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Abstract

Background: An increasing body of literature highlights the integration of machine learning with genomic data in psychiatry,
particularly for complex mental health disorders such as schizophrenia. These advanced techniques offer promising potential for
uncovering various facets of these disorders. A comprehensive review of the current applications of machine learning in conjunction
with genomic data within this context can significantly enhance our understanding of the current state of research and its future
directions.

Objective: This study aims to conduct a systematic scoping review of the use of machine learning algorithms with genomic
data in the field of schizophrenia.

Methods: To conduct a systematic scoping review, a search was performed in the electronic databases MEDLINE, Web of
Science, PsycNet (PsycINFO), and Google Scholar from 2013 to 2024. Studies at the intersection of schizophrenia, genomic
data, and machine learning were evaluated.

Results: The literature search identified 2437 eligible articles after removing duplicates. Following abstract screening, 143
full-text articles were assessed, and 121 were subsequently excluded. Therefore, 21 studies were thoroughly assessed. Various
machine learning algorithms were used in the identified studies, with support vector machines being the most common. The
studies notably used genomic data to predict schizophrenia, identify schizophrenia features, discover drugs, classify schizophrenia
amongst other mental health disorders, and predict the quality of life of patients.

Conclusions: Several high-quality studies were identified. Yet, the application of machine learning with genomic data in the
context of schizophrenia remains limited. Future research is essential to further evaluate the portability of these models and to
explore their potential clinical applications.

(JMIR Bioinform Biotech 2024;5:e62752) doi: 10.2196/62752
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Introduction

Schizophrenia is a complex mental health disorder that can have
a significant negative impact on patients’ resilience, quality of
life, and self-esteem [1]. Considering the heterogenous nature
of schizophrenia, several fields of research, such as genomics,
also use the terminology psychotic disorder spectrum to refer
to schizophrenia-like disorders [2]. Furthermore, while
untreated, this mental health condition can lead to violence and
violent offending [3]. A recent review of the literature estimated
that schizophrenia has the highest societal cost among all mental
health diseases. Indeed, reports from 10 countries estimated
schizophrenia-related costs per person per year to be around
US $2004-$94,229, with considerable variability amongst
countries [4]. Despite several treatments being available, such
as antipsychotics (dopamine receptor antagonists and partial
agonists), up to 20%-30% of patients will remain
treatment-resistant, and further approaches, such as cognitive
behavioral therapy, will be used as adjuncts [5-7]. Various
studies have explored the diverging clinical presentations of
patients with schizophrenia and developed complexity estimators
to aid clinicians in understanding the neuropathological
processes involved in this complex illness [8,9]. Among recent
research, several key factors have been identified as being linked
to the development of the disorder, such as the length of the
first psychotic episode, hormonal variations, as well as the
presence of negative symptoms [10]. Despite the current
knowledge that early interventions can help in the prognosis of
patients diagnosed with schizophrenia, no prediction model is
used in clinical practice as they usually do not account for
variance between individuals [11].

To account for this variance and the dimensional aspects of
schizophrenia, there have been tremendous efforts to gather
genomic data and in-depth knowledge of neurobiological aspects
of this disorder [12]. The entirety of the genetic information
contained in an organism’s DNA is referred to as genomic data
[13-15]. This comprises details on gene structure, function, and
variation in addition to the nucleotide sequence (adenine,
thymine, cytosine, and guanine) found in the genome [16].
Genomic data is used to research the genetic contributions to
traits, diseases, and biological processes [17]. It includes a
variety of genetic information, such as single nucleotide
polymorphisms (SNPs), copy number variations (CNVs), and
gene expression patterns [18]. Worldwide collaborations have
resulted in genome-wide association studies (GWAS) in over
56,000 schizophrenia cases and 78,000 controls, which identified
270 distinct genetic loci and polygenic risk scores, which can
currently explain around 7.7% of the variance in schizophrenia
case-control status [19]. Despite over 300 studies on gene
expression in schizophrenia conducted over the past 15 years,
none has consistently identified specific genes that contribute
to schizophrenia risk [20]. Due to the complexity of
schizophrenia, novel approaches are essential to better
understand its neurobiological basis and improve outcome
predictions, as it involves a network of genetic, neural,
behavioral, and environmental factors [21].

Among novel approaches, machine learning has been
increasingly used in the latest decade for various applications

in medicine [22]. Machine learning is a branch of artificial
intelligence that deals with teaching computers how to learn
from and make predictions or judgments based on data through
the use of statistical models and algorithms [23,24]. It focuses
on creating systems that, through experience, may naturally
perform better on a given task without having to be specifically
designed to do so [25]. Data used by machine learning
algorithms are referred to as model features [26]. Recent
advancements in the field of data science have demonstrated
that precision and genomic medicine combined with artificial
intelligence have the potential to improve patient health care
[27]. Examples of such advancements are the possibility of
conducting variant calling, genome annotation and variant
classification, and phenotype-to-genotype correspondence by
using machine learning algorithms [28]. While existing literature
reviews have explored specific applications of machine learning
using genomic data for schizophrenia, none, to our knowledge,
have comprehensively examined the diverse uses of machine
learning at the intersection of these three fields, which could
enhance the understanding of schizophrenia, thereby justifying
the necessity for a thorough literature review. [29,30]. By
identifying the broader applications of machine learning in this
context, this overview will help researchers and clinicians
pinpoint gaps in current research and pave the way for future
applications of machine learning in the study of schizophrenia
using genomic data.

This study aims to identify the various applications of machine
learning algorithms using genomic data in the field of
schizophrenia. By examining these approaches, this research
offers an initial exploration into the methods being investigated
to address the complexities of schizophrenia, a significant yet
challenging mental illness. Therefore, this scoping review aimed
to provide a comprehensive overview of these applications,
highlighting key areas for future development at the intersection
of machine learning, genomic data, and schizophrenia, with the
potential to enhance clinical approaches.

Methods

Search Strategies
A comprehensive scoping search was conducted to identify
recent studies across several electronic databases, including
MEDLINE (PubMed), Web of Science, PsycNet (PsycINFO),
and Google Scholar, covering the period from 2013 to 2024.
The review was conducted using the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) guidelines. The search strategy
used both text words and MeSH (Medical Subject Headings)
terms, focusing on schizophrenia (eg, “schizophrenia” or
“schizophrenic”), genomic data (eg, “genes,” “genetic,” or
“genomic”), and machine learning (eg, “artificial intelligence”
or “machine learning”). These topics were selected to align with
the study’s objectives. Detailed search strategies are provided
in Multimedia Appendix 1. The search methodology was
developed by the corresponding author, with searches executed
by AH and cross-validated by MB. No restrictions were applied
regarding setting or geography. The PRISMA checklist is
provided in Multimedia Appendix 2.
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Study Eligibility
Studies were included based on the following criteria: (1) the
population of interest consisted of patients diagnosed with
schizophrenia or the study of schizophrenia, (2) the study used
a machine learning approach, and (3) the machine learning
model incorporated genomic data features to find specific
outcomes. Studies were included regardless of whether they
used a single algorithm or multiple algorithms. Excluded from
consideration were unpublished literature and studies using
artificial intelligence algorithms outside the scope of machine
learning. Examples of artificial intelligence algorithms outside
the scope of machine learning include search algorithms, expert
systems that are not data-driven, and heuristic-based systems.
Studies that used machine learning solely to reduce data from
genomic datasets were excluded. The search was limited to
sources in English and French. Gray literature was not included.

Data Extraction
Data extraction was performed using a standardized form in
Microsoft Excel and was independently counter-verified for
consistency and integrity by two authors (AH and MB). Any
disagreements regarding the inclusion or exclusion of a study
were mutually resolved by the authors. The systematically
extracted information included authors, population (sample),
primary uses (or intent) of the machine learning algorithms,
types of genomic data, types of machine learning algorithm
used, main model performances, and key outcomes identified.

Quality Assessment
The quality of the identified studies was evaluated using the
Newcastle-Ottawa Scale for nonrandomized controlled studies
and the Cochrane Risk of Bias Tool for randomized controlled
trials [31,32]. The Newcastle-Ottawa Scale is a tool used to
assess the quality of cohort and case-control studies. It evaluates
studies based on three main domains: selection of study groups,
comparability of groups, and ascertainment of exposure or
outcome [31]. Each domain includes specific criteria, and studies

are awarded stars for meeting these criteria, with a maximum
of 9 stars indicating the highest quality [31]. The Cochrane Risk
of Bias Tool is a comprehensive framework used to assess the
risk of bias in randomized controlled trials [32]. It evaluates 7
specific domains: random sequence generation, allocation
concealment, blinding of participants and personnel, blinding
of outcome assessment, incomplete outcome data, selective
reporting, and other potential sources of bias [32]. Each domain
is rated as having a low, high, or unclear risk of bias based on
predefined criteria [32]. In this scoping review, studies with 1-4
stars on the Newcastle-Ottawa Scale or a high risk of bias by
the Cochrane Risk of Bias Tool will be identified as low in
quality, 4-6 stars as moderate, and 7-9 stars (or low risk of bias)
as high.

Results

Description of Studies
The scoping review evaluated studies at the intersection of
schizophrenia, genomic data, and machine learning. Initially,
the literature search identified 2437 eligible articles after
removing duplicates. A total of 814 studies were excluded based
on a first analysis of the titles and abstract. Following a second
round of abstract screening, 143 full-text articles were
thoroughly assessed, with 122 subsequently excluded. This left
21 studies for detailed analysis. A flowchart illustrating the
inclusion process is provided in Figure 1, and the specific details
of the included studies are available in Multimedia Appendix
3. The studies meeting the inclusion criteria included various
algorithms for different tasks. The most common application
of machine learning was predicting schizophrenia using genomic
data (n=10), followed by identifying features to enhance the
understanding of schizophrenia (n=6), drug discovery for
patients with schizophrenia (n=2), classifying schizophrenia
amongst other mental health disorders (n=2), and predicting the
quality of life and global functioning of patients with
schizophrenia (n=1).

JMIR Bioinform Biotech 2024 | vol. 5 | e62752 | p. 3https://bioinform.jmir.org/2024/1/e62752
(page number not for citation purposes)

Hudon et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart for the inclusion of studies.

Algorithms Used
Several algorithms have been identified in the 21 included
studies. The algorithms the most frequently used were support
vector machine classifiers (SVM; n=14), random forest (RF)
algorithms (n=9), various implementations of neural networks
(NN; n=7), and eXtreme Gradient Boosting (XGboost; n=5).
Definitions of these popular algorithms are listed below:

• RF: It constitutes an ensemble learning technique. During
training, it creates several decision trees and outputs the
class, which is the average of the classes of each individual
tree [33]. By merging the predictions of several trees, each
trained on a different sample of the data, this method
increases accuracy and helps avoid overfitting [33].

• SVM: It is an algorithm for supervised machine learning
that is applied to regression and classification problems
[34]. Finding the ideal hyperplane to divide the data into
distinct classes is the fundamental notion behind SVM [34].
Different kernels (a function that quantifies the similarity
between a pair of data points) can be used to enhance the
performance of the SVM to best fit the data points [35].

• NN: These algorithms are modeled after the composition
and operations of the human brain [36]. They are made up
of networked layers of nodes, also called neurons, that
process and change incoming data to create outputs [36].

• XGboost: It is founded on the gradient boosting principle,
which entails building an ensemble of weak learners
(usually decision trees) in a stepwise manner [37]. Every
new tree seeks to fix the mistakes committed by the ones
that came before it [37].

The remaining algorithms can be found in Multimedia Appendix
3.

Predicting Schizophrenia
Prediction of schizophrenia was identified as the main objective
of 10 studies, all of which were deemed of high quality as per
the Newcastle-Ottawa Scale ratings. The data used in these
studies included differentially expressed genes, polygenic risk
scores, genotype and human leukocyte antigen alleles, gene
expression microarray data, single nucleotide polymorphisms,
long non-coding RNAs, DNA methylation in blood, exomes,
and G72 protein levels.
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Li et al [38] used differentially expressed gene data from the
Gene Expression Omnibus database, applying RF and SVM
algorithms, and identified 15 key genes correlated with immune
cell infiltration, achieving high diagnostic accuracy for
schizophrenia with an area under the curve (AUC) of 0.77 in
their test set. Another study, by Bracher-Smith et al [39], used
data from the UK Biobank, applied machine learning algorithms
such as least absolute shrinkage and selection operator,
ridge-penalized logistic regression, SVM, RF, XGboost, NN,
and stacked models, and found that while machine learning
models incorporating polygenic risk scores and demographic
factors showed good discrimination (AUC=0.71), they did not
significantly outperform logistic regression in predicting
schizophrenia. However, they reported that permutation features
importance identified polygenic risk score for schizophrenia
(PRS-SZ) as the most important predictor of schizophrenia [39].

Using data from the iPSYCH2012 case cohort, another study
integrated genetics and registry data with a deep learning
approach to stratify 19,636 patients with schizophrenia with or
without major depressive disorder into clinically distinct
subgroups characterized by unique disorder severities and
comorbidity signatures, with predictive models achieving AUCs
of 0.55 to 0.97, and therefore emphasized the importance of
data-driven stratification for improving psychiatric diagnosis
and prognosis [40]. Similarly, Qi et al [41] analyzed gene
expression datasets from untreated schizophrenia patients and
controls, identified 14 key gene probes, and used artificial NN
to achieve diagnostic accuracy of 91.2% in training and 87.9%
in testing and highlighted the potential of machine learning in
identifying clinically useful biomarkers for schizophrenia.
Another study introduced a sparse deep NN approach for
identifying interpretable features for schizophrenia case–control
classification using gray matter volume and single nucleotide
polymorphism data, demonstrating slightly improved
performance over traditional methods and highlighting key brain
regions related to schizophrenia [42].

Studies with smaller sample sizes also reported several genomic
data-enhanced methodologies to predict schizophrenia. Zhu et
al [43] demonstrated that a machine learning model using the
expression levels of 6 genes (GNAI1, FYN, PRKCA, YWHAZ,
PRKCB, and LYN) in peripheral blood effectively distinguish
schizophrenia patients from healthy controls, with the SVM
model achieving the highest accuracy (AUC=0.993). Another
study also reported the importance of long non-coding RNAs
as they provided higher accuracy than coding genes in
distinguishing schizophrenia from healthy controls [44].

Also focusing on predicting schizophrenia, a machine learning
classifier based on DNA methylation in blood, specifically using
correlated regions of systemic interindividual epigenetic
variation (CoRSIV) regions and sparse partial least squares
regression for discrimination analysis (SPLS-DA), effectively
distinguishes schizophrenia patients from controls with a highly
positive predictive value (PPV) of 80%, outperforming models
based on polygenic risk scores (PRS) [45]. Another machine
learning implementation used whole exome sequencing data to
identify individuals at high risk for schizophrenia, achieving an
accuracy of 85.7% with the XGBoost algorithm and providing
further insights into the genetic basis of the disorder [46].

Finally, the last identified study used machine learning
algorithms to demonstrate that G72 protein levels alone, without
incorporating G72 genetic variations, are effective in
distinguishing patients with schizophrenia from healthy controls
with high specificity (0.9503) and sensitivity (0.8765) [47].

Identifying Features of Schizophrenia
A total of 6 included studies aimed at identifying features of
schizophrenia or phenotyping using machine learning and
genomic data, all of which were assessed as being of high
quality. Feng et al [48] identified 6 candidate genes (SFN,
KDM5B, MYLK, IRF3, IRF7, and ID1) with diagnostic
significance for schizophrenia using machine learning on gene
expression data. Another study by Zhu et al [49] attempted to
identify immune-related biomarkers in peripheral blood in
patients diagnosed with schizophrenia and reported that the
mRNA expression of CLIC3 was significantly decreased in the
schizophrenia samples compared with the healthy controls. By
using machine learning methods to analyze RNA sequencing
data from the dorsolateral prefrontal cortex and amygdala in a
postmortem investigation, Liu et al [50] aimed to identify
driving biological signals representing schizophrenia. In doing
so, they identified 18 genes added to known
schizophrenia-associated pathways and expanded the gene
network. These results provide a more comprehensive
understanding of schizophrenia pathogenesis [50].

De Rosa et al [51] identified biological signals representing
schizophrenia in brain tissues of the dorsolateral prefrontal
cortex and hippocampus samples from postmortem brains of
nonpsychiatric controls and patients with schizophrenia. Using
an RF approach, they found 103 additional gene interactions
were expanded to schizophrenia-associated networks, which
were shared amongst both the dorsolateral prefrontal cortex and
amygdala regions [51]. Another study by Feng and Shen [52]
used neural networks using programmed cell-death-related genes
as features and found 10 candidate hub genes (DPF2, ATG7,
GSK3A, TFDP2, ACVR1, CX3CR1, AP4M1, DEPDC5, NR4A2,
and IKBKB). Finally, a study on fresh frozen postmortem brain
tissue aimed to identify DNA methylation patterns specific to
patients with schizophrenia.

A cohort of 73 subjects diagnosed with schizophrenia and 52
control samples was analyzed using an unsupervised machine
learning approach. As the results were not convincing, the
authors reported that, if there are methylation changes associated
with schizophrenia, they are diverse, complex, and have a small
effect size [53].

Drug Discovery
A total of 2 studies reported the use of machine learning
specifically for drug discovery (or related issues) for patients
diagnosed with schizophrenia. Both of them were deemed of
high quality. The first study focusing on 2307 patients with
schizophrenia from the Chinese Antipsychotics
Pharmacogenomics Consortium, 1379 from the Chinese
Antipsychotics Pharmacogenetics Consortium, 275 healthy
controls used several SVM and RF implementations and
identified 6 risk genes for schizophrenia (LINC01795, DDHD2,
SBNO1, KCNG2, SEMA7A, and RUFY1), which are involved
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in cortical morphology and were identified as having
genetic-epigenetic interactions linked to treatment response
[54]. The other study, by Zhao and So [55], used the expression
database ConnectivityMap that contains transcriptomic changes
for HL60, PC3, and MCF over several machine learning
implementations and reported that the predictive performance
of their 5 approaches in cross-validation did not differ
substantially, with SVM slightly outperforming the others while
stating that repositioning hits are enriched for psychiatric
medications considered in clinical trials [55].

Classifying Schizophrenia Among Other Mental Health
Disorders
A total of 2 studies aiming at classifying schizophrenia amongst
other mental disorders using machine learning were identified.

The first study by Yang et al [56] aimed at distinguishing
schizophrenia from individuals with bipolar disorder, major
depressive disorders, and healthy controls. To do so, the authors
used differentially expressed genes from 268 individuals (67
patients with schizophrenia, 40 patients with bipolar disorder,
57 patients with major depressive disorders, and 104 healthy
controls) over an SVM implementation that achieved an AUC
of 0.96 for the schizophrenia group and of 0.71 for the
independent set of the classification model. They reported that
their model has a strong capacity to classify samples among
multiple groups of mental illnesses [56]. Considering the opacity
of the implementation, the quality was assessed as moderate
for this study.

The other study, by Saardar et al [57], used the dbGaP database
(schizophrenia) and the NDAR database (autism spectrum
disorder) to compare whole exomes to differentiate between
schizophrenia and autism using an XGboost model. They
achieved an average validation accuracy of over 5 folds was
88% for both the single nucleotide variants-based model and
gene-based model and reported that the ion transmembrane
transport, neurotransmitter transport, and microtubule or
cytoskeleton processes were of importance for schizophrenia
[57]. The quality of this study was determined to be high based
on our assessment.

Predicting Quality-of-Life and Global Functioning
Only one of the included studies focused on predicting the
quality of life and global functioning of patients diagnosed with
schizophrenia. This study was of high quality as per the quality
assessment. Using data from 302 patients with schizophrenia
in the Taiwanese population, Lin et al [58] compared a bagged
ensemble of several machine learning algorithms to different
permutations of these algorithms to predict functional outcomes
of patients with schizophrenia. Their analysis revealed that the
bagging ensemble algorithm with feature selection outperformed
other predictive algorithms in forecasting the quality-of-life
functional outcome of schizophrenia using the G72 rs2391191
and MET rs2237717 SNPs [58].

Discussion

Principal Results
This scoping review aimed to identify the different ways
machine learning algorithms can be applied to genomic data in
the study of schizophrenia. A total of 21 studies were fully
analyzed, and 5 uses of machine learning algorithms on genomic
data were identified: predicting schizophrenia, identifying
features of schizophrenia, drug discovery, classifying
schizophrenia amongst other mental health disorders, and
predicting quality-of-life and global functioning. The studies
were overall of high quality.

Comparison With Previous Work
The application of predictive models to forecast mental health
disorders, such as schizophrenia, is gaining importance in
medical research [59]. These models hold the potential to
significantly assist clinicians in patient evaluation, particularly
given the heterogeneity inherent to schizophrenia [60]. However,
as observed in the identified studies, these models vary greatly
in their implementation with diverging accuracy and validation
methodologies. It is important to consider the implementation
of these models as well as their accuracy and the techniques
used to cross-validate the model, especially when using genomic
data, as this could hinder their external validity [61]. The results
found in the identified studies reinforce the premise that the
genetic architecture of schizophrenia has proven to be very
complex, heterogeneous, and polygenic and that a vast array of
features could be integrated to improve predictive models [62].
Similarly, finding genomic-related risk factors of schizophrenia
in such a model could help in distinguishing between this disease
and other mental disorders, which may explain why classifying
schizophrenia among other mental health disorders was one of
the identified uses.

It is unsurprising that machine learning has been used to identify
features of schizophrenia, as this has been done in other medical
fields. Using candidate genes, it can be possible for clinicians
to better understand common diseases and complex traits [63].
In psychiatry, psychiatric genomics is a rapidly advancing field
that shows great promise for enhancing risk prediction,
prevention, diagnosis, treatment selection, and the understanding
of the pathogenesis of patients’ symptoms [64]. As an example,
some genes and functional genomic data linked to complex
features of schizophrenia demonstrated that specific alleles may
confer risk to the disorder by directly affecting synaptic function
in adulthood [65].

As for drug discovery, literature reviews on the subject support
that machine learning techniques can improve decision-making
in pharmaceutical data across various applications [66,67]. It
is also reported that combining machine learning techniques
with genomic data has the potential to speed up the process and
reduce failure rates in drug discovery and development [67].
This may explain why two studies focused specifically on
schizophrenia in the context of drug discovery were identified.
There is an increasing effort to develop pharmaceutical
treatments, given the 20%-30% rate of treatment resistance
observed in patients with this disorder [4].
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Finally, quality-of-life assessment and functioning of patients
with schizophrenia is trending in this field, which may explain
why this use was identified in one study [68,69]. Another recent
study on quality of life and genome-wide analyses of quality
of life in psychosis, which used linear regression on 3684
participants (including 1119 psychosis patients), reported that
numerous clinical and genetic associations with quality of life
can be used in the daily care of these patients and enhance their
overall well-being. These findings support the idea that more
work should be conducted in this area in the future [70].

In the future, the information gathered by the use of machine
learning in this area may provide the basis for more research
projects. Through the identification of current knowledge gaps,
scientists can narrow their attention and investigate novel genetic
and biological markers that may have escaped their notice in
the past in the development of machine learning models. This
information may pave the way for the development of innovative
therapeutic approaches, individualized treatment programs, and
a better comprehension of the fundamental pathology of
schizophrenia. To effectively handle the intricate problems
presented by schizophrenia, machine learning techniques might
need to be integrated with genomic data as they develop, and
the genes identified in this review might help researchers select
key features to enhance their mathematical models. This addition
might lead to advancements in both basic science and therapeutic
applications.

Limitations of This Study
This scoping review highlighted the various applications of
machine learning algorithms using genomic data in the field of
schizophrenia. Despite the relevance of this recension, it has a
few limitations. The heterogeneity of diagnostic criteria for
schizophrenia is a significant concern, as it is not addressed in
half of the studies reviewed. Furthermore, the limited number

of studies identified indicates the novelty of this field,
necessitating future reviews to confirm findings. There is also
a lack of external validation in samples differing from the
training sample, such as those from different nationalities,
raising questions about the generalizability of the results.
Notably, no studies have concretely tested these algorithms in
clinical settings, particularly for the prediction of schizophrenia,
which remains an unmet need in the research. Due to the
heterogeneity of the identified studies and the varying metrics
used to assess precision and validate the machine learning
models, performance comparisons were not conducted.
Furthermore, studies on generic models using genomic data to
predict overall mental health, rather than specifically focusing
on schizophrenia, were excluded, as well as unpublished
literature. This may have led to the omission of a small portion
of relevant studies.

Conclusions
Considering the heterogeneity of clinical presentations observed
in schizophrenia, genomic data combined with machine learning
algorithms have been implemented to address several facets of
this disorder. From the 21 studies analyzed, 5 main uses were
identified: predicting schizophrenia, identifying schizophrenia
features, discovering drugs, classifying schizophrenia amongst
other mental health disorders, and predicting the quality of life
of patients. These uses have potential implications as they could
assist clinicians in providing a more personalized approach to
their patients diagnosed with schizophrenia, considering the
complexity of this diagnosis. There is still a limited amount of
literature on the subject, and this study provides a first overview
of machine learning applications of genomic data for
schizophrenia. Future research is essential to further evaluate
the portability of the models identified and their potential clinical
applications.
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Abbreviations
AUC: area under the curve
CNV: copy number variation
CoRSIV: correlated regions of systemic interindividual epigenetic variation
GWAS: genome-wide association studies
MeSH: Medical Subject Headings
NN: neural networks
PPV: positive predictive value
PRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping
Reviews
PRS: polygenic risk scores
PRS-SZ: polygenic risk score for schizophrenia
RF: random forest
SNP: single nucleotide polymorphism
SPLS-DA: sparse partial least squares regression for discrimination analysis
SVM: support vector machine
XGboost: eXtreme Gradient Boosting
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