models would benefit from higher
spatiotemporal–resolution datasets for machine learning training
that facilitate the characterization of more specific
eco-evolutionary drivers and increase predictive accuracy.

Conclusions
This pilot study provides a precedent for combining ecological
and evolutionary driver data using machine learning to predict
pathogen expansion metrics. This both aids our understanding
of historic expansion and, through further refinement and
development, could be operationalized into a trained database
through which a new recovered isolate could be submitted and
predictions made as to its introduction or establishment potential
to track pathogen expansion in near real time. The current
limitations preventing such operationalization include sufficient
genomic surveillance, data accessibility, and interdisciplinary

JMIR Bioinform Biotech 2024 | vol. 5 | e62747 | p. 14https://bioinform.jmir.org/2024/1/e62747
(page number not for citation purposes)

Campbell et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


analysis requirements. Accuracy would need to be refined to
the appropriate confidence values based on user requirements
of model sensitivity. Further exploration of applicability to a
range of climate-sensitive pathogens will require sufficient
genomic surveillance, which is currently limited by poor

spatiotemporal resolution. Combining state-of-the art analyses
of both ecological and evolutionary pathogen drivers will
provide new insights into future eco-evolutionary pathways of
climate-sensitive pathogens.
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Abbreviations
dN/dS: ratio of nonsynonymous to synonymous substitutions
GTR: general time reversible
SNP: single nucleotide polymorphism
SST: sea surface temperature
VpST3: Vibrio parahaemolyticus sequence type 3
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