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Abstract

Background: National and ethnic mutation frequency databases (NEMDBs) play a crucial role in documenting gene variations
across populations, offering invaluable insights for gene mutation research and the advancement of precision medicine. These
databases provide an essential resource for understanding genetic diversity and its implications for health and disease across
different ethnic groups.

Objective: The aim of this study is to systematically evaluate 42 NEMDBs to (1) quantify gaps in standardization (70%
nonstandard formats, 50% outdated data), (2) propose artificial intelligence/linked open data solutions for interoperability, and
(3) highlight clinical implications for precision medicine across NEMDBs.

Methods: A systematic approach was used to assess the databases based on several criteria, including data collection methods,
system design, and querying mechanisms. We analyzed the accessibility and user-centric features of each database, noting their
ability to integrate with other systems and their role in advancing genetic disorder research. The review also addressed
standardization and data quality challenges prevalent in current NEMDBs.

Results: The analysis of 42 NEMDBs revealed significant issues, with 70% (29/42) lacking standardized data formats and 60%
(25/42) having notable gaps in the cross-comparison of genetic variations, and 50% (21/42) of the databases contained incomplete
or outdated data, limiting their clinical utility. However, databases developed on open-source platforms, such as LOVD, showed
a 40% increase in usability for researchers, highlighting the benefits of using flexible, open-access systems.

Conclusions: We propose cloud-based platforms and linked open data frameworks to address critical gaps in standardization
(70% of databases) and outdated data (50%) alongside artificial intelligence–driven models for improved interoperability. These
solutions prioritize user-centric design to effectively serve clinicians, researchers, and public stakeholders.

(JMIR Bioinform Biotech 2025;6:e69454)   doi:10.2196/69454

KEYWORDS

ethnic-specific mutation frequency databases; genetic diversity; mutation disorder; inherited disease

Introduction

Background
Recent advancements in genomic techniques, such as
next-generation sequencing and clustered regularly interspaced
short palindromic repeats technology, have revolutionized the
identification of gene mutations associated with disease,
enabling precise disease diagnosis and personalized treatment

strategies. Completing the human genome sequence played a
significant role in detecting gene mutations that cause diseases,
collaborating with the emerging field of genomic medicine
[1,2]. However, genetic mutations and DNA sequence alterations
can disorder normal gene function and lead to various
syndromes. These mutations can be categorized as affecting a
single gene (Mendelian), multiple (general) genes, or a
population or ethnic group (national/ethnic), with significant
health implications [3].
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Mutation databases are critical web-based repositories that
aggregate genomic variant data for specific populations or ethnic
groups, enhancing the understanding of genetic diversity and
its association with the disease. Central databases, including
Online Mendelian Inheritance in Man (OMIM) [4] and the
Human Gene Mutation Database (HGMD) [5], primarily catalog
published mutations and may not fully represent the genetic
diversity of different populations [6,7]. On the other hand,
locus-specific databases (LSDBs) focus on specific loci but
may not gather information about a particular nation or ethnicity
[8].

Other databases, like national and ethnic mutation frequency
databases (NEMDBs), were developed to fill these gaps by
recording the mutation spectrum observed for any gene (or
multiple genes) associated with a genetic disorder for specific
populations or ethnic groups worldwide. These databases are
crucial for comprehending genetic variations related to diseases
and facilitating targeted genetic testing and personalized
medicine [9]. Regarding advancement in genomic analysis
technologies, many NEMDBs face issues related to
standardization, data quality, and accessibility. For example,
the Human Genome Variation Society (HGVS) maintains a
dedicated website; an inspection by the authors on March 12,
2024, revealed that while the page comprises 11 links, only 4
are functional, as compared to LSDBs, which contain 1646
links, and the total number of mutations was found to be
145,964. Most NEMDBs are outdated and have limited content,
hindering their effectiveness in clinical and research settings
[10].

Given the reliance of researchers and health care professionals
on internet-enabled tools for accessing mutation data, there is
a need for engineering-driven solutions to enhance further
database accessibility, data standardization, and cross-platform
data integration. This paper addresses the challenges by
proposing an artificial intelligence–driven mutation prediction
model and the linked open data (LOD) frameworks to improve
data sharing, query efficacy, and interoperability within gene
databases. By focusing on web-based user-centric designs, the
objective is to optimize the usability of NEMDBs for health
care professionals, researchers, and the general public, thereby
advancing digital health solutions and improving outcomes in
genetic research. By identifying the challenges and limitations
associated with NEMDBs, we seek to provide actionable
recommendations for enhancing their development and usability.
The key contributions of the review are as follows:

• This systematic review examined 42 NEMDBs to a).
analyze their design frameworks, methods of data collection,
and querying capabilities; and b). identified critical gaps,
including 70% (29/42) lack standardized formats, 60%
(25/42) lack cross-ethnic comparisons, and 50% (21/42)
have outdated data.

• To improve interoperability, engineering-driven
recommendations include cloud platforms, artificial
intelligence models, and LOD frameworks.

• A user-centric analysis to enhance accessibility for
clinicians, researchers, and the public.

The rest of the article is organized as follows: the Related Works
section presents a literature study and comprehensive review
of available NEMDBs and other databases. The Methods section
defines the systematic literature review approach and outlines
the objectives. The Discussion section provides conclusions
and future recommendations. Finally, the Conclusion section
summarizes the review.

Related Works
Recent scientific developments have brought about the
emergence of bioinformatics, a multidisciplinary field that
combines molecular biology, information technology, computer
science, and mathematics to form a single discipline [11].
Bioinformatics encompasses various tasks such as database
design, categorization, protein structure prediction, RNA
folding, and mutation mapping. These systems are essential for
organizing and managing biological data within structured and
persistent databases critical in retrieving, updating, storing, and
querying information.

A significant milestone in bioinformatics history was Margaret
Dayhoff’s establishment of one of the first protein sequence
databases in the 1960s; GenBank was developed in the 1980s
and became the first nucleotide sequence database [12].
Similarly, mutation databases aim to make such data readily
accessible to medical professionals, researchers, and clinicians
studying genetic variations [13]. Recent advancements in
developing integrated databases that include diverse ethnic
mutation frequencies highlight the need for more inclusive data
collection methods and internet-enabled platforms to bridge the
genetic diversity gap [14].

PubMed, hosted by the National Center for Biotechnology
Information (NCBI) since 1997, is a prominent scientific
database containing several medical-related articles [15].
PubMed gives access to 38 databases concerning biomedical
research and the analysis of erratic genetic diseases. Other
repositories, such as MeSH (Medical Subject Headings),
Institute for Scientific Information (ISI) Web of Science, and
Medical Literature Analysis and Retrieval System Online
(MEDLINE), provide comprehensive data about a particular
gene and disease and are accessible to the public [9]. PubMed
is one of the most influential bioinformatics resources, featuring
web-based systems like PubMed Assistant [16], AliBaba [17],
and PubMed-Ex. These enhance functionality through keyword
highlighting, citation management, and semantic enrichment
of biomedical entities extracted from text [18].

Similarly, the National Institutes of Health established the NCBI
in 1988 as a centralized system for accessing diverse resources
and databases via the NCBI website. The primary resources in
the NCBI include the Database of Short Genetic Variations, the
Database of Genomic Structural Variation, Entrez (an integrated
database retrieval system that gives access to a diverse set of
35 databases), the Clone database (Clone DB), the BioProject
Database [9,19], and the clinical central variant database
(ClinVar). Table 1 summarizes the primary databases supported
by NCBI, emphasizing their role in providing internet-enabled
access to genomic data for researchers and health care
professionals. Such internet-enabled systems streamline the
extraction and analysis of gene mutation content and support
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collaborative research by facilitating data sharing across diverse
platforms. However, challenges like data fragmentation, a lack
of standardization, and accessibility limitations persist.
Addressing these challenges requires leveraging artificial

intelligence–based tools and LOD frameworks to improve data
integration and usability. Enhancing the functionality of these
systems will advance precision medicine and support clinical
decision-making through electronic health applications.
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Table . NCBIa databases.

Brief descriptionDatabase NameReferences

The database allows users to submit detailed re-
search studies from intensive genome sequences
projects to huge worldwide associations.

Bio Project DatabaseBianco et al [9]

The Biosample Database is a new resource that
annotates biological samples used in various
NCBI-submitted studies, including genome-wide
association studies, epigenetics, genomics se-
quencing, and microarrays.

BioSample DatabaseBianco et al [9]

ClinVar is a database that contains human genom-
ic variants and their relevant disease. The
database is publicly available.

Clinical variant database (ClinVar)Landrum et al [3]

This database contains different sets of data that
were submitted to GenBank. The data includes
gene-related sequence data and their alignments
with specific population, phylogenetics, muta-
tion, and ecosystem studies.

PopSet DatabaseSayers et al [20]

The database incorporates clones and library in-
formation, including sequence data, map posi-
tions, and information distribution. It also offers
filtering by organism and vector types.

Clone database (Clone DB)Sayers et al [20]

It details sequence alignments and profiles repre-
senting protein spheres preserved in molecule
evolution.

MMDB (Molecular Modeling Database)Sayers et al [20]

This database collects sequence tags and includes
details about complementary DNA (transcript)
sequences. dbEST is accessible directly via the
Nucleotide EST Database.

Database of expressed sequence tags (dbEST)
Nucleotide EST Database

Boguski et al [21]

It was designed to collect details about large-
scale genomic variation, including large inser-
tions, deletions, translocations, and inversions.
It also contains the relationships of different
variants to their phenotype.

Database of Genomic Structural Variation (db-
Var)

Church et al [22]

Entrez is a rich database that integrates informa-
tion from 35 databases containing over 570 mil-
lion biological data records. The database pro-
vides a graphical representation of sequences and
chromosome maps, which is considered favorable
in genetic research.

EntrezLouhichi et al [23]

The database contains information about geno-
type and phenotype. The information is gathered
using studies such as genome-wide association
studies, medical resequencing, and molecular
diagnostic assays.

Databases of Genotypes and Phenotypes (dbGaP)Mailman et al [24] and GAIN Collaborative Re-
search Group et al [25]

This database, similar to HapMap, was developed
to support large-scale polymorphism detection.
It has since been updated and now also includes
other variant types, such as insertions/deletions,
microsatellites, and nonpolymorphic variants.

Database of Short Genetic Variations (dbSNP)Sherry et al [26]

dbMHC hosts two key resources: (1) an interac-
tive alignment viewer for HLA (Human Leuko-
cyte Antigen) and related genes

and the Major Histocompatibility Microsatellite
Database.

Database of Major Histocompatibility Complex
(dbMHC)

Sherry et al [26]

aNCBI: National Center for Biotechnology Information.
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Catalog of Human Variation Databases
Mutation databases are a knowledge base where allelic
variations are defined and assigned to an explicit gene.
Generally, 3 types of databases are accessible, that is, central,
locus, and ethnic databases [27]. The primary mutation database
comprises shared genome variation information and tools to
analyze previously collected data.

Central Databases
The first mutation database, OMIM, was initiated in the 1970s
by Professor Victor McKusick. OMIM primarily focuses on
significant mutations, containing information about phenotypes,
gene function, and allelic variants, which is helpful for
researchers, students, and clinicians [4]. The website has been
frequently updated and can be easily accessed. As of February
7, 2024, the updated version of OMIM consists of approximately
26,057 entries, each identified by a unique 6-digit number.
Entries are categorized into phenotype and gene entries, detailing
allelic variants, clinical synopses, and gene map loci. Content
undergoes peer review and curation by journals and researchers,
ensuring reliability and accuracy.

Another well-known database is HGMD, established in 1996
to study mutation disorders in human genetics [28]. With the
higher rate of quality mutation records, HGMD acquired a
broader position as the central mutation database. HGMD
provides all known gene lesions causing human inherited
diseases published in the peer-reviewed literature. The data
provided by HGMD have been extensively used in international
collaborative research projects and clinical settings [29],
significantly advancing our understanding of mutational spectra
in human genetics. HGMD offers a comprehensive database of
mutations responsible for inherited human diseases, including
their location, frequency, and the local DNA environment [30].

Recently, next-generation sequencing technologies and artificial
intelligence algorithms have significantly enhanced the
capabilities of central mutation databases. For example, HGMD
has incorporated artificial intelligence–driven predictive models
to improve the detection of gene variants and accelerate the
identification of novel mutations [28]. These advancements
allow for faster processing of large-scale genomic datasets,
contributing to more accurate predictions in clinical genomics
and personalized treatments. By leveraging such technologies,
mutation databases like HGMD provide researchers with
advanced tools for detecting causative mutations, enabling more
efficient research and clinical diagnostic workflows.

HGMD updates its database frequently to ensure that the
information provided is up to date and accurate. HGMD is
accessible in two versions. The public version of HGMD [6] is
freely accessible by registered users from academic institutions.
The professional version is offered for commercial and
educational/nonprofit users by subscribing to BIOBASE GmbH
and under license via QIAGEN Inc [31]. The professional
version of HGMD provides users with a feedback function in
case of missing or new data and allows them to request changes
or ask for an analysis of listed variants. In addition, the
professional version of HGMD offers more advanced features
than the public version. The latest version of HGMD was

released in 2017, and statistics from April 2021 showed that
the database contained 352,731 gene lesion entries in the HGMD
Professional release, of which 234,987 entries were manually
curated from academic and nonprofit sources and published
journals.

LSDBs
LSDBs, which originated in 1976, were the first comprehensive
databases documenting mutations at specific gene loci. The
earliest example involved hemoglobin mutations, which were
initially published as part of the Syllabus of Human Hemoglobin
Variants. These databases are commonly used in DNA-based
diagnosis to give clinicians, scientists, and patients an up-to-date
overview of genetic variants. Their key objectives include
quality data collection, validation, estimation, and transparency.
Distinct from central databases, LSDBs are publicly accessible
and supported by academic researchers who aim to share genetic
information broadly. These databases, governed by experts in
specific gene mutations or families, provide a specialized focus
on different variations of a single gene. Expert curation ensures
accuracy and relevance, with LSDBs often linking to clinical
information databases like PubMed/MEDLINE [32].
Maintaining standard data fields such as exon number and
mutation description, LSDBs ensure quality data submission
[33,34]. They source information from direct submissions,
published literature, and other variant databases like OMIM,
the Database of Short Genetic Variations, and HGMD. PubMed
is a primary tool for gene-related article searches, enhancing
data completeness [35].

Generally, the genetic database system has been supported by
various “LSDBs-in-a-box” over time. This approach was used
as a solution intended to achieve the aim of database creation
and has encompassed Universal Mutation Database [36],
MUTbase [37], Mutation Storage and Retrieval (MuStaRt) [38],
and LOVD [39].

LOVD [39], the widely accepted LSDB-in-a-box tool, is the
most popular and freely available solution. LOVD was released
in December 2012 and has been updated over time. LOVD 3.0
is mainly used as a tool for gene-centric groups and for
displaying DNA variants. In addition, it provides space for
storing patient-centric and next-generation sequencing data,
even of variants that lie outside of genes. A desirable feature of
LOVD is that its creators have established a database for most
human protein-coding genes on their servers [40] and have
invited interested parties to assume responsibility for
maintaining databases for one or more genes of interest.

Databases like OMIM and HGMD have become indispensable
genetic counseling and diagnosis tools in clinical settings.
Clinicians regularly access these databases to identify gene
mutations relevant to a patient’s condition, allowing them to
tailor treatments based on specific genetic profiles. Accessing
relevant mutation data in real time facilitates personalized
medicine, where treatment plans are developed based on
individual genetic makeup. The accessibility and reliability of
mutation databases have revolutionized how genetic diseases
are diagnosed and treated, significantly improving health care
outcomes for patients with inherited disorders.
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NEMDBs
Various genetic disorders exhibit diverse mutation spectrums
among specific population groups, providing researchers with
valuable insight into genetic diversity. NEMDBs emerged to
address this diversity, capturing the genetic heterogeneity of a
particular ethnic group [12]. The HGVS maintains a catalog of
central databases, LSDBs, and NEMDBs. These regional or
ethnic databases offer valuable information on population
genetic history, genetic testing, and gene-disease associations.

Figure 1 shows the architecture of the NEMDBs, representing
3 main architectural approaches: Ethnic and National database
Operating Software (ETHNOS)–based architecture, 3-tier

architecture, and LOVD architecture. ETHNOS-based design
provides a decentralized approach, with data distributed across
nodes representing different locations, institutions, or groups.
Some NEMDBs use a 3-tier architecture for efficient data
management, comprising the display layer, application/logic
layer, and data layer. On the other hand, LOVD architecture,
an open-source platform, integrates separate modules for
specialized functions like data submission, storage, and retrieval.
The LOVD design provides effective administration and
mutation-related data accessibility inside the NEMDB, offering
a standardized and dependable platform for researchers and
medical practitioners.

Figure 1. National and ethnic mutation frequency databases.

The genetic diversity captured in NEMDBs allows researchers
to develop targeted strategies for detecting and diagnosing
genetic disorders. By reviewing mutation patterns within and
between populations, NEMDBs play a crucial role in stratifying
national molecular diagnostic services and studying human
demographic history, admixture patterns, and gene/mutation
flow [41]. Such databases aim to identify novel mutations in
ethnic-specific groups through coordinated genetic testing [42].

Recent developments in NEMDBs have enhanced their role in
precision medicine. Databases focusing on underrepresented
populations, such as those in Africa and Southeast Asia, have
advanced precision medicine by identifying population-specific
mutation patterns. This focus is particularly crucial for
preventing prevalent diseases within specific populations. For
example, the African Genome Variation Project and the Indian
Genome Variation Database have provided data supporting

personalized health care initiatives [42]. These databases play
a pivotal role in stratifying national molecular diagnostic
services, especially for ethnic groups with a higher
predisposition to certain genetic conditions, such as cystic
fibrosis in Caucasians, hemochromatosis in Jews, and
thalassemia in people of Mediterranean and Southeast Asian
descent [43,44].

The ethnic databases are broadly categorized into two groups,
that is, National Mutation Genetic Databases (NMDBs) and
NEMDBs. [45]. NMDBs primarily record existing gene
mutations within specific ethnic populations, though they may
include limited frequency data. NEMDBs, on the other hand,
track inherited mutation frequencies across various ethnic groups
and provide a broader view of global genetic diversity [45,46].
Examples of NEMDBs are listed in Table 2.
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Table . National and ethnic mutation frequency databases.

Brief descriptionDatabaseReferences

This database contains comprehensive informa-
tion about gene mutations in the Finnish popula-

Finnish Disease Heritage, 2002Peltonen et al [47]

tion. Mutant allele frequencies are typically re-
ported for Finnish mutations with multiple exter-
nal links (Online Mendelian Inheritance in Man,
GeneTests) and references. The database was
initially published in 2004 and has since been
updated with additional genes and mutation dis-
orders. This database was designed using the
LOVD platform.

Here, 2 similar databases are presented, one for
the population of Cyprus and the other for the

The Iranian National Mutation Frequency
Database, 2006; Cypriot National Mutation Fre-
quency Database, 2006

Patrinos et al [12]

Iranian population. These databases facilitate
mutation screening and the establishment of
gene-related services. Both of the databases were

developed using the ETHNOSa platform.

This database aims to provide qualitative and
updated reports of genetic disorders in the Greek

Hellenic National Mutation Database, 2005Bianco et al [9]

population. It reports diseases and related infor-
mation for the Hellenic (Greek) population.

The Israeli National Genetic Database was devel-
oped using the Electronic Tool for Human Na-

Israeli National Genetic DatabaseZlotogora et al [48]

tional and Ethnic Mutation Frequency Databases
(ETHNOS) platform. This resource includes the
Israeli National and Ethnic Mutation Frequency
Database (NEMDB), which provides a detailed
list of registered laboratories offering genetic
testing services for the Israeli population through
a dedicated query interface

This database was designed to analyze the genet-
ic diseases in the population of Lebanon.

The Lebanese National Mutation Frequency
Database, 2006

Nakouzi et al [49]

This database was developed to report the various
mutation disorders found in the population of

The Moroccan Human Mutation Database, 2010Sefiani et al [50]

Morocco. A book chapter containing the details
of various genetic disorders has also been pub-
lished.

ThaiMUT is an online ethnic database reporting
mutation disorders in Thailand’s population. This

Thailand Human Mutation and Variation
Database, 2008

Ruangrit et al [51]

database presents different published and unpub-
lished gene disorders and related diseases inves-
tigated in Thailand.

A database that integrates gene-related diseases
in the Indian population. Domain experts have

Indian Genetic Disease Database, 2010Pradhan et al [52]

curated the diseases of this database. The
database was developed using a 3-tier architec-
ture.

The database contains information about different
disorders occurring in the Pakistani population.

Pakistan Genetic Mutation DatabaseQasim et al [42]

It currently has two versions, including the public
version, which uses a relational database, and a
second version that was developed using ontolo-
gy as a knowledge base.

This database was developed to collect data about
the different genetic disorders found in the
Tunisian population.

Tunisian National Mutation Frequency DatabaseRomdhane et al [53]

The CTGA database is an open-access repository
of information and findings on human gene

CTGAb, 2006Tadmouri et al [54]

variations and inherited, heritable genetic disor-
ders in Arabs; it is constantly updated.
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Brief descriptionDatabaseReferences

The database contains mutations found in Singa-
pore for Mendelian diseases. It presents mutation
disorders and the frequency of polymorphisms
examined based on phenotypes.

Singapore Human Mutation Database, 2006Horaitis et al [27]

The database was developed to collect and man-
age the mutations found in the Oman population.
The mutations were collected from this
database’s scientific literature and service provi-
sion.

Oman Genetic Mutation Database, 2015Rajab et al [55]

aETHNOS: Ethnic and National database Operating Software.
bCTGA: Catalog of Arab Disease Mutation Database.

Methods

Overview
For this study, we conducted a systematic literature review to
analyze the structure, usability, and challenges of NEMDBs.
The review focused on web-based databases and tools, ensuring
inclusive extraction of relevant research content on
homogeneity, data sources, and cross-comparisons within
NEMDBs. Figure 2 demonstrates the step-by-step selection
process used in this research, presenting the systematic literature

review approach by outlining objectives for extracting and
analyzing relevant information. The quality verification stage
involved assessing the selected papers’ validity and ensuring
the extraction results’ reproducibility. Finally, in the last part
of the guideline, we extracted data from the identified documents
to address the research question, visually present the data, and
explain significant terms and relevant papers. By adopting a
systematic web-based approach, this study ensures a rigorous
and comprehensive analysis of NEMDB frameworks, aligning
with the scope of digital health informatics.

Figure 2. Steps included in the review protocol.

Search Strings and Data Sources
To conduct a thorough literature search, various well-known
databases were used to find the relevant research studies on
NEMDBs. The search was performed across NCBI,
PubMed/MEDLINE, and Web of Science databases to identify
the most relevant research published between 1990 and 2023.
The search strings used for literature searching included
“mutation repository,” “human mutation database,” “genomic
variation databases,” “informed consent,” and “empirical
studies.” The scope of the study was extended to integrate other
databases, including the OMIM, LSDBs, and HGMD, to provide
a comprehensive analysis of available resources in the field of
genetic mutations and ethnic frequencies.

Selection of Studies
The literature selection was based on noticeably defined
inclusion and exclusion criteria, explicitly addressing the
review’s objectives. Reviews provide comprehensive
descriptions and analysis of the available NEMDBs [8,12,45],
emphasizing their characteristics, functions, and importance in
investigating genetic variants within specific population groups.
This review included papers if they satisfied the following
criteria.

Inclusion criteria were as follows:

• The paper was published in a peer-reviewed journal and
contains insight into the design, structure, and content of
NEMDBs.
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• NEMDBs were discussed in research publications, reviews,
or survey studies about genetic diseases or population
genetics.

• Papers that explored the gene variations and mutations
related to a specific group of the ethnic population.

• Papers that only considered published and active NEMDBs
that are publicly available.

• Studies that presented the protocols and methods used for
data curation and quality control in NEMDBs.

Exclusion criteria were as follows:

• Papers that did not focus on ethnic-specific mutation
databases.

• Research studies unrelated to mutation disorders, ethnic
diseases, or gene variations.

• Studies that relied on generic genomic databases without
emphasizing NEMDBs.

• Papers having minimal empirical proof or practical use.

A total of 420 articles were retrieved from Web of Science,
NCBI PubMed, and Google Scholar.

Quality Verification
In order to ensure the rigor and reliability of this review, a
comprehensive risk of bias assessment was conducted. The
articles were evaluated using the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) checklist.
This process involved reviewing each study against PRISMA
criteria to assess completeness, transparency, and
methodological accuracy. We adhered to the Risk of Bias 2
guidelines for bias assessment, using the Robvis visualization
tool. Each article was placed into one of three response
categories—“High,” “Low,” or “Some concern”—based on its
adherence to quality criteria.

For each study domain, an overall summary rating was
calculated and visually represented in Figure 3, which outlines
the risk level associated with each reviewed source. The highest
proportion of “High Risk” ratings arose from the randomization
process, indicating important issues with study designs in this
area. On the contrary, bias due to deviations from intended
interventions showed a relatively balanced distribution across
the categories, with many studies achieving a “Low Risk” rating.

Figure 3. Risk of bias assessment of the selected studies.

For bias due to missing outcome data, there was a more mixed
distribution, with several studies flagged under both the “High”
and “Some Concern” categories. The domain of bias in
measuring the outcome revealed that most studies were
categorized as “Low Risk,” indicating reliable measurement
practices in most cases. However, bias in the selection of
reported results presented considerable concerns, with many
studies rated as “High Risk.” These findings were consolidated
in the overall risk of bias evaluation, highlighting that many
studies demonstrated high-risk characteristics. This visualization
provided a transparent assessment of study quality, presenting
a clear representation of the reliability of the data used in this
review.

EndNote (version 20.5; Clarivate Plc), an automatic reference
generator tool, was used to certify consistent citation and
organization of the sources. The included articles were evaluated
against all items on the PRISMA checklist to ensure adherence
to best practices in the systematic review methodology.

Data Extraction and Analysis
The data extraction process involved a thorough review of each
paper, focusing on identifying essential information relevant to

the objectives of this review. Reviewers used “yes,” “no,” or
“partial” responses to indicate the extent to which the review
adheres to the checklist items. Detailed comments were provided
to explain decisions, especially in cases where articles only
partially met the checklist criteria. The extracted data were
categorized and analyzed based on the homogeneity, structure,
and user-centric design of the NEMDBs. The analysis focused
on the consistency of mutation data within different databases.
It evaluated how these databases are structured to serve their
intended user groups, such as health care professionals,
researchers, and the general public. The results were synthesized
to recognize trends and potential gaps in NEMDB design and
application.

Results

Overview
This systematic review examines biological databases and their
role in storing and organizing persistent data related to mutations
and diseases of specific genes (an overview of the selection
process is provided in Figure 4). These databases serve as
knowledge bases and require curation by experts to maintain
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the accuracy and relevance of the information. Most mutation
databases had web-based access that shows and describes the
contents and a minimum set of cross-references (active links)
to access detailed information. Usually, these databases have
links to central mutation knowledge bases for genetic variation
(eg, NCBI, OMIM, and HGMD for clinical data;
PubMed/MEDLINE for published references; and
GenBank/European Molecular Biology Laboratory/DNA
Databank of Japan for detailed DNA sequence information) [9].
They use different methods and techniques for collecting

mutation-related information and database schemes and querying
strings/options for retrieving data. These databases were created
over various periods, as illustrated in Figure 5, and use their
own developed platform, with most linked to central databases.
The details about the methods and materials are given in the
subsequent sections. Data from NEMDBs can be analyzed based
on factors such as data quality and consistency, querying
capabilities, database system/design, and the scope of disease
content.

Figure 4. An overview of the study selection process following the PRISMA 2020 workflow. The flowchart presents the steps involved in the
identification, screening, eligibility, and inclusion of studies in the systematic review. PRISMA: Preferred Reporting Items for Systematic Reviews and
Meta-Analyses. *Duplicates were removed using EndNote X20.5 and manual screening. **Some articles appeared in multiple databases and were
counted once during deduplication.
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Figure 5. A catalog of NEMDBs. NEMDBs: national and ethnic mutation frequency databases.

System Design and Data Accessibility
The design of mutation databases is user-friendly and provides
free data accessibility, although some databases may require
registration for access. A registration check ensures the user
adheres to data submission, privacy, and authenticity guidelines.
Consequently, a universal database management system platform
fulfilling essential database requirements—including a friendly
interface, the searching/querying option, and some privileges
for curators—becomes necessary. Despite these advancements,
the software was designed based on foundational systems such
as ETHNOS, specifically for managing mutation databases.
The ETHNOS-based software is used to satisfy the essential
requirement of the NMDBs. They provide services to all those
researchers who wish to implement the software for their
database development purposes (detailed information can be
found on the database website) [12,46]. ETHNOS supported
the creation of various databases (ie, Hellenic, Cypriot, Iranian,
Lebanese, and Serbian NEMDBs). However, ETHNOS could
not handle greater querying capacity and larger datasets
[12,13,56].

The Frequency of the Inherited Disorders database (FINDbase),
a relational database established on an upgraded version of
ETHNOS software capable of handling larger datasets, refers

to the frequency of low alleles leading to inherited disorders in
various ethnic populations worldwide [57]. FINDbase is an
inclusive web-based resource supporting the occurrence of
clinically relevant genomic variation allele frequency
information, serving a well-defined scientific discipline. It offers
modules for causative genomic variants and pharmacogenomics
(PGx) biomarkers, with data collection focusing on expanding
PGx datasets in European and other populations. FINDbase
aims to interlink the PGx data module to DruGeVar [58], another
genomic data resource.

Moreover, specific databases are based on a 3-tier architecture
model (user/client, application server/web interface, and
relational database management system), while others use the
LOVD platform [39]. LOVD was initially designed for creating
and maintaining web-based LSDBs. It is platform-independent
software that uses PHP and MySQL only. The LOVD software
has many variations, including LOVD v.2.0 [59] and LOVD
v.3.0, following the HGVS. The front ends of all databases are
based on HTML, with some JavaScript, PHP, and ASP.Net,
and they rely on Cascading Style Sheets support. The primary
purpose of LOVD is to facilitate the curators by providing
flexible tools for gene mutation and the display of DNA variants.
LOVD v.3.0 was updated on May 30, 2024. The data can be
retrieved by using the LOVD application programming interface.
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Quality Data Collection
The process of data collection is essential in the mutation
database development phase, involving data collection from
different sources such as PubMed, peer-reviewed and scientific
literature, meeting reports, and experts and genetic services
[60]. Table 3 shows the various data collection methods that
the mutation databases use for gathering mutation-related
information. Data can also be identified through automated text
mining and manual journal screening and linking the
unpublished mutation data presented in publicly available
LSDBs; for example, the mutation databases may have a link

to the HGMD database that facilitates users with access to
LSDBs, for both published and unpublished materials [5].

Table 3 shows the system design, data collection, and quality
of the available NEMDBs. This table also holds the
data-querying facilities of the different NEMDBs. The first
column contains the various fully functional and accessible
NEMDBs. The second column is reserved for each database
system/database design. In the third column, the data collection
methods of these databases are reported. Finally, these
databases’ data querying facilities are recorded in the fourth
column. Note that this table only contains details about all
NEMDBs that provide web-based access.

Table . Materials and data collection methods.

Query or search stringData accessingSystem designNational mutation
genetic database or
mutation database

Dropdown lists or

options

Disease name, dis-
ease category, or
gene name

Other

sources

Direct submission
from experts or

laboratories

PubMed or

published

✓✓✓✓Arab Genetic Dis-
ease Database
(AGDDB)

✓✓✓Repository of muta-
tions from Oman

✓✓✓✓ETHNOSa-basedHellenic National
Mutation database

✓✓✓✓ETHNOS-basedThe Cypriot and
Iran National Muta-
tion Database

✓✓✓✓ETHNOS-basedIsraeli National Ge-
netic Database (IN-
GD)

✓✓✓✓Three-tier architec-
ture

Singapore Human
Mutation/Polymor-
phism

Database (SHM-
PD)

✓✓✓Three-tier architec-
ture

Indian Genetic Dis-
ease Database
(IGDD)

✓✓✓✓Three-tier architec-
ture

Thailand Mutation
and Variation
Database
(ThaiMUT)

✓✓✓Three-tier architec-
ture

Pakistan Genetic
Mutation Database
(PGMD)

✓LOVDFinnish Disease
Database (FinDis)

aETHNOS: Ethnic and National database Operating Software.

Using the ETHNOS software, every NEMDB is assigned a
unique data folder within the Golden Helix Server composed
of 3 distinct functionalities. First, the disease overviews use an
indexed multiple flat-file database technique. These records can
span multiple lines and include plain text or valid HTML code.

Second, the allele frequency search feature, available in open
or secure password-protected environments, used a single
flat-file database containing essential information such as
population, ethnic group, gene, OMIM ID, mutation, and allele
frequency. Lastly, as with the disease summaries option, an
indexed multiple flat-file database technique for genetic research
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laboratories is also used here, though the files are in a different
format.

Querying the Database
The gene mutation databases can be accessed using different
search strings and query options. Some databases can be
navigated using a standard query such as disease name, disease
category, and gene name. Other mutation databases use
dropdown boxes for population, the required disorder, and the
frequency limit of the critical condition. Selection from
dropdown boxes or searching query strings leads the users to
the detailed description of a particular disease presented
differently in different mutation databases. The detailed report
may contain the gene name, phenotype, chromosomal
information, inheritance model, allele, protein variant, and their
link/references to PubMed.

Disease-Related Content
The available studied NEMDBs contain information about a
particular disorder of a specific ethnic group or population.

Most of the NEMDBs are presented in tabular form, while some
databases have included the details in textual form. The
disorder’s information may contain the gene name, phenotype,
disease associated, OMIM number, inheritance model,
polymorphism, ethnic group, mutation frequency, references,
and other essential links; however, not all NEMDBs are enriched
in content. The disease-related contents of different NEMDBs
can be seen in Table 4. Some NEMDBs contain extra
information such as HGVS nomenclature and population group
found in the Cypriot database, ethnic group in the Israeli
mutation database, and nucleotide change in the Oman database;
in addition, the database for the genetic diseases of Cyprus
contains an additional information band, transcript, and the
tissues associated with a specific disease.

Table 4 shows information about different diseases in the
available NEMDBs. We have included 14 features, each
available in more than one NEMDB. However, there are some
NEMDBs that contain more information than the ones
mentioned in the table.
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Table . The disease-related content information of national and ethnic mutation frequency databases.

OmankPGMDjMoroc-

cani
FinDishGenetic

disease
in
Cyprus

ThaiMUTgIGDDfINGDeSHMPDdCypriot
and

INFMDc

HellenicbCTGAaFeatures

✓✓✓✓✓✓✓✓✓✓Disease
name

✓✓✓✓✓Pheno-
type

✓✓✓✓✓Inheri-
tance
mode

✓✓✓✓✓✓✓✓Chromo-
somal lo-
cation
and num-
ber

✓✓✓✓✓✓Mutation
type

✓✓✓✓✓✓✓✓✓✓✓Gene
name and
locus

✓✓✓✓Protein
informa-
tion

✓Refer-
ence tran-
script

✓✓Mutation
polymor-
phism

✓✓✓✓✓PubMed
ID or ref-
erence

✓✓✓✓✓✓✓✓✓OMIMl

number
or link

✓✓✓✓✓✓Mutation
frequen-
cy

✓✓✓Other
links

✓✓Descrip-
tion

aCTGA: Catalogue for Transmission Genetics in Arabs.
bHellenic: Hellenic National Mutation Database.
cCypriot and INFMD: Cypriot and Iranian National Frequency Mutation Databases.
dSHMPD: Singapore Human Mutation/Polymorphism Database.
eINGD: Israeli National Genetic Database.
fIGDD: Indian Genetic Disease Database.
gThaiMUT: Thailand Mutation and Variation Database.
hFinDis: Finnish Disease Heritage Database.
iMoroccan: Moroccan Human Mutation Database.
jPGMD: Pakistan Genetic Mutation Database.
kOman: Oman Genetic Mutation Database.
lOMIM: Online Mendelian Inheritance in Man.
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Although these databases offer valuable insights into
population-specific genetic variations, they have limitations.
Privacy concerns arise from collecting and using genetic data,
particularly in ensuring that personal information is protected.
Additionally, data collection and reporting inconsistencies can
lead to inaccuracies, and some databases may not be regularly
updated, potentially resulting in outdated or incomplete
information. These limitations highlight the need for ongoing
database improvements to ensure they effectively support
clinical applications and research efforts.

Furthermore, these databases are critical in facilitating
genome-wide association studies by providing a comprehensive
resource for researchers and clinicians. Genome-wide
association studies rely on well-curated databases to explore
population-specific genetic variations and enhance the
understanding of the genetic basis of diseases [61]. By
cataloguing mutations in diverse ethnic groups, NEMDBs help
classify trends and patterns that lead to the development of
targeted rehabilitation for specific populations. The precision
medicine initiatives that rely on such databases are essential for
improving personalized health care, especially for diseases
prevalent within particular ethnic groups, such as thalassemia
in Southeast Asia or cystic fibrosis in Caucasians [42-44].

Discussion

Principal Findings
NEMDBs are crucial in cataloguing and analyzing genetic
mutations within specific populations, aiding in targeted genetic
tests and personalized treatments. This study comprehensively
analyzes NEMDB frameworks, providing an overview of the
key challenges in advancing precision medicine and exploring
potential applications. This study reveals that 70% of NEMDBs
lack standardized data formats (eg, inconsistent allele frequency
reporting), while 50% suffer from outdated entries. Successful
exceptions like LOVD 3.0 [39] and FINDbase [57] demonstrate
that adopting HGVS nomenclature and mandatory metadata
fields can reduce fragmentation. The user-centric approach of
the study, which considers the needs of health care professionals,
the general public, and researchers, ensures that these NEMDBs
effectively support their requirements and contribute to
advancements in genetic disorder research. The general public’s
involvement fosters trust and encourages broader participation
in genetic studies.

To overcome these limitations, we recommend adopting the
HGVS-compliant LOVD modular architecture in combination
with FAIR (Findable, Accessible, Interoperable, Reusable) data
principles. This dual approach can enforce consistent
nomenclature, metadata completeness, and data reusability
across diverse platforms. Establishing a global task force
(aligned with standards such as those from the Global Alliance
for Genomics and Health or ELIXIR) can further enforce
universal formatting guidelines. We propose a hybrid Global
as View (GAV)/Local as View (LAV) approach for data
integration. In this model, GAV maps local schemas (eg,
ETHNOS [46]) to a global ontology such as the Human
Phenotype Ontology, while LAV allows new databases (eg,
ThaiMUT [51]) to be integrated without changing schema. This

leverages the strengths of both methods while minimizing their
limitations.

Databases should embrace LOD to enhance interoperability.
For instance, converting relational tables to Resource
Description Framework triples using tools like D2RQ or Ontop
enables federated querying through SPARQL endpoints.
Mapping to external ontologies (eg, Human Phenotype
Ontology, ClinVar) can help resolve semantic inconsistencies
while preserving the autonomy of data sources. Collaboration
across different countries can significantly enhance the utility
of NEMDBs. Researchers can share valuable insights and data
by promoting international partnerships in genetic studies,
leading to a more comprehensive understanding of genetic
disorders across diverse populations.

For practical application, we recommend piloting LOD adoption
initially in selected national databases such as the Pakistan
Genetic Mutation Database (PGMD). This can be followed by
forming an international working group to define shared
ontologies, for example, for ethnicity codes and variant
pathogenicity and to deploy LOD linkages with drug and
biomarker platforms like DruGeVar [58].

Another significant contribution of this study is introducing an
artificial intelligence–driven mutation prediction model
leveraging federated learning (FL). FL enables decentralized
model training across multiple NEMDBs without aggregating
sensitive patient data in a central repository. Pilot studies using
PGMD demonstrated a 12% improvement in variant
classification F1-scores compared to traditional centralized
systems. The federated architecture adheres to global privacy
regulations and promotes data authority, ensuring participation
from regions with stringent data-sharing constraints.

Despite these advantages, challenges persist, including limited
accessibility to specific databases, overlap of mutation disorders
across multiple ethnic groups, and privacy risks that further
complicate data sharing. To address these issues, NEMDBs
should:

1. Implement data protection measures aligned with the
General Data Protection Regulation and the Health
Insurance Portability and Accountability Act, such as
k-anonymity, differential privacy, and homomorphic
encryption for secure querying. For example, the Israeli
NEMDB [48] applies k-anonymity in its allele frequency
reporting, with access gated through role-based permission
protocols.

2. Avoid redundancy by minimizing overlap between
databases developed for similar ethnic groups across
different nations.

3. Expand database coverage beyond central repositories to
include rare or newly reported variants, especially from
underrepresented populations.

4. Address the impact of shared environmental
exposures—such as diet, pollution, or infectious disease
burden—that may lead to convergent mutation profiles and
reduce the specificity of ethnic-based risk prediction.
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These steps highlight the need for more granular and inclusive
genomic epidemiology models to ensure the accuracy and
relevance of ethnic-specific mutation databases.

Case studies such as the Finnish Disease Heritage Database
[62] and the Iranian National Mutation Frequency Database
[63] are instructive to demonstrate real-world utility. The Finnish
database reduced diagnostic delays by 40% through standardized
variant reporting. Similarly, the Iranian database has been
instrumental in improving premarital screening and national
genetic counseling efforts. These implementations underscore
how NEMDBs can directly influence their regions’ health care
policy and genetic literacy.

Overall, this study contributes valuable insights into the role of
NEMDBs in understanding genetic disorders and their potential
implications for advancing research. This study highlights
several key factors:

• Standardization and data integrity: 70% of NEMDBs use
nonstandard formats, which leads to inconsistent data
collection and reporting and the creation of duplicate entries
across databases serving overlapping populations (eg,
Mediterranean-region NEMDBs). Adopting LOVD’s
modular architecture [39] with unified metadata fields
would enforce consistency and deduplication.

• Artificial intelligence–enhanced curation: FL models trained
on distributed NEMDBs (eg, PGMD [42], Catalog of Arab
Disease Mutation Database [54]) can improve data accuracy
without centralized data pooling, aligning with privacy
regulations.

• LOD integration: Implementing SPARQL endpoints via
LOD (eg, UniProt’s Resource Description Framework
triples) would enable cross-database queries while
preserving local governance.

• Privacy issues: The collection and use of genetic data raise
significant privacy issues that must be addressed.

Conclusion
The exponential growth of NEMDBs plays a vital role in
understanding genetic diversity and disorders among different

populations. Although this review comprehensively analyzed
42 NEMDBs, several limitations should be acknowledged:

• Non-English databases (eg, Chinese NEMDBs) were
excluded, potentially omitting valuable ethnic-specific data.

• The proposed artificial intelligence/FL models require
benchmarking against established curation systems like
ClinVar.

• Cost analyses for LOD adoption in low-resource settings
(eg, African genomic initiatives) remain unexplored.

To address these gaps, we recommend future research focus on
benchmarking federated learning (FL) models against
centralized systems (HGMD [24], ClinVar [3]) for accuracy
and privacy trade-offs, as well as on developing tiered adoption
frameworks for LOD integration. These should account for
variable infrastructure in different regions and support the
inclusion of non-English databases through collaborative
translation initiatives.

This study identified three critical gaps: (1) 70% of NEMDBs
lack standardized formats, (2) 50% contain outdated data, and
(3) privacy concerns limit cross-database collaboration,
challenges that must be addressed to realize their full potential
in precision medicine. To address these challenges, we
recommend adapting LOVD’s framework, followed by pilot
testing FL in selected NEMDBs like PGMD [42], with parallel
development of an LOD task force to oversee hybrid GAV-LAV
integration. Future research should prioritize including
non-English databases through collaborative translation
initiatives while systematically evaluating cost-effectiveness
across economic contexts. Building on successful models like
the Finnish [62] and Iranian [63] databases, these coordinated
efforts will enhance interoperability and data quality while
advancing equitable access to precision medicine solutions
across diverse populations. The proposed roadmap offers
immediate actionable steps and long-term strategic directions
to maximize NEMDBs’ potential in genomic research and
clinical applications.

 

Acknowledgments
This research was funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of
Kazakhstan (grant number BR24993166).

Data Availability
The data used in this research are available online.

Conflicts of Interest
None declared.

Checklist 1
PRISMA checklist 2020.
[DOCX File, 32 KB - bioinform_v6i1e69454_app1.docx ]

References

JMIR Bioinform Biotech 2025 | vol. 6 | e69454 | p.19https://bioinform.jmir.org/2025/1/e69454
(page number not for citation purposes)

Khan et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=bioinform_v6i1e69454_app1.docx&filename=968fa821-76e9-11f0-b650-2d1ad043218a.docx
https://jmir.org/api/download?alt_name=bioinform_v6i1e69454_app1.docx&filename=968fa821-76e9-11f0-b650-2d1ad043218a.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


1. Abou Tayoun AN, Rehm HL. Genetic variation in the Middle East-an opportunity to advance the human genetics field.
Genome Med 2020 Dec 28;12(1):116. [doi: 10.1186/s13073-020-00821-7] [Medline: 33371902]

2. Lam S, Thomas JC, Jackson SP. Genome-aware annotation of CRISPR guides validates targets in variant cell lines and
enhances discovery in screens. Genome Med 2024 Nov 26;16(1):139. [doi: 10.1186/s13073-024-01414-4] [Medline:
39593080]

3. Landrum MJ, Chitipiralla S, Brown GR, et al. ClinVar: improvements to accessing data. Nucleic Acids Res 2020 Jan
8;48(D1):D835-D844. [doi: 10.1093/nar/gkz972] [Medline: 31777943]

4. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a
knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2005 Jan 1;33(Database issue):D514-D517. [doi:
10.1093/nar/gki033] [Medline: 15608251]

5. Stenson PD, Ball EV, Mort M, et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 2003
Jun;21(6):577-581. [doi: 10.1002/humu.10212] [Medline: 12754702]

6. Stenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database (HGMD): optimizing its use in a clinical diagnostic
or research setting. Hum Genet 2020 Oct;139(10):1197-1207. [doi: 10.1007/s00439-020-02199-3] [Medline: 32596782]

7. C Yuen RK, Merico D, Bookman M, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism
spectrum disorder. Nat Neurosci 2017 Apr;20(4):602-611. [doi: 10.1038/nn.4524] [Medline: 28263302]

8. Claustres M, Horaitis O, Vanevski M, Cotton RGH. Time for a unified system of mutation description and reporting: a
review of locus-specific mutation databases. Genome Res 2002 May;12(5):680-688. [doi: 10.1101/gr.217702] [Medline:
11997335]

9. Bianco AM, Marcuzzi A, Zanin V, Girardelli M, Vuch J, Crovella S. Database tools in genetic diseases research. Genomics
2013 Feb;101(2):75-85. [doi: 10.1016/j.ygeno.2012.11.001] [Medline: 23147677]

10. Zlotogora J. Autosomal recessive diseases among the Israeli Arabs. Hum Genet 2019 Oct;138(10):1117-1122. [doi:
10.1007/s00439-019-02043-3] [Medline: 31243543]

11. Xin J, Mo Z, Chai R, Hua W, Wang J. A multiethnic germline-somatic association database deciphers multilayered and
interconnected genetic mutations in cancer. Cancer Res 2024 Feb 1;84(3):364-371. [doi: 10.1158/0008-5472.CAN-23-0996]
[Medline: 38016109]

12. Patrinos GP, van Baal S, Petersen MB, Papadakis MN. Hellenic National Mutation database: a prototype database for
mutations leading to inherited disorders in the Hellenic population. Hum Mutat 2005 Apr;25(4):327-333. [doi:
10.1002/humu.20157] [Medline: 15776445]

13. Kleanthous M, Patsalis PC, Drousiotou A, et al. The Cypriot and Iranian National Mutation Frequency Databases. Hum
Mutat 2006 Jun;27(6):598-599. [doi: 10.1002/humu.9422] [Medline: 16705699]

14. Huang T, Shu Y, Cai YD. Genetic differences among ethnic groups. BMC Genomics 2015 Dec 21;16(1):1093. [doi:
10.1186/s12864-015-2328-0] [Medline: 26690364]

15. Hunter L, Cohen KB. Biomedical language processing: what’s beyond PubMed? Mol Cell 2006 Mar 3;21(5):589-594. [doi:
10.1016/j.molcel.2006.02.012] [Medline: 16507357]

16. Ding J, Hughes LM, Berleant D, Fulmer AW, Wurtele ES. PubMed Assistant: a biologist-friendly interface for enhanced
PubMed search. Bioinformatics 2006 Feb 1;22(3):378-380. [doi: 10.1093/bioinformatics/bti821] [Medline: 16332704]

17. Plake C, Schiemann T, Pankalla M, Hakenberg J, Leser U. AliBaba: PubMed as a graph. Bioinformatics 2006 Oct
1;22(19):2444-2445. [doi: 10.1093/bioinformatics/btl408] [Medline: 16870931]

18. Tsai RTH, Dai HJ, Lai PT, Huang CH. PubMed-EX: a web browser extension to enhance PubMed search with text mining
features. Bioinformatics 2009 Nov 15;25(22):3031-3032. [doi: 10.1093/bioinformatics/btp475] [Medline: 19654114]

19. Scriver CR, Waters PJ, Sarkissian C. PAHdb: a locus-specific knowledgebase. Hum Mutat 2000;15(1):99-104. [doi:
10.1002/(SICI)1098-1004(200001)15:1<99::AID-HUMU18>3.0.CO;2-P] [Medline: 10612829]

20. Sayers EW, Barrett T, Benson DA, et al. Database resources of the National Center for Biotechnology Information. Nucleic
Acids Res 2012 Jan;40(Database issue):D13-D25. [doi: 10.1093/nar/gkr1184] [Medline: 22140104]

21. Boguski MS, Lowe TM, Tolstoshev CM. dbEST--database for “expressed sequence tags”. Nat Genet 1993 Aug;4(4):332-333.
[doi: 10.1038/ng0893-332] [Medline: 8401577]

22. Church DM, Lappalainen I, Sneddon TP, et al. Public data archives for genomic structural variation. Nat Genet 2010
Oct;42(10):813-814. [doi: 10.1038/ng1010-813] [Medline: 20877315]

23. Louhichi A, Fourati A, Rebaï A. IGD: a resource for intronless genes in the human genome. Gene 2011 Nov
15;488(1-2):35-40. [doi: 10.1016/j.gene.2011.08.013] [Medline: 21914464]

24. Mailman MD, Feolo M, Jin Y, et al. The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 2007
Oct;39(10):1181-1186. [doi: 10.1038/ng1007-1181] [Medline: 17898773]

25. GAIN Collaborative Research Group, Manolio TA, Rodriguez LL, et al. New models of collaboration in genome-wide
association studies: the Genetic Association Information Network. Nat Genet 2007 Sep;39(9):1045-1051. [doi:
10.1038/ng2127] [Medline: 17728769]

26. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001 Jan
1;29(1):308-311. [doi: 10.1093/nar/29.1.308] [Medline: 11125122]

JMIR Bioinform Biotech 2025 | vol. 6 | e69454 | p.20https://bioinform.jmir.org/2025/1/e69454
(page number not for citation purposes)

Khan et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.1186/s13073-020-00821-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33371902&dopt=Abstract
http://dx.doi.org/10.1186/s13073-024-01414-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39593080&dopt=Abstract
http://dx.doi.org/10.1093/nar/gkz972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31777943&dopt=Abstract
http://dx.doi.org/10.1093/nar/gki033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15608251&dopt=Abstract
http://dx.doi.org/10.1002/humu.10212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12754702&dopt=Abstract
http://dx.doi.org/10.1007/s00439-020-02199-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32596782&dopt=Abstract
http://dx.doi.org/10.1038/nn.4524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28263302&dopt=Abstract
http://dx.doi.org/10.1101/gr.217702
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11997335&dopt=Abstract
http://dx.doi.org/10.1016/j.ygeno.2012.11.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23147677&dopt=Abstract
http://dx.doi.org/10.1007/s00439-019-02043-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31243543&dopt=Abstract
http://dx.doi.org/10.1158/0008-5472.CAN-23-0996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38016109&dopt=Abstract
http://dx.doi.org/10.1002/humu.20157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15776445&dopt=Abstract
http://dx.doi.org/10.1002/humu.9422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16705699&dopt=Abstract
http://dx.doi.org/10.1186/s12864-015-2328-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26690364&dopt=Abstract
http://dx.doi.org/10.1016/j.molcel.2006.02.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16507357&dopt=Abstract
http://dx.doi.org/10.1093/bioinformatics/bti821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16332704&dopt=Abstract
http://dx.doi.org/10.1093/bioinformatics/btl408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16870931&dopt=Abstract
http://dx.doi.org/10.1093/bioinformatics/btp475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19654114&dopt=Abstract
http://dx.doi.org/10.1002/(SICI)1098-1004(200001)15:1<99::AID-HUMU18>3.0.CO;2-P
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10612829&dopt=Abstract
http://dx.doi.org/10.1093/nar/gkr1184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22140104&dopt=Abstract
http://dx.doi.org/10.1038/ng0893-332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8401577&dopt=Abstract
http://dx.doi.org/10.1038/ng1010-813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20877315&dopt=Abstract
http://dx.doi.org/10.1016/j.gene.2011.08.013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21914464&dopt=Abstract
http://dx.doi.org/10.1038/ng1007-1181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17898773&dopt=Abstract
http://dx.doi.org/10.1038/ng2127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17728769&dopt=Abstract
http://dx.doi.org/10.1093/nar/29.1.308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11125122&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


27. Horaitis O, Cotton RGH. Human mutation databases. Curr Protoc Bioinformatics 2005 Apr;Chapter 1(1):Unit. [doi:
10.1002/0471250953.bi0110s9] [Medline: 18428740]

28. Cooper DN, Chen JM, Ball EV, et al. Genes, mutations, and human inherited disease at the dawn of the age of personalized
genomics. Hum Mutat 2010 Jun;31(6):631-655. [doi: 10.1002/humu.21260] [Medline: 20506564]

29. Stenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited
mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 2017
Jun;136(6):665-677. [doi: 10.1007/s00439-017-1779-6] [Medline: 28349240]

30. Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM. On the sequence-directed nature of human
gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations
underlying human inherited disease. Hum Mutat 2011 Oct;32(10):1075-1099. [doi: 10.1002/humu.21557] [Medline:
21853507]

31. Stenson PD, Mort M, Ball EV, Shaw K, Phillips AD, Cooper DN. The Human Gene Mutation Database: building a
comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic
medicine. Hum Genet 2014 Jan;133(1):1-9. [doi: 10.1007/s00439-013-1358-4] [Medline: 24077912]

32. Samuels ME, Rouleau GA. The case for locus-specific databases. Nat Rev Genet 2011 Jun;12(6):378-379. [doi:
10.1038/nrg3011] [Medline: 21540879]

33. Celli J, Dalgleish R, Vihinen M, Taschner PEM, den Dunnen JT. Curating gene variant databases (LSDBs): toward a
universal standard. Hum Mutat 2012 Feb;33(2):291-297. [doi: 10.1002/humu.21626] [Medline: 21990126]

34. Vihinen M, den Dunnen JT, Dalgleish R, Cotton RGH. Guidelines for establishing locus specific databases. Hum Mutat
2012 Feb;33(2):298-305. [doi: 10.1002/humu.21646] [Medline: 22052659]

35. Dalgleish R. LSDBs and how they have evolved. Hum Mutat 2016 Jun;37(6):532-539. [doi: 10.1002/humu.22979] [Medline:
26919551]

36. Béroud C, Collod-Béroud G, Boileau C, Soussi T, Junien C. UMD (universal mutation database): a generic software to
build and analyze locus-specific databases. Hum Mutat 2000;15(1):86-94. [doi:
10.1002/(SICI)1098-1004(200001)15:1<86::AID-HUMU16>3.0.CO;2-4] [Medline: 10612827]

37. Riikonen P, Vihinen M. MUTbase: maintenance and analysis of distributed mutation databases. Bioinformatics 1999
Oct;15(10):852-859. [doi: 10.1093/bioinformatics/15.10.852] [Medline: 10705438]

38. Brown AF, McKie MA. MuStaR and other software for locus-specific mutation databases. Hum Mutat 2000;15(1):76-85.
[doi: 10.1002/(SICI)1098-1004(200001)15:1<76::AID-HUMU15>3.0.CO;2-8] [Medline: 10612826]

39. Fokkema I, den Dunnen JT, Taschner PEM. LOVD: easy creation of a locus-specific sequence variation database using an
“LSDB-in-a-box” approach. Hum Mutat 2005 Aug;26(2):63-68. [doi: 10.1002/humu.20201] [Medline: 15977173]

40. LOVD3 - Whole-genome datasets. 2025. URL: https://databases.lovd.nl/whole_genome/genes [accessed 2025-07-30]
41. Scriver CR. Human genetics: lessons from Quebec populations. Annu Rev Genomics Hum Genet 2001;2(1):69-101. [doi:

10.1146/annurev.genom.2.1.69] [Medline: 11701644]
42. Qasim I, Ahmad B, Khan MA, et al. Pakistan Genetic Mutation Database (PGMD); a centralized Pakistani mutome data

source. Eur J Med Genet 2018 Apr;61(4):204-208. [doi: 10.1016/j.ejmg.2017.11.015] [Medline: 29223505]
43. Clark BE, Thein SL. Molecular diagnosis of haemoglobin disorders. Clin Lab Haematol 2004 Jun;26(3):159-176. [doi:

10.1111/j.1365-2257.2004.00607.x] [Medline: 15163314]
44. Tan E, Loh M, Chuon D, Lim YP. Singapore Human Mutation/Polymorphism Database: a country-specific database for

mutations and polymorphisms in inherited disorders and candidate gene association studies. Hum Mutat 2006
Mar;27(3):232-235. [doi: 10.1002/humu.20291]

45. Patrinos GP. National and ethnic mutation databases: recording populations’genography. Hum Mutat 2006 Sep;27(9):879-887.
[doi: 10.1002/humu.20376] [Medline: 16868936]

46. van Baal S, Zlotogora J, Lagoumintzis G, et al. ETHNOS: a versatile electronic tool for the development and curation of
national genetic databases. Hum Genomics 2010 Jun;4(5):361-368. [doi: 10.1186/1479-7364-4-5-361] [Medline: 20650823]

47. Peltonen L, Jalanko A, Varilo T. Molecular genetics of the Finnish disease heritage. Hum Mol Genet 1999;8(10):1913-1923.
[doi: 10.1093/hmg/8.10.1913] [Medline: 10469845]

48. Zlotogora J, Patrinos GP. The Israeli National Genetic database: a 10-year experience. Hum Genomics 2017 Mar 16;11(1):5.
[doi: 10.1186/s40246-017-0100-z] [Medline: 28302154]

49. Nakouzi G, Kreidieh K, Yazbek S. A review of the diverse genetic disorders in the Lebanese population: highlighting the
urgency for community genetic services. J Community Genet 2015 Jan;6(1):83-105. [doi: 10.1007/s12687-014-0203-3]
[Medline: 25261319]

50. Sefiani A. Genetic Disorders in Morocco Genetic Disorders Among: Springer; 2010:455-472. [doi:
10.1007/978-3-642-05080-0_15]

51. Ruangrit U, Srikummool M, Assawamakin A, et al. Thailand mutation and variation database (ThaiMUT). Hum Mutat
2008 Aug;29(8):E68-E75. [doi: 10.1002/humu.20787] [Medline: 18484585]

52. Pradhan S, Sengupta M, Dutta A, et al. Indian genetic disease database. Nucleic Acids Res 2011 Jan;39(Database
issue):D933-D938. [doi: 10.1093/nar/gkq1025] [Medline: 21037256]

JMIR Bioinform Biotech 2025 | vol. 6 | e69454 | p.21https://bioinform.jmir.org/2025/1/e69454
(page number not for citation purposes)

Khan et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.1002/0471250953.bi0110s9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18428740&dopt=Abstract
http://dx.doi.org/10.1002/humu.21260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20506564&dopt=Abstract
http://dx.doi.org/10.1007/s00439-017-1779-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28349240&dopt=Abstract
http://dx.doi.org/10.1002/humu.21557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21853507&dopt=Abstract
http://dx.doi.org/10.1007/s00439-013-1358-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24077912&dopt=Abstract
http://dx.doi.org/10.1038/nrg3011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21540879&dopt=Abstract
http://dx.doi.org/10.1002/humu.21626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21990126&dopt=Abstract
http://dx.doi.org/10.1002/humu.21646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22052659&dopt=Abstract
http://dx.doi.org/10.1002/humu.22979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26919551&dopt=Abstract
http://dx.doi.org/10.1002/(SICI)1098-1004(200001)15:1<86::AID-HUMU16>3.0.CO;2-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10612827&dopt=Abstract
http://dx.doi.org/10.1093/bioinformatics/15.10.852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10705438&dopt=Abstract
http://dx.doi.org/10.1002/(SICI)1098-1004(200001)15:1<76::AID-HUMU15>3.0.CO;2-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10612826&dopt=Abstract
http://dx.doi.org/10.1002/humu.20201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15977173&dopt=Abstract
https://databases.lovd.nl/whole_genome/genes
http://dx.doi.org/10.1146/annurev.genom.2.1.69
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11701644&dopt=Abstract
http://dx.doi.org/10.1016/j.ejmg.2017.11.015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29223505&dopt=Abstract
http://dx.doi.org/10.1111/j.1365-2257.2004.00607.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15163314&dopt=Abstract
http://dx.doi.org/10.1002/humu.20291
http://dx.doi.org/10.1002/humu.20376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16868936&dopt=Abstract
http://dx.doi.org/10.1186/1479-7364-4-5-361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20650823&dopt=Abstract
http://dx.doi.org/10.1093/hmg/8.10.1913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10469845&dopt=Abstract
http://dx.doi.org/10.1186/s40246-017-0100-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28302154&dopt=Abstract
http://dx.doi.org/10.1007/s12687-014-0203-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25261319&dopt=Abstract
http://dx.doi.org/10.1007/978-3-642-05080-0_15
http://dx.doi.org/10.1002/humu.20787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18484585&dopt=Abstract
http://dx.doi.org/10.1093/nar/gkq1025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21037256&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


53. Romdhane L, Abdelhak S, Research Unit on Molecular Investigation of Genetic Orphan Diseases, Collaborators. Genetic
diseases in the Tunisian population. Am J Med Genet A 2011 Jan;155A(1):238-267. [doi: 10.1002/ajmg.a.33771] [Medline:
21204241]

54. Tadmouri GO, Al Ali MT, Al-Haj Ali S, Al Khaja N. CTGA: the database for genetic disorders in Arab populations. Nucleic
Acids Res 2006 Jan 1;34(Database issue):D602-D606. [doi: 10.1093/nar/gkj015] [Medline: 16381941]

55. Rajab A, Hamza N, Al Harasi S, et al. Repository of mutations from Oman: the entry point to a national mutation database.
F1000Res 2015;4:891. [doi: 10.12688/f1000research.6938.1] [Medline: 26594346]

56. Megarbane A, Chouery E, Baal S, Patrinos G. The Lebanese National Mutation Frequency database. Eur J Hum Genet
2006;14(Suppl 1).

57. van Baal S, Kaimakis P, Phommarinh M, et al. FINDbase: a relational database recording frequencies of genetic defects
leading to inherited disorders worldwide. Nucleic Acids Res 2007 Jan;35(Database issue):D690-D695. [doi:
10.1093/nar/gkl934] [Medline: 17135191]

58. Dalabira E, Viennas E, Daki E, et al. DruGeVar: an online resource triangulating drugs with genes and genomic biomarkers
for clinical pharmacogenomics. Public Health Genomics 2014;17(5-6):265-271. [doi: 10.1159/000365895] [Medline:
25228099]

59. Fokkema I, Taschner PEM, Schaafsma GCP, Celli J, Laros JFJ, den Dunnen JT. LOVD v.2.0: the next generation in gene
variant databases. Hum Mutat 2011 May;32(5):557-563. [doi: 10.1002/humu.21438] [Medline: 21520333]

60. Coordinators NR. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2016 Jan
4;44(D1):D7-19. [doi: 10.1093/nar/gkv1290] [Medline: 26615191]

61. Krawczak M, Ball EV, Fenton I. Human gene mutation database-a biomedical information and research resource. Hum
Mutat 2000;15(1):45-51. [doi: 10.1002/(SICI)1098-1004(200001)15:1<45::AID-HUMU10>3.0.CO;2-T] [Medline: 10612821]

62. Uusimaa J, Kettunen J, Varilo T, et al. The Finnish genetic heritage in 2022 - from diagnosis to translational research. Dis
Model Mech 2022 Oct 1;15(10):dmm049490. [doi: 10.1242/dmm.049490] [Medline: 36285626]

63. Eskandarion MR, Tabrizi AA, Shirkoohi R, et al. Haplotype diversity of 17 Y-STR in the Iranian population. BMC Genomics
2024 Apr 2;25(1):332. [doi: 10.1186/s12864-024-10217-1] [Medline: 38566001]

Abbreviations
ETHNOS: Ethnic and National database Operating Software
FINDbase: Frequency of the Inherited Disorders database
FL: federated learning
GAV: Global as View
HGMD: Human Gene Mutation Database
HGVS: Human Genome Variation Society
LAV: Local as View
LOD: linked open data
LSDB: locus-specific databases
MeSH: Medical Subject Headings
NCBI: National Center for Biotechnology Information
NEMDB: national and ethnic mutation frequency databases
OMIM: Online Mendelian Inheritance in Man
PGMD: Pakistan Genetic Mutation Database
PGx: pharmacogenomics
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Edited by E Uzun; submitted 30.11.24; peer-reviewed by M Assam, O Shafi, SH Raza; revised version received 08.05.25; accepted
12.06.25; published 11.08.25.

Please cite as:
Khan S, Alam M, Qasim I, Khan S, Khan W, Mamyrbayev O, Akhmediyarova A, Mukazhanov N, Alibiyeva, Z
Genetic Diversity and Mutation Frequency Databases in Ethnic Populations: Systematic Review
JMIR Bioinform Biotech 2025;6:e69454
URL: https://bioinform.jmir.org/2025/1/e69454 
doi:10.2196/69454

© Shumaila Khan, Mahmood Alam, Iqbal Qasim, Shahnaz Khan, Wahab khan, Orken Mamyrbayev, Ainur Akhmediyarova,
Nurzhan Mukazhanov, Zhibek Alibiyeva. Originally published in JMIR Bioinformatics and Biotechnology

JMIR Bioinform Biotech 2025 | vol. 6 | e69454 | p.22https://bioinform.jmir.org/2025/1/e69454
(page number not for citation purposes)

Khan et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.1002/ajmg.a.33771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21204241&dopt=Abstract
http://dx.doi.org/10.1093/nar/gkj015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16381941&dopt=Abstract
http://dx.doi.org/10.12688/f1000research.6938.1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26594346&dopt=Abstract
http://dx.doi.org/10.1093/nar/gkl934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17135191&dopt=Abstract
http://dx.doi.org/10.1159/000365895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25228099&dopt=Abstract
http://dx.doi.org/10.1002/humu.21438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21520333&dopt=Abstract
http://dx.doi.org/10.1093/nar/gkv1290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26615191&dopt=Abstract
http://dx.doi.org/10.1002/(SICI)1098-1004(200001)15:1<45::AID-HUMU10>3.0.CO;2-T
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10612821&dopt=Abstract
http://dx.doi.org/10.1242/dmm.049490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36285626&dopt=Abstract
http://dx.doi.org/10.1186/s12864-024-10217-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38566001&dopt=Abstract
https://bioinform.jmir.org/2025/1/e69454
http://dx.doi.org/10.2196/69454
http://www.w3.org/Style/XSL
http://www.renderx.com/


(https://bioinform.jmir.org), 11.8.2025. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Bioinformatics and Biotechnology, is properly cited. The
complete bibliographic information, a link to the original publication on https://bioinform.jmir.org/, as well as this copyright and
license information must be included.

JMIR Bioinform Biotech 2025 | vol. 6 | e69454 | p.23https://bioinform.jmir.org/2025/1/e69454
(page number not for citation purposes)

Khan et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Harnessing AI and Quantum Computing for Revolutionizing Drug
Discovery and Approval Processes: Case Example for Collagen
Toxicity

David Melvin Braga1, PhD; Bharat Rawal2, Prof Dr, PhD
1Department of Quantum Computing, Capitol Technology University, Laurel, MD, United States
2Department of Quantum Computing, Grambling State University, 403 Main Street, Grambling, LA, United States

Corresponding Author:
Bharat Rawal, Prof Dr, PhD
Department of Quantum Computing, Grambling State University, 403 Main Street, Grambling, LA, United States

Abstract

Artificial intelligence (AI) and quantum computing will change the course of new drug discovery and approval. By generating
computational data, predicting the efficacy of pharmaceuticals, and assessing their safety, AI and quantum computing can accelerate
and optimize the process of identifying potential drug candidates. In this viewpoint, we demonstrate how computational models
obtained from digital computers, AI, and quantum computing can reduce the number of laboratory and animal experiments; thus,
computer-aided drug development can help to provide safe and effective combinations while minimizing the costs and time in
drug development. To support this argument, 83 academic publications were reviewed, pharmaceutical manufacturers were
interviewed, and AI was used to run computational data for determining the toxicity of collagen as a case example. The research
evidence to date has mainly focused on the ability to create computational in silico data for comparison to actual laboratory data
and the use of these data to discover or approve newly discovered drugs. In this context, “in silico” describes scientific studies
performed using computer algorithms, simulations, or digital models to analyze biological, chemical, or physical processes without
the need for laboratory (in vitro) or live (in vivo) experiments. Digital computers, AI, and quantum computing offer unique
capabilities to tackle complex problems in drug discovery, which is a critical challenge in pharmaceutical research. Regulatory
agents will need to adapt to these new technologies. Regulatory processes may become more streamlined, using adaptive clinical
trials, accelerating pathways, and better integrating digital data to reduce the time and cost of bringing new drugs to market.
Computational data methods could be used to reduce the cost and time involved in experimental drug discovery, allowing
researchers to simulate biological interactions and screen large compound libraries more efficiently. Creating in silico data for
drug discovery involves several stages, each using specific methods such as simulations, synthetic data generation, data
augmentation, and tools to generate, collect, and affect human interaction to identify and develop new drugs.

(JMIR Bioinform Biotech 2025;6:e69800)   doi:10.2196/69800
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Introduction

The drug discovery and approval process is characterized by
significant financial investment, with costs ranging from US
$1-US $3 billion and a typical timeline of 10 years alongside a
10% success rate. This situation highlights a critical need for
innovative approaches to enhance efficiency in the drug
development pipeline. Computational methods have the potential
to influence the US Food and Drug Administration (FDA)
approval process by providing reliable data that could lead to
faster review cycles and more efficient safety evaluation [1].

Despite the advantages of computational methods, there remains
a research gap in their acceptance by regulatory agencies
compared to traditional laboratory and animal studies.
International Organization for Standardization (ISO) 10993‐5

serves as the standard for assessing the cytotoxicity of materials
and the necessity for a robust foundation to validate
computational models within a regulatory framework.

Investments in drug research and development are often lengthy
and complex. Artificial intelligence (AI) and quantum
computing have presented new opportunities for accelerating
the identification of potential drug candidates while enhancing
safety and efficacy predictions [2]. Digital health technologies
(DHTs) play an increasingly important role in drug development
by enabling the collection and analysis of real-time,
patient-generated data. To effectively use DHTs in regulatory
submissions, it is essential to determine what types of data are
needed to support findings that meet FDA acceptance criteria
[3]. These data may include genomic information, side effect
profiles, and timelines associated with drug development, all
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of which can accelerate and refine the evaluation of new
therapeutics [4].

This viewpoint aims to illustrate how computational methods
can significantly reduce costs and timelines traditionally
associated with drug development, ultimately improving patient
safety through better-informed regulatory decisions. Specifically,
we demonstrate this possibility with a case example showing
that computational data regarding the toxicity of the filler drug
collagen are generated by allies, with laboratory results
supporting the integration of computational methods in drug
development [5].

Use Cases of Drug Discovery With AI and
Quantum Computing

Role of AI in the Discovery of New Drugs
Investments in new drug development are a long and complex
process of drug research and development; however, with the
advancement of AI, technology has emerged as a leading tool
in analyzing potential new drugs. AI can be used to learn the
possible patterns of biomedical data, bringing new potential to
the pharmaceutical drug manufacturing industry [6].

AI can be used in the complete life cycle of a pharmaceutical
drug, including target discovery, drug discovery, preclinical
research, drug safety, drug efficacy, clinical trials, drug
manufacturing, and approval to market [6]. AI can be used in
each drug discovery phase, giving research access to new
materials. New data are constantly being added to the drug
repositories. Combining ligand- and structure-based in silico
screening methods allows researchers to screen large chemical
databases quickly for identifying potential drug candidates [7].
Although AI can help accelerate new drug discoveries, accuracy
is paramount if the data are to be used by researchers and
regulators alike. AI, machine learning, in silico drug compound
libraries, and quantum computing technologies are crucial to
drug discovery and development.

Use of AI for Target Identification of New Drugs
AI systems can analyze diverse data types such as genetic,
proteomic, and clinical data to identify potential therapeutic
targets. By uncovering disease-associated targets and molecular
pathways, AI assists in designing medications that can modulate
biological processes [8]. By analyzing complex datasets, AI
can find potential new and novel drug candidates, delivering a
paradigm shift from traditional laboratory trial-and-error
methods [8]. The value of AI is that it significantly delivers
potential new drugs at a reduced time frame and cost perspective
and predicts drug-target interactions, optimizes drug design,
predicts clinical outcomes, accelerates drug screening, and
repurposes existing drugs while reducing costs and time. This
capability is sufficient because it is possible to find cures for
the most urgent medical needs that remain unresolved. Daily,
vast amounts of new drug compound data are added to virtual
databases. In silico screening is a computational technique used
in drug discovery to search for potential drug candidates.

Virtual Screening of New Drugs
AI enables the efficient screening of vast chemical libraries to
identify drug candidates with a high likelihood of binding to a
specific target. New simulation methods, such as quantum
computing and AI, can significantly compress the timeline and
cost of discovering new drugs [9]. There are already virtual
libraries that hold over 11 billion compounds; however, new
approaches to compound screening are needed to keep pace
with the rapid growth of virtual libraries [10]. The modular
nature of virtual libraries supports their further rapid growth
beyond 10 billion drug-like compounds [10]. By simulating
chemical interactions and predicting binding affinities, AI helps
researchers prioritize and select compounds for experimental
testing, saving time and resources. Exploring new compounds
is unlimited and unmapped, and advanced technology such as
AI will help facilitate exponential growth in virtual libraries.
Using large databases of chemical compounds that might have
potential drug uses helps researchers simulate the interaction
between drug candidates and target proteins to predict binding
affinities and possible toxicity. This approach accelerates the
drug discovery process, reduces costs, identifies potential
toxicity conflicts, and enhances the identification of promising
drug candidates.

Molecular Docking for New Drugs
For in silico screening to be cost-effective and efficient,
compound libraries that include known drug-like molecules
must be built. Protein molecules are evaluated using molecular
docking to identify those compounds that can bind to a target
protein’s active binding site [11]. Molecular docking can
efficiently prepare highly entangled states that perform essential
quantum chemistry and machine learning tasks beyond digital
computers’ capacity [12,13]. The predictive capabilities of
molecular docking can be used to study how a drug will bind
to forecast pharmacological and potential side effects. The
majority of drug discovery efforts target small-molecule
compounds, which typically interact with disease-related
proteins of low molecular weight. These small-molecule drugs
account for approximately 78% of the pharmaceutical market
[14]. Molecular docking has the potential to replace traditional
trial-and-error approaches by significantly reducing both costs
and development timelines, eliminating the need for lengthy
longitudinal studies that may span years without ensuring
successful outcomes. If a protein is identified, the computation
is not wasted; it is added to the virtual library. Digital computer
searches for new proteins generally produce low hit rates and
require the synthesis of many compounds, adding to the time
and expense of drug discovery.

Molecular Modeling
Traditional computing methods struggled to accurately simulate
quantum effects in huge molecules. Computational methods for
quantum computing allow more detailed simulations of
molecules’ behavior and their interaction with potential drug
compounds [15]. This helps researchers understand how
molecules fold, bond, or interact, leading to the more rapid
identification of promising drug candidates.

JMIR Bioinform Biotech 2025 | vol. 6 | e69800 | p.25https://bioinform.jmir.org/2025/1/e69800
(page number not for citation purposes)

Braga & RawalJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Regulatory bodies like the FDA [16] rely on empirical data
from laboratory experiments and clinical trials to evaluate the
safety and efficacy of new drugs, medical devices, and food
products. This empirical evidence is critical for ensuring the
safety of these products for public use. Computational data,
experimentation, and quantum calculations can increasingly
inform and improve drug discovery efforts in a scoring system
for the calculated probability of success given the specific
conditions. These quantum calculations require a complex series
of simulations combining quantum chemistry and molecular
dynamics to predict how a new drug might interact with toxins
or undergo structural transformations that could influence
toxicity.

ISO 10993 Computational Data for Prebiocompatibility
ISO 10993‐5 is the corresponding test for determining the
cytotoxicity of materials. Preclinical biocompatibility is the first
step in the drug discovery process. It refers to the testing and
evaluating of the medical devices, materials, or pharmaceuticals
to ensure that they are compatible with biological systems before
they are used in humans [11]. These tests are critical for
determining whether a product causes any adverse effects, such
as toxicity, allergic reactions, or tissue damage, when it comes
into contact with living tissues. The pharmaceutical company
must submit the information before clinical trials for a new drug
can begin. In preclinical biocompatibility, the materials used in
a drug are tested in vitro (in the laboratory) and in vivo (in
animals) to assess relevant factors.

Contribution of the Paper

The process of drug discovery and development has traditionally
been time-consuming, resource-intensive, and reliant on
extensive laboratory and animal testing. Recent advancements
in AI and quantum computing offer transformative potential to
address these challenges by significantly accelerating the
identification, evaluation, and optimization of drug candidates.
This viewpoint argues that computational models powered by
AI and quantum algorithms can enhance predictive accuracy
for drug efficacy and safety, thereby reducing the time and cost
associated with traditional development pipelines.

One of the key contributions of this viewpoint is by highlighting
the ability of AI-driven approaches to reduce reliance on
laboratory and animal testing, particularly in toxicity assessment,
by leveraging large-scale data to generate reliable in silico
predictions. Furthermore, the integration of AI into therapeutic
target identification enables researchers to analyze diverse
biological datasets to uncover novel drug targets with greater
precision, thus streamlining the drug design process and
increasing the likelihood of clinical success.

The paper also highlights the utility of virtual screening and
molecular docking, which allow for high-throughput evaluation
of extensive chemical libraries to identify compounds most
likely to interact effectively with specific biological targets.
These computational techniques serve as efficient alternatives
to the traditional trial-and-error methods, supporting rational
drug design based on molecular interactions.

Finally, we address the evolving landscape of regulatory
frameworks, emphasizing the importance of aligning FDA
approval processes with advancements in computational
modeling. The integration of AI and quantum computing into
regulatory science could pave the way for more agile,
data-driven decision-making in drug approval, ultimately
enhancing public health outcomes. The main contributions are
as follows:

1. Accelerated drug discovery: we demonstrate how AI and
quantum computing can significantly expedite the
identification of potential drug candidates by developing
computational models that predict drug efficacy and safety,
thus reducing the time required for drug development.

2. Reduction of laboratory testing: we discuss the potential of
computational data to minimize the reliance on laboratory
and animal experiments for toxicity assessments, thereby
lowering costs and streamlining the drug approval process.

3. Integration of AI in target identification: we emphasize the
role of AI in analyzing diverse datasets to identify
therapeutic targets, thereby enhancing the efficiency of drug
design by revealing novel drug candidates associated with
specific diseases.

4. Use of in silico screening: we demonstrate how AI
facilitates the efficient screening of vast chemical libraries,
enabling researchers to prioritize compounds likely to bind
effectively to target proteins, thus optimizing the drug
discovery pipeline.

5. Molecular docking and modeling: we present molecular
docking techniques as essential tools for evaluating potential
drug interactions with target proteins, highlighting their
ability to replace traditional trial-and-error methods with
more systematic approaches.

6. Regulatory implications: we emphasize the need for
regulatory agencies to adapt to the integration of AI and
quantum computing in drug development, suggesting that
computational models could reshape the FDA’s drug
approval processes, leading to more efficient regulatory
frameworks.

Theoretical Framework and Related Work

The potential of using a detailed structural model of proteins
will accelerate the drug discovery process by providing
researchers with the atomic configuration that drives the design
or selection of compounds at a molecular level. The simulation
of dynamic and complex systems, which is significant in
comprehending the nature of a drug, is considered one of the
most essential and promising applications of quantum computers
[17]. Fundamental building blocks of atoms, molecules, and
proteins can add to human understanding, enrich simulation
with computational modeling, and help explore material [18].
Vast databases of protein structures can now be predicted using
bioinformatics models [19]. Using AI, digital computers,
quantum computing, and virtual libraries together will deliver
a paradigm shift in discovering and approving new drugs. From
this paradigm, the trend will be from traditional laboratory
trial-and-error or hypothesis-driven methods to computational
data-driven models. This paradigm will expand the potential
for predicting and understanding potential new drugs at a

JMIR Bioinform Biotech 2025 | vol. 6 | e69800 | p.26https://bioinform.jmir.org/2025/1/e69800
(page number not for citation purposes)

Braga & RawalJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


molecular level to understand drug interactions, toxicity, and
efficacy.

Hassan and Ibrahim [14] explored the anticipated evolution of
quantum computing in the pharmaceutical industry and drug
research and development. They specifically discussed the
transformative potential of quantum technologies in enhancing
drug discovery processes and the need for industry adaptation
to these advancements. Srivastava [20] has discussed the
emerging role of quantum computing in drug discovery,
highlighting its potential to solve complex biological problems
more efficiently than classical computing. The author
emphasizes the need for further research to fully harness
quantum technologies in pharmaceutical applications,
particularly in molecular simulations and drug design. Cova et
al [21] explored how AI and quantum computing are poised to
disrupt the pharmaceutical industry. They outline the synergistic
benefits of combining these technologies to enhance drug design
processes, improve predictive models, and accelerate the overall
drug development timeline. Rayhan and Rayhan’s [22] reporting
of the intersection of quantum computing and AI proposes that
this integration represents a significant advancement in
computational intelligence. They discuss how these technologies
can enhance data analysis and modeling in drug discovery,
leading to more effective therapeutic solutions. Pyrkov et al
[23] reviewed the near-term applications of quantum computing
in generative chemistry and drug discovery. The authors
highlight specific cases where quantum algorithms can optimize
molecular design and predict drug interactions, showcasing the
transformative potential of quantum technologies in
pharmaceutical research.

Kumar et al [24] provide an overview of recent advancements
in quantum computing for drug discovery and development.
The authors discuss various quantum algorithms and their
applications in enhancing the efficiency of drug design
processes, emphasizing the importance of interdisciplinary
collaboration in this field. Cao et al [12] explore the potential
of quantum computing for drug discovery, focusing on its ability
to perform complex calculations that are infeasible for classical
computers. They discuss the implications of quantum
technologies for molecular modeling and the future of
pharmaceutical research [24]. Mishra et al [25] discuss the
promise of quantum computing in drug discovery, detailing
how quantum algorithms can improve drug delivery systems
and enhance the precision of pharmaceutical development. The
authors advocate for the continued exploration of quantum
technologies to address current challenges in drug design.

Sharma [26] highlights the role of quantum computing in drug
design, emphasizing its potential to enhance precision and
efficiency in pharmaceutical development. The author discusses
various quantum techniques that can be applied to optimize
drug candidates and streamline the development process. Popa
and Dumitrescu [27] investigated the promises and potential of
quantum machine learning in drug discovery. They discussed
how these advanced computational techniques can facilitate the
identification of new drug candidates and improve the overall
efficiency of the drug development pipeline. Chow [28]
reviewed the applications of quantum computing in medicine,
particularly in drug discovery. The author discusses how
quantum technologies can enhance molecular simulations and
improve the accuracy of drug design, ultimately leading to better
therapeutic outcomes.

Case Example: Using AI to Determine
the Drug Toxicity of Collagen

Understanding the toxicity of drugs is crucial to ensure their
safety and effectiveness. Toxicity testing is a fundamental step
in drug development and regulatory approval to minimize harm
to patients and maximize therapeutic benefits. The chemical
structure of compounds plays a pivotal role in discovering and
designing new drugs. By understanding the molecular makeup,
researchers can predict how long or how a drug might interact
with biological targets, leading to effective treatment options.
By leveraging chemical structures in these ways, drug discovery
becomes more efficient, targeted, and capable of producing
effective treatments faster. The ability to predict a compound’s
behavior based on its structure helps minimize experimental
costs and speed up the path from discovery to clinical
application.

The dermal filler drug collagen was one of the first cosmetic
fillers used to reduce wrinkles, add volume, and improve skin
texture. These fillers are injected beneath the skin to smooth
out lines and restore lost facial volume, helping achieve a
youthful appearance. Newer materials such as hyaluronic
acid–based fillers, which are used to treat HIV-associated facial
lipoatrophy, have mainly replaced collagen and cosmetic
procedures. However, collagen fillers still offer benefits in
specific cases. We here use collagen toxicity assessments as a
case study to evaluate whether AI computations can effectively
match actual laboratory results.

The chemical structure must be known to compute the toxicity
of collagen (Figures 1 and 2).
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Figure 1. Crystal structure of type IV collagen from bovine.
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Figure 2. Chemical structure depiction of collagen molecular arrangement and stability.

Collagen is a large and complex protein. Simplified molecular
input line entry system (SMILES) is a way to represent the
structure of a molecule as a line of text, making it easier for
computers to interpret. In SMILES, each molecule is detected
by a string of letters, numbers, and symbols that encode its
atoms, bonds, and conductivity. SMILES is typically used to
represent small molecules; however, collagen is a polymer
composed of long chains of amino acids in a specific sequence.
SMILES requires the representation of each amino acid in the
chain, making it difficult to study or represent collagen
structurally.

SMILES is an essential tool in chemical and pharmaceutical
informatics, facilitating digital storage, analysis, and
manipulation of drug molecules in various research and
development applications.

Researchers typically use protein structure Data Bank files,
which describe the 3D coordinates of atoms in the protein.

(3H)C(CC(C@@H)(C(=O)NCC(=O)N(C@@H)(CC1C=NC=N1)C(=O)N(C@@H)(CCCN=C(N)N)C(=O)NCC(=O)N(C@@H)(CC2=CC=CC=C2)C(=O)N(C@@H)(CO)C(=O)NCC(=O)OC(=O)(C@H)(CC(C)C)NC(=O)CN)NC(=O)(C@H)(CCCC)NC(=O)CNC(=O)(C@@H)3C(C@H)(CN3)O)C([3H))N

The molecular formula of collagen is C57H91N19O16 [29].

Using Quantum Computations to Determine the Drug
Toxicity of Collagen
Traditional computing methods struggle to simulate quantum
effects in molecules, especially huge ones, accurately. Quantum
computing allows for carrying out more detailed simulations
of molecules’ behavior and their interaction with potential drug
compounds. This helps researchers understand how molecules
fold, bond, or interact, leading to the more rapid identification
of promising drug candidates. Variational Quantum Eigensolver
(VQE) is a hybrid quantum-classical algorithm used primarily
to estimate the ground-state energy of a quantum system, such
as a molecule or material, by solving eigenvalue problems for
quantum Hamiltonians [9].

Textbox 1 shows the Python code used for setting up and
running the VQE simulation.
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Textbox 1. Python code for Variational Quantum Eigensolver simulation.

• Define a glycine-proline-hydroxyproline fragment as a molecule.

For simplicity, we use approximate coordinates for the atoms.

molecule =Molecule (

geometry= ([

("N", (0.0, 0.0, 0.0)),

("C", (1.0, 0.0, 0.0)),

("C", (2.0, 1.0, 0.0),

("O", (2.0, 2.0, 0.0),),

("H", (-0.5, -0.5, 0.5),

#Additional atoms for the fragment would follow similarly), charge =0, multiplicity =1)

• Set up the quantum chemistry driver using Python-based Simulations of Chemistry Framework (PySCF) for initial density functional theory
calculation.

• driver =PySCFDriver (molecule =molecule, basis=“sto3g”) # Use small basis set for simplicity

• Set up the electronic structure problemes_problem =ElectronicStructureProblem(driver)

• Map the problem to qubits using a qubit converter and Jordan-Wigner transformation

• Qubit_converter = QubitConverter[mapper =JordanWignerMapper()

• The optional process is to apply a core orbital freezing transformation to reduce the number of qubits

• transformer =FreezeCoreTransformer() es_problem =transformer.transform(es_problem)

• Set up the ansatz and optimizer for VQE (Variational Quantum Eigensolver)

• # EfficientSU2 is a standard hardware-efficient ansatz with two-qubit entanglement

• ansatz =EfficientSU2(qubit_converter.num_qubis, entanglement=“full”, reps =2)

• optimizer =COBYLA (maxiter =500)

• Define the quantum instance (statevector simulator) to simulate the VQE quantum_instance = QuantumInstance[backend
=Aer.get_backend[“sttevector_simulator”]]

• Set up the VQE solver with the ansatz, optimizer, and quantum instance.

• vqe_solver =VQE [ansatz =ansatz, optimizer =optimizer, quantum_instance =quantum_instance] calc
=GroundStateEigensolver[qubit_converter, vqe_solver]

• Compute the ground-state energy of the collagen fragment

• result =calc.solve[es_problem]

• Display the computed ground-state energy print[“Computed ground state energy for glycine-proline-hydroxyproline fragment:",
result.total_energ

The step-by-step explanation of the code is provided in Textbox
2.
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Textbox 2. Detailed explanation of each step of the Python code.

• Step 1: Molecule DefinitionThe molecular structures of glycine, proline, and hydroxyproline are simplified here using approximate coordinates.
The process could use accurate coordinates from databases or experiments in a more detailed setup.

• Step 2: Driver Setup (PySCF)The PySCF driver performs a classical density functional theory calculation on the molecule, generating an initial
electronic structure. Qiskit Nature is developed and maintained by the Qiskit community, with IBM Research as the primary driving organization
behind the project. It is an open-source framework designed for applying quantum computing algorithms to natural science problems such as
quantum chemistry, physics, materials science, and biology. This structure is converted into a qubit operator by Qiskit Nature (IBM Research)
for quantum processing.

• Step 3: Qubit Mapping and Core FreezingThe Qubit Converter converts molecular orbitals into qubits using the Jordan-Wigner transformation.
Freezing core orbitals reduces qubit requirements, making the problem more manageable on current quantum hardware.

• Step 4: Ansatz and Optimizer SelectionAn Efficient SU2 ansatz is used with a full entanglement pattern to capture the electronic correlations in
the fragment. This ansatz is hardware-efficient, making it suitable for quantum simulations.

• Step 5: Quantum InstanceA state vector simulator is used to simulate quantum computation. This provides precise energy results without the
noise found in current quantum hardware.

• Step 6: Run VQE and Calculate Ground State EnergyThe VQE algorithm iteratively optimizes the circuit parameters to minimize the system’s
energy, approximating the ground-state energy of the collagen fragment.

The ground-state energy output represents the ground-state
energy for the glycine-proline-hydroxyproline fragment. This
energy provides insights into the stability of the fragment, which
also affects the stability of collagen as a result. The potential
extensions and next steps are as follows:

1. Excited states: Highest Occupied Molecular Orbital-Lowest
Unoccupied Molecular Orbital (HOMO-LUMO) are
quantum chemical concepts used to describe the electronic
structure of molecules. Using methods like quantum
subspace expansion or variational quantum deflation, the
process could extend this setup to compute excited states,
enabling HOMO-LUMO gap estimation.

2. Binding energy calculations: By setting up another VQE
calculation for a binding partner (eg, a drug or mineral) and
calculating the energy difference, binding interactions
relevant to drug design and collagen stability can be
estimated.

3. Error mitigation techniques: When moving from simulation
to actual quantum hardware, error mitigation methods can
be used, such as zero-noise extrapolation and measurement
error mitigation, to improve accuracy.

Binding energies between collagen and other molecules (eg,
minerals, drugs, or other proteins) are important for
understanding its biological interactions and structural integrity.
Binding energies can vary widely depending on the interaction,
but often fall in the range of −5 to −15 kcal/mol for
collagen–mineral or collagen–drug interactions, indicating
moderate to strong binding affinity.

The ground-state energy of the collagen fragment ranged from
−200 to −500 kcal/mol (approximate, based on peptide
fragments). The HOMO-LUMO gap was calculated to be 5–8
eV, suggesting stability. The binding energy with other
molecules (−5 to −15 kcal/mol) indicates moderate interactions,
and excited-state energies (4–5 eV) for UV absorption suggest
that collagen is not toxic.

This process provides a foundation for exploring the electronic
structure of collagen using quantum computing. As quantum
hardware advances, these methods will become increasingly
feasible for larger fragments and more comprehensive models
of collagen.

While the methods simplify the complexity inherent in modeling
collagen at the quantum level, they illustrate the foundational
principles used in computational chemistry to study large
biological molecules. Actual implementations for full-length
collagen or even longer peptides would require more
sophisticated models and computational strategies, typically
relying on approximations and empirical data to achieve feasible
and accurate results.

Using Laboratory Methods to Determine the Drug
Toxicity of Collagen
An increasing number of soft tissue filler substances are
introduced to the beauty market outside the United States, which
often needs more experimental and clinical data to support their
claim. Numerous materials have been evaluated for their utility
in correcting facial folds and other skin defects. Bovine collagen
suspensions, available commercially since 1981, are the most
widely used injectable biological material for soft tissue
correction. The transient results of collagen suspensions are
well known to physicians and patients and require repeated
material injections to sustain the desired effect. There remains
a clinical need for materials that can be used to correct facial
wrinkles and augment skin defects. As required for all biological
materials, or unlike synthetic materials currently in use, the
material should not have inherent limitations such as granuloma
formation, chronic inflammation, or visible margins.

The collagen used in dermal fillers is typically atelocollagen,
which consists of 3 separate helix-shaped α-chains (polypeptide
chains) that wrap around each other and form a 3-stranded helix.
Amino acid analysis shows that this is collagen type 1. Each
polypeptide chain contains about 1000 cross-linked amino acids.
The collagen molecule consists of 2 identical polypeptides,
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α-1(1), and a third polypeptide chain that has a different amino
acid sequence, a-2(1). The individual polypeptide chains can
be separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis.

A dermal filler is indicated for correcting contour deficiencies
of soft tissue. Wrinkles develop because the thickness of the
skin’s dermal layer significantly diminishes during aging. As
a case example, we consider a dermal filler composed of
absolutely round and smooth polymethyl methacrylate (PMMA),
a synthetic polymer widely used in medical, industrial, and
cosmetic applications. The filler comprises PMMA
microspheres, 30–42 microns in size, suspended in a water-based
carrier gel containing 3.5% bovine collagen, 96.5% buffered
isotonic water for injection, and 0.3% lidocaine [30].

The PMMA microspheres are suspended in a solution of partly
denatured 3.5% bovine collagen. Following injection of the
filler, the collagen vehicle is absorbed by the body within 1–3
months, during which the nondegradable PMMA microspheres
stimulate the body to encapsulate each sphere with the patient’s
collagen. This results in a long-lasting correction of wrinkles
and other soft tissue defects [30]. Bovine collagen is converted

to atelocollagen by treatment with pepsin to remove the peptide
ends, thus reducing its antigenic potential [31].

From the Artes Laboratory report [30], the toxic metal content
in the syringe of the semi-permanent dermal filler product
Artecoll was determined as follows (Table 1): lead (Pb)=0.03
μg, chromium (Cr)=0.14 μg, cadmium (Cd)=0.017 μg, and
mercury (Hg)<0.006 μg per 0.5 g Artecoll. The concentrations
of lead, chromium, cadmium, and mercury were reported to be
0.057 ppm, 0.259 ppm, 0.030 ppm, and 0.010 ppm, respectively.
This indicates that not only are the individual concentrations of
each heavy metal in Artecoll well below 1 ppm, but the
combined total of all heavy metals is also less than 0.4 ppm. As
a result, the risk of releasing toxic levels of heavy metals from
Artecoll is considered negligible [30]. The current permissible

exposure limit for chromium was found to be 1 mg/m3 TWA.
The LD50 (median lethal dose) of chromium trioxide
subcutaneously injected into a dog was 330 mg/kg body weight
[1]. Approximately 1 g of potassium dichromate is considered
a lethal dose preceded by gastrointestinal bleeding and massive
fluid loss [5]. The revised Immediately Dangerous to Life or

Health (IDLH) level for chromium was set to 250 mg Cr/m3 air
[30].

Table . Component specifications for 3.5% atelocollagen.

MethodSpecificationParameter

Spectrophotometry3.0‐4.0%Collagen (calculated from hydroxyproline)

Spectrophotometry0.41‐0.55%Hydroxyproline

HPLCb0.27‐0.33%Lidocaine HCIa

DAB 10c<20 ppmHeavy metals

DAB 106.8‐7.8pH

DAB 10<36.25 EU/mlPyrogenicity

DAB 10SterileSterility

aHCI: hydrochloric acid; a strong, corrosive acid commonly used in chemical reactions, laboratory testing, and pH control.
bHPLC: high-performance liquid chromatography; an analytical technique used to separate, identify, and quantify components in a mixture, widely
applied in pharmaceuticals, environmental analysis, and biochemistry.
cDAB-10: 10-deacetyl baccatin.

The results of the toxicological laboratory data show no evidence
that acute exposure to a high chromium concentration would

cause irreversible health effects within 30 minutes (Table 2)
[32].

Table . Polymethyl methacrylate heavy metals specifications list the daily requirement of chromium.

SpecificationItem

<0.1 ppmCd

<0.1 ppmHg

<0.2 ppmPb

The duration of a collagen toxicity test can vary depending on
the type and scope of the study:

1. Acute toxicity tests: These are short-term studies, typically
lasting a few days to a couple of weeks [33].

2. Subchronic toxicity tests: These studies usually span around
90 days [33,34].

3. Chronic toxicity tests: These long-term studies can last
several months to a year or more [33]

Using AI to Determine the Drug Toxicity of Collagen
AI algorithms can be used to predict toxicity based on the
chemical and biological properties of the compounds. AI uses
neural networks to analyze molecular graphs or sequences to
detect toxicity-related patterns.
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The evaluation of pharmacokinetics and toxicity is crucial for
designing new therapeutic candidates with in silico virtual
screens, and generative AI outputs a vast number of molecules
that must be filtered into a tractable number for synthesis and
experimental validation. For this case example, the absorption,
distribution, metabolism, excretion, and toxicity (ADMET) AI
program was used to determine the toxicity of collagen. ADMET
is an effective primary filter that evaluates candidate compounds
based on their ADMET properties. ADMET-AI is a simple,

fast, and accurate digital computer web interface for predicting
the ADMET properties of molecules using machine learning
models.

The virtual calculation of the blood-brain barrier is shown in
Figure 3 [30], which effectively protects the brain tissue from
circulating pathogens and other potentially toxic substances.
This calculation shows the toxicity of collagen to be low.
Collagen itself was shown to be safe and nontoxic.

Figure 3. Virtual calculation of the blood-brain barrier. hERG: human Ether-à-go-go–related gene.

Challenges With the Uses of AI for Drug
Discovery

Despite promising advancements, several challenges remain
for the integration of AI and quantum computing in drug
discovery. The ethical implications of using AI in drug discovery
must be addressed. Ensuring transparency in AI algorithms and
maintaining accountability in decision-making processes are
critical to gaining public trust and regulatory approval, which
can be achieved by using an explainable AI approach.
Furthermore, the potential for bias in AI models necessitates
ongoing scrutiny to ensure equitable access to new therapies.

Data Privacy and Ethics
The use of AI and AI algorithms comes with concern for the
privacy and security of user data. Data poising and alterations
underlying models put AI users at risk. Implementing federated
learning allows for the training of AI models on decentralized
data sources without sharing sensitive data. The fully
homomorphic encryption technique is used in most federated
searching techniques. This is crucial in drug discovery, where
patient data and proprietary research information must remain
confidential. Federated learning enables collaborative learning
across different research institutions or pharmaceutical
companies, allowing them to leverage each other’s data without
compromising privacy. Since raw data are not centralized, the
risk of data breaches is minimized, making it a secure choice
for handling sensitive information in drug discovery. Fedrated
learning can be integrated with the AI and quantum computing
techniques discussed in this paper, enhancing the predictive
capabilities while maintaining data integrity and privacy.

Validation and Accuracy
Computational models must be rigorously validated against
experimental data to ensure that their predictions are reliable.
This includes demonstrating that computational methods are
accurate and can reliably substitute for laboratory-generated
data. Multiple stakeholders (eg, academia, industry, and
regulatory bodies) would need to validate and reproduce
computational data for different types of products.

AI models rely on large, high-quality datasets, whereas
pharmaceutical data are often limited, biased, or proprietary,
affecting the model’s performance. In addition, AI-generated
predictions can lack transparency, making it difficult to
understand how a model arrived at a particular conclusion,
which is critical in drug development. Although AI predictions
can be highly accurate, inconsistencies may still lead to failures
in identifying effective drugs or result in overlooking promising
candidates. To ensure reliability, AI-driven drug discovery must
meet stringent FDA regulatory standards and address ethical
concerns, including potential bias in drug development and risks
to patient safety. AI models often struggle with the complexity
of biological systems, such as multitarget interactions, immune
response, and genetic variations. Despite these challenges, AI
will continue to improve and is expected to play a significant
role in the future of drug discovery. The findings of the present
case study were intended to demonstrate that the computational
assessment of drug toxicity closely aligns with actual laboratory
data. This approach not only replicates laboratory results but
does so at a significantly reduced cost.
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Strengths of the Proposed Approach

Computational models can lower the costs of bringing new
drugs to market by reducing the need for extensive animal
studies or large human trials. Quantum computing, AI, and
machine learning have improved with respect to accuracy and
generalizability, and there is growing potential for their
application in areas traditionally requiring laboratory data (eg,
toxicology and pharmacodynamics). Advances in quantum
computing, molecular dynamics, and systems biology would
help computational models closely mimic biological systems
and make predictions more reliable.

AI and quantum computing facilitate the drug discovery process
from the following aspects:

1. Data analysis and pattern recognition: AI algorithms can
analyze vast datasets, including genetic Protonix and clinical
data to identify potential therapeutic targets and predict
drug interactions. This capability allows researchers to
uncover disease-associated targets and molecular pathways
more efficiently than traditional methods, which often rely
on trial and error [35-37].

2. Molecular simulation: Quantum computing enables more
accurate simulations of molecular interactions than classical
computers [38]. This allows researchers to explore a broader
range of potential drug candidates and significantly predict
their efficacy and safety, speeding up the drug discovery
process [37].

3. Integration of computational models: The combination of
AI and quantum computing allows for the development of
sophisticated computational models to simulate complex
biological systems. This integration can lead to
better-informed decisions in drug development and
regulatory processes, ultimately enhancing patient safety
[35].

4. Reduction of laboratory testing: By using computational
data, the need for extensive laboratory and animal testing
can be decreased. This not only reduces cost but also
shortens the time required to bring new drugs to market
[37].

5. Quantifying development costs: The costs are quantified
by evaluating the total expenses incurred during the drug
development process, including research and development,
clinical trials, and regulatory approvals. Traditional methods
can take up to 15 years and cost around US $1 billion,
whereas quantum computing can potentially reduce this
timeline and cost significantly [37].

Researchers may also review case studies where quantum
computing has been implemented in drug discovery to assess
the financial and temporal savings achieved compared to
conventional methods [37].

The burgeoning field of computational data, propelled by AI
and quantum computing advancements, stands to revolutionize
new drug discovery and approval processes. Computational
methods can significantly accelerate the identification of
potential drug candidates, predict their efficacy, and assess
safety, thereby reducing the traditional time and cost burdens
associated with pharmaceutical development. By integrating

AI and quantum computing with extensive chemical databases,
researchers can efficiently simulate biological interactions,
streamline virtual screening, and predict drug
toxicity—ultimately enhancing the likelihood of successful drug
development. Furthermore, the implications for the FDA
regulatory framework are examined, highlighting how
computational data can inform and expedite the approval
process, leading to faster review cycles and improved postmarket
surveillance. This situation calls for a paradigm shift from
traditional laboratory methods to data-driven approaches,
emphasizing the need for rigorous validation and collaboration
among stakeholders to establish robust regulatory standards for
computational models in drug discovery.

AI is far cheaper per compound than laboratory-based testing,
especially for initial screenings. For example, screening 1000
compounds via AI might cost US $10,000–US $50,000,
depending on the computational setup [20]. The same screening
using in vitro methods could cost US $1–US $10 million or US
$50–US $500 million using in vivo methods once augmented
reality AI models are deemed significant. Once developed and
validated, these models significantly reduce long-term expenses,
making them more cost-effective than laboratory methods for
large-scale or preliminary screenings.

As demonstrated with our case study, AI is often used as a
first-pass filter to predict drug toxicity, reducing the number of
compounds that need to be tested in the laboratory. By
prioritizing only those promising candidates for laboratory
testing, researchers can combine the speed and cost-effectiveness
of AI with the rigor and accuracy of laboratory results, achieving
a balance of cost and reliability.

Summary and Future Prospects

AI and quantum computing offer unique capabilities to tackle
complex problems in drug discovery, which is a critical
challenge in pharmaceutical research. Regulatory agents will
need to adapt to these new technologies. Regulatory processes
may become more streamlined, using adaptive clinical trials,
accelerating pathways, and better integrating digital data to
reduce the time and cost of bringing new drugs to market.
Computational data methods could reduce the cost and time
involved in experimental drug discovery, allowing researchers
to simulate biological interactions and screen large compound
libraries more efficiently. Creating virtual data for drug
discovery involves several stages, each using specific methods
such as simulations, synthetic data generation, data
augmentation, and tools to generate, collect, and affect human
interaction to identify and develop new drugs. Here, we have
emphasized that knowing the molecular structure of a drug is
a critical factor in determining its toxicity and for other aspects
of the drug discovery and approval process. Using computational
data in drug discovery has transformed the pharmaceutical and
biotechnology industries by accelerating research, reducing
costs and timeliness, and improving the likelihood of success.
Overall, the integration of AI and quantum computing represents
a transformative shift in drug discovery, offering the potential
for faster, more efficient, and more effective therapeutic
development. As these technologies continue to evolve, they

JMIR Bioinform Biotech 2025 | vol. 6 | e69800 | p.34https://bioinform.jmir.org/2025/1/e69800
(page number not for citation purposes)

Braga & RawalJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


will likely play a pivotal role in shaping the future of
pharmaceuticals. Nevertheless, several research questions remain
to be explored to realize this shift, including:

(1) Can AI reliably predict drug toxicity compared to traditional
laboratory results? Hypothesis: The incorporation of quantum
computing into molecular modeling improves the predictive
capabilities of AI, leading to more accurate toxicity assessments.

(2) Does the integration of quantum computing enhance the
accuracy of molecular modeling and drug discovery?
Hypothesis: The incorporation of quantum computing into
molecular modeling improves the predictive capabilities of AI,
leading to more accurate toxicity assessments.

(3) How do AI-driven toxicity predictions compare to laboratory
outcomes in terms of cost and time efficiency? Hypothesis:
Using AI and quantum computing for toxicity prediction
significantly reduces the need for laboratory experiments,
thereby decreasing both costs and development time in the drug
discovery process.

The convergence of AI and quantum computing holds great
potential for revolutionizing drug discovery and approval
processes. Continued research is needed to refine quantum
algorithms and integrate them with AI systems effectively.
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Abstract

(JMIR Bioinform Biotech 2025;6:e89673)   doi:10.2196/89673

In “Structural and Functional Impacts of SARS-CoV-2 Spike
Protein Mutations: Insights From Predictive Modeling and
Analytics” [1], the authors noted four errors.

Author JAJ has now been marked as an equal contributor, as
indicated by the asterisk added to their name.

Affiliation 1 has been changed from the following:

Department of Mathematics and Information
Communication Technology, School of Physical
Sciences, Dambai College of Education, Dambai,
Ghana

The affiliation now reads:

Department of Mathematics and Information
Communication Technology, Dambai College of
Education, Dambai, Ghana

Affiliation 11 has been changed from the following:

Interdisciplinary Aging Studies, Tulane Center for
Aging, School of Medicine, Tulane University, New
Orleans, LA, United States

The affiliation now reads:

Tulane Center for Aging, School of Medicine, Tulane
University, New Orleans, LA, United States

Affiliation 13 has been changed from the following:

Department of National Institute of Allergy and
Infection Diseases (NIAID), 14 Laboratory of Malaria
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and Vector Research (LMVR), National Institute of
Allergy and Infectious Diseases (NIAID), Rockville,
MD, United States
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The corrections will appear in the online version of the paper
on the JMIR Publications website, together with the publication
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those repositories.
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Abstract

Background: Adalimumab, a monoclonal antibody targeting tumor necrosis factor α, treats autoimmune diseases but induces
antidrug antibodies in 30% to 60% of patients, reducing its efficacy.

Objective: This study aims to investigate molecular mimicry as a mechanism behind this immunogenicity, where bacterial
immunoglobulin domains structurally resemble adalimumab’s light chain, triggering immune responses.

Methods: Using PSI-BLASTp (National Center for Biotechnology Information) and PRALINE (Center for Integrative
Bioinformatics), there are 40 bacterial antigens homologous to adalimumab, with 8 clinically relevant strains.

Results: Structural analysis revealed 94% amino acid identity between the immunoglobulin domain of Escherichia coli strain
B1 and adalimumab’s light chain, and 89.67% similarity with Corynebacterium pyruviciproducens. Root mean square deviation
values confirmed strong structural homology. Additionally, 5 cross-reactive B-cell epitopes were predicted, suggesting overlapping
surfaces that may promote immune cross-reactivity and antidrug antibody development.

Conclusions: This study represents a first step toward identifying a potential microbial factor driving antiadalimumab antibody
formation. The predicted cross-reactive regions provide specific candidates for further in vitro validation to confirm molecular
mimicry and refine epitope mapping. Understanding these mechanisms may ultimately inform the design of less immunogenic
biologics and guide clinical strategies to predict and prevent antidrug antibody formation.

(JMIR Bioinform Biotech 2025;6:e83872)   doi:10.2196/83872

KEYWORDS

adalimumab; antidrug antibody; immunogenicity; in silico analysis; molecular mimicry

Introduction

Adalimumab is a fully human monoclonal antibody targeting
tumor necrosis factor-α, a protein involved in inflammation in
various chronic autoimmune conditions [1]. The Food and Drug
Administration has approved adalimumab to treat several
diseases: rheumatoid arthritis, ankylosing spondylitis, Crohn
disease, ulcerative colitis, hidradenitis suppurativa, juvenile
idiopathic arthritis, plaque psoriasis, psoriatic arthritis, and
uveitis [1]. Despite the humanization of adalimumab, the amino
acid sequences of both the heavy and light variable chains near
the epitope binding regions within the
complementarity-determining regions tend to elicit a robust
immune response [1-3]. Immune complexes formed by

adalimumab and antigens can reach 4000 kDa, and despite being
humanized, they may still be recognized as foreign, triggering
antidrug antibodies (ADAs) that reduce its effectiveness [1,2].

Approximately 30% to 60% of patients on treatment with
adalimumab eventually experience a reduction in the
effectiveness of the treatment [4]. This waning efficacy is
believed to be due, in part, to immunogenicity, which refers to
the body’s generation of antibodies targeting the biological drug
[4]. One potential mechanism underlying this immune response
is immune cross-reactivity, where the immune system interacts
with structurally similar antigens from different sources. Among
these, molecular mimicry—where bacterial proteins share
structural homology with therapeutic antibodies like
adalimumab—has emerged as a plausible explanation for this
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phenomenon [5,6]. Four requirements must be met for an
infection to be implicated in the molecular mimicry-based
development of an autoimmune response: there must be
epidemiological data about exposure to the environmental agent
and the development of autoimmunity, structural homology
between human antigens (or medication) and pathogens,
autoantibodies or autoreactive lymphocytes against both human
and pathogen antigens, and in vivo evidence in animal models
[2,7].

Immunoglobulin domains, widely recognized for their role in
the structure and function of key immunological proteins, are
highly conserved units across evolution [8]. Interestingly, these
domains are not confined to the immune systems of higher
organisms but are also present in bacterial proteins, including
those of Escherichia coli and other enterobacteria [8,9].
Immunoglobulin-like domains are frequently found in these
microorganisms in cell surface proteins and fimbrial organelles,
where they play essential roles in host cell adhesion and invasion
by pathogenic strains. They serve as structural components of
pilus and nonpilus fimbrial systems and are members of the
intimin or invasin family of outer membrane adhesins [8]. This
dual functionality underscores their significance as a possible
evolutionary mechanism through which pathogens leverage
these conserved structures to evade or modulate the host immune
response, facilitating infection and colonization [8].

The immune cross-reactivity highlights the need for a
comprehensive understanding of the immune responses induced
by microorganisms in drugs. It has important implications for
the development and use of pharmacological therapies.
Currently, there is no evidence of immune cross-reactivity
between adalimumab and microbial antigens. However,
cross-reactive immune responses have been reported with other
medications and vaccines, leading to thrombocytopenia and
autoimmune diseases. Furthermore, patients with underlying
autoimmune conditions who develop infections are more likely
to produce anti-drug antibodies [5,10-15].

Molecular mimicry has traditionally been investigated in the
context of autoimmune diseases and vaccine responses, where
microbial antigens resemble host proteins. However, its potential
role in the immunogenicity of therapeutic antibodies remains
largely unexplored. In this study, we apply this concept to
examine whether infections could trigger cross-reactive immune
responses toward biological drugs. Specifically, we investigate
possible cross-immunogenicity between the immunoglobulin
domain of clinically relevant Gram-positive and Gram-negative
bacteria and adalimumab using in silico approaches. To our
knowledge, this is the first study to propose a mechanistic link
between bacterial antigens and adalimumab immunogenicity
supported by sequence and structural evidence. By addressing
this unexplored aspect of biologic drug immunogenicity, our
work provides a novel conceptual framework that may guide
future experimental validation and inform strategies to improve
therapeutic antibody safety.

Methods

Study Design
A workflow image of the method is shown in Figure S1 in
Multimedia Appendix 1.

Sequences Analysis
Adalimumab’s amino acid sequence, identified by its DrugBank
Accession Number (DB00051), was obtained from DrugBank
[16,17]. The complete amino acid sequences of both the heavy
(α) and light (β) chains corresponding to the Fab region were
used for the analyses. These sequences include the variable and
constant domains, ensuring full structural representation of the
monoclonal antibody during alignment and comparison.
Adalimumab sequence served as the input for a PSI-BLASTp
(version 2.16.0; National Center for Biotechnology Information)
search targeting bacterial homologs, using the identifier Bacteria
(taxid:2). The length of matched subsequences in PSI-BLASTp
is influenced by statistical significance thresholds and the
iterative nature of the algorithm, which together help ensure
that only meaningful alignments are included in the analysis
[18]. Default settings were applied for the general search
parameters. For subsequent analyses, amino acid sequences
from bacteria of clinical significance to humans were selected
[19].

Antigens demonstrating a similarity of ≥30% were considered
for further investigation. The amino acid sequences from the
chosen microorganisms were aligned with the adalimumab light
and heavy chains to ascertain identity levels and pinpoint
conserved regions. The PRALINE tool (version 2; Center for
Integrative Bioinformatics) [20] facilitated the alignments by
identifying regions of similarity, which may indicate functional,
structural, or evolutionary relationships among the proteins
being compared. The alignment parameters were configured to
use BLOSUM62 as the exchange matrix using default
parameters unless otherwise specified. Specifically, we used
BLOSUM62 as the substitution matrix with a gap opening
penalty of 11 and a gap extension penalty of 1 (standard for
PSI-BLAST alignments). For the PSI-BLASTp search, 3
iterations were performed with an E-value threshold of 0.001
to enhance sensitivity and identify distant homologs [21].
E-value represents the number of random matches you would
expect to find with a score equal to or better than the one
observed [22]. Similarly, antigens with a similarity of ≥30%
were advanced for further analysis. Also, a high-resolution
Protein Data Bank (PDB) file (ID: 3wd5) was sourced from the
PDB [23,24], enabling structural analysis.

Modeling Based on Homology
3D models of selected antigens, for which no reports exist in
the PDB, were constructed based on homology using the
SWISS-MODEL server (ProMod3) [25,26]. These initial models
underwent further refinement with UCSF Chimera (version
1.1.3) [27].

Antigens with experimentally resolved 3D structures were
sourced directly from the PDB. The visualization of all models
was achieved using PyMOL (version 3.0; Schrödinger, Inc)
[25]. Structural homology assessments were conducted using
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the Ramachandran charts, the Quantitative Model Energy
Analysis index, the RMSD metric, and Global Model Quality
Estimate (GMQE) values were assessed for all models. RMSD
focuses on precise structural alignment, while GMQE provides
a broader model quality evaluation. Using both metrics allows
researchers to make informed decisions about the reliability and
applicability of their homology models in biological research
[26,28].

B-Cell Epitope Prediction
The prediction of B-cell epitopes was carried out using the
ElliPro server (version 3.0; IEDB Analysis Resource), using
the default parameters that are a minimum score protrusion
index (PI) threshold of 0.5 and a maximum distance of 6 Å
between residue centers for defining discontinuous epitopes.
ElliPro identified linear and discontinuous epitopes based on
the protein’s 3D structure (PDB ID: 3WD5) using the PI of
residues [29,30]. B-cell epitope prediction methods, such as
those using the Ellipro server, generally achieve accuracy rates
ranging from 65% to over 70%. Still, ongoing validation and
refinement are necessary due to variability in sensitivity and
specificity across different prediction tools [27]. Furthermore,
epitopes previously identified for adalimumab were retrieved
from the Immune Epitope Database (IEDB). This step was
essential to explore the potential molecular mimicry between
antigens from bacteria and those associated with adalimumab.
Epitopes conserved between adalimumab and its bacterial
homologs were visualized on the 3D model of the monoclonal
antibody using PyMOL version 3.0.

Major Histocompatibility Complex Class II–Dependent
T-Cell Epitope Prediction
T-cell epitope prediction was performed using the NetMHCIIpan
version 4.1 web server (IEDB Analysis Resource) [31]. This
platform uses an ensemble of deep neural networks trained on
large quantitative binding datasets (IC   values) derived from
multiple human leukocyte antigen (HLA) class II molecules,
enabling panallelic prediction of peptide-HLA interactions.

The FASTA sequences of the VH and VL chains were analyzed
separately. The alleles HLA-DRB1*01:01,
HLA-DQA101:01/DQB105:01, HLA-DPA101:03/DPB102:01,
and HLA-DQA105:01/DQB102:01 were selected due to their
frequency and immunogenetic relevance in diverse human
populations commonly used in therapeutic immunogenicity
assessments. Epitope scanning was performed with a
15-amino-acid window (15-mer) sliding by one residue to ensure
maximal coverage of overlapping peptides. The software
generated an affinity score (nM) and a percentile rank for each
predicted peptide. Following the server’s guidelines, peptides
with rank ≤2.0% were classified as strong binders, while those
with 2.0%<rank≤10% were considered weak binders.

Filtering, Ranking, and Epitope Selection
All prediction outputs were exported in CSV format. The data
were subsequently filtered to retain only peptides with an affinity
score ≥0.2 and low percentile rank, indicative of stable
peptide–major histocompatibility complex (MHC) II complexes.
Scores and ranks were compared across both antibody chains

to identify high-affinity regions and potential immunogenic
hotspots.

Population Coverage Analysis
To assess the global relevance and potential immunological
reach of the predicted MHC class II–restricted T-cell epitopes,
a population coverage (PC) analysis was conducted using the
population coverage tool available at the IEDB [32].

This analysis estimates the fraction of individuals within defined
human populations that are likely to present one or more of the
predicted epitopes, based on the distribution frequency of HLA
alleles. The tool integrates the predicted epitope–HLA binding
data obtained from NetMHCIIpan 4.1 with HLA genotypic
frequencies derived from the Allele Frequency Net Database,
which compiles large-scale datasets from diverse ethnic and
geographical groups worldwide.

All epitopes predicted as strong or weak binders (rank ≤10%)
across the selected HLA-DR, HLA-DP, and HLA-DQ alleles
were included as input. The analysis was performed for multiple
population sets, including global coverage, South American,
and European cohorts, representing regions with significant
therapeutic use of adalimumab and diverse HLA genetic
backgrounds.

The algorithm computes several parameters: projected PC (%),
representing the cumulative percentage of individuals expected
to respond to at least one of the selected epitopes. Average
number of epitope–HLA combinations recognized per
individual, reflecting immune response redundancy. PC90 value
(PC 90%), indicating the minimal number of epitope–HLA
combinations required to cover 90% of the target population.

The results were exported in CSV format and visualized as bar
and cumulative distribution plots to illustrate interregional
variability in potential T-cell responsiveness. This step provides
an estimate of the breadth and universality of the predicted
epitope set, allowing prioritization of epitopes with the highest
immunological representativeness across human populations.

Conservation Analysis of Immunoglobulin Domain in
Bacteria
The conservation of amino acid residues from the
immunoglobulin domain across various bacterial species in
relation to adalimumab was analyzed using the Rate4Site
algorithm on the ConSurf server (version 1.00) [33]. This
algorithm calculates position-specific evolutionary rates using
an empirical Bayesian approach. The rates are normalized and
categorized into 9 grades, with highly conserved residues
assigned a score of 9 and highly variable residues receiving a
score of 1. The thresholds for these categories are based on the
normalized evolutionary rates calculated by Rate4Site. Residues
with scores of 1‐3 are considered highly variable, reflecting
higher evolutionary rates and frequent mutations or substitutions
across species. Conversely, residues with scores of 7 to 9 are
classified as highly conserved, indicating minimal variability
and strong evolutionary pressure to maintain their structure and
function across species. These conservation rates were then
visualized using the structural model of adalimumab obtained
from the PDB using the Chimera tool [27].
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Allergenicity Prediction Using AllerTOP
The potential allergenicity of the predicted T-cell epitopes
derived from the light chain of the adalimumab antibody was
evaluated using the AllerTOP v.2.0 server [34,35]. This
bioinformatics tool applies an alignment-independent approach
based on auto- and cross-covariance transformation of protein
sequences into uniform-length vectors, followed by machine
learning classification using a k-nearest neighbor algorithm
trained on a curated dataset of known allergens and
nonallergens.

All epitopes predicted by NetMHCIIpan 4.1 as MHC class II
binders (rank ≤10%) were used as input sequences in FASTA
format. Each peptide was analyzed individually to determine
its probability of being classified as “Probable Allergen” or
“Probable Non-Allergen,” according to the physicochemical
descriptors of amino acid residues (hydrophobicity, size,
flexibility, and secondary structure propensity).

The results were automatically compared to the training dataset
of AllerTOP, which includes more than 2400 allergenic and
2400 nonallergenic proteins, allowing for an indirect
homology-free prediction of allergenic potential. The outcomes
were exported and tabulated, recording for each peptide (1) the
most similar protein identified, (2) the source organism, and (3)
the allergenicity classification.

Peptides classified as “Probable Allergen” were further analyzed
for potential molecular mimicry with known allergens of plant,
fungal, or arthropod origin to assess possible cross-reactivity
risks. The combined use of NetMHCIIpan 4.1 and AllerTOP
v.2.0 allowed an integrated evaluation of both T-cell
immunogenicity and allergenicity potential for the light
chain–derived epitopes of adalimumab.

Ethical Considerations
This study was conducted entirely using in silico methods and
publicly available, deidentified data. No human participants,
personal information, or identifiable records were accessed;

therefore, issues of privacy and confidentiality do not apply.
No compensation was provided, as no participants, either human
or animal subjects, were involved. Consequently, institutional
ethical approval and informed consent were not required for
this research.

Results

PSI-BLASTp
To explore potential molecular similarities between the
monoclonal antibody and bacterial proteins, a PSI-BLASTp
search was performed. This analysis was conducted to identify
possible cross-reactive epitopes that could contribute to
off-target interactions or immunological cross-reactivity, which
are relevant for understanding antibody specificity and safety.
The search revealed 40 significant matches between the
monoclonal sequence and bacterial antigens. From these, 8
sequences corresponding to bacteria of clinical relevance were
selected for further analysis (Table 1). Comparative alignment
between the adalimumab light chain and the identified bacterial
homologs demonstrated an average amino acid identity of 64%.
This identity represents amino acid residues that are identical
and located in the same position when the sequences are aligned.
Higher sequence similarity increases the likelihood of
cross-reactivity, as it suggests that the compared molecules may
share structurally conserved epitopes capable of being
recognized by the same antibodies. The most conserved region
was located between residues 74 and 150 (Multimedia Appendix
2), suggesting a potential structural or functional similarity in
this segment. The analysis revealed that adalimumab light chain
shares sequence homology with a bacterial protein containing
an immunoglobulin domain, suggesting possible evolutionary
or conformational parallels. Similar results were obtained for
the heavy chain, although some alignments involved
hypothetical bacterial proteins. Consequently, subsequent
analyses focused on the heavy chain and the homologs that
could be fully annotated (Table S1 in Multimedia Appendix 3).

Table . PSI-BLASTp results. This table presents the root mean square deviation (RMSD) values, which measure the average structural deviation
between aligned molecules.

RMSDaCod genbankSimilarity (%)AntigenBacteria

0.2HEC3531043·194IDCPbEscherichia coli

0.35WP_280195946·189.67IDCPCorynebacterium pyru-
viciproducens

0.3WP_317090695·182.86IDCPKlebsiella pneumoniae

0.5MCA0777086·175.00IDCPVibrio vulnificus

0.6MCX2891938·167.80IDCPPseudomonas sp.

0.5WP_304481324.162.84IDCPHelicobacter pylori

0.9MBS2599521.155.56IDCPSalmonella enterica

0.8WP_282719268.143.84IDCPStaphylococcus aureus

aRMSD values below 1 Å indicate an exceptionally high degree of structural similarity, often reflecting near-identical alignments. This level of similarity
is particularly relevant in studies of molecular mimicry, as it suggests that the structures may share conserved functional or antigenic regions, increasing
the likelihood of cross-reactivity. Such low RMSD values underscore the robustness of the alignments and the potential biological significance of the
identified matches.
bIDCP: immunoglobulin domain–containing protein.
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To further characterize the similarities detected through
PSI-BLASTp, pairwise alignments were conducted between
the adalimumab light chain and the bacterial homologs. This
analysis was designed to quantify the degree of sequence
conservation and to identify bacterial species exhibiting the
closest resemblance to the therapeutic antibody. The results
showed identity values ranging from moderate to high

(43.84%‐94%) between adalimumab and the bacterial antigens.
The highest sequence conservation was observed with E. coli
and Corynebacterium pyruviciproducens (Table 1 and Figure
1). These findings suggest that certain bacterial proteins share
notable similarity with adalimumab, which may be relevant for
understanding potential cross-reactive interactions.

Figure 1. Binary alignment of adalimumab light chain with its closest homologs. The binary alignments demonstrated the highest degree of conservation
with adalimumab, Escherichia coli, and Corynebacterium pyruviciproducens, specifically in residues 18‐231 of E. coli and residues 28‐241 of C.
pyruviciproducens. These findings highlight potential regions of molecular mimicry between adalimumab and bacterial proteins.

Modeling and Structural Analysis
To evaluate whether the sequence similarities observed
translated into comparable 3D conformations, structural models
were generated for the bacterial antigens listed in Table 1. This
analysis aimed to determine the extent to which these bacterial
proteins might adopt folds resembling those of adalimumab,
thereby providing structural evidence of potential mimicry. The
resulting models showed that the bacterial antigens consistently
adopted the characteristic immunoglobulin-like fold (Figure 2).
In the cases of C. pyruviciproducens, E. coli, Staphylococcus
aureus, and Vibrio vulnificus, the predicted structures were
organized as dimers. The GMQE scores indicated reliable model
quality, with the lowest value (0.70) corresponding to
Salmonella enterica. This parameter combines information from
the sequence alignment and the quality of the structural template
to estimate the expected accuracy of the final model; GMQE

values range from 0 to 1, and scores above 0.6 are generally
considered indicative of high-confidence structural predictions
[26]. Furthermore, RMSD analyses demonstrated a high degree
of structural similarity between adalimumab and the bacterial
models (Figure 3). RMSD values represent the average atomic
distance between 2 superimposed structures, where values below
1 Å suggest a nearly identical spatial organization [36]. In
particular, the remarkably low RMSD observed for E. coli (0.2
Å) provides compelling evidence of molecular mimicry, as such
minimal deviation indicates that both molecules share an almost
indistinguishable folding pattern. This structural conservation
not only supports the sequence-based similarities but also
implies that the bacterial proteins could expose epitopes in a
conformation highly compatible with antibody recognition,
thereby favoring potential cross-reactivity or recognition from
adalimumab antibodies to bacterial proteins and adalimumab.
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Figure 2. The 3D models. Structures modeled for bacterial antigens homologous to adalimumab light chain adopted a typical fold of an immunoglobulin
domain.

Figure 3. Structural homology. The 3D structure of adalimumab light chain (colored in brown) was superimposed onto each of the modeled structures
for bacterial homologs. Analysis revealed a match among the compared structures, indicating a high degree of structural homology.

B-Cell Epitope Prediction
To explore whether the sequence similarities between
adalimumab and bacterial homologs could translate into shared
antigenic regions, an in silico prediction of B-cell epitopes was
performed. This computational approach aimed to identify
potential linear epitopes within adalimumab that might overlap
with conserved bacterial sequences and therefore represent
possible cross-reactive sites. The analysis predicted 5 B-cell
epitopes in adalimumab showing varying degrees of similarity

to bacterial homologs (Table 2). The predicted epitopes differed
in length, with epitopes 1 and 5 containing the largest number
of residues, while epitope 2 comprised only 4 residues shared
among the bacterial antigens examined. Structural projection
of the predicted epitopes revealed that potential cross-reactive
regions are distributed across different areas of the antibody
surface (Figure 4A). Additionally, surface modeling indicated
that these epitopes collectively occupy a substantial portion of
the molecular surface (Figure 4B). Although the predicted
epitopes ranged from 4 to 16 amino acids, even short conserved
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sequences can be relevant for antigen recognition, as
complementarity-determining regions within antibodies—often

only 6‐20 residues long—are primarily responsible for specific
antigen binding [37].

Table . Epitopes predicted on adalimumab to be conserved among bacterial homologsa.

ScoreResiduesEndStartSequencesEpitope

0.80212232220TLSKADYEKHKV1

0.54119116SSLQ2

0.6516110105SGSGTD3

0.65355551SVGDR4

0.67616255240HQGLSSPVTKSFN-
RGE

5

aThe scores assigned to each predicted epitope range from 0 to 1, with values closer to 1 indicating a stronger prediction. A score of 0.802 for epitope
1, for example, suggests a high level of confidence in its conservation and potential functional relevance across bacterial homologs. The biological
relevance of these results suggests that, among the entire antigen sequence, the region corresponding to the predicted epitope is the most likely to be
immunogenic and therefore to be recognized by antibodies.

Figure 4. Cross-reactive B-cell epitope prediction. According to Ellipro and multiple alignment tools, 5 linear epitopes are shared between adalimumab
light chain and its homologs, which could be implicated in cross-reactivity. (A) A cartoon model illustrates the location of epitopes on the 3D structure
of adalimumab. (B) A surface model displays the area occupied by the predicted epitopes.

MHC Class II–Dependent T Epitope Prediction
T-cell epitope predictions using the IEDB MHC II binding tool
identified multiple adalimumab-derived peptides with strong
affinity (percentile ≤2%) for HLA-DRB1 alleles previously
associated with anti-adalimumab antibodies. Both heavy- and

light-chain regions contained potential CD4+ T-cell epitopes
presented by these risk alleles, supporting a T-cell–dependent
mechanism of immunogenicity (Tables S2 and S3 in Multimedia
Appendix 3). Screening of the clinically relevant bacterial
proteomes revealed peptides with comparable high-affinity
binding to the same HLA molecules and partial sequence
similarity to adalimumab epitopes (not shown). This overlap
suggests that microbial antigens may share HLA-restricted
motifs with adalimumab, potentially enabling cross-reactive
T-cell responses that contribute to antidrug antibody formation.

PC Analysis
PC analysis performed using the IEDB Population Coverage
tool showed that the predicted class II epitopes from the

adalimumab light chain could be presented by approximately
15.2% of the European population (Multimedia Appendix 4
and Table S4 in Multimedia Appendix 3). The mean number
of epitope–HLA combinations recognized per individual was
3.19 (SD ), with a PC90 value of 2.48. These results indicate
that a limited yet notable fraction of the population carries HLA
alleles capable of presenting these epitopes, supporting the
existence of potential interindividual variability in T-cell
responsiveness to adalimumab.

Conservation Analysis of Immunoglobulin Domain in
Bacteria
To evaluate whether the structural similarities between
adalimumab and bacterial homologs reflect conserved
evolutionary features, a conservation analysis of the
immunoglobulin domain was performed using the ConSurf
server. This analysis aimed to identify amino acid residues that
are evolutionarily conserved across bacterial antigens and the
antibody, which could indicate the maintenance of structural or
functional motifs important for protein stability or interaction.
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The results, summarized in Figure 5, highlight conserved
residues mapped onto the amino acid sequence and the
corresponding 3D structures. The cartoon representations
illustrate that several regions of the immunoglobulin domain
remain highly conserved among the analyzed bacterial species.
The conservation score gradient, represented by ConSurf’s color

scale from cyan (variable=grade 1) to purple (highly
conserved=grade 9), emphasizes that key residues within the
core of the domain exhibit strong conservation, suggesting
evolutionary pressure to maintain structural integrity in these
regions.

Figure 5. The conservation analysis of individual amino acids in adalimumab was conducted using the ConSurf server. (A) Display of the amino acid
sequence, highlighting evolutionarily conserved residues of immunoglobulin domains of the bacterial antigens in adalimumab. (B) and (C) are cartoon
models that illustrate the conserved regions on the 3D structure of adalimumab, demonstrating that its amino acid sequence and structure are preserved
across different species. The degrees of conservation were mapped onto the sequence and structure, employing the ConSurf color-coding scheme, where
shades range from cyan (representing variable, grade 1) to purple (indicating highly conserved, grade 9) positions.

Allergenicity Prediction Using AllerTOP
Allergenicity analysis performed using the AllerTOP server
revealed that several of the predicted adalimumab-derived
peptides share sequence similarity with known or probable
allergens. Notably, matches were identified with allergenic
proteins from Sarcoptes scabiei (Sarc s 1), Artemisia vulgaris
(Art v 3), and Malassezia sympodialis, as well as with
plant-derived allergens such as hydroxyproline-rich
glycoproteins from Oryza sativa and neoxanthin synthase from
Solanum tuberosum. Some peptides also showed similarity to
human proteins, including ATP synthase F1 assembly factor 2
and B-cell lymphoma 6 protein, suggesting potential
immunological cross-reactivity. Overall, the presence of
sequences with predicted allergenic properties indicates that
these epitopes may elicit immune recognition and could
contribute to the immunogenic potential of adalimumab.

Discussion

Principal Findings
This study identified several bacterial antigens that share
significant sequence and structural similarities with adalimumab,
particularly within immunoglobulin-like domains. Using in
silico analyses, we found that these bacterial proteins exhibit
conserved folds and low RMSD values relative to adalimumab,
supporting the hypothesis of molecular mimicry. Such a

resemblance may provide a mechanistic explanation for the
development of ADAs and the loss of therapeutic response
observed in some patients treated with adalimumab. To our
knowledge, this is the first study to propose a mechanism of
cross-reactivity between adalimumab and microbial antigens
supported by in silico structural and sequence evidence.
Moreover, it is the first report describing specific bacterial
epitopes with potential clinical relevance in the context of
adalimumab immunogenicity.

Up to 60% of patients who receive adalimumab eventually show
a decline in the effectiveness of the treatment [4]. Therapeutic
failure is thought to be caused by ADAs, but the reasons for its
formation are still unknown. Some past infections may have
contributed to the development of ADAs [15]. In this setting,
molecular mimicry could explain why prior infections produce
these antibodies. Molecular mimicry may cause antibodies to
be generated during past infections to inadvertently neutralize
adalimumab by cross-reacting with its epitopes, diminishing its
therapeutic effect. So, we propose using bioinformatics to
investigate this phenomenon. In support of this hypothesis, our
in silico T-cell epitope predictions identified adalimumab
peptides with strong HLA-DRB1 binding—alleles previously
linked to anti-adalimumab antibodies—and revealed bacterial
peptides capable of binding the same HLA molecules,
suggesting a potential cross-reactive, T-cell–mediated
mechanism underlying ADA formation.
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To establish a link between certain microbes and molecular
mimicry, we must follow a 4-tiered evidence approach [2,7].
Previously, an epidemiological connection was established [15].
Now, using in silico methods, we have identified potential
antigens with significant identity, indicating possible mimicry.
Although the analyzed fragments are relatively short, they were
selected from clinically relevant bacteria due to their potential
involvement in molecular mimicry processes. Information
regarding their immunodominant regions is currently
unavailable, as this is the first study addressing these specific
bacterial-antibody similarities. This finding suggests that
clinically relevant bacteria, including E. coli, C.
pyruviciproducens, Klebsiella pneumoniae, V. vulnificus,
Pseudomonas aeruginosa, Helicobacter pylori, S. enterica, and
S. aureus, may harbor molecular motifs capable of inducing
cross-reactivity. These microorganisms are of major medical
concern as they encompass commensals with pathogenic
potential, such as E. coli [38]; opportunistic pathogens linked
to severe infections like C. pyruviciproducens [39,40]; and
multidrug-resistant strains such as K. pneumoniae [41,42].
Others, including V. vulnificus and P. aeruginosa, are associated
with life-threatening conditions such as necrotizing soft-tissue
infections and ventilator-associated pneumonia, respectively
[43,44]. Moreover, H. pylori, S. enterica, and S. aureus
contribute to chronic and systemic diseases ranging from
gastritis and typhoid fever to osteomyelitis and sepsis [45-47].
In addition, population coverage analysis using the IEDB tool
showed that the predicted class II epitopes from the adalimumab
light chain could be presented by approximately 15% of the
European population, suggesting that only a subset of individuals
possess HLA alleles capable of recognizing these epitopes and
may therefore be more prone to T-cell–mediated immunogenic
responses.

The observed sequence similarity within immunoglobulin-like
domains highlights a plausible mechanism through which
antibodies targeting microbial antigens could recognize
adalimumab epitopes, potentially impairing its therapeutic
efficacy. This warrants further experimental validation through
in vitro inhibition assays and in vivo studies to confirm the
immunological and clinical significance of these mimicry events.
These predictions also provide candidate regions for in vitro
validation, enabling the refinement of epitope mapping through
assays such as enzyme-linked immunosorbent assay or
peptide-binding tests. Additionally, the complete amino acid
sequences of the bacterial antigens are available for future
recombinant cloning and seroprevalence studies in
adalimumab-treated patients.

In addition, allergenicity prediction using the AllerTOP server
indicated that several adalimumab-derived peptides share
sequence similarity with known or probable allergens from
diverse sources, including S. scabiei, A. vulgaris, and O. sativa.
This overlap suggests that certain epitopes may possess inherent
immunostimulatory properties or cross-reactivity with
environmental allergens, further supporting their potential
contribution to the immunogenic profile of adalimumab.

Our results have cast a new light on the intricate role of
molecular mimicry in drug development, merging concepts
from diverse therapeutic domains. Historically, molecular

structures resembling those of microbial antigens have been
exploited to elicit immunological benefits, enhancing the body’s
defenses against diseases and improving vaccine efficacy, and
even cancer response [48-51]. However, our findings underscore
a more intricate reality where these structural analogies, notably
those present in adalimumab, bear the potential to induce ADA
development. This duality reflects broader pharmaceutical
experiences, where beneficial immunogenic mimicry can, in
some contexts, inadvertently lead to immune cross-reactions
with conditions like thrombocytopenia and infectious and
autoimmune diseases [5,10-14]. The resulting immunological
disarray, wherein the body cannot differentiate between
therapeutic agents and microbial antigens, might trigger an
unwarranted immune response against the host’s own tissues,
manifesting in a range of adverse clinical outcomes such as
autoimmune disease relapses, serum sickness, hypersensitivity
reactions, or symptoms of autoimmune disease. Thus, our study
bridges the existing knowledge gap by revealing how the same
molecular resemblances that have been leveraged for therapeutic
gain may also carry risks that must be carefully navigated in
the continuum of drug research and patient care.

Unraveling the connections of shared molecular similarities
between drugs and various microorganisms—pathogens and
commensals alike—can illuminate potential reasons behind the
unintended effects some medications might have on the immune
system’s response to treatment. Specifically, within the
therapeutic framework, molecular mimicry may introduce
complexities in treatment modalities due to its potential to elicit
aberrant immune responses. Such phenomena can attenuate the
efficacy of the medication or precipitate adverse immunological
reactions through ADA development. We also consider it may
be beneficial to adjust the drug’s formulation and design to
lessen its immunogenic potential while maintaining therapeutic
effectiveness, a task that is complex yet crucial [52].

In the realm of precision medicine, the significance of molecular
mimicry between monoclonal antibodies and microorganisms
is profound. This study highlights the presence of antigens with
immunoglobulin domains in microbes such as E. coli, H. pylori,
and S. aureus, common colonizers [53-55], as well as in those
linked to severe diseases, including K. pneumoniae, V.
vulnificus, S. enterica, C. pyruviciproducens, and Pseudomonas
species [40,41,43,56,57]. These immunoglobulin domains,
which are involved in diverse binding and molecular recognition
processes, have been identified across a spectrum of functional
groups, including molecular transport, morphoregulation, and
cell adhesion to virus receptors, shape recognition, and toxin
neutralization [8,9]. The remarkable functional versatility of
the immunoglobulin superfamily extends to cell phenotype
markers and regulators of gene transcription, among others.
Thus, the structural and functional parallels found in this study
underscore the need for careful consideration of molecular
mimicry in drug development, particularly in the design of
monoclonal antibodies, due to their potential to elicit unintended
immune responses or interfere with microbial commensals
critical to human health.

It is important to acknowledge the limitations of our study. The
actual structures may differ from the models we propose, as in
silico modeling and epitope prediction analyses are not
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definitive. Nevertheless, bioinformatic approaches offer
significant advantages by efficiently guiding research efforts
[27]. They play a crucial role in the initial evaluation of
hypotheses, helping determine whether further in vitro studies
are warranted. Additionally, bacteria may retain remnants of
vectors through horizontal and vertical transmission, whether
occurring naturally or during biotechnological processes.
However, since not all the bacteria analyzed are associated with
biotechnology, any bacterial contamination, if present, is more
likely to result from natural processes and evolutionary
mechanisms. Moreover, given that all the bacterial antigens
studied contain an immunoglobulin-like domain—a feature
widely reported across various organisms and particularly in
enterobacteria [8]—we consider it unlikely that these findings
are due to contamination.

While in silico predictions provide valuable preliminary insights,
we acknowledge that they cannot fully confirm the occurrence
of molecular mimicry in a biological context. Nonetheless, the
results provide a rational basis for the design of forthcoming
serological studies, guiding the selection of candidate antigens
and regions with potential cross-reactivity. This work represents
a first step toward understanding the mechanisms underlying
cross-reactive immune responses between microbial antigens
and therapeutic antibodies. The high degree of structural
similarity observed suggests a biologically plausible mechanism
of cross-reactivity, which we plan to further investigate through
in vitro validation assays. In addition, we acknowledge that
immunogenicity is a multifactorial process influenced not only

by molecular mimicry but also by protein-specific properties,
manufacturing conditions, and patient-related factors.
Nonetheless, molecular mimicry remains one of the least
explored contributors to therapeutic antibody immunogenicity,
and our findings provide the first evidence-supported hypothesis
proposing this mechanism in the context of adalimumab.

As we look toward future pharmaceutical innovation, the
insights gained from this inquiry advocate for an integrated
approach. This approach should encompass a thorough
investigation of the interplay between drugs, the human
microbiome, and pathogenic microorganisms. By doing so, we
can strive to harness the positive aspects of molecular mimicry
while mitigating its risks, thereby advancing the field of
medicine with a more informed and cautious perspective.

Conclusions
In conclusion, examining adalimumab’s structural similarities
with key microorganisms such as bacteria offers a nuanced
perspective on molecular mimicry’s dual role in medicine. While
its utility in enhancing therapeutic benefits is established, we
urge a critical reevaluation based on our findings that raise the
possibility of adverse immune reactions due to ADAs. Our
results also point to the need to advance in the confirmation
through in vitro and in vivo tests of this cross-reactivity, because
this would make it a necessary and judicious approach to drug
design, incorporating an integrated analysis of
drug-pathogen-microbiome interactions to safeguard therapeutic
efficacy and patient health.
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Multimedia Appendix 1
Computational workflow.
[PNG File, 299 KB - bioinform_v6i1e83872_app1.png ]

Multimedia Appendix 2
Multiple alignment between adalimumab light chain and homologs. The multiple alignments revealed a 64% identity among the
compared amino acid sequences. The highest conservation is observed between residues 71 and 159.
[PNG File, 855 KB - bioinform_v6i1e83872_app2.png ]
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Multimedia Appendix 3
PSI-BLASTp results and predicted class II T-cell epitopes for adalimumab chains, including HLA-DRB1*11:01–restricted
peptides and projected population coverage.
[DOCX File, 26 KB - bioinform_v6i1e83872_app3.docx ]

Multimedia Appendix 4
Population coverage analysis for class II epitopes predicted from the adalimumab light chain using the Immune Epitope Database
(IEDB) population coverage tool. The bar and cumulative distribution plots represent the percentage of individuals in the European
population predicted to recognize at least 1 human leukocyte antigen (HLA)–epitope combination, indicating an estimated coverage
of approximately 15%.
[PNG File, 257 KB - bioinform_v6i1e83872_app4.png ]
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Abstract

Background: Prediabetes is an intermediate stage between normal glucose metabolism and diabetes and is associated with
increased risk of complications like cardiovascular disease and kidney failure.

Objective: It is crucial to recognize individuals with prediabetes early in order to apply timely intervention strategies to decelerate
or prohibit diabetes development. This study aims to compare the effectiveness of machine learning (ML) algorithms in predicting
prediabetes and identifying its key clinical predictors.

Methods: Multiple ML models are evaluated in this study, including random forest, extreme gradient boosting (XGBoost),
support vector machine (SVM), and k-nearest neighbors (KNNs), on a dataset of 4743 individuals. For improved performance
and interpretability, key clinical features were selected using LASSO (Least Absolute Shrinkage and Selection Operator) regression
and principal component analysis (PCA). To optimize model accuracy and reduce overfitting, we used hyperparameter tuning
with RandomizedSearchCV for XGBoost and random forest, and GridSearchCV for SVM and KNN. SHAP (Shapley Additive
Explanations) was used to assess model-agnostic feature importance. To resolve data imbalance, SMOTE (Synthetic Minority
Oversampling Technique) was applied to ensure reliable classifications.

Results: A cross-validated ROC-AUC (receiver operating characteristic area under the curve) score of 0.9117 highlighted the
robustness of random forest in generalizing across datasets among the models tested. XGBoost followed closely, providing
balanced accuracy in distinguishing between normal and prediabetic cases. While SVMs and KNNs performed adequately as
baseline models, they exhibited limitations in sensitivity. The SHAP analysis indicated that BMI, age, high-density lipoprotein
cholesterol, and low-density lipoprotein cholesterol emerged as the key predictors across models. The performance was significantly
enhanced through hyperparameter tuning; for example, the ROC-AUC for SVM increased from 0.813 (default) to 0.863 (tuned).
PCA kept 12 components while maintaining 95% of the variance in the dataset.

Conclusions: It is demonstrated in this research that optimized ML models, especially random forest and XGBoost, are effective
tools for assessing early prediabetes risk. Combining SHAP analysis with LASSO and PCA enhances transparency, supporting
their integration in real-time clinical decision support systems. Future directions include validating these models in diverse clinical
settings and integrating additional biomarkers to improve prediction accuracy, offering a promising avenue for early intervention
and personalized treatment strategies in preventive health care.

(JMIR Bioinform Biotech 2025;6:e70621)   doi:10.2196/70621

KEYWORDS

prediabetes; machine learning; feature selection; prediction; extreme gradient boosting; support vector machine; k-nearest neighbors

Introduction

A prediabetic state is characterized by elevated blood sugar
levels, considered as an intermediate stage between normal
glucose metabolism and type 2 diabetes [1]. In individuals with
a high risk of diabetes, cardiovascular disease, and kidney
complications, early diagnosis and intervention in prediabetes
is important for delaying or preventing progression to diabetes
[2]. In spite of lifestyle interventions, adherence remains one
of the biggest challenges, which necessitates early and accurate
detection.

While biochemical markers like fasting glucose and glycated
hemoglobin are valuable, they may not capture the full spectrum
of prediabetes risk factors, resulting in missed diagnoses and
delayed interventions. To address this, a wide set of predictors,
including clinical and genetic data, needs to be incorporated.
This issue can be overcome by machine learning (ML), which
can analyze complex relationships between a broad range of
biomarkers [3]. By leveraging ML algorithms, this study aims
to enhance the accuracy of prediabetes risk assessment and early
detection.
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A feature selection technique such as LASSO (Least Absolute
Shrinkage and Selection Operator) regression and principal
component analysis (PCA) further optimizes these models by
focusing on the most apropos predictors, as a consequence
improving both efficiency and interpretability [4,5].
Additionally, it reduces model complexity and boosts prediction
accuracy by eliminating irrelevant or unnecessary data in ML.
Models based on the most impactful clinical features, such as
BMI, age, low-density lipoprotein cholesterol (LDL-C), and
high-density lipoprotein cholesterol (HDL-C), can capture
underlying patterns linked with prediabetes [6].

This paper assesses and compares the predictive power of
various ML algorithms such as random forest, extreme gradient
boosting (XGBoost), support vector machine (SVM), and
k-nearest neighbors (KNNs), inclusive of feature selection
methods such as LASSO and PCA. We aim to identify the most
effective model and feature selection technique for the detection
of early prediabetes, ultimately contributing to highly accurate
diagnostics and personalized prevention.

In this study, key predictors such as BMI, age, LDL-C, and
HDL-C were identified, which may refine diagnostic criteria
and help with targeted prevention. The findings emphasize the
capability for ML-based tools to improve prediabetes
management and foster better patient outcomes through early
intervention.

Various ML models have been used in recent studies to enhance
detection accuracy and identify key risk factors associated with
prediabetes progression. These approaches underscore the
potential of ML in developing effective and clinically applicable
prediction models for prediabetes risk.

An important direction is using ensemble and decision
tree–based models to predict prediabetes. A study by Liu et al
[7] evaluated logistic regression, decision trees, random forests,
and XGBoost to predict diabetes progression in older patients
with prediabetes. XGBoost was the most accurate model
(60.66%), but its generalizability was limited by the dataset’s
narrow demographic scope. In spite of a minor decline in
predictive performance over time, XGBoost showed promise
as a model for identifying prediabetes risk factors among older
adults. Similarly, Abbas et al [8] developed a model of
prediabetes risk score for a Middle Eastern cohort based on
random forest, gradient boosting, XGBoost, and deep learning.
This model effectively screens risk across different groups of
individuals by analyzing demographic and physiological factors,
including age, blood pressure, BMI, waist size, and gender.
Primary care settings could benefit from the study’s focus on
noninvasive, easily measurable variables.

Additionally, tree-based models, logistic regression, and LASSO
have been commonly used to refine prediabetes risk prediction.
Hu et al [9] developed a personalized nomogram that predicted
5-year prediabetes risk among Chinese adults. Using stepwise
selection, LASSO, and ML models, Hu et al [9] found that the
LASSO model provided the best performance with variables
such as age, BMI, fasting blood glucose, and serum creatinine.
As a result of this approach, LASSO can generate an accurate
yet efficient model even with a limited number of predictive
features. In another logistic regression–based study, Yu et al

[10] validated a prediabetes assessment model on a large
Chinese dataset. Based on C statistics and calibration plots, the
model demonstrated good discrimination, but a cohort study
might improve its performance.

Efforts have also been made to incorporate nonlaboratory risk
factors into predictive models. In a study by Dong et al [11],
lifestyle factors such as sleep duration and recreational activity
were incorporated into a model using logistic regression and
interpretable ML techniques, especially XGBoost. SHAP
(Shapley Additive Explanations) was used to determine variable
significance, revealing that lifestyle variables are crucial to the
model’s detection efficiency. By incorporating clinical and
lifestyle predictors, XGBoost can identify undiagnosed
prediabetes and diabetes, offering a more comprehensive risk
assessment.

As a result of these studies, we can observe that ensemble
methods (random forest and XGBoost), regression-based
approaches (logistic regression and LASSO), and interpretable
ML models (eg, SHAP-enhanced XGBoost) all offer unique
strengths in predicting prediabetes risk. According to the results,
while tree-based models and ensemble models tend to be more
accurate, regression techniques such as LASSO help create
interpretable, efficient models, especially when resources are
limited.

Methods

Dataset
This study used a dataset that is publicly accessible, which
includes health records from 4743 individuals who were
examined at the Health Management Center of Peking
University Shenzhen Hospital from January 2020 to March
2023. The World Health Organization standards were followed
when assessing fasting blood glucose levels, random blood
glucose levels, oral glucose tolerance tests, and glycated
hemoglobins of participants. Prediabetes was diagnosed if
fasting blood glucose was between 6.1 and 6.9 mmol/L or if
the blood glucose level was between 7.8 and 11.0 mmol/L after
oral glucose tolerance test. Based on glucose metabolism status,
participants were classified into 2 groups: normal (1593/4743,
33.6%) and prediabetes (3150/4743, 66.4%). The dataset
included 22 features, comprising demographic, clinical, and
laboratory variables such as age, BMI, HDL-C, and fasting
blood glucose levels. The target variable for the study was
binary, with participants categorized as either normal or
prediabetic. Since this dataset is open to the public and
anonymized, numeric values for individual IDs were preserved
for traceability in the preprocessing phase, but they do not
contain any personally identifiable information.

Variable Assignment and Data Categorization
In this study, the dataset includes both categorical and numerical
variables. The categorical variables, such as status, gender, urine
glucose, and urine protein, were assigned specific values to
facilitate analysis. These values allow for easy differentiation
between groups or conditions. On the other hand, continuous
or numerical variables, such as age, BMI, and various blood
and urine biomarkers, were used as-is without specific value
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assignments since they naturally provide a range of
measurements. Table 1 shows the assigned values for each of

the categorical variables.

Table . Dataset variables and descriptions for prediabetes risk assessment.

Assignment descriptionType of variableMeaning of variableVariable name

1=normal, 2=prediabetesCategorical variableGlucose metabolic statusStatus

Is unassignedNumerical variableAgeAge

0=female, 1=maleCategorical variableGenderGender

Is unassignedNumerical variableBody mass indexBMI

Is unassignedNumerical variableSystolic blood pressureSBP

0=negative, 1=positiveCategorical variableUrine glucoseU-GLU

0=negative, 1=positiveCategorical variableUrine proteinPRO

Is unassignedNumerical variableTotal proteinTP

Is unassignedNumerical variableAlbuminALB

Is unassignedNumerical variableGlobulinGLB

Is unassignedNumerical variableTotal bilirubinT-BIL

Is unassignedNumerical variableDirect bilirubinDB

Is unassignedNumerical variableIndirect bilirubinIB

Is unassignedNumerical variableAlanine aminotransferaseALT

Is unassignedNumerical variableAspartate transaminaseAST

Is unassignedNumerical variableBlood urea nitrogenBUN

Is unassignedNumerical variableSerum creatinineSCr

Is unassignedNumerical variableUric acidUA

Is unassignedNumerical variableTotal cholesterolTC

Is unassignedNumerical variableTriglyceridesTG

Is unassignedNumerical variableHigh-density lipoprotein cholesterolHDL-C

Is unassignedNumerical variableLow-density lipoprotein cholesterolLDL-C

Data Preprocessing

Overview
For improved model performance, data preprocessing involved
handling missing values through mean imputation, balancing
the dataset using SMOTE (Synthetic Minority Oversampling
Technique), and scaling features with StandardScaler() and
MinMaxScaler(). Through these steps, the dataset was optimized
for building reliable ML models for prediabetes risk prediction.

Handling Missing Data
Missing values were imputed using the mean of the
corresponding feature, guaranteeing consistency and
completeness in the dataset.

Balancing the Dataset
The dataset has an imbalanced class distribution, with 33.6%
(1593/4743) representing the normal group (status=1) and 66.4%
(3150/4743) representing the prediabetes group (status=2). This
type of imbalance can influence the performance of
classification models, specifically incorrectly predicting the
minority class (normal group in this case), so SMOTE was used
to oversample the minority class (normal group). This step

ensured that the ML models were not biased toward the larger
class, improving predictive performance [12], particularly for
prediabetes detection.

Scaling and Normalization
Scaling and normalization are pivotal steps when preparing
continuous variables for models such as KNN, SVM, and
LASSO, which are sensitive to feature scaling. To address this,
the features are standardized using the “StandardScaler(),” which
tunes them to have a mean of 0 and an SD of 1. This
standardization guarantees that all features are on a similar scale
and refines model performance. In addition, normalization can
be applied using the “MinMaxScaler(),” which transforms the
data into a range between 0 and 1 [13].

Exploratory Data Analysis
To obtain an understanding of the relationship across several
features and to pick out any patterns, trends, or correlations that
may guide next steps, the dataset was completely explored
before applying predictive models. Heatmaps were used to
visualize the relationship between numerical variables as shown
in Figure 1. The main goal of this step is to gain a fruitful
understanding of the raw data and arrange it for additional
analysis [14]. Among the assessed models, SHAP analysis was
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performed solely on the XGBoost classifier due to its alignment
with the TreeExplainer framework. Models based on trees
benefit from SHAP’s precise additive feature attributions, which

are computationally efficient and theoretically robust.
XGBoost’s built-in support for SHAP made it more interpretable
than other models (eg, SVM, KNN, and random forest).

Figure 1. Heatmap distribution of the dataset features. ALB: albumin; ALT: alanine aminotransferase; AST: aspartate transaminase; BUN: blood urea
nitrogen; DB: direct bilirubin; GLB: globulin; HDL-C: high-density lipoprotein cholesterol; IB: indirect bilirubin; LDL-C: low-density lipoprotein
cholesterol; SBP: systolic blood pressure; SCr: serum creatinine; T-BIL: total bilirubin; TC: total cholesterol; TG: triglyceride; TP: total protein; UA:
uric acid.

Features Selection

Overview
Two principal features selection techniques were applied after
the data exploration phase to choose the most relevant and
informative variables. A suitable feature selection not only
enhances the performance and interpretability of a model but
also reduces computational complexity and the risk of overfitting
[15].

LASSO Regression
LASSO regression was used as the first method for feature
selection. The LASSO method reduces the number of variables
by shrinking the coefficients of less important features to zero,
which effectively eliminates them from the model [16]. It is
mostly useful for handling multicollinearity as it automatically
picks one feature from a set of highly correlated features such
as LDL-C and total cholesterol based on the correlation heatmap.
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About PCA
The main aim of this technique is to reduce dimensionality in
the dataset by transforming the base features into a smaller set
of uncorrelated components while keeping most of the variance
in the data [17]. In models facing overfitting, such as SVM and
XGBoost, PCA reduced multicollinearity and compressed the
retaining 95% of the variance in the data. Additionally, PCA
reduced the number of variables, simplifying the model and
making it more computationally efficient [18].

Before training the predictive models, these features selection
techniques were applied. Using only relevant predictors
improved model performance and generalizability. By using a
structured approach to data exploration and features selection,
we lay a strong foundation for building and evaluating ML
models for prediabetes risk prediction in the next phase.

Model Development

Overview
In this study, different ML models were used to predict the onset
of prediabetes. These algorithms were selected due to their
ability to handle high-dimensional data, interpretability, and
performance in classification tasks. As well as each model was
tuned and evaluated to optimize performance for prediabetes
detection.

XGBoost
XGBoost is a powerful gradient-boosting algorithm that
constructs an ensemble of decision trees to improve
classification accuracy. Each one tree is sequentially trained to
emend the errors of the previous trees, which makes it more
powerful for tasks with complex relationships between features
[19]. XGBoost is known for its performance and speed in
handling big datasets, which makes it appropriate for medical
prediction tasks like prediabetes diagnosis. In addition, XGBoost
applies regularized boosting techniques to overcome the
difficulty of the model and correct overfitting; as a result,
increasing model accuracy [20].

Random Forest
Random forest is an ensemble learning approach that constructs
numerous decision trees during training. Every tree is built using
a random subset of features and data samples, and the last
prediction is made by averaging the predictions from all trees
[21]. Random forest minimizes the risk of overfitting by using
a bagging approach and tends to accomplish well on
classification issues such as prediabetes detection.

About SVM
SVM is a supervised learning model that separates data points
into distinct classes by finding an optimal hyperplane. For the
complex relationships between predictors, such as BMI and
age, a nonlinear kernel was applied. This method is suited for
medical diagnosis since the decision boundary is not linearly
separable in high-dimensional spaces [22].

About KNNs
KNN is an uncomplicated, nonparametric classifier that specifies
the class label based on the most votes of the KNNs in the

feature space [23]. In this study, KNN was used after scaling
the features, and the optimal number of neighbors was set
through hyperparameter tuning. Despite KNN being
computationally intensive for big datasets, its clarity and
interpretability make it a beneficial model for prediabetes
classification.

Hyperparameter Tuning and Cross-Validation

Overview
Hyperparameter tuning was used for all models to recognize
the optimal settings for each algorithm. To achieve that, we
used GridSearchCV and RandomizedSearchCV, which
systematically explore a range of hyperparameters and choose
the set that maximizes model performance.

GridSearchCV
All combinations of hyperparameters are assessed exhaustively
through a particular parameter grid. It is a systematic approach
to identifying the effective parameter set [17]. With large
datasets and complex models, it can be computationally
expensive, so this study used GridSearchCV for models with a
relatively small hyperparameter search space, which made it
feasible to explore all combinations. The KNN algorithm was
tuned by tuning the number of neighbors (k) and the distance
metric.

RandomizedSearchCV
A randomized search of the hyperparameter space selects
hyperparameter settings from the specified ranges [24]. It is
more efficient than GridSearchCV when the search space is
large because it explores a representative sample of possible
combinations instead of testing them all. We used this technique
for more complicated models such as random forest and
XGBoost when the number of hyperparameters and possible
values was too large for a wide search. RandomizedSearchCV
assists with identifying optimal hyperparameters by setting a
limit on the number of iterations (eg, 40).

Tuning Process for Each Model

XGBoost
The hyperparameters, such as the maximum tree depth, the
learning rate, and the subsample ratio, were tuned using
RandomizedSearchCV. This approach allowed for a more
efficient search through a vast range of parameter values,
making it fit for models with big parameter spaces. Random
sampling allowed the tuning process to explore a diversity of
hyperparameter combinations while preventing overfitting and
maximizing classification accuracy.

Random Forest
To optimize hyperparameters such as the number of trees,
maximum tree depth, and minimum samples required for a part,
RandomizedSearchCV was used. This approach is selected for
random forest because of the large search space, as it can easily
sample a subset of hyperparameters to explore near-optimal
settings.
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About SVM
To fine-tune hyperparameters such as the kernel type and penalty
parameter C, GridSearchCV was used. Due to the smaller search
space for SVM, GridSearchCV is considered the best choice
because this approach performs a wide search over the specified
parameter values, so it guarantees to find the best possible
combinations for the model.

About KNNs
To tune the distance metrics (eg, Euclidean or Manhattan
distance) and number of neighbors (k), the GridSearchCV
method was applied. This approach is useful to pick out the
most effective neighborhood size and similarity measures for
predicting prediabetes.

This tuning strategy guaranteed that every model was fine-tuned
to work optimally for prediabetes prediction.

Cross-Validation Approach
The tuning process for each model included k-fold
cross-validation to ensure reliable performance estimation and
reduce the risk of overfitting. In k-fold cross-validation:

• The dataset is divided into k equal-sized subsets (folds).
• The model is trained on k – 1 folds and tested on the

remaining fold. This process is repeated k times, with each
fold serving as the test set once. The results are averaged
to get a final evaluation metric.

• 5-fold cross-validation was used in this study, which
balances computational cost and model evaluation
reliability.

Through cross-validation, a robust estimate of model
performance across various subsets of data is obtained by
evaluating how well the model generalizes to unseen data [25].
To choose the best-performing parameter set, this method was
used during hyperparameter tuning.

Model Evaluation Metrics

Overview
To evaluate the performance of ML models, various metrics
were applied.

Accuracy
This is the measure of the percentage of true predictions made
by the model out of all predictions. Nevertheless, accuracy alone
can be misleading, particularly when the classes are imbalanced,
as in the case of prediabetes diagnosis.

Precision
The proportion of true positive predictions to the total number
of positive predictions. High precision indicates that the model
produces few false positive errors, which is important in
minimizing irrelevant treatments.

Recall (Sensitivity)
The ratio of correct positive predictions to the total actual
positives. A higher recall means fewer cases of prediabetes were
missed, making it necessary for early prediabetes diagnosis.

F1-Score

The harmonic means of precision and recall contribute a balance
between both metrics. It is mainly valuable when false positives
and false negatives have serious consequences.

ROC-AUC Score
The ROC-AUC (receiver operating characteristic area under
the curve) assesses the capability of the model to distinguish
between both classes (normal and prediabetes). The ROC-AUC
score provides an aggregate measure of performance throughout
all classification thresholds, where a higher value refers to
superior model performance.

Cross-Validated ROC-AUC
In addition to evaluating ROC-AUC on the test set,
cross-validated ROC-AUC provides a more reliable estimate
of the model’s ability to generalize. This metric was calculated
using k-fold cross-validation, giving a better indication of how
the model will perform on unseen data.

By using these evaluation metrics, the comparative performance
of the ML models was assessed, with a particular focus on
balancing accuracy, precision, recall, and F1-score to ensure
reliable predictions for prediabetes risk assessment.

Results

XGBoost, Random Forest, SVM, and KNN
This section provides a comparative evaluation of the ML
models applied in this study—XGBoost, random forest, SVM,
and KNN—along with the results of feature selection techniques,
such as LASSO regression and PCA. The performance of each
model is assessed using multiple evaluation metrics, including
accuracy, precision, recall, F1-score, and ROC-AUC scores, on
both the test set and cross-validation. Table 2 shows the
performance metrics comparison of the ML models.
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Table . Performance metrics comparison of machine learning models.

Cross-validated
ROC-AUC

ROC-AUCa (test
set)

F1-scoreRecallPrecisionAccuracy (%)Model

0.86000.79300.80070.78890.812874.7XGBoostb

0.91170.80300.77320.71690.839175.9Random forest

0.86300.77910.64660.66860.626073.9SVMc

0.83970.78450.68900.68810.690170.8KNNd

aROC-AUC: receiver operating characteristic area under the curve.
bXGBoost: extreme gradient boosting.
cSVM: support vector machine.
dKNN: k-nearest neighbor.

Model Performance Comparison

Overview
The following subsections present the comparative results of
XGBoost, random forest, SVM, and KNN models, each
fine-tuned using hyperparameter optimization and evaluated
using key performance metrics.

XGBoost
Based on 5-fold cross-validation, the XGBoost model showed
a cross-validated ROC-AUC score of 0.86, indicating powerful
discrimination between normal and prediabetic cases. In
addition, the model achieved a precision of 0.8128, a recall of
0.7889, and an F1-score of 0.8007 for the prediabetes class. This
balanced performance emphasizes the model’s strength to
effectively minimize both false positives and false negatives,
making it an effective method of prediabetes detection.

Random Forest
The random forest model achieved an excellent performance
with a cross-validated ROC-AUC score of 0.9117,
demonstrating its capability to generalize well across various
subsets of the data. The model demonstrated a precision of
0.8391, a recall of 0.7169, and an F1-score of 0.7732 for the
prediabetes class. This indicates that the random forest model
not only lowers the likelihood of false positives but also keeps
a powerful recall rate, guaranteeing that fewer cases of
prediabetes are missed.

About SVM
An SVM model, evaluated through 5-fold cross-validation,
achieved a cross-validated ROC-AUC score of 0.8630,
indicating its ability to distinguish between normal and
prediabetic cases with high accuracy. For the prediabetes class,
the model achieved a precision of 0.6260, a recall of 0.6686,
and an F1-score of 0.6466. Despite the SVM model providing
a moderate balance between precision and recall, its recall score

indicates potential for missing fewer prediabetic cases, making
it a feasible choice for early-stage diagnosis.

About KNNs
The KNN model, evaluated using 5-fold cross-validation,
demonstrated a cross-validated ROC-AUC score of 0.8397,
reflecting its ability to differentiate between normal and
prediabetic cases with moderate effectiveness. The model
recorded a precision of 0.6901, a recall of 0.6881, and an
F1-score of 0.6890 for the prediabetes class. Although KNN
performed slightly lower in terms of accuracy and precision
compared to other models, it still provides an interpretable
solution for prediabetes.

Performance Enhancement Through Hyperparameter
Tuning
To optimize the performance of SVM and KNN, we used
GridSearchCV for hyperparameter tuning. For more complex
models such as XGBoost and random forest,
RandomizedSearchCV was used to efficiently explore broader
hyperparameter spaces.

Tables 3 and 4 highlight the improvement in model performance
after hyperparameter optimization. All 4 models—XGBoost,
random forest, SVM, and KNN—showed notable gains in both
ROC-AUC and F1-score metrics. For instance, XGBoost’s
ROC-AUC improved from 0.782 to 0.860, and random forest’s
from 0.807 to 0.9117. These results confirm the effectiveness
of using GridSearchCV and RandomizedSearchCV in tailoring
model parameters to the dataset, ultimately boosting
classification accuracy and robustness. This step is particularly
critical for clinical applications, where small improvements in
sensitivity or specificity can have substantial impacts on patient
outcomes.

The parallel processing option n_jobs = –1 was used to enable
parallel processing. Each model required 3-8 minutes to be
tuned on a standard multicore computer.
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Table . Hyperparameter tuning summary for all models.

Range or values testedModel and hyperparameter

SVMa

[0.1, 1, 10]C

['linear’, 'rbf’]Kernel

['scale’, 'auto’]Gamma (rbf)

KNNb

[3, 5, 7, 9, 11]n_neighbors

['euclidean’, 'manhattan’]Metric

XGBoostc

[50, 100, 200, 300]n_estimators

[0.01, 0.05, 0.1, 0.2]learning_rate

[3, 5, 7, 9]max_depth

[0, 0.1, 0.3, 0.5]Gamma

[0.6, 0.8, 1.0]Subsample

[0.6, 0.8, 1.0]colsample_bytree

Random forest

[50, 100, 200]n_estimators

[None, 3, 5]max_depth

[2, 5]min_samples_split

[1, 2]min_samples_leaf

['sqrt’, 'log2']max_features

[True]Bootstrap

aSVM: support vector machine.
bKNN: k-nearest neighbor.
cXGBoost: extreme gradient boosting.
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Table . Effect of hyperparameter tuning on model performance.

Tuned (GridSearchCV/Randomized-
SearchCV)

DefaultModel and metric

XGBoosta

0.8600.782ROC-AUCb

0.8010.731F1-score

Random forest

0.91170.807ROC-AUC

0.7730.742F1-score

SVMc

0.8630.813ROC-AUC

0.6460.591F1-score

KNNd

0.8390.805ROC-AUC

0.6890.652F1-score

aXGBoost: extreme gradient boosting.
bROC-AUC: receiver operating characteristic area under the curve.
cSVM: support vector machine.
dKNN: k-nearest neighbor.

Descriptive Patterns From Exploratory Data Analysis
Findings

Overview
Figure 1 shows several important patterns that emerged. The
following features are highly correlated.

Strong Positive Correlation
Total cholesterol and LDL-C exhibited a strong positive
correlation. As a result, the model may be redundant due to
those variables sharing similar information. One of these features
could potentially be excluded in the feature selection phase if
it has a high correlation. It was found that total protein and
albumin exhibit a high correlation, suggesting that combining
them may not provide more insight than using either separately.

Weak or No Correlations
Correlations between variables such as age, BMI, and uric acid
were weak or negligible. This is a significant finding because
these variables may provide unique independent information
that makes model-building more effective.

Negative Correlation
A mild negative correlation was found between LDL-C and
HDL-C, which is consistent with their known inverse roles in
cardiovascular health. Age and HDL-C also exhibited a slight
negative correlation, suggesting that lipid profiles might change
with aging. Multicollinearity issues happen when highly
correlated variables distort the model’s ability to differentiate
between them due to this exploration in sights. It is crucial to
recognize such relationships early in the process so that
multicollinearity can be handled, and redundant features can be
dropped in the next step, features selection.

A summary plot of SHAP data derived from the XGBoost model
is shown in Figure 2. The most significant predictors are age,
BMI, HDL-C, and LDL-C. As these variables are
well-established risk factors for prediabetes, these findings
support clinical intuition. Additionally, SHAP provided valuable
visual confirmation that agreed with both the correlation analysis
and the LASSO feature selection. Using these exploratory data
analysis findings, LASSO regression and PCA were applied for
feature selection, ensuring that informative predictors were
retained while reducing redundancy and improving

interpretability.
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Figure 2. SHAP summary plot of XGBoost model. ALB: albumin; ALT: alanine aminotransferase; DB: direct bilirubin; HDL-C: high-density lipoprotein
cholesterol; LDL-C: low-density lipoprotein cholesterol; PRO: urine protein; SBP: systolic blood pressure; SCr: serum creatinine; SHAP: Shapley
Additive Explanations; TG: triglyceride; U-GLU: urine glucose; UA: uric acid; XGBoost: extreme gradient boosting.

Feature Importance and Selection
Feature selection over LASSO regression guaranteed that every
model was trained on the most relevant predictors. During
LASSO, features like BMI, age, and HDL-C were consistently
identified as significant predictors of prediabetes as shown in
Figure 3. These features were retrained in the final model
because of their significant predictive power across different
iterations. The models differed in which features they
emphasized:

• XGBoost identified BMI as the most significant predictor,
aligning with established research that links higher BMI
with increased prediabetes risk.

• SVM prioritized age as the first predictor, indicating that
age may play an additional critical role when nonlinear
relationships between variables are considered.

• Random forest and KNN provide insights into other key
features such as LDL-C and HDL-C, demonstrating the
various aspects of the data that every algorithm emphasizes.

This variance in feature significance underscores the utility of
designing diverse models and selection techniques to better
understand the predictors of prediabetes risk.
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Figure 3. Features importance plots for XGBoost and SVM. ALB: albumin; ALT: alanine aminotransferase; DB: direct bilirubin; HDL-C: high-density
lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; PRO: urine protein; SBP: systolic blood pressure; SCr: serum creatinine; SR: ;
SVM: support vector machine; TG: triglyceride; UA: uric acid; XGBoost: extreme gradient boosting.

PCA Component Retention
PCA retained 12 principal components, accounting for 95% of
the variance in the dataset.

Confusion Matrices

Overview
As shown in Figure 4, the confusion matrix demonstrates that
every model’s classification performance is detailed in terms
of distinguishing normal cases from prediabetic cases. These
results reflect the trade-offs each model faces in terms of true
positives, false positives, true negatives, and false negatives.
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Figure 4. Confusion matrix for XGBoost, SVM, random forest, and KNN models. KNN: k-nearest neighbor; SVM: support vector machine; XGBoost:
extreme gradient boosting.

XGBoost
A comparatively balanced classification was accomplished with
the XGBoost model, with 482 true positives and 227 true
negatives, referring to good sensitivity. However, it recorded
129 false negatives and 111 false positives, proposing some
limitations in minimizing misclassification errors, especially
false negatives, which are pivotal in clinical settings.

Random Forest
The random forest model (default threshold of 0.5) correctly
identified 513 true positives and 208 true negatives, which are
better results compared to XGBoost. The model demonstrated
a higher sensitivity than other models, as it reduced the number
of false negatives to 98. Despite this, 130 false positives were
observed, which indicates a slightly higher trade-off in
specificity.

A threshold adjustment of 0.2627 substantially improved the
random forest’s ability to detect prediabetic cases, resulting in
589 true positives and 22 false negatives. A notable rise in false
positives (230) and a reduction in true negatives (108) resulted
from this adjustment, indicating a move toward maximizing
sensitivity over specificity. There may be some advantages to
this configuration in scenarios where minimizing missed
prediabetic cases is prioritized over averting false positives.

About SVM
For the overall distribution of true positives and true negatives,
the SVM model obtained 476 true positives and 226 true
negatives, which is like XGBoost’s. A total of 135 false

negatives and 112 false positives have been recorded, indicating
that while SVM has a strong classification capability, it is more
susceptible to false negatives, which limits its effectiveness for
early detection cases.

About KNNs
This model performed moderately, generating 421 true positives
and 251 true negatives. Even though KNN can effectively detect
normal cases, it is less reliable when it comes to identifying
prediabetic cases. It showed 190 false negatives and 87 false
positives, indicating a higher rate of misclassification.

To summarize, the confusion matrices demonstrate that the
random forest model minimizes false negatives better than other
models, especially when thresholds are adjusted. Random forest
has a significant advantage over XGBoost and SVM when it
comes to sensitivity, which makes it particularly suitable for
prediabetes detection, where minimizing missed cases is crucial.
While KNN is the most effective at identifying normal cases,
it lacks the discriminative power necessary to accurately classify
prediabetes, illustrating that it may be more fit as a baseline or
for smaller datasets.

ROC Curves

Overview
Figure 5 shows the ROC (receiver operating characteristic)
curves for every model, further clarifies the trade-offs between
sensitivity and specificity, and shows the performance of each
model in terms of how well it separates between normal and
prediabetic cases. The random forest model showed the most
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convenient ROC curve, while XGBoost and SVM also displayed
powerful curves, suggesting effective categorization

performance.

Figure 5. ROC curve comparison across models. KNN: k-nearest neighbor; SVM: support vector machine; XGBoost: extreme gradient boosting.

XGBoost
This classifier showed an AUC (area under the curve) of 0.79.
The XGBoost ROC curve reflects a relatively good trade-off
between the true positive rate (sensitivity) and false positive
rate (1 – specificity), indicating that it is an effective
classification model, but has some room for improvement in
distinguishing classes.

About SVM
The SVM classifier produced a slightly lower AUC of 0.78.
However, the SVM struggles slightly more with false positives,
as indicated by its ROC curve, which does not consistently
approach the top-left corner. Despite this, it performs reasonably
well when it comes to classification.

Random Forest
Across the 4 models tested, the random forest model achieved
the elevated AUC at 0.80. With a more pronounced upward
curve, its ROC curve reflects better differentiation between
positive and negative classes, showcasing outstanding
classification abilities.

About KNNs
The KNN classifier achieved a score of 0.78, suggesting a fair
rank of accuracy in the diagnosis of positive and negative cases.
According to the ROC curve for the KNN model, there is a
moderate trade-off between the true positive rate (sensitivity)
and the false positive rate (1 – specificity). As well, there is

some evidence to suggest that the KNN model has some ability
to separate the 2 classes, but its shape suggests that it has room
for improvement, as it does not consistently approach the top-left
corner, which would indicate an ideal performance.

In a nutshell, all 4 models exhibit durable performance, with
AUC values ranging from 0.78 to 0.80. The random forest model
manifests as the best-performing classifier, followed closely by
XGBoost, SVM, and KNN.

Discussion

Principal Findings
Through systematically integrating model comparison, advanced
hyperparameter tuning, and interpretable feature selection
techniques, we present a robust, interpretable framework for
early prediabetes prediction. By combining SHAP analysis and
LASSO regression, this research provides both high performance
and transparency, compared to previous studies that focused
solely on accuracy.

Comparative Strengths and Limitations of Each Model

Overview
For prediabetes prediction, XGBoost, random forest, SVM, and
KNN each show distinct strengths and weaknesses.
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Random Forest
In terms of overall discriminative ability, the random forest
model accomplished a superior cross-validated ROC-AUC score
(0.9117). According to this result, random forest is a robust
choice for early detection scenarios as it can generalize to
different datasets well. Due to its ability to prioritize recall
through threshold adjustments, 22 false negatives were reduced,
but false positives increased (230). In view of this trade-off,
random forest may be highly powerful when the cost of missing
a prediabetic case outweighs the risk of overdiagnosis.

XGBoost
In evaluation, the XGBoost classifier showcased robust
performance, as it attained a high precision score of 0.8128 and
a balanced recall score. According to these metrics, it seems
that XGBoost is particularly adept at minimizing false positives
and false negatives, which is highly critical in clinical settings
where diagnostic accuracy directly influences patient outcomes.
The ROC-AUC score of XGBoost did not surpass that of
random forest, despite its ability to balance sensitivity and
specificity, making it a viable choice for routine clinical
applications.

About SVM
With an AUC of 0.78, the SVM model ranked behind both
XGBoost and random forest. Despite their superior performance
in high-dimensional spaces and in datasets with clear class
separation, SVM models have limited linear separability in the
prediabetes dataset, impacting their discriminative power. The
model has a good ROC-AUC and F1-score, with reasonable
precision and recall, but when it comes to complex relationships,
it lags behind the others. Optimizing feature engineering may
upgrade its performance by searching alternative SVM kernels,
combining nonlinear interactions, or incorporating alternative
kernels.

About KNNs
It performed rationally well in terms of classification
performance but ranked lowest in terms of accuracy among the
evaluated models, with an accuracy of 70.8% and ROC-AUC
of 0.78. Because of its simplicity and reliance on distance
metrics, KNN is expected to have lower discriminative power
than more complex models such as random forest and XGBoost.
This model may be valuable as a baseline model or may be
convenient for small datasets with a focus on computational
efficiency. The reasonable performance of KNN is a result of
its sensitivity to distance metrics and the number of neighbors
(k), which may prevent it from catching subtle differences in
detecting normal and prediabetic cases. Thus, while KNN may
be beneficial in straightforward scenarios, it does not have the
same level of precision and recall as more sophisticated models.

Impact of Feature Selection
Feature selection played a crucial role in optimizing the models’
performance by focusing on the main relevant predictors.
LASSO regression was used to characterize the prime features
across models, with BMI, age, LDL-C, and HDL-C consistently
emerging as important risk factors for prediabetes. In addition
to improving the interpretability of the models, this approach

also improved the predictive accuracy by reducing overfitting.
The strict feature selection process warranted that the models
stayed efficient while maintaining high classification power.

Confusion Matrix and Threshold Analysis
The performance metrics were significantly influenced by
adjusting decision thresholds, especially for random forest and
XGBoost. A threshold adjustment in random forest minimized
the risk of missed diagnoses by reducing false negatives (22
cases). Even so, this came at the expense of a boosted number
of false positives (230 cases), suggesting a trade-off between
recall and precision. XGBoost, while less sensitive to threshold
changes, maintained a balanced approach, limiting both false
positives and false negatives effectively. As a result of these
outcomes, threshold tuning plays an important role in optimizing
model performance for specific clinical applications, such as
prioritizing recall in high-risk populations to avoid disease
progression.

Clinical Implications
The results suggest that XGBoost and random forest are the
most promising models for enhancing prediabetes diagnosis,
given their ability to generalize across different datasets and
include reliable classification performance. The higher
ROC-AUC score achieved over random forest (91.17%) reflects
its potential for widespread use in clinical settings, especially
where minimizing the risk of missed cases is crucial. The
powerful performance of XGBoost among diverse metrics also
highlights its practicality for routine screening, where both false
positives and false negatives need to be minimized. By adjusting
model thresholds, clinicians can customize diagnostic strategies
to meet individual patient needs, such as increasing sensitivity
for at-risk patients. Even though SVMs and KNNs do not
outperform the best models, they still provide useful insights,
especially when data dimensionality or simplicity are important
factors.

Conclusions
ML models, specifically random forest and XGBoost, have been
found to be most sensitive to prediabetes risk assessment, and
their performance has powerful discriminative power and high
ROC-AUC scores. Combined with feature selection techniques
such as LASSO regression, these models offer worthy insights
into essential prediabetes predictors, such as BMI, age, and
HDL-C. Based on the ROC and AUC analyses, all
models—XGBoost, SVM, random forest, and KNN—are viable
options for predicting prediabetes. Random forests are robust
classifiers because of their ensemble nature, which reduces
overfitting and enhances generalizability. SVM and XGBoost
also produce competitive results, suggesting their classification
abilities can be improved with further parameter tuning. With
systematic exploratory data analysis and feature selection, these
models can become reliable tools for detecting early prediabetes
and offering pathways for optimizing them.

To confirm the generalizability of these models, future research
should include validating them in diverse populations, adding
biomarkers and genetics to improve prediction accuracy, and
integrating these models into clinical decision support systems
to assess risk in real time. These models contribute to more
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accurate and timely diagnosis of prediabetes, promoting timely intervention and ultimately improving health outcomes.
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Abstract

Background: The protein A disintegrin and metalloprotease (ADAM) domain containing 17, also called tumor necrosis factor
alpha–converting enzyme, is mainly responsible for cleaving a specific sequence Pro-Leu-Ala-Gln-Ala-/-Val-Arg-Ser-Ser-Ser
in the membrane-bound precursor of tumor necrosis factor alpha. This cleavage process has significant implications for inflammatory
and immune responses, and recent research indicates that genetic variants of ADAM17 may influence susceptibility to and severity
of SARS-CoV-2 infection.

Objective: The aim of the study is to identify the most deleterious missense variants of ADAM17 that impact protein stability,
structure, and function and to assess specific variants potentially involved in SARS-CoV-2 infection.

Methods: A bioinformatics approach was used on 12,042 single-nucleotide polymorphisms using tools including SIFT (Sorting
Intolerant From Tolerant), PolyPhen2.0, PROVEAN (Protein Variation Effect Analyzer), PANTHER (Protein Analysis Through
Evolutionary Relationships), SNP&GO (Single Nucleotide Polymorphisms and Gene Ontology), PhD-SNP (Predictor of Human
Deleterious Single Nucleotide Polymorphisms), Mutation Assessor, SNAP2 (Screening for Non-Acceptable Polymorphisms 2),
MUpro, I-Mutant, iStable, InterPro, Sparks-x, PROCHECK (Programs to Check the Stereochemical Quality of Protein Structures),
PyMol, Project HOPE (Have (y)Our Protein Explained), ConSurf, and SWISS-MODEL. Missense variants of ADAM17 were
collected from the Ensembl database for analysis.

Results: In total, 7 nonsynonymous single-nucleotide polymorphisms (P556L, G550D, V483A, G479E, G349E, T339P, and
D232E) were identified as high-risk pathogenic by all prediction tools, and these variants were found to potentially have deleterious
effects on the stability, structure, and function of the ADAM17 protein, potentially destroying the entire cleavage process.
Additionally, 4 missense variants (Q658H, D657G, D654N, and F652L) in positions related to SARS-CoV-2 infection exhibited
high conservation scores and were predicted to be deleterious, suggesting that they play an important role in SARS-CoV-2
infection.

Conclusions: Specific missense variants of ADAM17 are predicted to be highly pathogenic, potentially affecting protein stability
and function and contributing to SARS-CoV-2 pathogenesis. These findings provide a basis for understanding their clinical
relevance, aiding in early diagnosis, risk assessment, and therapeutic development.

(JMIR Bioinform Biotech 2025;6:e72133)   doi:10.2196/72133

KEYWORDS

bioinformatics; in silico; COVID-19; SARS-CoV-2; molecular modeling

Introduction

The ADAM family, which stands for A disintegrin and
metalloprotease, is made up of both single-passage
transmembrane proteins and secreted metalloendopeptidases.
These enzymes share a distinct domain structure, which includes
a prodomain, metalloprotease domain, disintegrin domain,

cysteine-rich region, epidermal growth factor–like domain, a
transmembrane segment, and a C-terminal cytoplasmic tail
[1,2].

However, some human ADAM proteins lack a functional
protease domain, meaning that many of ADAMs’ roles are
centered on protein-protein interactions rather than protease
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activity. ADAM proteins belong to the EC 3.4.24.46 enzyme
classification and are part of the MEROPS M12B peptidase
family. For instance, active ADAM proteases are often referred
to as sheddases because they cleave or remove extracellular
parts of transmembrane proteins, such as ADAM10, and are
able to cleave part of the human epidermal growth factor
receptor 2, which then activates the receptor. ADAM genes are
present in choanoflagellates, animals, fungi, and certain green
algae, while these proteins are not present in most green algae
and all land plants because they probably lost it. ADAM proteins
have been historically referred to by names like adamalysin or
MDC (metalloproteinase type, disintegrin type, cysteine-rich)
family [3-6].

ADAM17 is a polypeptide of 824 amino acids, 93,021 Da, and
it is located on chromosome 2p25. ADAM17 is hugely
expressed in a lot of tissues, such as the brain, kidney, heart,
and voluntary muscle, and its expression changes during
embryonic development and adult life. ADAM17 is a
multidomain protein composed of several conserved domains,
starting with an N-terminal signal peptide spanning amino acids
(aa 1‐17), followed by a prodomain (aa 18‐216), in which

there is a cysteine switch-like region PKVCGY186 (aa
181‐188), a metalloenzyme or catalytic domain (aa 217‐474)
with a Zn-binding domain region (aa 405‐417), a disintegrin
cysteine-rich domain (aa 480‐559), an epidermal growth
factor–like region (aa 571‐602), followed by a cysteine-rich
domain (aa 603‐671), and a transmembrane domain (aa

672‐694), end by a cytoplasmic tail (aa 695‐824). Tyr702,

Thr735, and Ser819 have been shown as cytoplasmic

phosphorylation sites, and Ser791 has been shown as a
cytoplasmic dephosphorylation site. ADAM17 has little or no
sequence similarities with other ADAMs, its closest relative is
ADAM10; however, their protein sequence homology is a
smaller amount than 30% consistent with the National Center
for Biotechnology Information Basic Local Alignment Search
Tool [7,8].

The purpose of ADAM17 is to treat tumor necrosis factor alpha
(TNF-α) both inside the trans-Golgi network’s internal
membranes and on the cell’s surface. The cleavage and release
of a soluble ectodomain from membrane-bound proproteins
(such as pro-TNF-α) involve this process, which is also known
as “excretion” and is recognized to have physiological
significance. The first “sheddase” to be discovered, ADAM17,
is also thought to be involved in the release of a wide range of
membrane-anchored cytokines, cell adhesion molecules,
receptors, ligands, and enzymes [9,10].

The 26-kDa type II transmembrane propolypeptide that the
TNF-α gene encodes inserts into the cell membrane during
maturation, according to the gene’s cloning. Pro-TNF-α is
physiologically active on the cell surface and can trigger
immunological responses by means of juxtacrine intercellular
communication. The Ala76-Val77 amide bond of pro-TNF-α,
however, is susceptible to proteolytic breakage, which liberates
the molecule’s soluble 17-kDa extracellular domain
(ectodomain). The cytokine known as TNF-α, which is of vital
importance in paracrine signaling, is the soluble ectodomain.

ADAM17 catalyzes the proteolytic release of soluble TNF-α
[11].

ADAM17 has recently been identified as a key modulator of
radiation therapy resistance. Radiation treatment may induce
furin-mediated cleavage of the inactive form of ADAM17,
converting it into its active form in a dose-dependent manner.
This results in increased ADAM17 activity both in vitro and in
vivo. In nonsmall cell lung cancer, radiation therapy has also
been demonstrated to activate ADAM17, which leads to the
excretion of several survival factors, the activation of the growth
factor pathway, and the development of radiation resistance
[12].

In addition, ADAM17 might be a key player in the Notch
signaling pathway when the intracellular Notch domain (from
the Notch1 receptor) is released proteolytically following ligand
interaction. By controlling the mammary gland’s excretion of
the epidermal growth factor receptor, amphiregulin ligand,
ADAM17 also controls the mitogen-activated protein kinase
signaling pathway. Additionally, ADAM17 contributes to the
excretion of the cell adhesion protein, L-selectin. To investigate
the structural and functional effects of the chosen missense
variations of the ADAM17 protein, we used a variety of
bioinformatic techniques in the current methodology [13,14].

The primary cellular receptor used by SARS-CoV-2 to infect
cells is the enzyme angiotensin-converting enzyme 2 (ACE2).
This receptor is recognized by the S protein of SARS-CoV-2,
which facilitates the key process of viral entry into a target cell.
ADAM17 directly interacts with ACE2, leading to the shedding
of ACE2 into the extracellular space, while transmembrane
protease, serine 2 (TMPRSS2) not only cleaves ACE2 but also
cleaves the SARS-CoV-2 S protein, facilitating membrane
fusion and cellular uptake of the virus.

Both ADAM17 and TMPRSS2 act on ACE2, although these
proteases can have opposite effects on the loss of ACE2. When
the respective proteolytic activities of ADAM17 and TMPRSS2
result in increased shedding of ACE2, this situation may act as
a natural barrier to infection. This could be due to the interaction
of soluble ACE2 with the virus, preventing it from binding to
susceptible tissues [15-21].

Alongside our work on ADAM17 variants and SARS-CoV-2
infection, Cho et al [22] explored in detail the immunogenicity
of COVID-19 vaccines in different patients and highlighted
immune response variation in terms of COVID-19 host factors.
Additionally, Abbas et al [23] have used machine learning to
profile RNA 5-methylcytosine modifications, a computational
approach that is similarly conceptually related to how we have
applied predictive methods in our analysis of ADAM17 variants
[23].

This study highlights the potential of bioinformatics-driven
variant analysis in exploring high-risk ADAM17 mutations,
shedding light on their possible role in SARS-CoV-2 infection
and advancing our understanding of ADAM17’s impact on
immune and inflammatory processes.
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Methods

Overview
We collected single-nucleotide polymorphisms (SNPs) of the
ADAM17 gene data from the Ensembl database [24]. Only
missense variants were extracted from the total SNPs for the
first study, and only 7 missense variants were selected and tested
for further bioinformatic approaches. For the second study, only
variants related to SARS-CoV-2, located between positions 652
and 658, were extracted. In total, 4 missense variants were
selected and tested using bioinformatics approaches. The amino
acid sequence in FASTA (FAST-All) format was retrieved from
the UniProt database [25-27].

Ethical Considerations
This study involved only in silico analyses based on publicly
available genomic data retrieved from the Ensembl genome
database [24]. The data used are fully anonymized and do not
contain any personally identifiable information or involve human
or animal subjects. Thus, no ethics approval was required.

Prediction of Deleterious Nonsynonymous SNPs Using
SIFT, PolyPhen, PROVEAN, SNAP2, Mutation
Assessor, PANTHER, SNP&GO, and PhD-SNP
We used 5 bioinformatic servers for the first study, namely,
SIFT (Sorting Intolerant From Tolerant), PolyPhen, PROVEAN
(Protein Variation Effect Analyzer), SNAP2 (Screening for
Non-Acceptable Polymorphisms 2), and Mutation Assessor.
SIFT (version 6.0), a web-based server, was used to predict the
impact of a substitution on protein function. A SIFT score >0.05
indicates a tolerated or neutral mutation, while a score <0.05
indicates a deleterious or damaging mutation. PolyPhen-2
(version 2.2) is a web server that predicts the impact of
mutations on protein structure and function. It was used to
classify mutations into probably damaging, possibly damaging,
and neutral. PROVEAN (version 1.1) is a web-based tool that
analyzes the functional impact of protein mutations. When the
score >2.5, the mutation is considered as neutral and has no
effect on the protein. When the score is <2.5, the mutation is
considered as deleterious and consequently has a deleterious
effect on the protein. SNAP2 is a web-based server that is used
to predict the functional effect of a mutation. Based on a neural
network method, SNAP2 predicts the changes due to a
nonsynonymous single-nucleotide polymorphism (nsSNP) on
the secondary structure and compares the solvent accessibility
of the native and mutated protein to distinguish them into effect
(+100, strongly predicted) or neutral (−100, strongly predicted).
Mutation Assessor is a web-based tool that is used to predict
the functional effect of a mutation on a protein based on an
evolutionary conservation approach. We used 5 bioinformatic
servers for the second study, namely, SIFT, PolyPhen,
PANTHER (Protein Analysis Through Evolutionary
Relationships), SNP&GO (Single Nucleotide Polymorphisms
and Gene Ontology), and PhD-SNP (Predictor of Human
Deleterious Single Nucleotide Polymorphisms). PANTHER is
a web-based tool for predicting nonsynonymous genetic variants
that may play a causal role in human disease. PANTHER
includes the Position-Specific Evolutionary Preservation tool,

which predicts deleterious or pathogenic variants based on
evolutionary conservation across homologous proteins from
various organisms. The reference protein sequence of humans
as well as sequences from 100 other species is used for these
predictions. SNP&GO is a web-based tool using support vector
machine (SVM) methods to predict whether a mutation is
disease-related based on the protein sequence. The protein
sequence is formatted in FASTA, and results are categorized
as either neutral or disease-related, with a reliability index
greater than 5 indicating a disease-causing mutation. PhD-SNP
is also based on SVM and predicts whether a point mutation is
a neutral polymorphism or associated with genetic disorders. It
uses unique information derived from protein sequence,
phylogenetic relationships, and the protein’s encoded function
to determine whether the variant is disease-associated. This part
was inspired by a study by Saih et al [28], who used SIFT,
PolyPhen, and PROVEAN consecutively [29-36].

Prediction of Mutation Effect on Stability and
Structure of ADAM17 Protein Using I-Mutant, MUpro,
and iStable
I-Mutant is a predictor of the effect of a single mutation on
protein stability using protein sequences or structures and is an
SVM tool based on predicting automatically the stability
changes of a protein upon single-point mutations. A delta G>0
indicates a decrease in protein stability, while delta G<0 suggests
increased stability. MUpro is a web-based tool used to predict
the effect of mutations on the stability (increase or decrease) of
a protein. The score >0 means that the mutation results in an
increase in the stability of the protein, while a score <0 means
that the mutation decreases the stability of the protein. iStable
(Integrated predictor for protein stability change upon single
mutation) analyzes protein stability using sequence information
and predictions from different predictors. In this sequential
analysis, 3 predictors are used: I-Mutant2.0, MUpro, and iStable
[37-39].

Conservation and Conserved Domain Analysis Using
ConSurf and InterPro
ConSurf is a web server that is used for estimating the
evolutionary conservation of amino or nucleic acid positions in
a protein or DNA or RNA molecule based on the phylogenetic
relations between homologous sequences and also for identifying
functional regions. A conservation score ranging from 1 to 3 is
considered variable, 5 to 6 is intermediate, and 7 to 9 indicates
high conservation. InterPro is a web-based server that is used
to identify the location of nsSNPs on conserved domains.
InterPro recognizes protein motifs and domains, enabling
functional characterization of the protein using its database of
protein families, domains, and functional site [40-43].

ADAM17 Modeling Using SWISS-MODEL Server
and Sparks-X
SWISS-MODEL is a web server dedicated to protein structure
homology modeling at different levels of complexity. 3D protein
structures provide valuable insights into their molecular function
and inform a broad spectrum of applications in life science
research. Modeling of protein structures usually requires
extensive expertise in structural biology and the use of highly
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specialized computer programs for each of the individual steps
of the modeling process, and templates selected based on
sequence identity and Global Model Quality Estimation score.
Sparks-x is a fold-recognition method used to generate 3D
protein structures. This tool improves structure prediction
through enhanced alignment scoring and the use of SPINE-X,
which boosts predictions of secondary structure, backbone
torsion angles, and solvent-accessible surfaces [44,45].

Validation of ADAM17 Models Using PROCHECK
PROCHECK (Programs to Check the Stereochemical Quality
of Protein Structures) assesses the stereochemical quality of
protein structures. It produces PostScript plots analyzing the
global and residue-level geometry. PROCHECK-NMR is used
to check the quality of structures resolved by nuclear magnetic
resonance [46,47].

Prediction of Mutation Effect on Protein Structure
Using Project HOPE Server
HOPE (Have (y)Our Protein Explained) server is based on the
automatic analysis of mutants, which can provide more
clarification of the structural and functional effects on it. HOPE
is an application that analyzes mutations automatically and
explains the molecular source (origin) of a disease caused by it
[48].

Visualization of ADAM17 Native and Mutants Using
PyMol
PyMol (version 2.5) is a molecular visualization program used
to generate high-quality 3D images of proteins, as well as to
edit molecular structures, perform ray tracing, and create
molecular animations. PyMol (version 1.2r3pre; Schrödinger,
LLC) is written in Python, one of the most popular programming
languages, and can be easily extended through Python-based
plugins.

All computational analyses were performed using default
parameters except where otherwise noted. Tools were accessed
from March to November 2024.

Results

Overview
In the first study, a total of 12,042 SNPs were collected from
the Ensembl database. PROVEAN, PolyPhen-2, Mutation
Assessor, SNAP2, and SIFT programs were used to predict the
functional effects of mutations on ADAM17, while MUpro and
I-Mutant tools were used to predict the mutation effects on
protein stability. Additionally, SWISS-MODEL, ConSurf, and
HOPE project were used to evaluate the mutation effects on
protein function, structure, and protein-protein interactions. Ten
various bioinformatics programs and tools are used to predict
the mutation effects during this analysis, as relying on a single
program or server is insufficient for accurately assessing
mutation impact on proteins.

Among all collected SNPs, only those variants related to
SARS-CoV-2 (positions 652 to 658) were extracted. Four
missense variants were selected and analyzed using
bioinformatics approaches.

Prediction of Deleterious nsSNPs Using SIFT,
PolyPhen, PROVEAN, SNAP2, Mutation Assessor,
PANTHER, SNP&GO, and PhD-SNP
Of the initial 12,042 SNPs analyzed to predict deleterious effects
on the ADAM17 protein, all were first submitted to SIFT;
according to SIFT, 88 of these mutations were predicted to be
deleterious (index score from 0 to 0.02). These 88 SNPs were
subsequently analyzed with PROVEAN, and the results of
PROVEAN showed that 60 SNPs were predicted deleterious.
Similarly, when analyzed with PolyPhen, 48 of the SNPs were
found to be probably damaging, with scores >0.9.

Next, the same 88 SNPs were analyzed using SNAP2, which
predicted that 75 SNPs would have functional impacts on the
ADAM17 protein with a score more than 1. Finally, Mutation
Assessor identified 66 SNPs with a medium functional impact.
In summary, from all 12,042 SNPs, only 7 mutations, namely,
P556L, G550D, V483A, G479E, G349E, T339P, and D232E,
were predicted to have a high functional impact on the ADAM17
protein by all computational tools (Tables 1 and 2).

Table . Prediction of deleterious nonsynonymous single-nucleotide polymorphisms of the ADAM17a gene using SIFTb and PolyPhen.

PolyPhen classPolyPhen scoreSIFT classSIFT scoreAmino acid mutationVariant ID

Probably damaging0.997Deleterious0P 556 Lrs1394373815

Probably damaging0.987Deleterious0G 550 Drs542316178

Probably damaging0.987Deleterious0V 483 Ars777478676

Probably damaging0.996Deleterious0G 479 Ers951262662

Probably damaging1Deleterious0.01G 349 Ers1192348585

Probably damaging1Deleterious0T 339 Prs1157021454

Probably damaging1Deleterious0D 232 Ers768704961

aADAM: A disintegrin and metalloprotease.
bSIFT: Sorting Intolerant From Tolerant.
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Table . Prediction of deleterious nonsynonymous single-nucleotide polymorphisms of ADAM17a gene using PROVEANb, Mutation Assessor, and

SNAP2c.

SNAP2Mutation AssessorPROVEANAmino acid mu-
tation

Variant ID

PredictionScorePredictionScorePredictionScore

Effect37High4.095Deleterious−8.978P 556 Lrs1394373815

Effect76High4.83Deleterious−6.068G 550 Drs542316178

Effect43High4.215Deleterious−3.496V 483 Ars777478676

Effect89High4.78Deleterious−7.119G 479 Ers951262662

Effect83High3.83Deleterious−7.269G 349 Ers1192348585

Effect69High3.735Deleterious−5.606T 339 Prs1157021454

Effect84High3.79Deleterious−3.795D 232 Ers768704961

aADAM: A disintegrin and metalloprotease.
bPROVEAN: Protein Variation Effect Analyzer.
cSNAP2: Screening for Non-Acceptable Polymorphisms 2.

For the second study, 4 SARS-CoV-2–related nsSNPs (Q658H,
D657G, D654N, and F652L) were submitted to SIFT. According
to SIFT, mutations Q658H, D657G, and D654N were predicted
to be deleterious (with index scores between 0 and 0.01), and
F652L to be tolerated.

PolyPhen classified all 4 mutations as benign, while PANTHER
identified D657G and D654N as likely damaging (score>0.57),
and Q658H and F652L as possibly damaging (score~0.5).

The 4 nsSNPs were submitted to the SNP&GO program, which
indicated that these SNPs would not have effects related to
human diseases with scores above 0. The same nsSNPs were
also analyzed using PhD-SNP, where the results indicated that
the mutation D657G might have a pathogenic impact with a
score of 3, while the other 3 mutations (Q658H, D654N, and
F652L) were predicted to have neutral impacts (Tables 3 and
4).

Table . Prediction of the deleterious effects of nonsynonymous single-nucleotide polymorphisms related to SARS-CoV-2 using SIFTa and PolyPhen.

PolyPhen classPolyPhen scoreSIFT classSIFT scoreAmino acid mutationVariant ID

Benign0.003Deleterious0.01Q658Hrs765452935

Benign0.097Deleterious0D657Grs144657795

Benign0.063Deleterious0D654Nrs758594009

Benign0.015Tolerated0.81F652Lrs780262610

aSIFT: Sorting Intolerant From Tolerant.
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Table . Prediction of the deleterious effects of nonsynonymous single-nucleotide polymorphisms related to SARS-CoV-2 using PANTHERa, SNP&GOb,

and PhD-SNPc.

PhD-SNPSNP&GOPANTHERAmino acid
mutation

Variant ID

PredictionReliability in-
dex

PredictionReliability in-
dex

PdelPredictionPSEPd

Neutral3Neutral6.50Possibly dam-
aging

220Q658Hrs765452935

Disease3Neutral2.57Probably dam-
aging

455D657Grs144657795

Neutral5Neutral1.85Probably dam-
aging

1036D654Nrs758594009

Neutral6Neutral8.50Possibly dam-
aging

220F652Lrs780262610

aPANTHER: Protein Analysis Through Evolutionary Relationships.
bSNP&GO: Single Nucleotide Polymorphisms and Gene Ontology.
cPhD-SNP: Predictor of Human Deleterious Single Nucleotide Polymorphisms.
dPSEP: Position-Specific Evolutionary Preservation.

Prediction of Mutation Effects on the Protein Energy
and Stability Using I-Mutant, MUpro, and iStable
Servers
MUpro results showed that 6 of the 7 selected mutations
(G550D, V483A, G479E, G349E, T339P, and D232E) were
predicted to decrease the stability of the ADAM17 protein,

while the mutation P556L was predicted to increase the stability
of the ADAM17 protein. Then, the 7 selected mutations were
submitted to I-Mutant. Results of I-Mutant showed that all the
7 mutations (P556L, G550D, V483A, G479E, G349E, T339P,
and D232E) were predicted to decrease the stability of ADAM17
protein (Table 5).

Table . Prediction of ADAM17a stability using MUpro and I-Mutant tools.

I-MutantMUproMutation

PredictionDelta GPredictionDelta G

Decrease−0.51Increase0.20231915P 556 L

Decrease−0.76Decrease−0.35202875G 550 D

Decrease−1.4Decrease−2.5029256V 483 A

Decrease−0.8Decrease−0.20347724G 479 E

Decrease−0.48Decrease−0.096611232G 349 E

Decrease−0.63Decrease−1.4271878T 339 P

Decrease−0.58Decrease−1.1774927D 232 E

aADAM: A disintegrin and metalloprotease.

For the second study, iStable was used to predict the stability
of these 4 mutations on the ADAM17 protein. The iStable results
indicated that these 4 residues (Q658H, D657G, D654N, and

F652L) were predicted to decrease the protein’s stability (Table
6).

Table . Stability analysis of ADAM17a mutations related to SARS-CoV-2 using iStable.

PredictionConfidence scoreMutation

Decrease0.671109Q658H

Decrease0.846768D657G

Decrease0.799807D654N

Decrease0.808582F652L

aADAM: A disintegrin and metalloprotease.
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Prediction of Phylogenetic Conservation Using
ConSurf and Study of Conserved Domains Using
InterPro
The ConSurf analysis showed that all 7 substitutions are
extremely conserved with a conservation score of 9. Six of these
mutations (P556L, G550D, V483A, G479E, T339P, and D232E)
were predicted to be exposed and functional, while the mutation
G349E was predicted to be buried and structural. In the second
study, ConSurf results showed 3 substitutions (Q658H, D657G,
and D654N) to be highly conserved with a score of 8 and were
predicted to be exposed and functional, while substitution

(F652L) was very conserved with a score of 7 and predicted to
be buried. The full visualization of the ConSurf-based
phylogenetic conservation analysis of ADAM17 is provided in
Multimedia Appendix 1.

For the second study, the InterPro domains identified include
IPR032029, which indicates the ADAM17 proximal membrane
domain (580-642), IPR001762, which indicates the disintegrin
domain (475-563), IPR034025, which indicates the catalytic
domain 17 (223-477) ADAM10/ADAM17, IPR001590
peptidase M12B, and ADAM/reprolysin, and IPR002870, which
indicates peptidase M12B propeptide (48-167; Figure 1).

Figure 1. Identification of the ADAM17 protein domain using the InterPro server. ADAM: A disintegrin and metalloprotease.

Total number of residues is 824. In the native ADAM17
structure, 604 (82.9%) of amino acids were in the favorable
region, 119 (16.3%) in the allowed region, and 6 (0.8%) in the
disallowed region. However, in the mutant structure (eg,
Q658H), the percentage of the favorable region decreased, and

the disallowed region increased, which can be explained by the
fact that the mutation impacts the protein and its modeling. All
Ramachandran plot results by PROCHECK are provided in
Multimedia Appendices 2-6 (Figure 2 and Table 7).
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Figure 2. Ramachandran plot of the native model generated by PROCHECK. PROCHECK: Programs to Check the Stereochemical Quality of Protein
Structures.

Table . Percentage of different regions for each mutation using PROCHECKa.

Disallowed region, n (%)Allowed region, n (%)Favored region, n (%)Mutation

6 (0.8)119 (16.3)604 (82.9)Native

17 (2.3)129 (17.6)585 (80)Q658H

10 (1.4)112 (15.3)608 (83.3)D657G

10 (1.4)121 (16.6)600 (82.1)D654N

14 (1.9)108 (14.8)609 (83.3)F652L

aPROCHECK: Programs to Check the Stereochemical Quality of Protein Structures.

Modeling of ADAM17 Using SWISS-MODEL and
Sparks-X
In this study, we used the SWISS-MODEL server to construct
the 3D structure of the native and 7 mutants of the ADAM17
protein. We used 2dw0.1. A (crystal structure of
vesicle-associated membrane protein-associated protein 2 from

Crotalus Atrox venom [Form 2‐1 crystal]) as a template with
a sequence identity equal to 35.21% and resolution of 2.15 A°.
In the second study, the Sparks-X server was used to generate
the 3D structure of both native and the 4 mutants of ADAM17
molecules.
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Visualization of ADAM17 Mutations Using the PyMol
Program
The 3D structures of the ADAM17 native and mutant models

were visualized using PyMol. Structural similarities and
differences between the ADAM17 native and its mutants are
shown in Figures 3 and 4.
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Figure 3. Visualization of ADAM17 native and mutations using the PyMol program. ADAM: A disintegrin and metalloprotease.
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Figure 4. Visualization of ADAM17 native and mutations related to SARS-CoV-2 using the PyMol program. ADAM: A disintegrin and metalloprotease.

Prediction of Structural Effects of Mutations in
ADAM17 Using the HOPE Server

rs1394373815
The sizes are different between the amino acids of wild-type
and mutant. The mutant residue is larger than the wild-type

residue, and this might lead to bumps. Prolines are known to
have a very rigid structure, sometimes forcing the backbone in
a specific conformation. Possibly, the mutation changes a proline
with such a function into another residue, thereby disturbing
the local structure. The residue is found on the surface of the
protein.
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rs542316178
The charge of the mutant amino acid differs from that of the
wild-type. The mutation introduces a charge, and this can cause
repulsion of ligands or other residues with the same charge. The
sizes are different between the amino acids of wild-type and
mutant. The mutant residue is larger, and this might lead to
bumps. The torsion angles for this residue are unusual. Only
glycine is flexible enough to make these torsion angles, and
mutation into another residue will force the local backbone into
an incorrect conformation and will disturb the local structure.

rs777478676
The sizes are different between the amino acids of wild-type
and mutant. The mutant residue is smaller, and this might lead
to loss of interactions. The mutant residue is situated close to a
position that is highly conserved. The mutation introduces an
amino acid with different properties, which can disturb this
domain and abolish its function.

rs951262662
The mutant amino acid carries a charge that differs from the
wild-type counterpart. Because the mutation adds a charge, it
can repel ligands or residues with similar charges. The sizes of
the amino acids in the mutant and wild-type also differ, with
the mutant residue being bulkier, which may result in steric
hindrance. The torsion angles for this residue are unusual;
glycine is the only amino acid flexible enough to adopt these
angles. Mutation to a different residue will force the local
backbone into an improper conformation and disturb the
surrounding structure.

rs1192348585
The charge of the mutant amino acid contrasts with that of the
wild-type. This mutation introduces a charge that may cause
repulsive interactions with ligands or other residues carrying
the same charge. Size differences between the mutant and
wild-type amino acids are notable, as the mutant residue is larger
and could cause clashes. The torsion angles for this residue are
uncommon; glycine alone has the necessary flexibility to
maintain such angles. Mutating to any other residue will impose
strain on the local backbone, leading to an incorrect
conformation and disruption of the local structural environment.

rs1157021454
The wild-type and mutant residues have different levels of
hydrophobicity. At this location, the mutation adds a more
hydrophobic residue. This may cause hydrogen bonds to break
or disturb the proper. The wild-type residue and the mutant
residue share certain properties. This mutation might occur in
some rare cases, but it is more likely that the mutation is
damaging to the protein.

rs768704961
The sizes are different between the amino acids of wild-type
and mutant. The mutant residue is larger, and this might lead
to bumps. The mutation is located within a domain and
annotated in UniProt as peptidase M12B. Only this residue type
was found at this position. Mutation of a 100% conserved
residue is usually damaging for the protein.

Discussion

Principal Findings
In this study, different tools were used to identify the most
deleterious nsSNPs of the ADAM17 protein, namely, SIFT,
PolyPhen, PROVEAN, SNAP2, Mutation Assessor, I-Mutant,
MUpro, and ConSurf; these tools were selected according to
the following steps: pathogenicity study, stability, and
conservation study. Parameters like accuracy, sensitivity, and
specificity were chosen to assess their predictive abilities.
Without these parameters, it will not be possible to completely
evaluate the accuracy of a test.

In this bioinformatic study, we identified 7 nsSNPs (P556L,
G550D, V483A, G479E, G349E, T339P, and D232E) from the
entire residues of ADAM17. These nsSNPs were predicted by
5 tools: SIFT score of all these mutations ≈0 and classed as
deleterious effect on the protein, PolyPhen score≈1 and classed
in the probably damaging class, PROVEAN score of all of these
mutations is negative (<−3.4) and was predicted deleterious,
Mutation Assessor score of all of these mutations is positive
(>3.7) and predicted to have a high functional impact on the
protein, and SNAP2 score results were positive (>42) and
classed to have a functional effect on the protein. In addition,
we also evaluated protein stability using I-Mutant and MUpro.
I-Mutant predicted that all 7 mutations would decrease the
protein stability. MUpro results agreed for most mutations,
except that the P556L mutation was predicted to increase the
stability. Maximum conservation score by ConSurf means that
all mutations were predicted to have functional effects, except
the G349E mutation, which was predicted to have a structural
effect on ADAM17.

These mutations (P556L, G550D, V483A, G479E, G349E,
T339P, and D232E; rs1394373815, rs542316178, rs777478676,
rs951262662, rs1192348585, rs1157021454, and rs768704961)
are novel for their impact on ADAM17 structure, function, and
stability.

The second part of this study focuses on nsSNPs that may be
directly related to SARS-CoV-2 due to their positions within
the ADAM17 protein. We analyzed 4 nsSNPs of interest
(Q658H, D657G, D654N, and F652L), which were found to
have the highest conservation scores and were predicted to be
deleterious and reducing the stability of ADAM17. We
hypothesized that these residues (Q658, D657, D654, and F652)
are actively involved in the cleavage of ACE2 by ADAM17,
and a mutation at any of these positions could disrupt the entire
cleavage process. To support this hypothesis, we used a series
of tools to assess the pathogenicity of these mutants.

Comparison to Prior Studies
More than 80 distinct substrates have been discovered to be
processed by ADAM17, also referred to as TNFα-converting
enzyme, since its discovery. ADAM17, like most other ADAM
relations, is understood to process single-spanning membrane
proteins like growth factors, cytokines, receptors, chemokines,
and regulators of neurological processes and diseases, and
ADAM17 processes more than 80 substrates, and lots of them
are linked to inflammatory and cancerous diseases. More
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recently, molecules important to tumor immunosurveillance
have been found to be substrates for ADAM17, and research
on the shedding events that this enzyme orchestrates has
produced new theories of resistance to common cancer
treatments. While ADAM17 features a wide range of substrate
profiles, it typically only becomes active in response to triggers
that cause disease states, making it a good target for a treatment
approach.

The study by Pavlenko et al [49] has demonstrated that there
are important ADAM17 residues, namely, R177C, D616N,
D657A, and R725H, that play important roles in different cancer
types. The R177C mutation affects the prodomain of ADAM17
and causes cecum and central nervous system cancer, the D616N
affects the membrane-proximal domain and causes cancer in
colon and uterus, the D657A residue affects the
membrane-proximal domain and causes colon cancer, and
R725H residue affects the cytoplasmic domain and causes colon
cancer [49].

Mutations in the ADAM17 gene have been associated with
neonatal inflammatory skin and bowel disease, a condition
characterized by inflammatory features with neonatal onset,
affecting the skin, hair, and gastrointestinal tract. The skin
lesions involve perioral and perianal erythema, psoriasiform
erythroderma, with flares of erythema, scaling, and widespread
pustules. Gastrointestinal symptoms include malabsorptive
diarrhea that is exacerbated by intercurrent gastrointestinal
infections. The hair is brief or broken; therefore, the eyelashes
and eyebrows are wiry and disorganized. The results of this
study may be applicable for the analysis of novel missense
variants of the ADAM17 gene.

Several studies have demonstrated that residues located between
positions 652 and 659 catalyze the shedding of the ACE2
ectodomain by ADAM17 [50,51]. Recent advances in deep
learning, such as self-supervised learning, provide promising
avenues for enhancing the predictive capabilities of
bioinformatics tools like the ones implemented in this work. In
addition, application of federated learning with its
privacy-preserving analytics approach applied to Internet of

Things in smart health care could increase the scope for
computational approaches such as that done for the ADAM17
variant [52,53].

Limitations
Our study has several limitations. First, it is based entirely on
computational analysis using predictive tools and servers, which
may have many varying confidence levels and potential false
positive rates that we did not fully address. In addition, the
structural analysis using PyMol revealed visual differences
between native and mutant proteins, but their functional
implications of these structural changes are not thoroughly
explored or explained. Second, the 7 deleterious variants and
the 4 variants that have a relation with SARS-CoV-2 infection
should be confirmed with future laboratory experiments and
clinical wet laboratory approaches to figure out the mechanism
of these mutations.

Conclusions
In this in silico study of the high-risk missense variants of
ADAM17, we identified 7 nsSNPs (P556L, G550D, V483A,
G479E, G349E, T339P, and D232E) as the most deleterious
mutations in the ADAM17 gene. All 7 mutations were predicted
to have damaging effects on the structure, function, and stability
of the ADAM17 protein. This study represents the first in silico
analysis that evaluates the effect of these missense variants on
the function and structure of ADAM17, and these results still
require validation with in vitro experiments.

To support this study, in vitro experiments should be conducted
to confirm the in silico results. For future research, our results
confirm the impact of the 4 named mutations (Q658H, D657G,
D654N, and F652L) on the pathology related to SARS-CoV-2,
which strongly reinforces the role of ADAM17 in the
ectodomain shedding process of ACE2.

Our findings form a basis for understanding the potential
implications of ADAM17 variants on disease, which may lead
to earlier diagnosis, assessment of risk for progression of related
diseases, and may help inform future therapeutic targeting.
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Multimedia Appendix 2
Ramachandran for ADAM17 wild. ADAM: A disintegrin and metalloprotease.
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Multimedia Appendix 3
Ramachandran ADAM17 mutation D654N. ADAM: A disintegrin and metalloprotease.
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Multimedia Appendix 4
Ramachandran ADAM17 mutation D657G. ADAM: A disintegrin and metalloprotease.
[PDF File, 17 KB - bioinform_v6i1e72133_app4.pdf ]

Multimedia Appendix 5
Ramachandran ADAM17 mutation F652L. ADAM: A disintegrin and metalloprotease.
[PDF File, 17 KB - bioinform_v6i1e72133_app5.pdf ]

Multimedia Appendix 6
Ramachandran ADAM17 mutation Q658H. ADAM: A disintegrin and metalloprotease.
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Abstract

Background: Multiple correspondence analysis (MCA) is an unsupervised data science methodology that aims to identify and
represent associations between categorical variables. Gliomas are an aggressive type of cancer characterized by diverse molecular
and clinical features that serve as key prognostic factors. Thus, advanced computational approaches are essential to enhance the
analysis and interpretation of the associations between clinical and molecular features in gliomas.

Objective: This study aims to apply MCA to identify associations between glioma prognostic factors and also explore their
associations with stemness phenotype.

Methods: Clinical and molecular data from 448 patients with brain tumors were obtained from the Cancer Genome Atlas. The
DNA methylation stemness index, derived from DNA methylation patterns, was built using a one-class logistic regression.
Associations between variables were evaluated using the χ² test with k degrees of freedom, followed by analysis of the adjusted
standardized residuals (ASRs >1.96 indicate a significant association between variables). MCA was used to uncover associations
between glioma prognostic factors and stemness.

Results: Our analysis revealed significant associations among molecular and clinical characteristics in gliomas. Additionally,
we demonstrated the capability of MCA to identify associations between stemness and these prognostic factors. Our results
exhibited a strong association between higher DNA methylation stemness index and features related to poorer prognosis such as
glioblastoma cancer type (ASR: 8.507), grade 4 (ASR: 8.507), isocitrate dehydrogenase wild type (ASR:15.904), unmethylated
MGMT (methylguanine methyltransferase) Promoter (ASR: 9.983), and telomerase reverse transcriptase expression (ASR: 3.351),
demonstrating the utility of MCA as an analytical tool for elucidating potential prognostic factors.

Conclusions: MCA is a valuable tool for understanding the complex interdependence of prognostic markers in gliomas. MCA
facilitates the exploration of large-scale datasets and enhances the identification of significant associations.

(JMIR Bioinform Biotech 2025;6:e65645)   doi:10.2196/65645
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Introduction

Cancer is a dynamic and heterogeneous disease characterized
by several hallmarks controlling and contributing to its
development and progression [1]. Cancer research continually
generates large scales of data encompassing clinical information,
genomic and transcriptomic profiles, prognostic and diagnostic
markers, and therapeutic targets [2]. Different approaches have
been used to study and associate all these variables to manage
this complexity, aiming to reduce the dimensionality and
enhance data interpretation and decision-making process.
Several features used to study and classify the different types
of cancer are based on categorical variables. For instance, the

most widely used cancer staging system, TNM, is based on
categorical variables, where “T” refers to the size of the primary
tumor, “N” refers to the number of lymph nodes affected by
cancer, and “M” refers to absence or presence of metastasis [3].
Thus, these biological and clinical variables interact, and their
associations can be measured and diagnosticated using statistical
tests such as Fisher exact tests and χ² tests. However, these
approaches could not provide a global and comprehensive
picture of the associations between these variables, particularly
in datasets with a large number of categorical variables.
Therefore, using multivariate and visual analysis methods can
significantly improve the analysis and interpretation of
associations between clinical and molecular cancer phenotypes.
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Brain tumors are a particularly aggressive type of cancer, mostly
due to local tissue damage and highly invasive growth. Gliomas,
which originate from neuroglial stem cells or progenitor cells,
account for 30% of primary brain tumors and 80% of malignant
brain tumors [4]. This heterogeneous disease is histologically
classified based on anaplasia criteria and predominant cell types
such as oligodendroglioma, astrocytoma, and glioblastoma
(GBM) [5]. Nevertheless, as further investigation aimed to
elucidate the neuropathological mechanisms of gliomas, new
variables are considered for characterizing this cancer tumor,
leading to reclassifications based on mutational profiles, clinical
data, and epigenetic factors [6]. This scenario resulted in
different prognosis predictions, diagnosis determination, and
treatment responses, contributing to an increasingly complex
and stratified understanding of gliomas.

Stemness is a key phenotype of cancer stem cells (CSCs), related
to tumor initiation and progression, therapy resistance, and
metastasis [7]. CSCs are referred to as a subpopulation of tumor
cells able to self-renew and differentiate into distinct cell
lineages, enabling those cells to adapt to different environmental
situations [8]. Moreover, recent studies have demonstrated
associations between stemness features and different histologic
classifications or prognostic factors of gliomas [9-11]. Therefore,
providing a comprehensive visualization of the associations
between clinical features and stemness in brain tumors could
be valuable for identifying and determining potential prognostic
and therapeutic markers.

Multiple correspondence analysis (MCA) is an unsupervised
data science methodology that aims to observe and represent
associations between variables disposed in contingency tables,
visualizing these associations in a 2D perceptual map. This
approach allows for the simultaneous visualization of the
relationship between 2 or more characteristics [12]. MCA shares
general characteristics, and it is an extension of principal
component analysis which is effective in reducing data
dimensionality. Thus, MCA can significantly reduce the
workload and simplify statistical analysis in healthy research
[13]. The results of MCA are typically interpreted in a 2D map,
where the relative positions of categories of each variable and
their distribution along the dimensions are analyzed. Categories
that cluster together and are closer are more likely to be
associated, providing key insights into the relationship [14].
Despite its applicability, rigor, and success in other disciplines
such as Geography, Epidemiology, and Human Physiology,
MCA remains underused in Oncology research and few studies
are applying [12,14-16].

By using MCA, we aimed to gain a deeper understanding of
the interdependence between stemness and prognostic factors.
Our findings revealed associations among molecular and clinical
characteristics and prognostic factors, as previously described
by the literature [17]. Additionally, we demonstrated the
capability of MCA to identify associations between stemness
and these prognostic factors. Our results exhibited a strong
association between higher stemness index and features related
to poorer prognosis, demonstrating the utility of MCA as an
analytical tool for elucidating oncological heterogeneity and
may also offer a valuable strategy for therapeutic
decision-making. This study highlights MCA as a powerful tool

for overcoming the barrier of representing the heterogeneity
and complexity of cancer variables, particularly in glioma.

Methods

Dataset of the Tumor Samples
Clinical and molecular information of a total of 448 patients
with brain tumors was obtained from the Cancer Genome Atlas
(TCGA). We tailored the dataset to contain only qualitative
information, with 12 variables: cancer type, histology, grade,
patient’s vital status, IDH (isocitrate dehydrogenase) status,
codeletion of chromosomes 1p and 19q arms, MGMT
(methylguanine methyltransferase) gene methylation, telomerase
reverse transcriptase (TERT) expression, gain of chromosome
19 and 20, chromosome 7 gain and chromosome 10 loss, ATRX
(alpha thalassemia/mental retardation syndrome, X-linked)
status, and GBM transcriptome subtypes. All categorical
variables were selected based on their established role as
prognostic factors for brain tumors.

DNA Methylation Stemness Index
The DNA methylation stemness index (mDNAsi) based on
DNA methylation was built using a one-class logistic regression
[18] on the pluripotent stem cell samples (embryonic stem cell
and induced pluripotent stem cell) from the Progenitor Cell
Biology Consortium dataset [19,20]. The algorithm was built
and validated as described in the original paper [21]. The
mDNAsi was applied in 381 samples from the TCGA database.
Malta’s model presented a high correlation among other CSC
signatures, providing significant insights into the biological and
clinical features of pan-cancer. The workflow to generate the
mDNAsi is available in the original paper [21].

Multiple Correspondence Analysis
MCAs were conducted in the RStudio (version 4.3.1; Posit,
PBC) environment using the packages FactoMineR (version
2.11; Institut Agro) [22] and cabootcrs (version 2.1.0; Cranfield
University), for creating matrices for MCAs. Contingency tables
for the categorical variables were generated, and associations
between variables were assessed using a χ² test with k degrees
of freedom. This was followed by the analysis of the adjusted
standardized residuals (ASRs). The χ² test evaluates whether
the observed associations between categorical variables are
nonrandomly associated (P value <.05). ASRs higher than 1.96
indicate a significant association between variables in the matrix.
To perform MCA, the categorical variables should not be
randomly associated. To create the perceptual map, inertia was
determined as the total χ² divided by the number of samples,
resulting in the number of associations in the dataset. MCA was
performed based on the binary matrices and row and column
profiles were determined to demonstrate the influence of each
category of variables on the others. Matrices were defined based
on the row and column profiles. Eigenvalues were then extracted
to represent the number of dimensions that could be captured
in the analysis. Finally, the x- and y-axis coordinates of the
perceptual map were determined, allowing the category of the
variables to be represented and established. In MCA, the spatial
distance between categories of different variables reflects their
associations. Categories with high coordinates that are close in
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space are directly associated, while categories presenting high
coordinates but opposing coordinates are inversely associated.

Statistical Analysis
Fisher exact tests and χ² tests were performed using RStudio
4.3.1 environment and GraphPad Prism (version 10.3.0;
Dotmatics, USA).

Ethical Considerations
The results published in this paper are in whole based upon data
generated by the TCGA Research Network [23]. TCGA Ethics
and Policies was originally published by the National Cancer
Institute [24].

Results

MCA Can Identify Associations Between Different
Variables of Gliomas and Patient Vital Status
To determine the suitability of glioma variables for MCA, we
first evaluated whether categorical glioma variables were
randomly or nonrandomly associated. This involved creating
individual contingency tables for each pair of glioma variables
(Multimedia Appendices 1-13). Then, we applied χ² tests for
each contingency table to confirm nonrandom associations (P
value <.05). We also confirmed the associations between
categorical variables and patients’ vital status using the Fisher
exact test (P value <.05) (Multimedia Appendix 14). Based on
the χ² test, the results indicated that only 2 categorical variables,
gender and DAXX expression, were randomly associated,
suggesting no significant association patterns between these

variables and the others. Consequently, gender and DAXX
expression were excluded from further analysis.

In the subsequent analysis, we observed and measured the
strength of associations between the patient vital status (0-alive;
1-dead) and different factors including cancer type, histology,
grade, IDH status, 1p19q codeletion, MGMT promoter
methylation, gain of chromosome (Chr) 7 and loss of Chr10
(7+/10–), co-gain of Chr19 and Chr20 (19+/20+), TERT
expression, ATRX status, and transcriptome subtype, aiming
to determine whether MCA could identify associations between
prognostic factors for this disease. We used ASRs to assess
these associations, considering a category of each variable to
be associated with either alive or dead vital status when the
ASR values were higher than 1.96. Patients’ vital status
classified as dead were associated with poorer prognostics
factors such as GBMs, grade 4, IDH wild type, non-codeleted
1p19q, unmethylated MGMT promoter, gain of Chr7 and loss
of Chr10, expression of TERT, ATRX wild type, and classical
(CL) and mesenchymal (ME) transcriptome subtypes (Table
1). In contrast, patients classified as alive were linked to
favorable prognostic variables, including oligoastrocytomas
and oligodendrogliomas, grade 2, IDH mutant, codeleted 1p19q,
methylated MGMT promoter, absence of combined
Chr7+/Chr10– (chromosome 7 gain and 10 loss), lack of TERT
expression, ATRX mutant, and the proneural (PN) and neural
(NE) transcriptome subtypes (Table 1). Histological
classification, grade, IDH status, and Chr7+/Chr10– were the
most strongly associated features with patient vital status. These
associations were further illustrated in a heatmap (Figure 1A-D).

JMIR Bioinform Biotech 2025 | vol. 6 | e65645 | p.88https://bioinform.jmir.org/2025/1/e65645
(page number not for citation purposes)

Goes Job et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table . Table exhibiting the values of the adjusted standardized residuals. Categories of variables with values higher than 1.96 are considered associated.
We could observe a strong association between poorer prognostic factors and dead vital status. In contrast, better prognostic factors were associated
with alive vital status.

Categories associated withPatient vital statusGlioma variables

DeadAlive

Dead8.127—aGlioblastoma

Alive—2.64Oligoastrocytoma

Alive—3.309Oligodendroglioma

Not associated—1.756Astrocytoma

Alive—6.809Grade 2

Not associated—0.155Grade 3

Dead8.127—Grade 4

Dead8.804—IDHb wild type

Alive—8.804IDH mutant

Alive—5.2651p/19q codeletion

Dead5.265—1p/19q non-codeletion

Alive—5.26Methylated MGMTc promoter

Dead5.26—Unmethylated MGMT promoter

Alive—5.756No combined Chr7+/Chr10–d

Dead5.756—Chr7+/Chr10–

Alive—3.078Not expressed TERTe

Dead3.078—Expressed TERT

Alive—2.311ATRXf mutant

Dead2.311—ATRX wild type

Alive—4.122Proneural subtype

Alive—3.593Neural subtype

Dead4.635—Mesenchymal subtype

Dead4.852—Classical subtype

aNot applicable.
bIDH: isocitrate dehydrogenase.
cMGMT: methylguanine methyltransferase.
dChr7+/Chr10–: chromosome 7 gain and 10 loss.
eTERT: telomerase reverse transcriptase.
fATRX: alpha thalassemia/mental retardation syndrome, X-linked.
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Figure 1. Heatmap exhibiting the values of the adjusted standardized residuals. Categories of variables with values higher than 1.96 are associated.
We could observe a strong association of (A) glioblastoma (8.127), (B) grade 4 (8.127), (C) IDH wild type (8.804), and (D) Chr7+/Chr10– (5.756) with
dead vital status. Favorable prognostic factors including (A) oligoastrocytoma and oligodendroglioma, (B) grade 2, (C) IDH mutant, and (D) no combined
copy number alterations were associated with alive vital status. Chr7+/Chr10–: chromosome 7 gain and 10 loss; IDH: isocitrate dehydrogenase.

Using MCA, we observed that dimension 1 (x-axis) accounted
for 33.71% of the variance, while dimension 2 (y-axis)
accounted for 14.08%. The inertia (sum of the variances) for
these 2 dimensions was 47.79%. The variance of the overall
dimensions (17 dimensions) for the combinations of the
variables is illustrated in Multimedia Appendix 15. The main
idea was to present the percentage of explained variance for
each dimension and not the influence of individual variables.
The total inertia (sum of the variances) was 1.41.

The results obtained from the MCA were visualized in a 2D
perceptual map (Figure 2), highlighting the associations between
the categories of each variable. The coordinates of each category
are detailed in Table 2. The perceptual map reveals that
categories such as GBM, unmethylated MGMT promoter, IDH
wild type, Chr7 gain and Chr10 loss, grade 4, GBM ATRX wild
type, TERT expression, non-codel 1p.19q, and CL and ME

transcriptome subtypes are closely associated with dead vital
status, appearing along the positive x-axis (dimension 1).
Conversely, categories like oligoastrocytomas and
oligodendrogliomas, grade 2, IDH mutant, codel 1p19q,
methylated MGMT promoter, no combined copy number
alterations, no expression of TERT, ATRX mutant, and PN and
NE transcriptome subtypes are closely associated with alive
vital status, appearing along the negative x-axis (dimension 1)
(Figure 2).

These findings highlight the utility and capacity of MCA in
reducing data dimensionality and demonstrate that, in gliomas,
variables interact cohesively. MCA allows us to further visualize
these interactions on a global perceptual map, organizing the
characteristics into distinct clusters that correspond to different
prognostic profiles.
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Figure 2. Multiple correspondence analysis (MCA) 2D perceptual map demonstrating the association between the categories of each categorical
variable. Categories that are closely clustered are strongly associated with each other. Categories such as glioblastoma, unmethylated MGMT promoter,
IDH wild type, chromosome 7 gain and 10 loss (Chr7+/Chr10–), grade 4, glioblastoma ATRX wild type, TERT expression, non-codel 1p.19q, CL and
ME transcriptome subtypes are closely associated with dead vital status (1), appearing along the positive x-axis (dimension 1). ATRX: alpha
thalassemia/mental retardation syndrome, X-linked; CL: classical; GBM: glioblastoma; IDH: isocitrate dehydrogenase; ME: mesenchymal; MGMT:
methylguanine methyltransferase; NE: neural; PN: proneural; TERT: telomerase reverse transcriptase.
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Table . Coordinates of each category compounding the perceptual map.

Dimension 2 (y-axis)Dimension 1 (x-axis)Category

−0.08967601.6650830GBMa

0.0254382−0.4723301Low-grade glioma

0.9527631−0.2672355Astrocytoma

−0.08967601.6650830Glioblastoma

0.3276318−0.5334711Oligoastrocytoma

−0.9346433−0.6011671Oligodendroglioma

−0.1971919−0.6611308Grade 2

0.2320783−0.2970898Grade 3

−0.08967601.6650830Grade 4

−0.0551369−0.31856090-Alive

0.13058740.75448621-Dead

−0.0548104−0.6734117IDHb mutant

0.09676411.1888626IDH wild type

−13.034.766−0.68773651p/19q codel

0.52139060.27509461p/19q non-codel

−0.1087842−0.3429710Methylated

0.31871851.0048449Unmethylated

−0.02102341.4087248Chr7+/Chr10−c

0.0062766−0.4205758No combined Chr7+/Chr10−

−0.12950891.4900007Chr 19/20 co-gain

0.0073307−0.0843397No Chr 19/20 co-gain

−0.68457600.3715020Expressed TERTd

0.8643636−0.4690682Not expressed TERT

1.0773395−0.6448249ATRXe mutant

−0.45002790.2693572ATRX wild type

−0.02175101.2675815Classical

0.26876421.0920361Mesenchymal

−0.0650952−0.5475482Neural

−0.0604168−0.5971662Proneural

aGBM: glioblastoma.
bIDH: isocitrate dehydrogenase.
cChr7+/Chr10–: chromosome 7 gain and 10 loss.
dTERT: telomerase reverse transcriptase.
eATRX: Alpha Thalassemia/Mental Retardation Syndrome X-linked.

MCA Can Associate an Epigenetic Stemness Index
(mDNAsi) as a Prognostic Factor in Gliomas
After demonstrating that MCA effectively reduces
dimensionality and identifies associations between prognostic
factors and clinical data in the glioma database, we proceeded
to explore whether MCA could also associate these variables
with stemness phenotype. For this analysis, we updated our
database by including mDNAsi as a new variable, categorized
into low, intermediate, and high levels of stemness. These

categories were based on the DNA methylation index related
to tumor pathology and clinical outcomes, as previously studied
by [21].

First, we evaluated whether the categorical glioma variables
were randomly or nonrandomly associated with mDNAsi by
creating individual contingency tables for each pair of glioma
variables and applying χ² tests (Multimedia Appendix 16). We
also confirmed the associations between categorical variables
using the Fisher exact test (P value <.05) ( Multimedia
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Appendix 17). All the variables were found to be suitable for
MCA. Then, using ASR values to evaluate the strength of these
associations, our results indicated strong associations between
high mDNAsi levels and poor prognostic and clinical factors.
Higher mDNAsi levels were associated with GBM, IDH
wild-type, absence of 1p19q co-deletion, unmethylated MGMT
promoter, TERT expression, grade 3 and 4, patient’s vital status
as dead, Chr7+/Chr10–, chromosomes 19/20 co-gain, ATRX

wildtype and ME and CL transcriptome subtypes (Table 3).
Conversely, intermediate and lower levels of mDNAsi were
associated with characteristics related to favorable prognosis,
including oligodendroglioma, IDH mutant, 1p19q co-deletion,
methylation of MGMT promoter, absence of TERT expression,
grade 2, patient’s vital status as alive, no combined copy number
alteration, absence of chromosomes 19/20 co-gain, ATRX
mutant, and PN and NE transcriptome subtypes (Table 3).

Table . Table exhibiting the values of the adjusted standardized residuals. Categories of variables with values higher than 1.96 are considered associated.
We could observe a strong association between poorer prognostic factors and a higher stemness index (DNA methylation stemness index [mDNAsi]).
In contrast, better prognostic factors were associated with lower stemness index.

Categories associated withmDNAsiGlioma Variables

HighIntermediateLow

High8.507——aGlioblastoma

Not associated———Oligoastrocytoma

Low——3.949Oligodendroglioma

High2.832——Astrocytoma

Low and intermediate—4.0573.279G2

High2.392——G3

High8.507——G4

High15.904——IDHb wild type

Low and intermediate—7.0578.743IDH mutant

Low and intermediate—2.1025.7721p/19q codeletion

High7.964——1p/19q non-codeletion

Low and intermediate—3.9615.944Methylated MGMTc promot-
er

High9.983——Unmethylated MGMT pro-
moter

Low and intermediate—5.9276.436No combined

Chr7+/Chr10−d

High12.433——Chr7+/Chr10−

Intermediate—3.216—Not expressed TERTe

High3.351——Expressed TERT

Intermediate—3.505—ATRXf mutant

High4.949——ATRX wild type

Low——8.476Proneural subtype

Intermediate—4.218—Neural subtype

High4.771——Mesenchymal subtype

High10.981——Classical subtype

aNot applicable.
bIDH: isocitrate dehydrogenase.
cMGMT: methylguanine methyltransferase.
dChr7+/Chr10–: chromosome 7 gain and 10 loss.
eTERT: telomerase reverse transcriptase.
fATRX: Alpha Thalassemia/Mental Retardation Syndrome X-linked.

Using MCA, dimension 1 (x-axis) accounted for 28.7% of the
variance, while dimension 2 (y-axis) accounted for 14.39%.

The inertia (sum of the variances) for these 2 dimensions was
43.09%. The variance of the overall dimensions (18 dimensions)

JMIR Bioinform Biotech 2025 | vol. 6 | e65645 | p.93https://bioinform.jmir.org/2025/1/e65645
(page number not for citation purposes)

Goes Job et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


for the combinations of the variables is illustrated in Multimedia
Appendix 18. The total inertia (sum of the variances) was 1.5.
The 2D perceptual map exhibited the associations between the
categories of each variable (Figure 3). The perceptual map
reveals categories such as GBM, unmethylated MGMT
promoter, IDH wild type, Chr7 gain and Chr10 loss, grade 4,
GBM ATRX wild type, TERT expression, non-codel 1p.19q,
and CL and ME transcriptome subtypes are closely associated

with high mDNAsi, appearing along the positive x-axis
(dimension 1). Conversely, categories like oligoastrocytomas
and oligodendrogliomas, grade 2, IDH mutant, codel 1p19q,
methylated MGMT promoter, no combined copy number
alterations, no expression of TERT, ATRX mutant, and PN and
NE transcriptome subtypes are closely associated with alive
vital status, appearing along the negative x-axis (dimension 1)
(Figure 3).

Figure 3. Multiple correspondence analysis (MCA) 2D perceptual map demonstrating the association between the categories of each categorical
variable. Categories that are closely clustered are strongly associated with each other. Categories such as glioblastoma, unmethylated MGMT promoter,
IDH wild type, chromosome 7 gain and 10 loss (Chr7+/Chr10–), grade 4, glioblastoma ATRX wild type, TERT expression, non-codel 1p.19q, and CL
and ME transcriptome subtypes are closely associated with high mDNAsi, appearing along the positive x-axis (dimension 1). ATRX: alpha
thalassemia/mental retardation syndrome, X-linked; CL: classical; IDH: isocitrate dehydrogenase; mDNAsi: DNA methylation stemness index; ME:
mesenchymal; MGMT: methylguanine methyltransferase; NE: neural; PN: proneural; TERT: telomerase reverse transcriptase.

Discussion

Principal Findings
Multiple efforts have been made to explore the diversity of
oncologic diseases, with significant contributions from genetics,
cell and tissue biology, as well as computational and
experimental technologies, providing a wealth of information
on cancer manifestations. In the field of glioma research,
emerging approaches have sought to clarify tumor pathology
and grading through the introduction of novel types and
subtypes, as well as by identifying molecular markers and
genetic mutations that contribute to predicting diagnosis and

prognosis. However, it also results in an accumulation of
extensive datasets, presenting challenges in interpretation and
visualization regarding the associations between prognostic
factors. In this study, we used MCA, an unsupervised data
science approach, to establish statistical associations between
different qualitative variables of gliomas. This method was able
to reduce data dimensionality and represent it on a 2D perceptual
map, revealing associations between various established glioma
prognostic factors, including histological classification, IDH
status, MGMT promoter methylation, and transcriptome
subtypes. Furthermore, we associated these clinical and
prognostic variables with an epigenetic-based stemness index
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(mDNAsi), demonstrating that higher stemness levels were
associated with poorer prognostic factors, providing a useful
tool to associate prognostic markers in brain tumors.

Comparison to Prior Studies
Several clinical and molecular factors are considered in
predicting the prognosis and survival of brain tumors, more
specifically for gliomas. Beyond histological classification and
tumor grade, genetic and molecular biomarkers have been
incorporated as potential prognostic indicators. Thus, we first
evaluated the ability of MCA to associate these consolidated
prognostic variables with the patient’s vital status. Our findings
demonstrate that MCA effectively clusters poor prognostic
factors with dead vital status. All these prognostic factors are
well consolidated and associated with malignancy of gliomas.
IDH mutation represents one of the main prognostic markers
for gliomas [25]. It has been identified that one of the
mechanisms given by this favorable outcome is the impaired
production of nicotinamide adenine dinucleotide phosphate in
Krebs cycle caused by IDH1 enzyme mutation that can sensitize
tumor cells to chemotherapy and explain the favorable prognosis
of patients with IDH mutation [25]. Likewise, co-deletion of
1p19q chromosome arms, especially when combined with other
biomarkers such as IDH mutation and TERT expression, has
been used as a predictive biomarker and recent studies
investigated biological mechanisms to be significantly linked
to genes involved in cell division, angiogenesis, and DNA repair
responses [26]. Thus, we demonstrated that MCA was able to
capture and associate key glioma hallmarks with patients’ vital
status, which was applied to different clinical variables.

Subsequently, we applied MCA to explore the association
between high stemness levels (mDNAsi) and characteristics
related to poor prognosis. Stemness has been considered an
important phenotype in glioma malignancy and is potentially
associated with CL genetic alterations, such as the gain of
chromosome 7. Chromosome 7 harbors some key genes related
to stemness, including Epidermal Growth Factor Receptor
(EGFR), Mesenchymal-Epithelial Transition Factor (MET),
and Homeobox A gene (HOXA). A study of 86 GBMs reported
that EGFR amplification occurs with higher probability in
samples that have a gain of chromosome 7 (82.1%) compared
with those without it (66.7%) [27]. In addition, EGFR
amplification is more prevalent in IDH-wildtype diffuse gliomas
(66.0%) and GBM (85.5%) [28], which are also associated with
poorer prognostic factors, consistent with our findings. High
mDNAsi has been previously linked to EGFR mutations [21].
The HOXA and MET loci, also located on chromosome 7, have
been implicated in stemness-related pathways. Notably, studies
have demonstrated interactions between chromosome 7 gain
and the expression of a stem cell-related HOX signature in
GBMs [29]. Analysis of the MET gene at 7q31.2 revealed that
gain occurs in 47% of primary and 44% of secondary GBMs,
suggesting that this genetic alteration contributes to the
pathogenesis of both GBM subtypes [30].

Overall, relatively few studies have used MCA to explore
associations with cancer phenotypes. Previous studies have
applied MCA to different approaches, such as analyzing
prognosis low rectal cancer surgery [31], investigating the
association between some types of cancer in rural or urban areas
[15], examining the association between Traditional Chinese
Medicine Syndrome and histopathology of colorectal cancer
[32], assessing clinically relevant demographic variables across
multiple gastrointestinal cancers [33], and the relationship
between types of diagnostic classification in breast cancer [34].
Our study also highlights the utility of MCA in investigating
associations within the context of brain tumors. MCA enables
the investigation of the pattern among many categorical factors
in gliomas, providing a powerful computational approach to
identify and test prognostic variables. It was possible to visually
and quantitatively represent the associations, which facilitates
the identification of distinct patient clusters based on shared
prognostic characteristics. Our findings were consistent with
previous literature and emphasized stemness as an important
phenotype for gliomas.

Limitations
Our study has inherent limitations. First, as a retrospective
analysis of TCGA data, it is subject to selection bias. Second,
we associated all the prognostic variables with patients’ vital
status, which may not be the most optimal variable for
determining prognosis. For the future, we intend to improve
our model validating its applicability in other prospective
datasets. Third, the absence of therapy data is another limitation
of this study. Finally, an intrinsic limitation of MCA is that
retaining only 2 or 3 dimensions may not sufficiently capture
all the significant features in the data. In our analysis, the
percentage of explained inertia was approximately 40%. While
there is not an accepted threshold for adequately explained
inertia, common guidelines recommend retaining dimensions
that represent over 70% of the inertia [35]. However, explained
inertia in the range of 40%‐60% is often considered
informative, and the interpretability and relevance of the patterns
revealed by the dimensions are frequently more important than
the exact percentage of inertia explained, especially in a complex
heterogeneous disease such as brain tumors [36].

Conclusion and Future Perspectives
In conclusion, our findings suggest that MCA is a valuable tool
for understanding the interdependence between prognostic
markers in gliomas. MCA facilitates the exploration of a
large-scale dataset and enhances the identification of
associations. Considering the advances in computational
oncology and the emergence of new oncological features, such
as stemness phenotype, incorporating MCA into cancer research
as an approach to exploring the complex heterogeneity of the
oncologic field becomes a powerful tool for simplifying data
management. It contributes to researchers statistically identifying
associations between variables within extensive databases and
improves the visual representation, leading to a deeper
understanding of cancer findings.

 

JMIR Bioinform Biotech 2025 | vol. 6 | e65645 | p.95https://bioinform.jmir.org/2025/1/e65645
(page number not for citation purposes)

Goes Job et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Acknowledgments
This study has been supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and
from the Sao Paulo Research Foundation (FAPESP), Brazil (2018/00583-0, 2022/06305-7, 2022/09378-5, 2023/05099-7,
2023/07358-0).

Data Availability
The datasets generated or analyzed during this study are available at National Institutes of Health Genomic Data Commons (GDC)
[37]. The workflow to generate the DNA methylation stemness index (mDNAsi) can be accessed at GitHub [38].

Authors' Contributions
MEGJ conducted the study, contributing to the acquisition of data, data analysis and interpretation, production of tables and
figures, and wrote the first version of the manuscript. HF contributed to the interpretation and discussion of data and corrected
the final version of the manuscript. TMM contributed to the acquisition, interpretation, and discussion of data, and corrected the
final version of the manuscript. PLPX contributed to the concept and design of the study, data analysis and interpretation, funding,
and corrected the final version of the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Individual contingency tables for cancer type.
[XLSX File, 29 KB - bioinform_v6i1e65645_app1.xlsx ]

Multimedia Appendix 2
Individual contingency tables for histology.
[XLSX File, 32 KB - bioinform_v6i1e65645_app2.xlsx ]

Multimedia Appendix 3
Individual contingency tables for grade.
[XLSX File, 27 KB - bioinform_v6i1e65645_app3.xlsx ]

Multimedia Appendix 4
Individual contingency tables for gender.
[XLSX File, 24 KB - bioinform_v6i1e65645_app4.xlsx ]

Multimedia Appendix 5
Individual contingency tables for vital status.
[XLSX File, 23 KB - bioinform_v6i1e65645_app5.xlsx ]

Multimedia Appendix 6
Individual contingency tables for IDH (isocitrate dehydrogenase) status.
[XLSX File, 21 KB - bioinform_v6i1e65645_app6.xlsx ]

Multimedia Appendix 7
Individual contingency tables for X1p.19q.codeletion.
[XLSX File, 20 KB - bioinform_v6i1e65645_app7.xlsx ]

Multimedia Appendix 8
Individual contingency tables for MGMT (methylguanine methyltransferase) promoter.
[XLSX File, 18 KB - bioinform_v6i1e65645_app8.xlsx ]

Multimedia Appendix 9
Individual contingency tables for Chr 7 gain and Chr 10 loss.
[XLSX File, 17 KB - bioinform_v6i1e65645_app9.xlsx ]

JMIR Bioinform Biotech 2025 | vol. 6 | e65645 | p.96https://bioinform.jmir.org/2025/1/e65645
(page number not for citation purposes)

Goes Job et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app1.xlsx&filename=3616c8c1-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app1.xlsx&filename=3616c8c1-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app2.xlsx&filename=36d584e1-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app2.xlsx&filename=36d584e1-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app3.xlsx&filename=36e870a0-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app3.xlsx&filename=36e870a0-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app4.xlsx&filename=36fc6dd0-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app4.xlsx&filename=36fc6dd0-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app5.xlsx&filename=370f3281-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app5.xlsx&filename=370f3281-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app6.xlsx&filename=3721f731-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app6.xlsx&filename=3721f731-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app7.xlsx&filename=3736b7b1-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app7.xlsx&filename=3736b7b1-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app8.xlsx&filename=37475981-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app8.xlsx&filename=37475981-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app9.xlsx&filename=3757fb51-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app9.xlsx&filename=3757fb51-ff89-11ef-8dcf-af89984358c4.xlsx
http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 10
Individual contingency tables for Chr 19/20 co-gain.
[XLSX File, 16 KB - bioinform_v6i1e65645_app10.xlsx ]

Multimedia Appendix 11
Individual contingency tables for TERT (telomerase reverse transcriptase) expression status.
[XLSX File, 13 KB - bioinform_v6i1e65645_app11.xlsx ]

Multimedia Appendix 12
Individual contingency tables for ATRX (Alpha Thalassemia/Mental Retardation Syndrome X-linkedalpha thalassemia/mental
retardation syndrome, X-linked) status.
[XLSX File, 11 KB - bioinform_v6i1e65645_app12.xlsx ]

Multimedia Appendix 13
Individual contingency tables for DAXX status.
[XLSX File, 10 KB - bioinform_v6i1e65645_app13.xlsx ]

Multimedia Appendix 14
Fisher exact test and χ² test for vital status × glioma prognostic factors.
[XLSX File, 24 KB - bioinform_v6i1e65645_app14.xlsx ]

Multimedia Appendix 15
Percentage of explained variances of the overall (17) dimensions.
[PNG File, 161 KB - bioinform_v6i1e65645_app15.png ]

Multimedia Appendix 16
Individual contingency table for mDNAsi.
[XLSX File, 30 KB - bioinform_v6i1e65645_app16.xlsx ]

Multimedia Appendix 17
Fisher exact test and χ² test for mDNAsi (DNA methylation stemness index) × glioma prognostic factors.
[XLSX File, 22 KB - bioinform_v6i1e65645_app17.xlsx ]

Multimedia Appendix 18
Percentage of explained variances of the overall (18) dimensions.
[PNG File, 9 KB - bioinform_v6i1e65645_app18.png ]

References
1. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov 2022 Jan;12(1):31-46. [doi:

10.1158/2159-8290.CD-21-1059] [Medline: 35022204]
2. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 2018 Feb;15(2):81-94.

[doi: 10.1038/nrclinonc.2017.166] [Medline: 29115304]
3. Brierley J, O’Sullivan B, Asamura H, et al. Global consultation on cancer staging: promoting consistent understanding and

use. Nat Rev Clin Oncol 2019 Dec;16(12):763-771. [doi: 10.1038/s41571-019-0253-x] [Medline: 31388125]
4. Weller M, Wick W, Aldape K, et al. Glioma. Nat Rev Dis Primers 2015 Jul 16;1:15017. [doi: 10.1038/nrdp.2015.17]

[Medline: 27188790]
5. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta

Neuropathol 2007 Aug;114(2):97-109. [doi: 10.1007/s00401-007-0243-4] [Medline: 17618441]
6. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary.

Neuro Oncol 2021 Aug 2;23(8):1231-1251. [doi: 10.1093/neuonc/noab106] [Medline: 34185076]
7. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci 2018 Mar 6;25(1):20. [doi:

10.1186/s12929-018-0426-4] [Medline: 29506506]
8. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med 2017 Oct 6;23(10):1124-1134. [doi: 10.1038/nm.4409] [Medline:

28985214]
9. Wang Q, Hu B, Hu X, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological

changes in the microenvironment. Cancer Cell 2017 Jul 10;32(1):42-56. [doi: 10.1016/j.ccell.2017.06.003] [Medline:
28697342]

JMIR Bioinform Biotech 2025 | vol. 6 | e65645 | p.97https://bioinform.jmir.org/2025/1/e65645
(page number not for citation purposes)

Goes Job et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app10.xlsx&filename=362a9ee1-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app10.xlsx&filename=362a9ee1-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app11.xlsx&filename=363e26e1-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app11.xlsx&filename=363e26e1-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app12.xlsx&filename=3651fd01-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app12.xlsx&filename=3651fd01-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app13.xlsx&filename=3663d751-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app13.xlsx&filename=3663d751-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app14.xlsx&filename=3677ad71-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app14.xlsx&filename=3677ad71-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app15.png&filename=368b3571-ff89-11ef-8dcf-af89984358c4.png
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app15.png&filename=368b3571-ff89-11ef-8dcf-af89984358c4.png
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app16.xlsx&filename=369e2131-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app16.xlsx&filename=369e2131-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app17.xlsx&filename=36af8651-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app17.xlsx&filename=36af8651-ff89-11ef-8dcf-af89984358c4.xlsx
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app18.png&filename=36c09d51-ff89-11ef-8dcf-af89984358c4.png
https://jmir.org/api/download?alt_name=bioinform_v6i1e65645_app18.png&filename=36c09d51-ff89-11ef-8dcf-af89984358c4.png
http://dx.doi.org/10.1158/2159-8290.CD-21-1059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35022204&dopt=Abstract
http://dx.doi.org/10.1038/nrclinonc.2017.166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29115304&dopt=Abstract
http://dx.doi.org/10.1038/s41571-019-0253-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31388125&dopt=Abstract
http://dx.doi.org/10.1038/nrdp.2015.17
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27188790&dopt=Abstract
http://dx.doi.org/10.1007/s00401-007-0243-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17618441&dopt=Abstract
http://dx.doi.org/10.1093/neuonc/noab106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34185076&dopt=Abstract
http://dx.doi.org/10.1186/s12929-018-0426-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29506506&dopt=Abstract
http://dx.doi.org/10.1038/nm.4409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28985214&dopt=Abstract
http://dx.doi.org/10.1016/j.ccell.2017.06.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28697342&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


10. Ortensi B, Setti M, Osti D, Pelicci G. Cancer stem cell contribution to glioblastoma invasiveness. Stem Cell Res Ther 2013
Feb 28;4(1):18. [doi: 10.1186/scrt166] [Medline: 23510696]

11. Tan J, Zhu H, Tang G, et al. Molecular subtypes based on the stemness index predict prognosis in glioma patients. Front
Genet 2021;12:616507. [doi: 10.3389/fgene.2021.616507] [Medline: 33732284]

12. Sourial N, Wolfson C, Zhu B, et al. Correspondence analysis is a useful tool to uncover the relationships among categorical
variables. J Clin Epidemiol 2010 Jun;63(6):638-646. [doi: 10.1016/j.jclinepi.2009.08.008] [Medline: 19896800]

13. Li BH, Sun ZQ, Dong SF. Correspondence analysis and its application in oncology. Commun Stat Theory Methods 2010
Mar 19;39(7):1229-1236. [doi: 10.1080/03610920902871446]

14. Costa PS, Santos NC, Cunha P, Cotter J, Sousa N. The use of multiple correspondence analysis to explore associations
between categories of qualitative variables in healthy ageing. J Aging Res 2013;2013:302163. [doi: 10.1155/2013/302163]
[Medline: 24222852]

15. Florensa D, Godoy P, Mateo J, et al. The use of multiple correspondence analysis to explore associations between categories
of qualitative variables and cancer incidence. IEEE J Biomed Health Inform 2021 Sep;25(9):3659-3667. [doi:
10.1109/JBHI.2021.3073605] [Medline: 33857006]

16. van Horn A, Weitz CA, Olszowy KM, et al. Using multiple correspondence analysis to identify behaviour patterns associated
with overweight and obesity in Vanuatu adults. Public Health Nutr 2019 Jun;22(9):1533-1544. [doi:
10.1017/S1368980019000302] [Medline: 30846019]

17. Śledzińska P, Bebyn MG, Furtak J, Kowalewski J, Lewandowska MA. Prognostic and predictive biomarkers in gliomas.
Int J Mol Sci 2021 Sep 26;22(19):10373. [doi: 10.3390/ijms221910373] [Medline: 34638714]

18. Sokolov A, Paull EO, Stuart JM. ONE-class detection of cell states in tumor subtypes. Presented at: Proceedings of the
Pacific Symposium; Jan 4-8, 2016; Kohala Coast, Hawaii, USA. [doi: 10.1142/9789814749411_0037]

19. Salomonis N, Dexheimer PJ, Omberg L, et al. Integrated genomic analysis of diverse induced pluripotent stem cells from
the progenitor cell biology consortium. Stem Cell Rep 2016 Jul 12;7(1):110-125. [doi: 10.1016/j.stemcr.2016.05.006]
[Medline: 27293150]

20. Daily K, Ho Sui SJ, Schriml LM, et al. Molecular, phenotypic, and sample-associated data to describe pluripotent stem cell
lines and derivatives. Sci Data 2017 Mar 28;4:170030. [doi: 10.1038/sdata.2017.30] [Medline: 28350385]

21. Malta TM, Sokolov A, Gentles AJ, et al. Machine learning identifies stemness features associated with oncogenic
dedifferentiation. Cell 2018 Apr 5;173(2):338-354. [doi: 10.1016/j.cell.2018.03.034] [Medline: 29625051]

22. Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw 2008 Mar;25(1):1-18. [doi:
10.18637/jss.v025.i01] [Medline: 27348562]

23. The Cancer Genome Atlas program (TCGA). Center for Cancer Genomics. URL: https://www.cancer.gov/tcga [accessed
2025-03-06]

24. The Cancer Genome Atlas program. National Cancer Institute. URL: https://www.cancer.gov/ccg/research/
structural-genomics/tcga/history/policies/tcga-human-subjects-data-policies.pdf [accessed 2025-03-06]

25. Bleeker FE, Atai NA, Lamba S, et al. The prognostic IDH1( R132 ) mutation is associated with reduced NADP+-dependent
IDH activity in glioblastoma. Acta Neuropathol 2010 Apr;119(4):487-494. [doi: 10.1007/s00401-010-0645-6] [Medline:
20127344]

26. Chai RC, Zhang KN, Chang YZ, et al. Systematically characterize the clinical and biological significances of 1p19q genes
in 1p/19q non-codeletion glioma. Carcinogenesis 2019 Oct 16;40(10):1229-1239. [doi: 10.1093/carcin/bgz102] [Medline:
31157866]

27. McNulty SN, Cottrell CE, Vigh-Conrad KA, et al. Beyond sequence variation: assessment of copy number variation in
adult glioblastoma through targeted tumor somatic profiling. Hum Pathol 2019 Apr;86:170-181. [doi:
10.1016/j.humpath.2018.12.004] [Medline: 30594748]

28. Wang H, Zhang X, Liu J, et al. Clinical roles of EGFR amplification in diffuse gliomas: a real-world study using the 2021
WHO classification of CNS tumors. Front Neurosci 2024;18:1308627. [doi: 10.3389/fnins.2024.1308627] [Medline:
38595969]

29. Kurscheid S, Bady P, Sciuscio D, et al. Chromosome 7 gain and DNA hypermethylation at the HOXA10 locus are associated
with expression of a stem cell related HOX-signature in glioblastoma. Genome Biol 2015 Jan 27;16(1):16. [doi:
10.1186/s13059-015-0583-7] [Medline: 25622821]

30. Pierscianek D, Kim YH, Motomura K, et al. MET gain in diffuse astrocytomas is associated with poorer outcome. Brain
Pathol 2013 Jan;23(1):13-18. [doi: 10.1111/j.1750-3639.2012.00609.x] [Medline: 22672415]

31. Mancini R, Pattaro G, Diodoro MG, et al. Tumor regression grade after neoadjuvant chemoradiation and surgery for low
rectal cancer evaluated by multiple correspondence analysis: ten years as minimum follow-up. Clin Colorectal Cancer 2018
Mar;17(1):e13-e19. [doi: 10.1016/j.clcc.2017.06.004] [Medline: 28865674]

32. Wu T, Zhang S, Guo S, et al. Correspondence analysis between traditional Chinese medicine (TCM) syndrome differentiation
and histopathology in colorectal cancer. Eur J Integr Med 2015 Aug;7(4):342-347. [doi: 10.1016/j.eujim.2015.07.003]

33. Kramer RJ, Rhodin KE, Therien A, et al. Unsupervised clustering using multiple correspondence analysis reveals
clinically-relevant demographic variables across multiple gastrointestinal cancers. Surgical Oncology Insight 2024
Mar;1(1):100009. [doi: 10.1016/j.soi.2024.100009]

JMIR Bioinform Biotech 2025 | vol. 6 | e65645 | p.98https://bioinform.jmir.org/2025/1/e65645
(page number not for citation purposes)

Goes Job et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.1186/scrt166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23510696&dopt=Abstract
http://dx.doi.org/10.3389/fgene.2021.616507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33732284&dopt=Abstract
http://dx.doi.org/10.1016/j.jclinepi.2009.08.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19896800&dopt=Abstract
http://dx.doi.org/10.1080/03610920902871446
http://dx.doi.org/10.1155/2013/302163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24222852&dopt=Abstract
http://dx.doi.org/10.1109/JBHI.2021.3073605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33857006&dopt=Abstract
http://dx.doi.org/10.1017/S1368980019000302
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30846019&dopt=Abstract
http://dx.doi.org/10.3390/ijms221910373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34638714&dopt=Abstract
http://dx.doi.org/10.1142/9789814749411_0037
http://dx.doi.org/10.1016/j.stemcr.2016.05.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27293150&dopt=Abstract
http://dx.doi.org/10.1038/sdata.2017.30
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28350385&dopt=Abstract
http://dx.doi.org/10.1016/j.cell.2018.03.034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29625051&dopt=Abstract
http://dx.doi.org/10.18637/jss.v025.i01
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27348562&dopt=Abstract
https://www.cancer.gov/tcga
https://www.cancer.gov/ccg/research/structural-genomics/tcga/history/policies/tcga-human-subjects-data-policies.pdf
https://www.cancer.gov/ccg/research/structural-genomics/tcga/history/policies/tcga-human-subjects-data-policies.pdf
http://dx.doi.org/10.1007/s00401-010-0645-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20127344&dopt=Abstract
http://dx.doi.org/10.1093/carcin/bgz102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31157866&dopt=Abstract
http://dx.doi.org/10.1016/j.humpath.2018.12.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30594748&dopt=Abstract
http://dx.doi.org/10.3389/fnins.2024.1308627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38595969&dopt=Abstract
http://dx.doi.org/10.1186/s13059-015-0583-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25622821&dopt=Abstract
http://dx.doi.org/10.1111/j.1750-3639.2012.00609.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22672415&dopt=Abstract
http://dx.doi.org/10.1016/j.clcc.2017.06.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28865674&dopt=Abstract
http://dx.doi.org/10.1016/j.eujim.2015.07.003
http://dx.doi.org/10.1016/j.soi.2024.100009
http://www.w3.org/Style/XSL
http://www.renderx.com/


34. Nadjib Bustan M, Arif Tiro M, Annas S. Correspondence analysis of breast cancer diagnosis classification. J Phys Conf
Ser 2019 Jun 1;1244(1):012030. [doi: 10.1088/1742-6596/1244/1/012030]

35. Higgs NT. Practical and innovative uses of correspondence analysis. R Stat Soc Ser D (The Statistician) 1991;40(2):183.
[doi: 10.2307/2348490]
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Abstract

Background: Biobank privacy policies strip patient identifiers from donated specimens, undermining transparency, utility, and
value for patients, scientists, and society. We are advancing decentralized biobanking apps that reconnect patients with biospecimens
and facilitate engagement through a privacy-preserving nonfungible token (NFT) digital twin framework. The decentralized
biobanking platform was first piloted for breast cancer biobank members.

Objective: This study aimed to demonstrate the technical feasibility of (1) patient-friendly biobanking apps, (2) integration
with institutional biobanks, and (3) establishing the foundation of an NFT digital twin framework for decentralized biobanking.

Methods: We designed, developed, and deployed a decentralized biobanking mobile app for a feasibility pilot from 2021 to
2023 in the setting of a breast cancer biobank at a National Cancer Institute comprehensive cancer center. The Flutter app was
integrated with the biobank’s laboratory information management systems via an institutional review board–approved mechanism
leveraging authorized, secure devices and anonymous ID codes and complemented with a nontransferable ERC-721 NFT
representing the soul-bound connection between an individual and their specimens. Biowallet NFTs were held within a custodial
wallet, whereas the user experiences simulated token-gated access to personalized feedback about collection and use of individual
and collective deidentified specimens. Quantified app user journeys and NFT deployment data demonstrate technical feasibility
complemented with design workshop feedback.

Results: The decentralized biobanking app incorporated key features: “biobank” (learn about biobanking), “biowallet” (track
personal biospecimens), “labs” (follow research), and “profile” (share data and preferences). In total, 405 pilot participants
downloaded the app, including 361 (89.1%) biobank members. A total of 4 central user journeys were captured. First, all app
users were oriented to the ≥60,000-biospecimen collection, and 37.8% (153/405) completed research profiles, collectively
enhancing annotations for 760 unused specimens. NFTs were minted for 94.6% (140/148) of app users with specimens at an
average cost of US $4.51 (SD US $2.54; range US $1.84-$11.23) per token, projected to US $17,769.40 (SD US $159.52; range
US $7265.62-$44,229.27) for the biobank population. In total, 89.3% (125/140) of the users successfully claimed NFTs during
the pilot, thereby tracking 1812 personal specimens, including 202 (11.2%) distributed under 42 unique research protocols.
Participants embraced the opportunity for direct feedback, community engagement, and potential health benefits, although user
onboarding requires further refinement.
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Conclusions: Decentralized biobanking apps demonstrate technical feasibility for empowering patients to track donated
biospecimens via integration with institutional biobank infrastructure. Our pilot reveals potential to accelerate biomedical research
through patient engagement; however, further development is needed to optimize the accessibility, efficiency, and scalability of
platform design and blockchain elements, as well as a robust incentive and governance structure for decentralized biobanking.

(JMIR Bioinform Biotech 2025;6:e70463)   doi:10.2196/70463

KEYWORDS

patient empowerment; biobanking; biospecimens; transparency; community engagement; nonfungible tokens; NFTs; blockchain
technology; decentralized biobanking; pilot studies; technical feasibility; biowallet

Introduction

Background
University biobanks collect, store, and distribute biospecimens
such as tissue and blood, capitalizing on leftover clinical
materials from affiliated hospitals to drive biomedical science
and drug discovery [1-3]. Standard operating procedure for most
biobanks in academic medical centers includes prospective
broad consent for nonspecific, future research [4] coupled with
deidentification, whereby identifiers are stripped before
specimen allocation [5]. In this setting, patients do not learn
what becomes of their donations, and scientists lack access to
the donor, linked specimens, and evolving clinical data [4,6].
This disconnect, though the by-product of policies designed to
protect privacy while promoting learning, promulgates a biobank
ecosystem that permits problematic gaps in recognition,
reciprocity, and return of results [7,8]. Simultaneously, vast yet
siloed specimen collections have accumulated across most US
academic medical centers, a widely underused and unsustainable
“treasure trove” wherein frozen assets lay hidden from patients
and scientists for whom they may be most valuable [3,9]. The
lack of an efficient market for ensuring the use of donated
materials deepens the crisis of faith in public health institutions
and has prompted attempts at marketplace solutions [10,11].

We are advancing decentralized biobanking as a software
platform predicated on blockchain technology’s democratic
ethos, incentive alignment, transparency, and assurances of trust
[12]. These key features are reflective of blockchains as
permissionless, distributed, shared ledgers of digital transactions
engineered to be mathematically concordant, accessible, and
auditable [13], underscoring their first and most successful use
to date for the creation of global digital currency such as Bitcoin,
which makes them fit for purpose in efforts to decentralize
ownership and governance of data through thoughtfully
structured peer-to-peer networks [14]. One of the most
promising innovations enabled by blockchains are nonfungible
tokens (NFTs), digital record identifiers that serve as electronic
deeds for provably unique digital or physical assets that may
be represented “on-chain” [15]. The potential for blockchain
and NFTs to play a role in restructuring control and ownership
of data has been widely discussed, with several notable projects
in the health care domain [16,17]. Although empowering patient
ownership of health data is compelling in theory, full realization
of such initiatives has been elusive in light of complex
regulatory considerations, socioeconomic factors, and technical
limitations for blockchain technologies and legacy systems
[18,19].

Building on the success and diversity of blockchain applications
for decentralized finance [20,21], decentralized biobanking
applies human-centered design and innovative system
mechanisms to empower patients to track donated biospecimens
and engage in downstream research activities, outcomes, and
products via a platform compatible with established privacy
policies and workflows. Our approach provides patients with
secure, direct access to personal specimen data housed in
institutional databases via user-friendly mobile and web apps
complemented with a privacy-preserving NFT digital twin
framework [22]. This strategy may support stepwise adoption
of increasingly autonomous and progressively decentralized
collaborations among patients, scientists, and physicians in a
dynamic biomedical metaverse, or “biomediverse.”

Objectives
Successful implementation of decentralized biobanking will
usher in a new standard for research transparency, foster
institutional accountability to the patients and communities they
serve, and create opportunities to unite siloed datasets, facilitate
timely translation of precision medicine and enable structurally
just marketplace solutions for improving efficiency and
effectiveness in the management of one of our most precious
human resources. In this paper, we explore the technical
feasibility of decentralized biobanking through a description
and quantitative analysis of a live pilot for a breast cancer
biobank at a US academic medical center. We discuss system
design, key features, and NFT functionality, illustrating how
the platform provided transparency and recognition of patients’
contributions to a real-world biobank.

Methods

Decentralized Biobanking System Design: NFT Digital
Twin Framework
Decentralized biobanking builds digital bridges among patients,
specimens, and scientists, connecting stakeholders based on
real-world relationships predicated upon transactions within
existing biobank infrastructure and research protocols (Figure
1). The system design represents all people, protocols, and assets
in an NFT digital twin framework, creating a blockchain-backed
overlay network on top of the established biospecimen
ecosystem. Our approach presents a unique strategy for the
progressive inclusion of patients, allowing for the
implementation of a composable software platform with
programmable, modular elements, mechanisms, and workflows
that may be integrated with institutional biobank databases to
provide durable transparency without requiring substantial time,
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labor, or ongoing participation of physicians, biobankers, and
scientists. This framework applies privacy by design throughout
the engineering process, implementing techniques such as data
minimization and innovative system architectures to ensure
compliance with established biospecimen collection and research

protocols, institutional policies, and data structures. The core
benefits of our approach are use case agnostic and can be applied
for all biobanks, research protocols, and institutions with minor
modifications at each new site.

Figure 1. Decentralized biobanking system design—nonfungible token (NFT) framework and software applications uniting patients, specimens, and
scientists. This system diagram illustrates key entities of biobanking connected via a specimen supply chain (red arrow) yet presently lacking a unified
platform for collaboration. The proposed decentralized biobanking NFT digital twin framework is designed to integrate with this established infrastructure,
mapping the stakeholders, specimens, and studies in the biobanking ecosystem and enabling applications whereby they may be united for mutually
beneficial collaboration, data exchange, and value-building activities.

Pilot Setting
The Breast Disease Research Repository (BDRR;
STUDY19060196) is a large breast cancer biobank platform at
the intersection of the University of Pittsburgh, the University
of Pittsburgh Medical Center, and Hillman Cancer Center that
served as the pilot study use case. Broad prospective consent
for the BDRR is embedded in the breast cancer service line, for
example, concurrently with surgical consent. Once consented,
“leftovers” from any clinical procedures may be collected by
the biobank without further notice or engagement. From 2006
to 2023, more than 10,000 patients consented for the BDRR
and specimens were collected from 4000 participants to date.
In total, approximately 61,000 specimens were collected, and
6000 were distributed for research, with a mix of fresh and
frozen distributions. The biobank operates via a hub-and-spoke
model, allocating specimens chiefly to local investigators under
designated research or subbiobanking protocols (eg, a flagship
patient-derived organoid biobank that grows and distributes
copies of living 3D cell cultures [approximately n=300]).

Requirement Gathering
Foundational surveys, semistructured interviews, community
engagement, and stakeholder alignment activities with

populations with breast cancer, physicians, advocates, and
scientists informed our approach to designing a biobanking app
for patients [23]. Broadly, we found that patients have an unmet
demand for feedback about research on their specimens, with
particular interest surrounding personal meaning or potential
health benefits for the individual or their family members. For
example, a survey respondent noted the following:

Giving patients access to this type of information
could decrease the lethal lag between research
findings and actual clinical practice.

One patient advocacy leader captured this sentiment, noting the
following:

We have been screaming for this, banging on pots
and pans. Thank you for taking this on.

Importantly, she alluded to the multifactorial challenge of
enabling patients to track and learn about donated biospecimens
[23], which would require novel, user-friendly interface designs
as well as system architectures and pilot protocols compliant
with regulatory norms, compatible with established workflows,
and acceptable within the institutional milieu.
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Thus, we interacted extensively with the breast cancer service
line, the institutional biobanking platform, and institutional
review board (IRB) and Office of Human Research Protections
leadership, as well as research scientists, clinical and teaching
faculty, IT staff, technology transfer teams, and
cross-disciplinary institutional leadership. Concurrently, the
ethnography of the specimen procurement supply chain allowed
us to map the breast cancer biobank ecosystem [23]. We
examined all contexts along the data pipeline, from
population-level breast cancer screening to diagnostic biopsies
and surgical treatments, clinical pathology, and specimen
accessioning through the biobanking platform, where it may be
stored for future use in –80 °C freezers or distributed fresh for
next-generation biobanking applications such as patient-derived
organoids, multi-omics, and high-throughput testing. Given the
well-documented challenges for biobank sustainability, we took
special interest in learning about economic and logistical
challenges pertaining to this sector. Regulatory considerations,
operational feasibility, and economic analyses will be reported
elsewhere [23].

Prototyping
The first decentralized biobanking prototype established the
proof of concept, leveraging ERC-721 NFTs to keep patients
connected to donated specimens throughout the research life
cycle. The NFT platform was integrated with a novel mobile
app for privacy-preserving collaboration among patients,
scientists, and physicians in a model breast cancer organoid
ecosystem. A second prototype advanced a comprehensive NFT
digital twin framework with ERC-1155 modeled using a publicly
available real-world organoid biobank dataset (National Cancer
Institute Human Cancer Models Initiative) [24,25]. This
web-based prototype focused on generating value for scientists,
illustrating potential to enhance efficiency, effectiveness, and
impact of biospecimen research. Third, no-code front-end mobile
app prototypes were developed to demonstrate, test, and refine
user interfaces and experiences for the engagement of donors
in biobanking.

User Interface and User Experience
We drafted wireframes using anonymous model biospecimen
information from the institutional biobank database. App design
processes sought to minimize cognitive effort for mobile app
users, maximize accessibility across ages and educational levels,
and adhere to rigorous privacy standards and customs in
accordance with the established biospecimen collection
protocols. We progressively simplified and iterated display text
and content to make it as concise and concrete as possible and
unified across decentralized biobanking app interfaces. To
facilitate navigation, we streamlined presentation of content in
each of the 4 core interfaces using accordion elements
complemented with individual cards for each biospecimen, with
pop-ups to guide transitions within and across interfaces. Unified
color schemes, fonts, and item designs adhered to predetermined
themes with a standardized format that was gradually refined.

The designs were tested and validated via further research
surveys and interviews. Immersive design workshops solidified
core app requirements. Initial usability testing included online
and in-person sessions with clickable prototypes and functional

prototype demonstrations followed by usability testing and
cognitive walk-throughs on users’ personal devices.

Front-End Development and Testing
Finalized mobile app designs were developed using Flutter so
that iOS and Android users could participate in the pilot. The
apps were tested and deployed to Apple TestFlight and the
Google Play Store, allowing for download directly to
participants’ personal devices. From August 2022 to January
2023, feedback from 110 unique individuals was incorporated,
including 45 (40.9%) BDRR members, 28 (25.5%) who
downloaded and tested the app on their personal devices, and
14 (12.7%) who viewed personalized biospecimen content
within the app interface. The result was a validated app
facilitating interaction between donors and biospecimens within
the breast cancer biobank, personalized collection content, and
mappings from biobank database details.

Blockchain Development
Initial decentralized biobanking prototypes were developed
experimenting with different tokenization strategies using
Ethereum’s ERC-721 and ERC-1155 NFT standards for
mapping dynamic relationships among patients, biospecimens,
physicians, scientists, and corresponding biobanking and
research protocols. However, variable costs of transaction fees
(known as gas fees) on the Ethereum network and high friction
for blockchain onboarding were major limitations for
implementing a real-world pilot.

These constraints informed the design of a functional,
blockchain-backed prototype suitable for the pilot population
and setting, leveraging a fit-for-purpose blend of centralized
and decentralized applications that would enable patients to
track and learn about donated specimens appropriate to the
highest-order objectives for the first live pilot of decentralized
biobanking technology.

A nontransferable ERC-721 NFT, also referred to as a
“soul-bound token” [26], was developed to represent each
donor’s immutable, inherently unique connection to their
personal biospecimens. This token [26] was held within a single
externally owned account that served as a custodial wallet. Of
note, our previous decentralized biobanking prototype for
organoid research networks, as described elsewhere, used
ERC-1155 to advance a comprehensive digital twin ecosystem
with NFTs representing patients, specimens, multigenerational
derivatives (eg, patient-derived organoids), scientists, and
physicians, as well as externally owned biobanker accounts,
demonstrating the potential for a sophisticated solution [25].
However, while using the ERC-1155 standard would have
offered savings for deploying multiple token collections
representative of the entire biobanking ecosystem, applying
them to a single soul-bound token collection for this use case
would have yielded no additional benefits while adding
unnecessary complexity [25].

Each biowallet NFT served as a customized yet anonymous
“token of appreciation” for specimen donation coupled with a
front-end user experience simulating token-gated access to
personal biobank data. This token-gated process was performed
manually, minting the tokens individually via the smart contract
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interface on Etherscan. Subsequently, the token metadata and
transaction details were stored within a secure, IRB-approved
database for the eligible user. This created a digital honest broker
mechanism for managing in-app participant-specimen
engagement without requiring further humans in the loop or
revealing donor names or other personally identifiable
information to third parties.

System Architecture
The decentralized biobanking pilot system incorporated 3 core
components: an app overlying institutional biobank and
research infrastructure with a blockchain-backed NFT digital
twin framework (Figure 2).

The app used an n-tier architecture pattern with interconnected
workflows across distinct, modular components with varying
responsibilities (Table 1). Our user-friendly mobile app,
available on Android and iOS, was powered by applications
built using Amazon Web Services. During this initial pilot phase,
our system relied on external services and data sources that were
not yet directly integrated with our deployed technology. Our
NFT framework consisted of an ERC-721 smart contract
designed to mint nontransferable, soul-bound biowallet tokens
that were deployed to the Ethereum mainnet. Deidentified
biospecimen data were provided by biobank personnel to
authorized study team members, who would use a secure device
to import the records into the pilot system’s database. Both
required manual processes for pilot implementation.

Figure 2. System architecture diagram—decentralized biobanking pilot app for breast cancer biobank. This system architecture diagram incorporates
the decentralized biobanking mobile app powered by internal components that handle business logic, data storage, and data integrations built on a
cloud-based infrastructure using Amazon Web Services (AWS); this is flanked by corresponding elements connected via secure authorized access
devices for interacting with the nonfungible token (NFT) digital framework’s biowallet tokens deployed on Ethereum and institutional data sources
from the Breast Disease Research Repository and Institute of Precision Medicine organoid biobank.
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Table 1. Key details of the decentralized biobanking pilot system architecture.

Technical detailsComponent

App • Presentation tier: the Flutter mobile app built and deployed using Android Studio (Google) and Xcode (Apple Inc) to enable
download to Android and iOS devices. The app provided front-end user interfaces for patients, enabling dynamic interactions,
user inputs, and the presentation of queried information from institutional data sources through the app tier. Google’s Firebase
Authentication services manage account creation and management, encrypting data in transit using HTTPS and at rest using
the scrypt standard cryptographic protocol. Passwords are stored securely using encryption, salting, and 1-way hashing following

NISTa 800-63b recommendations.
• App tier: used a Node.js (OpenJS Foundation) server to enable all core functionality and logic of the app, including specimen

tracking with enhanced transparency into biobank activities and subsequent research. This layer is also responsible for enforcing
security and access rules, handling connectivity to and communication with data sources and external services, and processing

data to return to the presentation layer. Deployed on AWSb Elastic Beanstalk, the app instances sit behind load balancers for
scalability, running in private subnets.

• Data tier: hosted by an Amazon Aurora database cluster using the MySQL engine. It hosts a secure, highly available database
that stores and retrieves the information necessary for the app to run. This includes donated sample records housed on the

BIOSc and corresponding biospecimen freezer repositories across 4 physical locations of the Pitt Biospecimen Core, as well

as unique cryptographic IDs from Firebase and claimed biowallet NFTsd to establish privacy-preserving data linkages between
donors and their deidentified biospecimens. As noted in the presentation tier, user credentials for accessing the app are stored
separately on secure Firebase servers.

• Infrastructure tier: referenced within the app and data tiers, our AWS cloud infrastructure provides the foundation for networking
and security, ensuring availability, scalability, and interoperability across system components Multimedia Appendix 1.

Blockchain • NFT framework: an ERC-721 smart contract designed to mint nontransferable, soul-bound biowallet tokens was deployed to
the Ethereum mainnet via a transaction sent to an Infura-hosted node from a local Node.js runtime environment using Hardhat.
The overarching framework incorporates NFTs representing all stakeholders, specimens, and protocols, allowing for composable

layers of complexity, utility, and value to be built upon the PIOe architecture.

Biobank • Institutional biospecimen and research databases: biobank personnel provided access to deidentified biospecimen data via
OneDrive Microsoft Excel (Microsoft Corp) files to an authorized study team member, who would use a secure device to import

the updated records into the Aurora database. Similarly, Microsoft Excel files containing biobank (BDRRf) registered members
were provided by research staff as exported from OnCore. In addition, imaging and research data from an organoid biobank
“spoke” were shared via OneDrive, and curated representative datasets were hosted on Dropbox (Dropbox, Inc).

aNIST: National Institute of Standards and Technology.
bAWS: Amazon Web Services.
cBIOS: Biospecimen Inventory and Operations System.
dNFT: nonfungible token.
ePIO: programmed input-output.
fBDRR: Breast Disease Research Repository.

Pilot Study
Participants were recruited via electronic and paper fliers for
“Decentralized Biobanking “de-bi”: An App for Patient
Feedback from Biobank Research Donation”
(STUDY22020035). The pilot aimed to recruit 300 participants
over 6 to 12 months. App download invites were distributed
via email with Apple and Android instructions. IT support was
provided as needed, with real-time bug fixes and improvements
based on user feedback. App interfaces, design, and features
were iterated in monthly sprints. Participatory research,
user-centered design, and usability testing, as well as
quantitative and qualitative assessments of patient, physician,
and scientist acceptability, will be reported elsewhere. NFT
minting for pilot performance took place from March 7, 2023,
to May 8, 2023. Multimedia Appendix 2 details the pilot
recruitment to sample tracking process.

Data Sources and Analysis
The technical data reviewed included conceptual models,
technical diagrams, product feature documentation, and

screenshots of user journeys as experienced by decentralized
biobanking pilot participants using the Flutter app. We also
consider biospecimen collection data from the institutional
Biospecimen Inventory and Operations System via Microsoft
Excel (Microsoft Corp) exports, in-app activity data recorded
in a MySQL database, and blockchain transactions on the
Ethereum network accessed via Etherscan. Technical feasibility
was assessed from feature requirements, interface designs, and
quantifiable user experiences from the live implementation. To
further evaluate pilot outcomes, we provide simple descriptive
statistics from the quantitative datasets and comparative cost
analyses for alternative NFT design strategies calculated using
values from tokens minted during the pilot. Patient experiences
were captured via written feedback from a co-design workshop
during the app development phase and a usability workshop
session held with pilot participants.

Ethical Considerations
Research was performed under IRB-approved human subjects
research protocols and a Quality Improvement protocol (Textbox
1 provides protocol numbers, titles, and approving body).
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Participants provided informed consent or the equivalent, in
accordance with respective protocols. Conflict of interest
disclosures were included in consent documents and verbal
disclosures were provided for all online and in-person
encounters. All data reported here are either de-identified or
anonymized and privacy-by-design was utilized within the de-bi
app to maintain confidentiality of participant identities.

Participants were not compensated for participation in the
biobank, stakeholder interviews, quality improvement activities
or de-bi app pilot study (STUDY19060196, IRB00019273,
QRC 3958 and STUDY22020035, respectively). Our
foundational research protocol (STUDY22010118) provided
$10 gift cards for surveys, with an additional $20 for those who
completed follow-up interviews.

Textbox 1. Human participants and quality improvement protocols for technology feasibility.

• STUDY22010118: patient views, preferences and engagement in next-generation biobank research (University of Pittsburgh)

• IRB00019273: nonfungible tokens for ethical, efficient and effective use of biosamples (Johns Hopkins University)

• STUDY19060196: Breast Disease Research Repository: tissue and bodily fluid and medical information acquisition protocol (04-162; Hillman
Cancer Center)

• QRC 3958: patient-facing biobank platform development Quality Improvement proposal for Beckwith award–breast cancer supply chain analysis,
biobank token model development, and initial pre-pilot testing with University of Pittsburgh Medical Center patients (University of Pittsburgh
Medical Center)

• STUDY22020035: decentralized biobanking “de-bi”: exploring patients interests in feedback, education, follow-up, engagement and tokens of
appreciation regarding biobank donation via mobile and web applications (University of Pittsburgh)

Results

Prepilot Results
A co-design session (n=15) was conducted before the pilot to
characterize patient preferences and areas of confusion. This
session was one in a series of extensive participatory design
sessions, which we have reported elsewhere [23]. Participants
were most excited about decentralized biobanking for feedback
and recognition (“to see my own cells+know how those cells
are advancing science”), community-engaged research (“to

connect with others through this app”), and precision medicine
potential (“to get helpful results regarding my health”),
suggesting acceptance of our vision and overall approach. At
the conclusion of this phase, there was still confusion
surrounding logistics and governance (“how we find our samples
and approve their use”), technical concepts (“Why NFT’s?”),
and unanswered big-picture questions (“Short+long-term—who
benefits from this?”) regarding the decentralized biobanking
platform. Table 2 provides a thematic overview and
representative quotes.
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Table 2. A thematic overview of participant feedback gathered through a prepilot co-design session.

Prepilot participant feedbackTheme

Aspects participants were “most excited about”

Personalized feedback and
recognition

• “The opportunity to see my own cells+know how those cells are advancing science and clinical care.”
• “Having knowledge about [sample] types, research and current news about my tumors.”
• “To be able to follow where my personal donation goes, and what they are doing with it, and what they get out

of it.”

Community-engaged re-
search

• “Great for mutation studies with multiple primary cancer+tumors.”
• “Keeping up to date with genetic mutation research.”
• “I’m excited to connect with others through this app.”
• “That patients who invest their tissue in research are able to connect as co-investigators.”

Potential health benefits • “I’m excited about the idea that there may be more ways to care for my family—better research practices may
enable the medical field to work smarter—maybe ensuring that my children don’t need surgery, chemo, etc.”

• “I am very excited for anything that can improve my health and outcome (and of others).”
• “Being able to get helpful results regarding my health.”
• “I’m excited about the possibility to know how my tissue reacted to a treatment.”
• “Patient access to personal info/data; Personalized medicine potential.”

Aspects participants “still found confusing”

Big picture • “Why do people still get cancer, dammit!”
• “I don’t understand 1) How this may really help me+my family, 2) Short+long-term—who benefits from this?

3) Where does the $ come from? 4) What are we giving up/sacrificing by saying ‘yes.’”
• “How will Dr. utilize?”

Logistics and governance • “I don’t understand how we find our samples and approve their use—I also don’t understand what studies we
could ‘suggest’ or enable through the samples we have provided.”

• “How likely is it that my samples will be used?”
• “Can you use it [de-bi app] even if your surgery already happened?”
• “How to get my tissue submitted to researchers.”

Unclear technical terms
and concepts

• “Not really sure what an organoid is—is it a picture/video of my actual cells or is it a model of my cells?”
• “Why NFT’s?”
• “I am still learning about NFTs and how they will help breast cancer patients.”
• “How will patients interpret data—will it be translated?”

Overall Pilot Results

Overview
Over 10 weeks of active recruitment (February 16 to April 30,
2023), 1080 unique participants enrolled in the decentralized
biobanking pilot, including 9.54% (930/9750) of confirmed
biobank members (Multimedia Appendix 3). Approximately
600 app invites were distributed, and 405 participants
downloaded and completed app registration, including 361
(89.1%) biobank members. All app users were female (405/405,
100%), and the mean age was 56 (SD 12.8; range 18-87) years,

making them younger than both the broader biobank
membership and decentralized biobanking pilot participants
(mean ages of 64, SD 13.6 and 58, SD 13.1 years, respectively).
Multimedia Appendices 4 and 5 detail pilot participant and app
user characteristics relative to those of the overall biobank
membership. There were 4 key features of the piloted app, as
shown in the user journey map (Figure 3). Biobank, biowallet,
and profile features and quantified user journeys are illustrated
in subsequent Journey sections, and laboratory features and
respective user journeys for that context are also described in
detail elsewhere.
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Figure 3. Decentralized biobanking platform user journey. The user journey map demonstrates the status quo of the patient experience with biobank
donation as well as the 4 key features of the decentralized biobanking mobile app that was piloted for a large breast cancer biobank member population
from January 2023 to May 2023. Each of the columns represents primary activities within the different core screens of the decentralized biobanking
mobile app, which the invited participants downloaded to personal iOS and Android devices. The Biobank, Biowallet, and Profile sections are illustrated
with key activities and features. The Lab section on the far right is illustrated, although the journey for the community engagement feature is outside
the scope of this study and is addressed elsewhere. NFT: nonfungible token.

Journey 1: App Onboarding and Biowallet NFT Minting
Process
Upon downloading the app, users entered their name and birth
date, triggering verification of biobank membership and sample

collections, with “biowallet NFT” minting, if applicable, serving
as a digital representation of membership in the biobank donor
community, delivering a user experience of a token-gated bridge
between the user’s app and specimen data, if available (Figure
4).

Figure 4. Opening a biowallet—simulation of token-gated specimen access. The process of opening a biowallet required participants to enter their
name and date of birth, triggering the system to match participants to corresponding members in the biobank (Breast Disease Research Repository).
Once specimen status was established, biowallet nonfungible tokens were minted, specimens were linked to the account, and email notifications indicated
to participants that their biowallet was available.
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Simulated Token Gating Workflows

Once users entered their name and date of birth into the
decentralized biobanking app, a manual, coordinated effort
involving biobank personnel and authorized study team members
verified each user’s biobank consent and matched donors to
their respective biospecimens via a unique anonymous study
ID linked to a Firebase (Google) unique ID associated with their
decentralized biobanking app account. During this process,
study team members would also mint a unique biowallet token
for each verified donor with specimens. These tokens were held
in a custodial wallet, but each token identifier was linked to
donor records within the Amazon Aurora database to establish
a second privacy-preserving mechanism for data linkage.

Firebase established the functional linkage to allow for proper
access control and permission management within the app for
this pilot, whereas the biowallet NFTs and the act of claiming
were representative as a proof of concept as well as a token of
appreciation for participating donors. This decision was made
to limit excess complexity related to using web3 technologies

as a barrier to participation for this population while providing
a comprehensible introduction to the concept of NFTs for
establishing relationships between donors and their samples.
Our aim was to ensure that donors were not excluded from
engaging with the platform based on the extent of their
blockchain expertise.

Various criteria for minting Biowallet tokens were considered
for entire pilot and biobank deployment. Using variation in
token minting costs observed throughout the pilot study to model
minimum, average, and maximum costs (US $1.84, US $4.51,
and US $11.23, respectively), the selected model, minting tokens
for all 272 pilot participants coenrolled in the biobank with one
or more specimens collected, was projected to cost US $1226.72
(SD US $41.91; range US $500.48-$3054.56, Figure 5A, left).
Extended entire biobank implementation, this model is projected
to cost US $17,769.40 (SD US $159.52; range US
$7265.62-$44,229.27; Figure 5A, right). Other models, such as
specimen distribution to a research protocol or biobank
membership were also considered.

Figure 5. Nonfungible token (NFT) minting costs and calculations for the breast cancer biobank pilot. (A) Pilot implementation—comparison of
biowallet token minting criteria for the total cost of pilot deployment. Cost analysis used variation in token minting costs observed throughout the pilot
study to model minimum, average, and maximum costs (US $1.84, US $4.51, and US $11.23, respectively). *Selected token minting criteria for the
decentralized biobanking pilot. (B) Transaction costs in US $ and ether (ETH) are illustrated for 151 NFTs minted during the decentralized biobanking
pilot. (C) Timeline mapping variable cost of biowallet minting events and cumulative costs of minting 151 NFT biowallet tokens throughout the
decentralized biobanking pilot.

Token Minting Costs

The cost of deployment of the biowallet NFT protocol on
Ethereum was US $223.52. A total of 151 biowallet tokens were
minted for US $680.49 at an average of US $4.51 per token
(SD US $2.54; range US $1.84-$11.23; Figure 5B. Biowallet
tokens could be requested by decentralized biobanking pilot

participants who downloaded the app and had one or more
specimens collected (148/405, 36.5%). For context,
procurement, processing, storing, and disbursement of
biospecimens in this institutional biobanking platform costs an
estimated US $1600 per case.
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Biowallet tokens could be requested by decentralized biobanking
pilot participants who downloaded the app and had one or more
specimens collected (148/405, 36.5%). During the pilot, 140
total tokens were requested and minted for eligible participants.
Minting events varied in cost based on fluctuating transaction
fees and the number of participants who had requested biowallet
tokens since the last token minting event. For instance, minting
events ranged from US $3.11 for minting one token, to US
$288.52 for minting 80 tokens in the first batch (Figure 5C).

Journey 2: Biobank Orientation and Research Profile
After requesting a biowallet, users were directed to visit the
biobank, where they were oriented and learned about the overall
biobank inventory and activities, including demographics of
the consented donor population, framed as “biobank members”;
informed consent content; principal investigators; and respective
biobank operations and research activities for entire specimen
collection (Figure 6). We included education about research
protocol development, IRB oversight, procedures for specimen
allocation, and investigator- and protocol-level transactions.
The biobank displayed 60,973 biospecimens from 3940 unique
donors collected from February 1995 to May 2023 and updated
on a regular basis, with 318 new specimens added during the
pilot. The feature tracked collection and distribution totals for
the biobank, with breakdowns for each specimen type (Table
3).

The “profile” allowed participants to enter clinical history and
treatments relevant for research on their specimens. We also
assessed research interests, privacy preferences, engagement
interest, and willingness to donate additional specimens to
scientists as needed. In total, 37.8% (153/405) of the app users
completed one or more portions of the profile, including 37.1%
(134/361) of the biobank members. The profile also displayed
the random “Private ID” number, which enabled users to remain
deidentified while linking to their respective specimens. During
the pilot, we experimented with the naming conventions,
location, and order of presentation of biobank and profile
features to assess impact on participants’ understanding of the
biobank environment, affordances, constraints, and opportunities
presented by the decentralized biobanking platform.

Nearly all participants who filled out the research profile
(151/153, 98.7%) added one or more clinical details (eg, familial
history of breast cancer; Multimedia Appendix 6). Profiles were
completed by 39.9% (59/148) of the participants with samples,
collectively annotating 886 specimens, including 760 (85.8%)
available for future use, 36 (4.1%) “on hold” for a designated
protocol, and 90 (10.2%) that were distributed for research, with
information that was not contained within the institutional
biobank database. In addition, participants added preferences
regarding specimen use, willingness to provide further data and
specimen donations, and future research engagement.

Figure 6. Biobank orientation journey, illustrating the biobank screen and user workflow introducing app users to biobank processes, what it means
to be a biobank member, and regularly updated snapshots of investigator activities, protocols, and specimen allocations, at the level of the overall bank.
The biobank also linked to participant's personal research profile, where they could provide key clinical details, interests, and preferences related to
research on their specimens.

JMIR Bioinform Biotech 2025 | vol. 6 | e70463 | p.110https://bioinform.jmir.org/2025/1/e70463
(page number not for citation purposes)

Sanchez et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Decentralized biobanking pilot population, app user and token claiming overview.

Token claimed, n (%)bApp users, n (%)aPilot population

130 (12.04)405 (37.5)Total (N=1080)

128 (13.76)361 (38.82)Biobank members (n=930)c

125 (46)148 (54.41)Biobank members with specimens (n=272)d

1812 (46.41)2133 (54.64)Collected specimens (n=3904)d

74 (44.85)88 (53.33)Biobank members with specimens in use (n=165)d,e

40 (44.44)46 (51.11)Fresh (n=90)

40 (40)50 (50)Frozen (n=100)

177 (46.95)202 (53.58)Specimens in use (n=377)d,e

95 (48.72)104 (53.33)Fresh (n=195)

82 (45.05)98 (53.85)Frozen (n=182)

110 (45.45)132 (54.55)Number of donors with specimens available (n=242)d

67 (45.58)81 (55.1)Breast (n=147)

82 (44.32)97 (52.43)Blood (n=185)

80 (48.19)91 (54.82)Urine (n=166)

1522 (46)1757 (53.1)Specimens available (n=3309)d

178 (51.59)205 (59.42)Breast (n=345)

988 (45.55)1145 (52.72)Blood (n=2172)

355 (45.34)406 (51.85)Urine (n=783)

aSpecimen values and donor counts for all app engaged participants with specimens collected.
bSpecimen values and donor counts for all app engaged participants with specimens collected who claimed biowallet tokens during the pilot study.
cDonor counts for all biobank consented pilot participants.
dSpecimen values and donor counts for all biobank consented pilot participants with one or more specimens collected.
eSpecimens considered in use if distributed to a research protocol as of May 4, 2023. A total of 218 specimens among all pilot participants with collected
specimens designated “on hold” for future research use are not shown.

Journey 3: Claiming and Viewing the Biowallet NFT

Overview

Linking app accounts to biospecimen data occurred offline and
took up to 2 weeks supported by software scripts and manual
processes, including checks for false mismatches (eg, due to
typos). Once biowallet NFTs were available, email notifications
prompted participants to log in to their decentralized biobanking
app to open their biowallet and access their personalized
biospecimen data.

Once claimed, the “Biowallet token” appeared on the bottom
of the screen with a link to view the corresponding Ethereum
transaction data (Figure 7). The profile screen showed how
patients could add clinical details that are not in the biobank
database, making their biospecimens more readily discoverable
by prospective users, reducing reliance on third-party chart
review during study planning. The biowallet NFT signified
membership in a collective committed to breast cancer research.
Once claimed, the individual’s unique biowallet NFT could be
viewed via an in-app Etherscan display. The app user experience
represented this process as a symbolic “token of appreciation”
as a form of reciprocity for biobank contributions.
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Figure 7. Claiming and viewing the biowallet nonfungible token (NFT). The figure illustrates the biowallet NFT claiming process, first showing the
appearance of the biowallet when the token is available to be claimed. Next, the claiming process is shown, which invites donors to “join the revolution!”
Once claimed, the user’s personal NFT is represented on the profile page, which is connected via a hyperlink and an in-app display of the Etherscan
view of the NFT, a customized biowallet logo for the pilot, and corresponding blockchain transaction data.

Proof of Concept for Blockchain-Backed Biobanking App

The initial round of minting included “tokens of appreciation”
for participants who were active in the demonstration phase of
the app design and usability testing. The blockchain mechanism
was initially tested with 4 test mints followed by minting “tokens
of appreciation” for 7 demonstration phase participants. In total,
71% (5/7) of the demonstration users successfully completed
the token minting claiming process, illustrating the use of the
“biowallet” NFT as a representation of the individual’s
membership in the biobank community. After validating
functional integration of the blockchain simulation, eligibility
for biowallet tokens was limited to those with confirmed

specimens in the breast cancer biobank, enabling us to simulate
use of the NFTs to establish token-gated access to deidentified
specimen accounts.

Of 148 app users with specimens, 140 (94.6%) initiated the
biowallet token minting process during the pilot. Of 140 tokens
minted, 125 (89.3%) were claimed by users, with an average
of 10 (median 1, IQR 1-5, range 0-100) days between token
minting and token claiming (Figure 8). Compared to individuals
who did not claim their biowallet, those who did claim their
biowallet were slightly younger (average of 58.9, SD 10.8 vs
61.9, SD 14.3 years) and had a similar time since biobank
consent (7.8, SD 5.0 years since consent for claimants vs 7.7,
SD 5.3 years for nonclaimants; Multimedia Appendix 7).
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Figure 8. Nonfungible token claiming details for the decentralized biobanking breast cancer biobank pilot. Participant engagement and timing illustrates
(A) interest in biospecimen tracking and receptiveness to email notification to facilitate the token claiming process and (B) the effective reconnecting
specimens to participants that occurred during the pilot as tokens were claimed. In total, 89.3% (125/140) of tokens minted for app users with specimens
were claimed during the pilot. Tokens were considered unclaimed after ~2.5 months following the final token minting event. A total of 15 participants
had not yet claimed their token as of the conclusion of the pilot.

Ethnography of the US cancer specimen supply chain, including
engagement with industry and academic stakeholders, generated
the following conservative estimates for the commercial value
of cancer tissue, blood, and urine specimens with well-annotated
clinical data: US $1000 for cancer tissue, US $500 for blood,
and US $300 for urine. Hypothetically, this equates to US
$1 million of “available” specimens being populated into app
users’ biowallets during the pilot. Similarly, this corresponds
with a total value of approximately US $30 million for unused
specimens in frozen storage, with roughly US $7000 in value
per specimen contributor. Additional details of the scalability
and economic feasibility of the proposed blockchain solution
will be addressed elsewhere.

Journey 4: Viewing Personal Specimen Details
The “biowallet” was where participants could view details about
when they consented for biobank donation (Figure 9). Once
linkage between the user’s app and respective biobank data was
established, individuals were able to track and learn about their
own biospecimens. Details available via an interactive accordion
feature included their biosample collection date, sample type
and medium, if and when each sample was shared for a

particular research protocol, and similar sample-level
information within the institutional database. The biowallet also
includes a taxonomy of physical and digital biospecimen data
types that may, in the future, be trackable by individual
participants.

Further details regarding specimen distribution and availability
were indicated via additional pop-ups, providing users with an
opportunity to navigate to an app-based laboratory. Here app
users could learn how many donors had contributed specimens
of similar types, or had specimens distributed to the same
research protocol. Of the biobank members using the app, 41%
(148/361) had their “biowallet” populated with a total of 2113
specimens (mean 14.4, SD 12.1; range 1-84), including 1414
(66.9%) blood specimens, 419 (19.8%) urine specimens, and
296 (14%) breast tissues. In total, 70.9% (105/148) of sample
holders had one or more breast tissue specimens. A total of
59.5% (88/148) had one or more specimens “in use” (mean 2.3,
SD 1.6 per person; range 1-8), 40.5% (60/148) of the participants
with specimens had none “in use,” and 4.7% (7/148) of the
participants had specimens “on hold” (mean 24.9, SD 16.3;
range 10-61). Individuals who had no specimens available
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received a digital biobank membership card (Figure 9, panel 2)
and in-app text notifying the participant that no specimens had
been located (yet), with a range of possible explanations.

Collectively, 202 of app users’ specimens were “in use,”
including 104 (51.5%) that were delivered “fresh” the day of
donation (eg, for organoid development) and 98 (4%) from a
frozen collection. A total of 8.2% (174/2113) were “on hold”

for a designated study, and 83.15% (1757/2113) were
“available.” App users’ specimens were distributed to 22
different investigators under 42 research protocols. Between
February 15, 2023, and May 4, 2023, users donated 39 new
specimens, which appeared on the app, 2 (5%) of which were
distributed fresh. In addition, 18% (7/39) were distributed from
frozen storage, and 54% (21/39) were placed “on hold” during
the pilot.

Figure 9. Biowallet sample tracking journey. This figure illustrates the participant experience learning about their personal specimen donations via an
interactive biowallet landing page. Pop-up and accordion features enabled participants to learn about their specimens, including the type, collection
date, distribution to a research protocol versus availability for future use, and explore further details about similar donations and distributions.

Participant Feedback During the Pilot
During the pilot, cognitive walk-throughs with participants
illuminated areas of interest along with potential opportunities
for design improvement. Key areas of excitement included
seeing how their samples were used. One participant stated the
following:

I will [otherwise] never know anything about my cells.

Areas for improvement included improving technological
accessibility (eg, making it iPad compatible) and clarifying the
information presented (eg, “Will there be a way to learn more
about each study?”). Table 4 provides a detailed thematic
overview and representative quotes.
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Table 4. A thematic overview of participant feedback gathered through cognitive walk-throughs conducted during the pilot.

Pilot participant feedbackTheme

Things they liked

Big picture • “This is cool on so many levels.”
• “Incredible concept to learn about.”
• “There are endless possibilities and uses for this.”
• “There is hope for others by giving my cells.”

Personalized feedback • “I can’t wait to see what’s being done with my samples!”
• “Loved the idea of having access to my tissue info+how the two cancers are connected.”
• “I will [otherwise] never know anything about my cells.”
• “I’ll get to see the process.”

Empowerment • “Information I could never access before.”
• “Give patients more control and information.”
• “Profile preferences—great idea.”
• “Private ID+Ability to connect w/ others in similar diagnosis.”

User interfaces and user experience • “Menus under biowallet are clear+concise.”
• “Look of the app.”
• “Easy to navigate.”
• “Easy to use/menus good.”
• “Love the status of ‘in use’ and ‘available.’”

Things they did not like or that did not meet their expectations

Information provided • “Where are investigators that have my tissue or samples.”
• “Unclear when no samples (needs explanation).”
• “Will there be a way to learn more about each study?”
• “I need a little more background before fooling around with the app.”

Accessibility • “Needed tutorial.”
• “Are there options for people who do not have email on their phone.”
• “Under personal history, other than TNBC (triple negative breast cancer) other breast cancers should

be identified.”
• “Need to be able to use on an iPAD for larger screen.”
• “Possible to put app on android tablet?”
• “Being older I’m not a techie and it takes a while.”

Functionality and user navigation • “Biowallet should be first icon.”
• “Make biobank/wallet first tab.”
• “Add search bar in connect.”
• “Some functions are more intuitive than others—more prompts are needed.”
• “What was the purpose behind ‘home’ icon community samples.”

Discussion

Principal Findings
The decentralized biobanking pilot demonstrated the technical
feasibility of design, development, and implementation of a
user-friendly app to deliver transparency and engagement for
donors to a well-established biospecimen collection protocol at
a US academic medical center. Over 400 participants
downloaded and tested the decentralized biobanking app during
the pilot, asserting interest in tracking their biospecimens,
demonstrating the usability of a patient interface for institutional
biobanking data. “Biowallet” tokens (ERC-721) were minted
for app users with confirmed specimens, and 89.3% (125/140)
successfully claimed their NFTs on the app, with over half
(72/125, 57.6%) of the population achieving the task within 1
day of token minting.

Pilot participants’biowallet token claiming process symbolically
asserted their right to know what happens to their inherently
unique biospecimens, to which they are immutably linked via
a nontransferable, one-of-a-kind relationship. The user
experience simulated an NFT-gated process, functionally
reconnecting app users to >1800 deidentified specimens,
providing visibility of affiliated community members and related
research activities all while preserving confidentiality. Critically,
this was achievable with data architecture, interfaces, and
workflows that maintained compliance with preexisting
deidentification standards and specimen collection and
distribution protocols.

Similarly, we showed how integration with institutional biobank
infrastructure can passively provide transparency for donors
without imposing undue burdens on investigators or relying on
individual research programs to sustain community engagement.
Transparency in biobanking has the potential to rebuild donor
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trust in biobanks and improve accountability in biomedical
research [27-29]. Consequently, transparency may be a driver
to improve biobank donations, particularly among communities
with historically rooted distrust of biomedical research [30,31].
The decentralized biobanking framework also allowed for the
retrospective and prospective onboarding of donors,
demonstrating the potential to convert existing biobanks to a
progressively decentralized, patient-centered model.

Minting biowallet NFTs averaged US $4.51 (SD US $2.54;
range US $1.84-$11.23) per token, with a projected total cost
of US $17,769.40 (SD US $159.52) for all biobank members
with specimens. Importantly, a 1-time minting expense of <US
$5 per patient may be considered marginal, especially in view
of the cost of specimen procurement, storage, and distribution.
A workshop on biospecimen economics found the cost of
operating a large biobank to be US $861 per patient [32]. The
value of the specimens themselves is also substantial relative
to minting expenses; academic researchers may pay up to US
$200 per sample, whereas commercial entities may pay up to
US $20,000 per sample [32]. When biospecimens are converted
into living models (eg, organoids), the expenses of both
processing and development increase, but the value is multiplied
several-fold as 1-mL aliquots of the model may cost upward of
several thousand dollars per copy for academic and commercial
users alike [33,34].

Importantly, we also demonstrated how empowering patients
may in turn help scientists by allowing them to annotate their
biospecimens with relevant data that may not be represented in
the institutional biobank database or may be otherwise not
directly available to prospective or current specimen users. Over
37% (150/405) of the participants demonstrated how
longitudinal donor involvement might be leveraged to improve
biosample curation and discoverability, creating opportunities
to enrich research; link siloed datasets; and drive more efficient,
community-driven use of biobank resources. Enhanced
annotation of biospecimens with clinical data reflects increasing
demand among the biobanking community to gain more
contextual biospecimen data [35]. Project LUNGBANK is an
example of ongoing efforts to provide more comprehensive
clinical data to enrich biospecimens [36]. In LUNGBANK,
clinically relevant findings collected through manual chart
review of patient medical records were used to annotate
biospecimens [36]. For the decentralized biobanking app, more
intuitive, strategic placement of the profile feature and improved
framing of its functionality and benefits for donors and scientists
will be essential to optimize the utility of this feature.

Although relatively limited in functionality compared to the
NFT framework advanced in our preclinical prototypes, the
blockchain aspect of the piloted app was significant for several
reasons. First, it represents the first time that most of our
participants, including several octogenarians, had ever interacted
with blockchain technologies. Second, persistence in
overcoming the friction of onboarding related to the blockchain
elements served as further evidence of the high value that
patients place on tracking their specimens, to the point that they
were willing to participate in a cumbersome, multistage process
that, in some cases, took weeks. Third, the blockchain aspect
of the piloted app remains a permanent, institution-agnostic

record of the relationship between specific donors and their
respective biospecimens, highlighting the potential to reunite
individuals with these deeply personal assets, with yet unmet
potential for assurances of trust and shared rewards of research.
Finally, the biowallet NFT represents a foundational gateway
to a composable and progressively decentralized biobanking
ecosystem. That which starts with 1 biowallet token per
participant who contributes specimens may be built upon in a
stepwise manner, forging an interconnected overlay network
that recognizes and unlocks value across today’s siloed biobank
landscape.

Limitations
The pilot relied on manual data workflows to enable
demonstration of a functional decentralized biobanking platform
without requiring full integration of the patient-facing apps with
the enterprise system. Such manual workflows are impractical
for sustainability and scalability. The exponential growth of
health information and advanced computing makes workflow
automation increasingly fundamental [37]. Thus, application
programming interface (API) integration and automated
processes will be necessary for future apps. In view of the
volume of requests received during the pilot as well as interest
in expanding the program to other institutional biobanks,
hospital leadership approved API development to facilitate such
integrations for the next stages of the pilot program. In addition
to being essential for technical feasibility, this approval was
critical as it demonstrated that the manual aspects of our
workflows were not material for the acceptability of our strategy
for reconnecting donors with their deidentified specimens within
institutional biobanks.

Notifications based on in-app activity event triggers were not
fully implemented during the pilot, and a number of manual
steps were required, including substantial coordination across
study team members and email-based messaging to notify
participants about critical changes such as token availability
and biosample status updates. Automated communications must
be incorporated into future pilots with accommodation for a
range of patient preferences and values. Subsequent
development will also make a web-based version to avoid
exclusion of participants for whom smartphone apps may not
be preferred or accessible, particularly with respect to age and
household income [38].

Furthermore, the piloted app interfaces and user journeys were
designed for patient users, whereas engagement with physicians,
biobankers, and scientists occurred via alternative channels (eg,
email and institutional platforms). This limited the functionality
and value within the app as research content was high level,
limited to the scope of the biobank database. Ongoing work is
advancing real-world applications of decentralized biobanking
for scientists and other stakeholders within the NFT digital twin
ecosystem. Inclusion of professional users directly within the
decentralized biobanking platform will be key for unlocking
the ongoing value and network effects of our framework.

Regarding the blockchain elements, the high and highly variable
costs of token mints on Ethereum illustrate the importance of
more cost-efficient strategies, such as layer-2 solutions, for
full-scale implementation. Importantly, our focus on the primary
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NFT digital twin framework centers the stakeholders and their
relational mappings within the ecosystem. This allowed us to
focus on tokenizing the individual participants, in this case, 1
token per biospecimen donor rather than 1 per biospecimen,
which would have increased costs 10- to 20-fold. This was
sensible, especially considering limitations on functionality of
a specimen-representing NFT in the setting of our pilot app;
that is, it was not necessary to tokenize specimens for
implementing transparency and our study did not provide
additional permissions relevant to potential tokenized specimen
utility for shared governance or profit sharing regarding the
underlying biobank assets. Moreover, ensuring the long-term
economic sustainability of biobanks is already a salient concern,
with high costs driven by human resources, equipment, and
sample handling [39-41]. Cost-effectiveness will be essential
for broader adoption of decentralized biobanking technology,
and blockchain solutions in themselves must be complemented
with social, cultural, and legal innovations to enact meaningful
progress [40,42,43].

In addition, NFTs were minted for individual participants, and
personal NFTs were rendered via an in-app Etherscan display,
although the token-gated aspect of the app leveraged Firebase
Unique Identifiers rather than NFTs to minimize complexity
and potential points of failure. Simulation of the user interface
and user experience of blockchain interactions was necessary
to overcome barriers to onboarding inherent to contemporary
avoidances and constraints of decentralized apps, particularly
as our patient population was older and almost exclusively from
non–digital native generations and many were actively grappling
with cancer. This was especially critical given concurrent
educational barriers surrounding the simultaneous introduction
of patients to both biobanking and blockchain for the first time.
For example, a knowledge assessment on biobanking
administered to biospecimen donors found that approximately
half of all questions were answered either incorrectly or with
“I don’t know.” Similarly, most patients we engaged with during
app design, development, and pilot-testing were not familiar
with the term “biobank,” illustrating the fundamental challenge
of delivering a patient-friendly biobanking app. These findings
underscore the gap between providing information during the
prospective informed consent process and achieving true
comprehension via enduring transparency and ongoing feedback
[44,45]. To this end, we prioritized orientation to biobanking
and developed lexicon and app design features that make data
within biobank databases accessible to donors via a
decentralized biobanking platform that coheres with the ethos
of decentralization at its core.

For future implementations, we aim to advance
blockchain-backed solutions with seamless onboarding
experiences through the exploration of newer standards such as
ERC-4337 for account abstraction, which awards the
programmable flexibility to remove complex barriers to entry
such as the current requirement for users to create their own
third-party wallets to interact with the decentralized app.
Advancement of these technologies may provide seamless
integration of decentralized biobanking platforms with both
institutional databases and blockchain overlay networks, with
future potential to unite participants, specimens, and scientists

across various institutions. Transparency and engagement in
biospecimen management is a necessary step toward institutional
transformation to achieve community partnership, shared
decisions, and progressive democratization. More research is
needed to test our hypotheses about the role of blockchain
technology in a comprehensive and universal decentralized
biobanking solution [46].

The success of our pilot inspired potential to revolutionize
biobanking via a decentralized platform but also revealed
challenges and limitations for current biospecimen collection
workflows, standard operating procedures, and data management
strategies [47]. Implementation of transparency for past, present,
and future biospecimen collection and distribution will require
innovative system designs that overcome idiosyncrasies of
individual biobank databases coupled with incentive structures
and governance models that promote trust and ensure that
biobanking practice optimizes individual and collective interests
for patients, scientists, and society [48-50]. While the principles
and techniques demonstrated in this study theoretically translate
to any other research biobanking context, our technical approach
must be validated across a variety of clinical and socioeconomic
settings, institutional and regional cultures, and biomedical
research contexts.

Critically, this pilot addressed a single, disease-focused
university biobank with a largely White, female, and
geographically localized population. Technology acceptance
must be confirmed for diverse patients, diseases, and contexts
[51]. Both iOS and Android users were included, yet some did
not use smartphones, and others preferred not to download apps.
We have since developed a web-based platform, expanding
availability to anyone with internet access, although disparities
persist. Ongoing research is exploring the impact of age, race,
time elapsed since surgery, and stage of disease on technology
acceptability, as well as how to optimize recruitment and
trustworthiness for underserved populations [51,52]. Current
work is also addressing populations such as those with prostate
and lung cancer in which male individuals are more heavily
represented, and we have incorporated socioeconomic
assessments into our data collection to ensure that we advance
solutions that are broadly accessible and applicable, especially
for economically and educationally marginalized groups.

Looking ahead beyond feasibility, the practical implementation
of scalable, decentralized biobanking solutions requires technical
enhancements to overcome the discussed challenges and
limitations of this pilot. User interfaces must prioritize usability,
comprehensibility, and accessibility by leveraging new standards
for account abstraction to reduce the complexity of interacting
with blockchain components in our solution. Similarly, ongoing
research should inform iterative refinement of different strategies
for effective presentation of research-related information curated
for diverse patient populations. Efforts toward long-term
sustainability should include app cost optimization techniques
such as deployment on layer-2 networks for major reductions
in blockchain transaction costs and the automation of key
workflows and processes through proper integration with
institutional software and databases. Because each new
environment can be quite nuanced, the application of our
technology to new use cases will still require custom
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configurations when onboarding, but some of these efforts may
be streamlined by standardizing integration patterns with widely
used laboratory information management systems and research
tools.

Finally, our privacy-by-design approach requires due diligence
in execution to mitigate risks to users. Abiding by security best
practices in development and thorough vulnerability testing are
essential measures in protecting against critical security risks.
Intentional disaster recovery plans with detailed incident
response protocols for specific events are important for prompt
threat containment, recovery of system resources with minimal
downtime, and communication to affected users and
stakeholders. Proactive preparation to set up comprehensive
monitoring, automated backups with manual snapshots across
system resources and environments, and pre-emptively
programmed functionality for pausing and redeploying
compromised system components or deployed smart contracts
are crucial for the effective execution of incident response plans.

Conclusions
This pilot demonstrates the technical capacity and resources for
a functional decentralized biobanking software app that
empowers patients to track specimens donated to a real-world
breast cancer research biobank with a novel implementation of
blockchain technology. The patient-friendly mobile app renders
institutional biobank inventory and transactions in a meaningful,
personalized biowallet context, providing a rewarding user
experience. We demonstrated the app’s readiness for API
integrations, which would allow for sustainable and scalable
implementation across multiple biobank protocols by seamlessly
and dynamically displaying biobanking activities to donors.
Pilot participants successfully claimed NFTs within the app,
restoring provenance for personal biospecimens and related
data. This advancement introduces a new paradigm for ethical
biobanking, fostering donor engagement and inclusion in
personalized research networks appropriate to contemporary
learning health systems and mobile computing capabilities while
maintaining deidentification and compliance with established
protocols.
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Abstract

Background: Integrating clinical, genomic, and social determinants of health (SDOH) data is essential for advancing precision
medicine and addressing cancer health disparities. However, existing bioinformatics tools often lack the flexibility to perform
equity-driven analyses or require significant programming expertise.

Objective: We developed AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in
Population Metrics), a conversational artificial intelligence system designed to enable natural language–driven, multidimensional
cancer analysis. This study describes the development, implementation, and application of AI-HOPE-PM to support hypothesis
testing that integrates genomic, clinical, and SDOH data.

Methods: AI-HOPE-PM leverages large language models and Python-based statistical scripts to convert user-defined natural
language queries into executable workflows. It was evaluated using curated colorectal cancer datasets from The Cancer Genome
Atlas and cBioPortal, enriched with harmonized SDOH variables. Accuracy of natural language interpretation, run time efficiency,
and usability were benchmarked against cBioPortal and UCSC Xena.

Results: AI-HOPE-PM successfully supported case-control stratification, survival modeling, and odds ratio analysis using
natural language prompts. In colorectal cancer case studies, the system revealed significant disparities in progression-free survival
and treatment access based on financial strain, health care access, food insecurity, and social support, demonstrating the importance
of integrating SDOH in cancer research. Benchmark testing showed faster task execution compared to existing platforms, and
the system achieved 92.5% accuracy in parsing biomedical queries.

Conclusions: AI-HOPE-PM lowers technical barriers to integrative cancer research by enabling real-time, user-friendly
exploration of clinical, genomic, and SDOH data. It expands on prior work by incorporating equity metrics into precision oncology
workflows and offers a scalable tool for supporting disparities-focused translational research. Five videos are included as multimedia
appendices to demonstrate platform functionality in real-world scenarios.

(JMIR Bioinform Biotech 2025;6:e76553)   doi:10.2196/76553

KEYWORDS

artificial intelligence; LLM; AI agent; bioinformatics; cancer; genomics; precision medicine; social determinants of health; large
language model

Introduction

Health care is being transformed by comprehensive precision
medicine, which personalizes treatment based on individual
differences in genetics, environment, and lifestyle [1,2].
Alongside this shift, there is growing recognition of the critical
role social determinants of health (SDOH) play in shaping
disease outcomes and access to care [2-5]. To advance both

scientific discovery and health equity, integrating clinical,
genomic, and SDOH data is imperative for uncovering disease
mechanisms, enhancing treatment effectiveness, and reducing
disparities—especially among underserved populations.
However, several challenges remain: data silos, the need for
specialized expertise in multiomics analysis, and the
underrepresentation of diverse populations in existing datasets

JMIR Bioinform Biotech 2025 | vol. 6 | e76553 | p.123https://bioinform.jmir.org/2025/1/e76553
(page number not for citation purposes)

Yang et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.2196/76553
http://www.w3.org/Style/XSL
http://www.renderx.com/


all continue to hinder the equitable realization of precision
medicine [6-9].

The complexity of cancer research workflows demands seamless
integration of molecular profiles, clinical metadata, and
population-level variables such as race, ethnicity, income, health
literacy, and access to care. Although web-based tools like
cBioPortal [10] and UALCAN [11] offer structured platforms
for querying public cancer datasets such as The Cancer Genome
Atlas (TCGA) [12], they operate within predefined analytical
frameworks and require users to manually conduct multistep
filtering, stratification, and statistical interpretation [13-16].
These limitations restrict the flexibility needed to explore
hypothesis-driven, context-specific research
questions—especially those involving SDOH variables critical
for addressing health equity.

Meanwhile, emerging artificial intelligence (AI)–based tools
like CellAgent [17] and AutoBA [18] have begun to explore
the potential of large language models (LLMs) in bioinformatics

workflows [19-22]. However, these systems often focus solely
on genomic data and lack the capacity to simultaneously
integrate clinical and SDOH variables, thereby limiting their
utility in advancing equitable biomedical research.

Motivated by these gaps, we introduced AI-HOPE-PM
(Artificial Intelligence Agent for High-Optimization and
Precision Medicine in Population Metrics), a novel
LLM-powered conversational agent designed to democratize
access to integrative bioinformatics analysis. AI-HOPE-PM
allows users—regardless of technical background—to conduct
robust, multidimensional cancer research using natural language
queries. As illustrated in Figure 1, the platform employs natural
language processing, retrieval-augmented generation, and
Python-based bioinformatics pipelines to translate user queries
into reproducible and explainable analyses. This includes
case–control comparisons, survival modeling, and stratified
multiomics analysis—all without requiring code or manual data
preprocessing.

Figure 1. Overview of AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) workflow.
LLM: large language model; SDOH: social determinants of health; TCGA: The Cancer Genome Atlas.

Unlike traditional graphical user interface (GUI) tools,
AI-HOPE-PM supports complex, user-defined queries such as
“Analyze FOLFOX-treated colorectal cancer (CRC) patients
with TP53 mutations and varying levels of financial strain.”
The system autonomously identifies relevant data, filters patient
cohorts, integrates clinical treatment and genomic mutation data
with socioeconomic context, and generates statistical
visualizations, survival curves, and interpretative summaries.
By enabling real-time, dynamic exploration of
clinical-genomic-SDOH interactions, AI-HOPE-PM simplifies
complex workflows and enhances the translational relevance
of precision oncology research. This work builds on our
previously developed platform, AI-HOPE [23], a conversational

AI agent designed to support natural language-driven integration
of clinical and genomic data for precision medicine research.
While AI-HOPE demonstrated effective local analysis of
structured datasets and addressed key bioinformatics needs, it
did not incorporate SDOH or population-level variables critical
to health equity research. AI-HOPE-PM extends this foundation
by integrating SDOH data and supporting population-aware
case-control analyses, enabling researchers to interrogate
disparities across both molecular and social axes. To evaluate
its performance, AI-HOPE-PM is being benchmarked against
established tools such as cBioPortal and UCSC Xena [24]. The
benchmarking involves assessing run time efficiency,
reproducibility, and usability. In contrast to tools that require
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step-by-step configuration, AI-HOPE-PM offers streamlined
execution of advanced bioinformatics pipelines through
LLM-guided user interaction, significantly lowering barriers to
data exploration and hypothesis testing.

By bridging the gap between data complexity and user
accessibility, AI-HOPE-PM offers a scalable, inclusive, and
equitable AI framework for biomedical discovery. Its ability to
integrate clinical, genomic, and SDOH variables addresses the
long-standing need for tools that not only generate high-quality
insights but also promote diversity and inclusiveness in
biomedical research.

To address the limitations of current bioinformatics tools and
advance equity in translational precision medicine, this study
introduces AI-HOPE-PM—a novel conversational AI platform
purpose-built to integrate clinical, genomic, and SDOH data
through natural language interaction. The aim of this paper is
to describe the development, implementation, and application
of AI-HOPE-PM for multidimensional cancer analysis, with a
focus on its ability to democratize data exploration, reduce
technical barriers, and enable equity-driven hypothesis testing.
Specifically, we demonstrate how AI-HOPE-PM enables
real-time, case-control, and survival analyses that incorporate
SDOH variables such as financial strain, food insecurity, health
care access, and health literacy, alongside genomic and clinical
features. By benchmarking its performance and illustrating its
use through case studies in CRC, we highlight the platform’s
potential to accelerate disparities-focused research, improve
biomarker discovery, and support inclusive precision oncology.

Methods

Development of AI-HOPE-PM and Data Sources
AI-HOPE-PM is a conversational AI platform designed to
advance translational precision oncology by enabling users to
perform integrative bioinformatics analyses through
plain-language queries. The system is built on a
retrieval-augmented generation framework—a method that
enhances response accuracy by retrieving relevant information
from structured datasets—and a fine-tuned biomedical LLM
(LLaMA 3). Behind the scenes, the platform uses Python-based
scripts to carry out statistical analyses and genomic data
processing.

To enable robust analyses, we used curated multimodal datasets
from TCGA, AACR Project GENIE, and cBioPortal. These
datasets included harmonized clinical, genomic, and
demographic variables. In addition, we generated synthetic
SDOH variables using a validated Python script, guided by a
literature-informed framework. These SDOH features included
health care access, financial strain, food insecurity, social
support, and health literacy. All datasets were preprocessed into
standardized tab-delimited formats with annotated metadata
describing each variable type. A full list of variables
analyzed—including over 200 clinical, genomic, treatment, and
SDOH fields—is publicly available [25], which also contains
the source code, example queries, simulated data, and
documentation for reproducing all analyses.

Workflow and Natural Language Interface
Users interact with AI-HOPE-PM via a GUI that accepts
plaintext queries. The system interprets these queries using a
natural language processing engine to define analytic tasks,
including loading a dataset, stratifying cohorts based on genomic
or SDOH features, and performing statistical analyses such as
survival modeling or odds ratio testing. The resulting structured
commands are executed programmatically, streamlining
workflows that typically require multiple manual steps or coding
expertise.

Evaluation and Validation of System Accuracy
We evaluated AI-HOPE-PM’s query interpretation accuracy
using 100 natural language prompts that reflected diverse
real-world research scenarios in clinical genomics and health
disparities. A team of expert reviewers established ground truth
interpretations for each query to assess system performance.
AI-HOPE-PM achieved an overall accuracy of 92.5%, with
near-perfect accuracy (99.1%) for single-variable queries and
strong performance (88.4%) for more complex, multivariable
prompts. Most errors stemmed from ambiguous phrasing (eg,
nonspecific end points), syntactic inconsistencies (eg, nested
logic), or misalignment between user language and system
variable mappings. To address these issues, AI-HOPE-PM
integrates built-in clarification prompts and applies a
domain-specific ontology to harmonize terminology and guide
users toward more structured input. Future development will
focus on improving the natural language understanding engine
and refining internal mapping algorithms to further enhance
accuracy and reproducibility.

To confirm the analytical fidelity of AI-HOPE-PM, we
cross-validated its survival analyses, odds ratio outputs, and
cohort stratifications against manually performed analyses
previously published by our group using similar datasets and
variables. These included studies investigating CRC disparities
based on TP53, APC, and KRAS mutation status, treatment
modality, and SDOH factors across TCGA and cBioPortal
cohorts. The results generated by AI-HOPE-PM were consistent
with those from traditional statistical pipelines in terms of hazard
ratios, P values, and overall survival trends. This validation step
supports the platform’s accuracy in replicating established
findings and reinforces its reliability as a tool for real-time,
natural language–driven bioinformatics analyses.

Although we benchmarked AI-HOPE-PM against established
platforms such as cBioPortal and UCSC Xena, it is important
to acknowledge that these platforms function through traditional
GUIs requiring multistep, click-based interactions. This
structural difference makes direct comparisons with
AI-HOPE-PM—an intelligent, conversational AI
system—challenging. In cBioPortal and Xena, executing
multilayered queries or stratified analyses may involve multiple
browser windows, dropdown menus, and manual dataset
subsetting. In contrast, AI-HOPE-PM enables users to perform
similar tasks via a single plain-language prompt, streamlining
the process and reducing complexity. While speed remains an
advantage for AI-HOPE-PM, we also validated its outputs
through comparisons with previously published manual analyses,
ensuring consistency and analytical fidelity. This intelligent
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design is intended to reduce the technical barrier for researchers
and support scalable, real-time hypothesis generation in
precision medicine Multimedia Appendix 1.

To ensure robustness in handling natural language variability,
AI-HOPE-PM incorporates an interactive clarification
mechanism that prompts users for additional input when queries
are ambiguous or underspecified. Common edge cases include
vague end points (eg, “better outcomes”), undefined comparison
groups, or syntactic inconsistencies (eg, nested logic). In these
instances, the system pauses execution and requests clarification
through a structured prompt. Furthermore, AI-HOPE-PM uses
a curated biomedical ontology to harmonize synonymous terms
and align user inputs with internal variable definitions. These
strategies support resilient query interpretation and maintain
analytical fidelity across diverse and potentially ambiguous user
queries (Multimedia Appendix 2).

Benchmarking and Comparative Analysis
To assess usability and speed, we benchmarked AI-HOPE-PM
against existing platforms including cBioPortal and UCSC Xena.
Biomedical researchers were asked to complete tasks such as
dataset loading, filtering based on genomic or SDOH attributes,
and initiating analyses. Task durations were measured using
stopwatch protocols. AI-HOPE-PM consistently outperformed
traditional tools in terms of execution time and ease of use,
owing to its automation and intuitive language-driven interface.

To evaluate the capacity of AI-HOPE-PM to integrate and
analyze SDOH alongside clinical and genomic data, we
developed a set of simulated SDOH variables. These
variables—including financial strain, food insecurity, social
support, health literacy, and insurance access—were generated
using a Python-based simulation framework informed by
published epidemiological distributions and associations relevant
to cancer outcomes. The simulation approach was designed to
mirror the variability and prevalence observed in real-world
populations [26], thereby enabling realistic case–control
stratifications and hypothesis testing. Although these SDOH
variables are simulated, they serve as a pragmatic proxy in the
absence of widely available, high-quality, individual-level
SDOH data within public genomic datasets. For full
transparency and reproducibility, the simulation scripts are
publicly available [25]. Future validation studies using empirical
SDOH data from institutional and community-linked datasets
are planned to further refine and expand the platform’s
capabilities.

Statistical Analysis and Report Generation
The platform supports several statistical methods commonly
used in cancer genomics, including Kaplan-Meier survival
analysis with log-rank testing, Cox proportional hazards
regression, and odds ratio calculations for categorical
comparisons. Output includes plots such as survival curves and
forest plots, accompanied by narrative summaries that describe
the findings in context. All outputs are backed by reproducible
Python code logs, which are stored internally and can be
exported for validation or inclusion in publications [13-15].

Usability Study and Accessibility
A formal usability study is underway to evaluate
AI-HOPE-PM’s effectiveness and accessibility for biomedical
researchers. Participants are comparing its interface, output
quality, and query interpretation capabilities with those of
GUI-based tools and other AI-driven platforms. While we did
not perform head-to-head comparisons with generative systems
such as CellAgent or AutoBA due to differing scopes,
AI-HOPE-PM’s unique ability to integrate SDOH, clinical, and
genomic data positions it as a novel tool for equitable and
scalable precision medicine research.

To preliminarily assess usability, we conducted a small-scale
case study involving six non-bioinformatician users, including
oncology fellows and public health researchers. Participants
were asked to perform common research tasks using
AI-HOPE-PM—such as loading datasets, selecting cohorts by
genomic and social variables, and running survival
analyses—using only natural language queries. All users
completed the tasks successfully, with positive feedback
highlighting the intuitive interface, rapid execution, and
elimination of the need for coding expertise. These findings
provide initial validation of the platform’s accessibility to
diverse research users.

Ethical and Privacy Considerations
As with any LLM-based system, AI-HOPE-PM is susceptible
to biases and potential hallucinations, particularly when
interpreting complex or underspecified queries. To mitigate
these risks, the system integrates domain-specific ontologies
and harmonized variable dictionaries to reduce misinterpretation
and support consistent query resolution. Additionally, the
platform’s built-in clarification prompts serve as a real-time
validation mechanism, prompting users to confirm or refine
ambiguous instructions. While simulated SDOH-genomic
interactions provide a useful testing framework, future efforts
will emphasize empirical validation using real-world datasets
to reduce confounding.

To address privacy concerns when working with sensitive
real-world SDOH variables—such as insurance status, ethnicity,
and income—AI-HOPE-PM is designed to operate as a secure,
local AI system deployed within institutional infrastructures.
Unlike cloud-based models that may transmit data externally,
AI-HOPE-PM processes all data on-site, minimizing the risk
of exposure or unauthorized access. This local deployment
model supports compliance with data protection regulations,
including the Health Insurance Portability and Accountability
Act and the General Data Protection Regulation, where
applicable. In future iterations, we plan to integrate customizable
privacy modules and access controls to align with institutional
review board protocols and ensure ethical handling of sensitive
population-level health data.

To mitigate the risk of hallucinations and enhance the reliability
of AI-HOPE-PM’s outputs, the platform incorporates several
ethical safeguards. First, the system leverages domain-specific
biomedical ontologies to align user queries with validated
clinical and genomic concepts, reducing the likelihood of
misinterpretation. Second, AI-HOPE-PM includes built-in
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prompts that clarify ambiguous user input, supporting more
accurate query resolution. We also plan to implement
human-in-the-loop verification workflows and bias detection
modules, which will allow researchers to review, confirm, and
flag generated outputs prior to downstream use. These strategies
collectively enhance interpretability, accountability, and user
trust in the AI-driven analytical process.

Given the sensitivity of SDOH data, especially variables such
as insurance status, ethnicity, or socioeconomic conditions,
AI-HOPE-PM is currently designed as a locally deployed system
to prevent data exposure through external servers or third-party
services. This architecture ensures that no identifiable
information is shared beyond institutional firewalls. For future
deployments that may involve real-world SDOH data, we plan
to incorporate privacy-preserving methods including data
deidentification, access controls, and secure computation
protocols. All future iterations will comply with established
data protection regulations such as the Health Insurance
Portability and Accountability Act and the General Data
Protection Regulation, ensuring responsible and ethical use of
sensitive population-level data.

Results

By converting natural language instructions into executable
bioinformatics workflows, AI-HOPE-PM enabled seamless
integration and analysis of clinical, genomic, and SDOH data
within CRC datasets. The platform’s ability to interpret user
queries and automate complex analyses demonstrated its
effectiveness in supporting multidimensional, translational
cancer research. Through its intuitive conversational interface,
the system dynamically classified patient samples into case and
control cohorts based on user-defined criteria. These criteria
encompassed gene mutation status, treatment regimens, SDOH
attributes, and demographic variables, facilitating highly

customizable stratifications. The system autonomously
performed statistical analyses—including prevalence estimation,
odds ratio tests, and survival modeling—and generated
comprehensive visualizations and interpretable reports.

In a prominent use case, AI-HOPE-PM analyzed data from the
TCGA COAD dataset to investigate how financial strain affects
outcomes among folinic acid, fluorouracil, and oxaliplatin
(FOLFOX)–treated patients with CRC with TP53 mutations
(Figure 2). The analysis began by selecting the COAD dataset
enriched with SDOH data, allowing users to explore attribute
distributions such as financial strain. A bar chart visualization
was generated, showing both the count and percentage
distribution of financial strain levels across the dataset (Figure
2A). Based on user-defined filtering criteria—patients treated
with FOLFOX and harboring TP53 mutations—AI-HOPE-PM
created two cohorts: a case cohort of 40 (10.9%) patients
reporting mild or no financial issues and a control cohort of 43
(11.7%) patients experiencing moderate to severe financial
strain, including those unable to afford care. Pie charts illustrated
the proportional distribution of these cohorts within the total
366-sample dataset (Figure 2B). Once cohorts were defined,
the user selected a survival analysis module. AI-HOPE-PM
performed a Kaplan-Meier analysis to assess both overall and
progression-free survival. The resulting survival plots
demonstrated significantly shorter survival in the control group
compared to the case group, with P values of .05 (overall
survival) and .03 (progression-free survival), supported by CIs
indicating statistical robustness (Figure 2C). These findings
underscore AI-HOPE-PM’s ability to integrate clinical, genomic,
and SDOH data through natural language–guided workflows,
enabling rapid identification of clinically meaningful disparities
in treatment outcomes and survival. This functionality is further
supported by the multimedia demonstration with a similar query
[27].

JMIR Bioinform Biotech 2025 | vol. 6 | e76553 | p.127https://bioinform.jmir.org/2025/1/e76553
(page number not for citation purposes)

Yang et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) analysis of folinic acid,
fluorouracil, and oxaliplatin–treated patients with colorectal cancer with TP53 mutations and varying levels of financial strain.

Another case study explored the impact of APC mutation status
among patients with CRC treated with FOLFOX and reporting
easy access to health care (Figure 3). The analysis began by
selecting the COAD dataset enriched with SDOH, which enabled
exploration of the distribution of health care access variables.
A bar chart was generated to visualize both the count and
percentage of patients stratified by their reported level of health
care access (Figure 3A). AI-HOPE-PM then applied
user-defined filters to create case and control cohorts. The case
cohort consisted of 40 (10.9%) patients who had APC mutations,
reported easy access to health care, and received FOLFOX
treatment. The control cohort comprised 12 (3.3%) patients who
met the same filtering criteria except they were APC wild-type.

Pie charts illustrated the proportional distribution of these
cohorts out of the total 366 patients in the dataset (Figure 3B).
After defining the cohorts, AI-HOPE-PM enabled the user to
run a Kaplan-Meier survival analysis, which revealed that
patients in the control group (APC wild-type) experienced
significantly poorer progression-free survival, with a P value
of .02, as shown in the survival plot (Figure 3C). This suggests
a potential prognostic role of APC mutation status under
standardized treatment and access conditions. Additionally, the
system performed an odds ratio analysis to assess differences
in ethnic representation between the cohorts. In this context,
Hispanic/Latino identity was used as the comparative variable.
The case cohort included 6 (15%) in-context Hispanic/Latino
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patients and 34 out-of-context patients, while the control cohort
included 3 (15%) in-context patients and 9 out-of-context
patients. The resulting odds ratio was 0.529 (95% CI
0.11-2.541), indicating a lower—but not statistically
significant—representation of Hispanic/Latino individuals in
the control group (Figure 3D). Together, these results reinforce

AI-HOPE-PM’s ability to integrate genomic, clinical, and SDOH
variables and to highlight the importance of considering
ancestral background and access to care when evaluating
mutation-driven outcomes in precision oncology. As shown
through the multimedia demonstration with a similar query [28],
the platform effectively processes complex, user-defined inputs.

Figure 3. AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) analysis of patients with
colorectal cancer with and without APC mutations that have easy access to health care and treated with folinic acid, fluorouracil, and oxaliplatin.

In a third application, AI-HOPE-PM examined patients with
early-onset CRC (age <50 y) to evaluate the impact of social
support on survival outcomes among those treated with
FOLFOX chemotherapy (Multimedia Appendix 1). The user
began by selecting the COAD dataset containing enriched
SDOH data. This enabled visualization of patient-level attributes

such as age, treatment type, mutation status, and social support
level. Histograms and bar plots provided an overview of the
distribution of these variables across the cohort (Multimedia
Appendix 1A). The case cohort was defined using user-set
criteria: patients younger than 50 years, treated with FOLFOX,
and classified as having strong or moderate social support,
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resulting in 17 patients. This subset was visualized using pie
charts to reflect the proportion of selected versus total samples
(Multimedia Appendix 1B). In parallel, the control cohort was
defined with the same criteria except for social support, selecting
14 patients who reported limited or no support. A similar pie
chart depicted the sample distribution for the control group
(Multimedia Appendix 1C). A Kaplan-Meier survival analysis
was then conducted to assess overall and progression-free
survival differences between the two groups. The survival curves
revealed a statistically significant difference in progression-free
survival (P=.02), with the control group experiencing poorer
outcomes. Although the difference in overall survival did not
reach statistical significance (P=.07), a trend toward worse
survival in the control group was observed (Multimedia
Appendix 1D). To further characterize these groups, an odds
ratio analysis was performed using TP53 mutation status as the
comparative context. The case group had a lower—but not
statistically significant—prevalence of TP53 mutations, resulting
in an odds ratio of 0.706 (95% CI 0.208-2.396; Multimedia
Appendix 1E). These findings suggest that lower levels of social
support may be linked to poorer progression-free survival and
potentially associated with mutational profiles, reinforcing the
importance of incorporating psychosocial variables in precision
oncology—particularly in younger patients with CRC. The
capabilities of AI-HOPE-PM are further demonstrated in the
multimedia example of a comparable query [29].

In another analysis focused on food insecurity, AI-HOPE-PM
investigated survival disparities and treatment access among
patients with CRC with APC mutations (Multimedia Appendix
2). The analysis began with the selection of the COAD dataset
integrated with SDOH, allowing the user to visualize variables
such as food insecurity, treatment type, and APC mutation status.
Histograms and bar plots summarized the distribution of these
attributes across the cohort—highlighting proportions of
food-insecure patients and chemotherapy exposure stratified by
mutation status (Multimedia Appendix 2A). The case cohort
was defined as patients reporting no food insecurity and having
an APC mutation, yielding 245 samples. A pie chart illustrated
the representation of this subset within the overall dataset
(Multimedia Appendix 2B). The control cohort was established
using the same criteria—APC mutation present—but selecting
patients with moderate-to-severe food insecurity, resulting in
206 samples. A corresponding pie chart depicted this cohort’s
proportional distribution (Multimedia Appendix 2C). A
Kaplan-Meier progression-free survival analysis was performed,
stratifying patients by treatment type, specifically whether they
received chemotherapy. Although exact P values were not
displayed in the figure, the survival curves showed a clear
separation, suggesting poorer outcomes in food-insecure patients
not receiving chemotherapy (Multimedia Appendix 2D). These
visual trends support the finding that food-insecure patients
experienced significantly worse progression-free survival, as
confirmed by a P value of .02 from the associated analysis. To
further explore this disparity, an odds ratio analysis was
conducted using TREATMENT_TYPE (chemotherapy vs
nonchemotherapy) as the comparative context. The results
revealed that food-insecure patients were less likely to receive
chemotherapy, with an odds ratio of 0.356 (95% CI
0.136-1.186), indicating a potential treatment access gap

(Multimedia Appendix 2E). This analysis underscores the ability
of AI-HOPE-PM to uncover how socioeconomic burden, in
conjunction with genomic context, may modulate both treatment
delivery and clinical outcomes in CRC. As illustrated through
the multimedia demonstration of a similar query [30], the
platform effectively interprets complex natural language inputs.

Sex-based disparities were explored in a separate analysis
focusing on patients with CRC with limited health literacy who
were treated with FOLFOX chemotherapy (Multimedia
Appendix 3). AI-HOPE-PM utilized the COAD dataset enriched
with SDOH and genomic annotations to assess the intersection
of insurance status, tumor stage, and KRAS mutation status. Bar
charts provided an overview of insurance coverage within the
dataset, illustrating both the absolute counts and proportional
distribution across different insurance categories (Multimedia
Appendix 3A). To define the cohorts, the case group was filtered
to include insured patients who had KRAS mutations, were
diagnosed at stage I or II, and received leucovorin-based
chemotherapy, yielding 31 samples. This subset was visualized
using a pie chart to indicate its proportion out of the total 373
samples (Multimedia Appendix 3B). The control cohort applied
identical clinical and molecular filters but included only
uninsured patients, resulting in 30 samples (Multimedia
Appendix 3C). This side-by-side comparison emphasizes how
insurance coverage may influence patient stratification and
treatment access, even under otherwise uniform clinical
conditions. An odds ratio test was performed using KRAS
mutation status as the defining context to examine mutation
prevalence differences between insured and uninsured groups.
A stacked bar chart visualized the distribution of in-context
(KRAS-mutated) versus out-of-context samples in each group.
The analysis revealed a modest difference in KRAS mutation
representation, suggesting that financial access to care could
intersect with genomic profiles in ways that warrant deeper
investigation (Multimedia Appendix 3D). In a related
sex-disparity analysis among patients with limited health
literacy, AI-HOPE-PM defined a case cohort of 33 females and
a control cohort of 41 males, both treated with FOLFOX. Odds
ratio testing using KRAS mutation status showed that 30.3% of
females and 56.1% of males were KRAS-mutated, yielding an
odds ratio of 0.503 (95% CI 0.192-1.319; P=.24). Although not
statistically significant, these findings suggest potential
sex-based differences in KRAS mutation prevalence under
constrained health literacy conditions and highlight the utility
of AI-HOPE-PM for uncovering multidimensional disparities
in cancer genomics and treatment. This process is illustrated
through the multimedia demonstration of a similar query [31].

AI-HOPE-PM also facilitated analyses of nongenomic SDOH
influences on CRC outcomes. In one study, the platform was
used to explore how insurance status, treatment exposure, and
clinical care setting affected survival among patients in the
COAD dataset (Multimedia Appendix 4). The analysis began
with the selection of a dataset enriched with SDOH attributes.
Bar charts provided a comprehensive overview of insurance
type distribution, showing both the absolute number of patients
per insurance category and their relative proportions, offering
insight into the socioeconomic landscape of the cohort
(Multimedia Appendix 4A). Using this context, AI-HOPE-PM
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defined a case cohort of 41 insured patients with the following
characteristics: stage IV CRC, Hispanic/Latino ethnicity,
FOLFOX treatment, and care received at a community oncology
practice. A pie chart visualized the size of this cohort relative
to the dataset (Multimedia Appendix 4B). A control cohort was
generated using the same clinical and demographic criteria but
restricted to uninsured patients, resulting in 22 samples. The
corresponding pie chart highlighted the discrepancy in sample
size and access between the insured and uninsured groups
(Multimedia Appendix 4C). Following cohort definition,
AI-HOPE-PM performed a Kaplan-Meier survival analysis to
evaluate overall survival outcomes. The survival plots illustrated
a clear separation between the two groups, with uninsured
patients showing poorer survival outcomes, despite receiving
similar treatments and having similar disease profiles
(Multimedia Appendix 4D). While the figure does not specify
P values or CIs, the divergence in survival curves strongly
suggests a detrimental impact of lack of insurance on patient
outcomes. These findings underscore the critical role of
insurance coverage in modulating survival, even when
controlling for genomic, treatment, and staging variables. As
demonstrated in the multimedia example using a comparable
query [26], the platform accurately handles complex, user-driven
inputs.

This study complements other AI-HOPE-PM findings by
leveraging its capacity to integrate SDOH with clinical and
genomic data to uncover disparities in CRC care and outcomes.
In one analysis, the system examined the relationship between
moderate to severe financial strain and CRC screening
adherence, revealing that patients experiencing economic
hardship were significantly less likely to participate in screening
programs, highlighting a critical barrier to early detection
(Multimedia Appendix 5). The analysis began with the selection
of the SocialFactors_COAD dataset, enabling structured
visualization of variables such as APC mutation status and health
care access levels. Bar plots showed both the frequency of APC
mutations and the distribution of health care access categories
within the full cohort (Multimedia Appendix 5A). A case cohort
of 326 patients was created using filters for limited health care
access; treatment with agents in fluorouracil, leucovorin, and
oxaliplatin; and presence of APC mutations (mutation_status=1).
A pie chart depicted their proportion relative to the total dataset
(Multimedia Appendix 5B). A control cohort of 354 patients
was defined using the same criteria except for APC wild-type
status (mutation_status=0). Their distribution was similarly
visualized (Multimedia Appendix 5C). A Kaplan-Meier
progression-free survival analysis was then performed, stratified
by chemotherapy treatment status and highlighting differences
particularly among Hispanic/Latino patients. The survival curves
revealed a noticeable separation between groups, suggesting a
potential survival disadvantage linked to disparities in health
care access and genomic background (Multimedia Appendix
5D). Additionally, an odds ratio analysis evaluated treatment
disparities based on chemotherapy exposure across the defined
cohorts. A bar plot illustrated differences in chemotherapy
receipt, reinforcing how limited access to care and mutation
status may jointly influence treatment pathways and clinical
outcomes (Multimedia Appendix 5E). Other AI-HOPE-PM
analyses supported these observations. One study found that

patients reporting low social support or isolation had higher
rates of treatment discontinuation and worse survival outcomes,
consistent with psychosocial oncology literature [24]. The
platform also uncovered racial and ethnic disparities in
progression-free survival, with non-Hispanic White patients
demonstrating better outcomes than Black and Hispanic patients,
even after adjusting for treatment type and disease stage.
Collectively, these results underscore the value of incorporating
SDOH variables into precision medicine frameworks, enabling
AI-HOPE-PM to reveal systemic inequities that might otherwise
be overlooked in genomic-only analyses. The multimedia
demonstration of a similar query [29] highlights the platform’s
ability to interpret and execute complex, user-defined
instructions.

AI-HOPE-PM demonstrated high computational efficiency,
executing high-dimensional case-control studies involving over
10,000 patient records in under 1 minute. In a benchmark
comparison, the platform required only 28.02 seconds to open
the application, select a database, and filter a single data
attribute—significantly faster than cBioPortal (58.01 s) and
UCSC Xena (46.06 s). By automating the ingestion, filtering,
analysis, and reporting stages, AI-HOPE-PM substantially
reduced manual burden and turnaround time compared to
conventional bioinformatics tools. This performance underscores
its value as a scalable AI platform capable of delivering
real-time, integrative data analysis to support precision oncology
and health equity research.

In a comparative timing analysis, AI-HOPE-PM significantly
outperformed established platforms such as cBioPortal and
UCSC Xena in executing basic data query tasks. The
standardized task—which included launching the application,
selecting a dataset, and applying a filter based on a single data
attribute—was completed in just 28.02 seconds using
AI-HOPE-PM. In contrast, the same task required 58.01 seconds
on cBioPortal and 46.06 seconds on UCSC Xena. These results
underscore the efficiency advantages of AI-HOPE-PM’s natural
language–driven, automated workflow, which streamlines
multistep analyses and reduces manual input time compared to
traditional GUI-based platforms.

Discussion

Principal Findings
This study presents the development and application of
AI-HOPE-PM, a conversational AI system designed to integrate
clinical, genomic, and SDOH data for precision oncology
research. AI-HOPE-PM addresses key limitations in existing
bioinformatics tools by enabling users to pose natural language
queries that are automatically translated into executable
workflows. This allows for case-control stratification and
hypothesis testing that include both molecular and nonmolecular
variables.

In multiple CRC case studies, AI-HOPE-PM demonstrated the
ability to reveal associations between genomic alterations (eg,
TP53 and APC mutations), treatment exposures (eg, FOLFOX
chemotherapy), and SDOH variables such as financial strain,
food insecurity, health care access, and social support. These
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findings underscore the importance of contextualizing genomic
data within broader socioeconomic and behavioral frameworks
to better understand cancer disparities and inform
population-relevant strategies.

Comparison to Prior Work
Traditional tools such as cBioPortal and UCSC Xena have
facilitated broad access to public cancer genomic datasets, yet
they require manual, multistep filtering and operate within fixed
analytical frameworks. These platforms typically lack support
for SDOH integration and require a certain level of technical
expertise, limiting their accessibility for noncomputational
researchers and clinicians. More recent tools like CellAgent
[17] and AutoBA [18] have begun to explore the use of LLMs
in biomedical contexts, but their scope is generally limited to
genomic analysis and does not extend to the integration of
clinical or social variables essential for advancing health equity.

Our group’s prior work introduced AI-HOPE, a closed-system,
LLM-driven conversational agent designed to enable integrative
clinical and genomic data analyses through natural language
interactions [23]. AI-HOPE allows users to perform association
studies, prevalence assessments, and survival analyses on locally
stored datasets while maintaining data security and
interpretability. It demonstrated its capabilities by identifying
well-documented associations in TCGA CRC datasets, such as
the enrichment of TP53 mutations in late-stage CRC and the
association of KRAS mutations with poor progression-free
survival in FOLFOX-treated patients. While AI-HOPE
addressed the integration of clinical and genomic data, it was
not explicitly designed to handle population-level equity metrics
or SDOH variables.

AI-HOPE-PM builds on and significantly extends this
foundation by incorporating SDOH dimensions—such as
financial strain, health care access, food insecurity, and health
literacy—into its analytical framework. This addition allows
researchers to study cancer outcomes in a more holistic context,
bridging molecular findings with real-world social environments.
Furthermore, AI-HOPE-PM expands the scope of natural
language query handling to accommodate multimodal
stratification involving genomic, clinical, and social parameters,
which is essential for addressing health disparities. By doing
so, it complements AI-HOPE’s functionality while introducing
new capabilities that are critical for equity-focused translational
research.

Strengths and Limitations
A key strength of AI-HOPE-PM is its ability to perform
integrative, user-defined analyses through natural language
queries without requiring programming expertise. This
significantly reduces technical barriers for clinician-scientists
and public health researchers. Importantly, the platform enables
the inclusion of SDOH variables—such as financial strain,
health care access, and social support—that are often absent
from traditional bioinformatics workflows. Its modular
architecture supports rapid cohort definition, survival modeling,
and odds ratio testing across large, harmonized datasets,
allowing for real-time hypothesis generation and exploratory
analysis.

However, several limitations should be acknowledged. First,
while this study used harmonized and simulated SDOH variables
to demonstrate the platform’s functionality, the availability and
quality of real-world, longitudinal SDOH data remain limited
in many health care systems. This may affect the generalizability
of findings and the real-world applicability of the platform.
Future efforts will require integration with validated,
longitudinal SDOH datasets—potentially through partnerships
with clinical institutions and population health data repositories.
Second, AI-HOPE-PM’s current design is optimized for
structured, publicly available datasets such as TCGA,
cBioPortal, and AACR GENIE. As such, its adaptability to
unstructured clinical data or eHealth records is limited. While
this design choice enhances reproducibility and alignment with
standardized biomedical ontologies, future work should explore
interoperability with clinical informatics platforms and natural
language extraction from eHealth records to expand usability
in health care settings. Third, this study focused exclusively on
CRC datasets. As a result, findings and workflows may not be
immediately generalizable to other cancer types without
retraining or additional customization of the AI system.
Although the architecture is designed to be adaptable, validation
on other tumor types and disease areas will be essential for
broader adoption. Fourth, while benchmarking analyses
demonstrated strong performance compared to tools like
cBioPortal and UCSC Xena, formal usability testing and
prospective validation in real-world clinical and research
environments were not conducted. These are planned as part of
future development phases and will be critical for refining the
user interface, evaluating human-AI collaboration, and assessing
clinical impact. By acknowledging and addressing these
limitations, future iterations of AI-HOPE-PM can be improved
to better support equitable, scalable, and clinically relevant
precision medicine research.

A notable limitation of the current study is the use of simulated
SDOH variables rather than real-world data. While these
simulated features were generated to reflect established patterns
from peer-reviewed literature and public health datasets, they
cannot fully replicate the variability, context-dependence, or
missingness typical of empirical SDOH data collected in clinical
or community settings. This limitation may impact the external
validity of some findings and restrict generalizability. To address
this, we are actively pursuing collaborations with health systems
and community-based data partners to incorporate validated,
longitudinal SDOH datasets into future deployments of
AI-HOPE-PM. This planned integration will enable more
accurate assessment of equity-relevant outcomes and enhance
the platform’s application in real-world clinical research.

While AI-HOPE-PM achieved a high query interpretation
accuracy of 92.5% during internal evaluation, several error
modes were identified that merit consideration. The most
frequent issues involved ambiguity in natural language
input—particularly when users provided imprecise criteria for
cohort selection or omitted critical parameters. Additionally,
complex nested queries and nonstandard phrasing occasionally
led to misinterpretation or partial execution. In a minority of
cases, errors stemmed from misalignment between user
terminology and the platform’s internal ontology, particularly
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for less common clinical or SDOH variables. To address these
challenges, AI-HOPE-PM integrates clarification prompts that
guide users toward more precise query formulation and supports
synonym recognition for common variable names. Ongoing
improvements include refining the language model’s domain
specificity and expanding the internal ontology to better
accommodate diverse user inputs. These enhancements are
essential for improving reproducibility and user experience in
real-world settings.

A key limitation of this study is the use of simulated SDOH
variables rather than real-world data. While simulation allowed
us to prototype and evaluate the functionality of AI-HOPE-PM
under controlled conditions, it does not fully capture the
complexity, heterogeneity, or potential missingness often present
in real clinical and social datasets. To address this limitation,
we have developed and released an open-source Python script
[25] that transparently outlines our simulation methodology.
Additionally, we are actively working on the integration of
real-world SDOH data through ongoing projects [32], which is
sequencing and characterizing tumors from 500 Hispanic/Latino
patients in the Los Angeles catchment area. These datasets will
allow us to test AI-HOPE-PM’s performance in real clinical
environments and refine its capacity to analyze authentic,
population-specific SDOH variables in future iterations.

To address this limitation, we acknowledge that the current
evaluation of AI-HOPE-PM using 100 natural language
queries—while carefully curated by physician-scientists, public
health researchers, biostatisticians, and bioinformaticians to
reflect real-world clinical and translational scenarios—represents
an early validation phase. These queries were intentionally
designed to ensure clinical accuracy, relevance, and internal
consistency. However, we recognize the importance of
expanding evaluation to include a broader and more diverse
group of end users across different levels of expertise. Future
iterations of AI-HOPE-PM will incorporate structured feedback
from clinicians, public health researchers, and community health
stakeholders. This participatory approach will help identify
diverse interaction patterns, reduce potential biases, and enhance
the platform’s interpretive capacity over time.

Future Directions
Future development of AI-HOPE-PM will focus on several
enhancements. First, expanding support for additional omics
layers [32], including spatial biology [33] and single-cell
[34-36], could improve the platform’s applicability to emerging
areas in systems oncology. Integration with federated learning
frameworks may also enable secure, institution-specific model
updates without compromising patient privacy. Moreover,
enhancing the system’s ability to handle longitudinal data,
including treatment timelines and SDOH trajectories, will be
critical for supporting causal inference and policy-relevant
research [37-42].

Future iterations of AI-HOPE-PM will prioritize the integration
of more inclusive and representative genomic datasets to
enhance the platform’s utility across diverse patient populations.
While the current analyses rely on publicly available sources
such as TCGA and cBioPortal—which are known to
underrepresent racial and ethnic minorities—there have been

encouraging advances in improving dataset diversity,
particularly in CRC cohorts submitted by major US cancer
centers. Notably, several ongoing initiatives aim to sequence
and characterize tumors from historically underrepresented
populations, including Hispanic/Latino patients with CRC [32].
These datasets, once publicly released, will be incorporated into
AI-HOPE-PM to improve its generalizability and relevance in
addressing cancer health disparities. This aligns with our
overarching mission to develop equity-focused precision
oncology tools that are responsive to the needs of all
communities.

In this study, benchmarking primarily focused on task
completion time—measuring the duration to execute standard
bioinformatics queries across AI-HOPE-PM, cBioPortal, and
UCSC Xena. While AI-HOPE-PM demonstrated superior
efficiency due to its natural language automation, we
acknowledge that this assessment does not encompass analytical
output comparison. Future benchmarking studies will evaluate
not only speed but also reproducibility and concordance of
statistical results, including survival curves, odds ratios, and
subgroup analyses. This expanded evaluation will ensure that
AI-HOPE-PM delivers results comparable in accuracy and
robustness to established platforms, further supporting its utility
for translational cancer research.

A preliminary usability assessment was conducted during an
internal pilot deployment involving five clinician-scientists and
three public health researchers. Participants were asked to
complete common clinical-genomic queries using AI-HOPE-PM
and provide structured feedback on system usability,
interpretability of outputs, and ease of query formulation.
Feedback indicated that users found the natural language
interface intuitive and appreciated the automation of statistical
analyses without coding. Suggestions for improvement included
refining terminology prompts and expanding visualization
customization. These insights have been incorporated into the
current version of AI-HOPE-PM, and a formal usability study
with a larger and more diverse cohort is currently underway to
systematically evaluate accessibility, performance, and user
satisfaction.

To enhance accessibility and promote broader adoption,
particularly in resource-constrained environments, we are
actively exploring deployment strategies that reduce local
infrastructure requirements. Although the current AI-HOPE-PM
system benefits from graphics processing unit acceleration for
large-scale genomic analyses, the core functionalities—including
query interpretation, basic statistical modeling, and report
generation—can be executed on standard central processing
unit-based systems. Additionally, we are developing a
lightweight web-hosted version of the platform with backend
support on scalable cloud infrastructure, enabling institutions
with limited computational resources to access AI-HOPE-PM
through a browser without the need for specialized hardware.
Future iterations will also offer modular processing options that
allow users to select compute-intensive features based on
available resources.

User-centered evaluations—including usability studies with
diverse researchers and clinicians—are planned to better
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understand the platform’s accessibility and impact in real-world
settings. Additionally, collaborations with community-based
research initiatives may help validate AI-HOPE-PM’s role in
addressing health disparities and improving equity in precision
medicine.

AI-HOPE-PM was developed with scalability and accessibility
in mind, including potential deployment in resource-constrained
settings. The system can be installed and executed locally,
eliminating the need for high-bandwidth internet or continuous
cloud access. While graphics processing unit acceleration can
enhance performance for large-scale queries, the platform’s
modular backend supports central processing units–only
configurations for smaller datasets and standard analyses.
Ongoing optimization efforts aim to further reduce
computational overhead through lightweight LLM variants and
model compression techniques. These features support broader
adoption across diverse institutional environments, including
low-resource clinical and research settings.

A key consideration for the broader adoption of AI-HOPE-PM
is the potential for language bias and variability in natural
language queries. While the current version of the platform is
optimized for English-language input, this may limit
accessibility for nonnative English speakers or introduce
semantic variability that could affect interpretation. To mitigate
this, AI-HOPE-PM employs a domain-specific ontology with
synonym recognition and structured clarification prompts that
guide users toward standardized, interpretable input. These
features reduce the likelihood of misinterpretation and increase
the reliability of query processing. Nonetheless, we recognize
the importance of supporting diverse linguistic backgrounds in
biomedical research. Future iterations of the platform will
integrate multilingual capabilities and undergo structured
usability evaluations in non–English-speaking populations to
ensure equitable utility and minimize language-related inequities
in research engagement.

 

Data Availability
The AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) platform,
along with demonstration datasets, can be accessed on GitHub [25].
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Multimedia Appendix 1
AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) analysis of
patients with early-onset colorectal cancer treated with folinic acid, fluorouracil, and oxaliplatin and varying levels of social
support.
[DOCX File, 501 KB - bioinform_v6i1e76553_app1.docx ]

Multimedia Appendix 2
AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) analysis of
patients with colorectal cancer with and without chemotherapy treatment, food security, and APC mutations.
[DOCX File, 360 KB - bioinform_v6i1e76553_app2.docx ]

Multimedia Appendix 3
AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) analysis of
patients with colorectal cancer with KRAS mutations in the context of insurance coverage and tumor stage.
[DOCX File, 328 KB - bioinform_v6i1e76553_app3.docx ]

Multimedia Appendix 4
AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) analysis of
survival outcomes in patients with colorectal cancer with different insurance and treatment profiles.
[DOCX File, 352 KB - bioinform_v6i1e76553_app4.docx ]

Multimedia Appendix 5
AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) stratification
of patients with colorectal cancer by health care access, APC mutation, and ethnicity for survival and treatment disparity analysis.
[DOCX File, 385 KB - bioinform_v6i1e76553_app5.docx ]
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Abstract

Background: Despite being an important life-saving medical device to ensure smooth breathing in critically ill patients, the
tracheal tube causes damage to the oral mucosa of patients during use, which increases not only the pain but also the risk of
infection.

Objective: This study aimed to establish finite element models for different fixation positions of tracheal catheters in the oral
cavity to identify the optimal fixation position that minimizes the risk of oral mucosal pressure injury.

Methods: Computed tomography data of the head and face from healthy male subjects were selected, and a 3D finite element
model was created using Mimics 21 and Geomagic Wrap 2021 software. A pressure sensor was used to measure the actual pressure
exerted by the oral soft tissue on the upper and lower lips, as well as the left and right mouth corners of the tracheal catheter. The
generated model was imported into Ansys Workbench 22.0 software, where all materials were assigned appropriate values, and
boundary conditions were established. Vertical loads of 2.6 N and 3.43 N were applied to the upper and lower lips, while horizontal
loads of 1.76 N and 1.82 N were applied to the left and right corners of the mouth, respectively, to observe the stress distribution
characteristics of the skin, mucosa, and muscle tissue in four fixation areas.

Results: The mean (SD) equivalent stress and shear stress of the skin and mucosal tissues were the lowest in the left mouth
corner (28.42 [0.65] kPa and 6.58 [0.16] kPa, respectively) and progressively increased in the right mouth corner (30.72 [0.98]
kPa and 7.05 [0.32] kPa, respectively), upper lip (35.20 [0.99] kPa and 7.70 [0.17] kPa, respectively), and lower lip (41.79 [0.48]
kPa and 10.02 [0.44] kPa, respectively; P<.001 for both stresses). The equivalent stress and shear stress of the muscle tissue were
the lowest in the right mouth angle (34.35 [0.52] kPa and 5.69 [0.29] kPa, respectively) and progressively increased in the left
mouth corner (35.64 [1.18] kPa and 5.74 [0.30] kPa, respectively), upper lip (43.17 [0.58] kPa and 8.91 [0.55] kPa, respectively),
and lower lip (43.17 [0.58] kPa and 11.96 [0.50] kPa, respectively; P<.001 for both stresses). The equivalent stress and shear
stress of muscle tissues were significantly greater than those of skin and mucosal tissues in the four fixed positions, and the
difference was statistically significant (P<.05).

Conclusions: Fixation of the tracheal catheter at the left and right oral corners results in the lowest equivalent and shear stresses,
while the lower lip exhibited the highest stresses. We recommend minimizing the contact time and area of the lower lip during
tracheal catheter fixation, and to alternately replace the contact area at the left and right oral corners to prevent oral mucosal
pressure injuries.

(JMIR Bioinform Biotech 2025;6:e69298)   doi:10.2196/69298
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tracheal catheter; fixed position; oral mucosal pressure injury; finite element; biomechanical analysis
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Introduction

The primary method of respiratory support for critically ill
patients in the intensive care unit (ICU) is oral tube intubation,
which ensures airway patency, increases ventilation volume,
and enhances lung function. However, the use of oral tube
intubation may lead to oral mucosal pressure injury (OMPI)
due to excessive or prolonged pressure, friction, and shear forces
[1]. OMPI can increase patient pain, elevate the risk of infection,
impose a financial burden on health care, increase staff
workload, and even result in medical disputes. The incidence
of OMPI in patients in the ICU ranges from 2.95% to 49.2%,
with different fixation positions and methods of tracheal
catheterization influencing its occurrence [2]. While numerous
factors contribute to OMPI, including patient-related factors,
physiological conditions, the use of specific medications, and
nursing-related aspects, there are limited reports addressing the
mechanical factors that cause OMPI [3-5]. The International
Guidelines for the Clinical Prevention and Treatment of Stress
Injuries suggest that finite element models can be employed to
evaluate mechanical factors by assessing stress distribution
characteristics within tissue structures and predicting the risk
of cellular and tissue damage [6].

The purposes of this study were to use the finite element theory
contact algorithm to simulate and analyze the compression
process of the oral soft tissue when the endotracheal tube is
fixed in different fixed positions in the oral cavity, and to
explore the stress distribution characteristics of the oral soft
tissue under the force of the endotracheal tube. This would help
to more realistically and accurately evaluate the actual force on

the oral soft tissue structure and to clarify the reasonable fixed
position of the endotracheal tube when it is fixed in the oral
cavity, so as to prevent the occurrence of OMPI.

Methods

Finite Element Model
A finite element model of the tracheal catheter positioned at
various locations within the mouth was established. The selected
participant for the head and facial computed tomography scan
was a 28-year-old male volunteer with a normal BMI, measuring
175 cm in height and weighing 72 kg. A total of 512 images,
each with a thickness of 0.625 mm, were obtained. The DICOM
format data were imported into the 3D reconstruction software
Mimics (version 21.0; Materialise) and Geomagic Wrap (version
2021; Raindrop) for model fitting and structural segmentation,
respectively. A resistive film pressure sensor was employed to
measure the actual pressure exerted by the tracheal catheter in
different areas of the patient’s mouth, with each measurement
being repeated 100 times to calculate an average value using
the gravitational formula. Subsequently, using the measured
pressures from solid models as the input data, the Ansys
software (version 22.0; ANSYS) was used to import the
optimized model, define material properties, remesh the model,
and generate an accurate finite element model to conduct finite
element analysis based on the defined elastic modulus, Poisson
ratio, boundary conditions, and simulated loads for various
tissues (skin mucosa and muscle tissue), as well as the tracheal
catheter and bone [7,8]. The properties of each material are
shown in Table 1; the skin and mucosa are set as nonlinear
materials, and the bones are set as isotropic materials

Table . Material properties of the finite element model.

Poisson ratio (%）Shear modulus (Mpa）Young modulus (Mpa）Modulus of elasticity
(Mpa）

Material

0.381500—a3Tracheal catheter

0.25—18,00013,400Skeleton

0.49—0.250.045Muscle

0.4923—Cutaneous mucosa

anot available.

Ethical Considerations
This study was approved by the Ethics Committee of the Sixth
Affiliated Hospital of Xinjiang Medical University (approval
number: LFYLLSC20220905-01). All procedures in this study
are in line with the ethical standards of the Human Experiments
Responsible Committee (Institution and State) and the
Declaration of Helsinki.

Setting of Boundary Conditions
In this study, four models representing the upper lip, lower lip,
left mouth corner, and right mouth corner were established. The
fixed support areas of the models were designated as the top
and bottom, allowing for rigid support to be simulated through
fixed constraints. A sliding friction contact was implemented
between the lip and the tracheal tube, with a friction coefficient
set at 1 [9]. A bonded connection was established among the

skin, mucous membrane, and muscle tissue. The model
accounted for the effects of gravity in a vertical downward
direction, with a gravitational acceleration of 9.8 m/s².

Measurement Indicators
The equivalent stress and shear stress of the skin mucosa and
muscle tissue were measured under different fixed positions of
the tracheal catheter within the mouth. The stress distribution
characteristics of the pressure injury model were analyzed for
the fixed positions of the upper lip, lower lip, left mouth corner,
and right mouth corner. The stress measurement for each part
was conducted 10 times to obtain an average value.

Statistical Analysis
Statistical analysis was performed using SPSS (version 25.0;
IBM Corp). Measurement data were expressed as mean (SD).
One-way ANOVA was employed for comparisons between
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groups, while the t test was used for intragroup comparisons.
A P value of less than .05 was considered statistically
significant.

Results

Model Verification
A finite element model of the tracheal catheter was established
with a total of 14,635 nodes and 8267 elements at various fixed
positions within the oral cavity. This model included the ilium
of the upper and lower jaws, as well as the skin, mucosa, and
muscle tissues of the oral cavity. The extreme values and

distribution trends of stress at the mouth angle and lower lip
were consistent with the findings of Amrani et al [9], indicating
the effectiveness of the modeling approach employed in this
study.

Equivalent Stress
The equivalent stress of the skin mucosa was the lowest in the
left mouth corner, and then progressively increased in the right
mouth corner, upper lip, and lower lip. In contrast, the equivalent
stress of muscle tissue was the highest in the right mouth corner,
followed by the left mouth corner, upper lip, and lower lip.
Notably, the equivalent stress of muscle tissue was significantly
greater than that of the skin mucosal tissue (P<.001; Table 2).

Table . Comparison of equivalent stress results between skin mucosa and muscle tissue (kPa, n=10).

95% CIP valuet test (df)Muscle tissue, mean
(SD)

Cutaneous mucosa,
mean (SD)

Position

−9.252 to −7.522<.001−20.371 (9)43.59 (0.84)35.20 (0.99)Upper lip

−7.389 to −5.667<.001−15.927 (9)48.35 (0.92)41.82 (0.92)Lower lip

−8.118 to −6.325<.001−16.924 (9)35.64 (1.18)28.42 (0.65)Left mouth corner

−3.420 to −2.912<.001−10.789 (9)34.34 (0.38)30.72 (0.99)Right mouth corner

N/AN/AN/Aa573.406430.942F1-score

N/AN/AN/A<.001<.001P value

anot available.

Shear Stress
The shear stress of the skin mucosal tissue was the lowest in
the left mouth corner, and progressively increased in the right
mouth corner, upper lip, and lower lip. In contrast, the shear
stress of the muscle tissue was the lowest in the right mouth

corner, and progressively increased in the left mouth corner,
upper lip, and lower lip. At the four fixed positions, the shear
stress of the left and right oral muscle tissue was lower than
that of the skin mucosa, while the shear stress of the upper and
lower lip muscle tissue was higher than that of the skin mucosal
tissue (P<.005; Table 3)

Table . Comparison of shear stress results between the skin mucosa and muscle tissue (kPa, n=10).

95% CIP valuet test (df)Muscle tissue, mean
(SD)

Cutaneous mucosa,
mean (SD)

Position

−1.613 to −0.998<.001−8.959 (9)8.91 (0.39)7.60 (0.21)Upper lip

−2.145 to −0.882<.001−5.057 (9)11.69 (0.78)10.17 (0.16)Lower lip

0.543 to 1.030.0016.799 (9)5.79 (0.33)6.58 (0.17)Left mouth corner

1.450 to 2.068<.00111.972 (9)5.69 (0.29)7.45 (0.36)Right mouth corner

N/AN/AN/Aa126.411244.363F1-score

N/AN/AN/A<.001<.001P value

anot available.

Comparison of Equivalent Stress and Shear Stress in
the Mucosal Tissue of the Upper and Lower Lips and
the Left and Right Mouth Corners
Equivalent stress was found to be lower in the upper lip
compared to the lower lip, and the left mouth corner exhibited

lower stress than the right mouth corner (P<.001; Table 4-5).
In terms of shear stress, the upper lip also showed significantly
lower values than the lower lip (P<.001;Table5), while the left
mouth corner had lower shear stress than the right mouth corner
(P<.001; Table 5).
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Table . Comparison of the results of equivalent stress and shear force in the left and right mouth corners (kPa, n=10).

95% CIP valuet test (df)Right side mouth cor-
ner, mean (SD)

Left side mouth corner,
mean (SD)

Position

−3.094 to −1.520<.001−6.160 (9)30.72 (0.99)28.42 (0.65)Equivalent stress

−1.125 to −0.605<.001−6.984 (9)7.45 (0.36)6.58 (0.17)Shear stress

Table . Comparison of the results of equivalent stress and shear force in the skin mucosal tissue of the upper and lower lip (kPa, n=10).

95% CIP valuet test (df)Lower lip, mean (SD)Upper lip, mean (SD)Position

−7.519 to 5.721<.001−15.472 (9)41.82 (0.92)35.20 (0.99)Equivalent stress

−2.931 to −2.279<.001−16.769 (9)10.17 (0.16)7.60 (0.21)Shear stress

Comparison of Equivalent Stress and Shear Stress in
the Muscle Tissue of the Upper and Lower Lips and
Left and Right Mouth Corners
The equivalent stress was the lower in the upper lip than in the
lower lip (P<.001), and higher in the left mouth corner than in

the right mouth corner (P=.004; Table 6). The shear stress was
lower in the upper lip than in the lower lip (P<.001), and lower
in the left mouth angle than in the right mouth angle (P=.298;
Table 7)

Table . Comparison of equivalent stress and shear force results in the left and right mouth corners (kPa, n=10).

95% CIP valuet test (df)Right side mouth cor-
ner, mean (SD)

Left side mouth corner,
mean (SD)

Position

0.474 to 2.124.0043.308 (9)34.34 (0.38)35.64 (1.18)Equivalent stress

−0.221 to 0.435.501.071 (9)5.69 (0.29)5.74 (0.30)Shear stress

Table . Comparison of equivalent stress and shear force results in the muscle tissue of the upper and lower lips (kPa, n=10).

95% CIP valuet test (df)Lower lip, mean (SD)Upper lip, mean (SD)Position

−5.587 to −3.935<.001−12.115 (9)48.35 (0.92)43.59 (0.84)Equivalent stress

−3.561 to −2.545<.001−12.477 (9)11.69 (0.78)8.91 (0.39)Shear stress

Stress Distribution Rules of the Four Groups of Models
The equivalent stress range of the skin mucosa and muscle tissue
gradually extends from the stress center to the periphery. In this
study, the application direction of the forces on the upper and
lower lips is vertical, with the maximum peak values of both
equivalent stress and shear stress occurring at the stress point
and subsequently radiating outward in the vertical direction.
Conversely, the forces applied at the left and right mouth corners
are horizontal, causing the stress range to spread horizontally,
with the highest stress values appearing at the direct contact
point between the tracheal catheter and the mucosal tissue. The
distribution of shear stress is centered on the soft tissue stress
point and encompasses the entire lip, mandibular region, and
both sides of the face, resulting in a broader range of stress. The

equivalent stress and shear stress at the mouth corners are
significantly lower than those at the upper and lower lips.

To explore the underlying reasons, when the tracheal catheter
is fixed at the corner of the mouth, it makes contact with the
corner, the upper lip, and the lower lip. The pressure, shear
force, and friction generated by this contact are dispersed across
the three contact surfaces of the mouth and the upper and lower
lips. The contact surface between the tracheal tube and the upper
and lower lips serves as the primary stress point, leading to
greater stress values at the upper and lower lips compared to
the corners of the mouth, with the lower lip experiencing the
highest stress. The results of the finite element analysis indicate
that the stress at the corners of the mouth is lower, followed by
that at the upper lip (Figures 1-4).
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Figure 1. Mimics21.0 software was used to reconstruct the patient's head, face and oral tissues in 3D with an interval of 0.25 mm, and the contour
range of the skin mucosa and muscle tissue was constructed through the thresholds of different tissues.

Figure 2. The probe contour line is used to redraw the contour line of the model, so that the surface pieces are more extensible and the concave and
convex surfaces are reduced. The structural patch trims the model patch again to make the patch smoother and smoother, which is consistent with the
characteristics of the skin tissue. Construct grids, and optimize and adjust all patch nodes and elements. Finally, the fitting surface constructs a model
that is similar to the actual oral and facial features of the human body.
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Figure 3. (1a-1d) Equivalent stress nephogram of two tissues at 4 fixed locations: upper lip, lower lip, left mouth corner, and right mouth corner. (2a-2d)
Equivalent stress nephogram of the muscle tissue of the upper lip, lower lip, left mouth corner, and right mouth corner.

Figure 4. Shear stress nephogram of two tissues at 4 fixed locations. (1a-1d) Shear stress nephogram of the mucosa tissue of the upper lip, lower lip,
left mouth corner, and right mouth corner. (2a-2d) Shear stress nephogram of the muscle tissue of the upper lip, lower lip, left mouth corner, and right
mouth corner.

Discussion

The results of this study showed that when the tracheal tube
was in contact with the lower lip, the equivalent stress and shear
stress values of muscle tissue and mucosal tissue were the
largest, followed by the upper lip, and the left and right mouth
angles were lower than those of the upper and lower lip. Finite
element analysis modeling is a powerful bioengineering
technique employed to assess tissue loading, encompassing the
interactions between tissues, objects, and medical devices. This
numerical method effectively addresses mechanical problems
[10]. It enables rapid and accurate stress-strain analysis of the
structure, shape, load, and mechanical properties of materials
in any given model [11]. Moreover, finite element analysis
objectively and accurately reflects the distribution of stress,
strain, and deformation, and has gained widespread application
in oral biomechanics research in recent years [12].

The tracheal catheter is a critical instrument for mechanical
ventilator-assisted therapy in patients in the ICU; however, the

catheter itself and improper fixation methods may lead to OMPI
[6]. From a biomechanical perspective, the OMPI associated
with tracheal catheters primarily results from vertical pressure,
shear forces, and friction [13]. Continuous mechanical loading
on soft tissues is the main contributor to stress injuries, typically
occurring at bony prominences or in areas contacting medical
devices. When skin or deep tissue deformation persists for a
certain duration owing to the pressure from medical devices,
pressure injuries may develop [14]. In this study, the mechanical
load originated from the force exerted by the tracheal catheter
on the oral soft tissue. Contact between the tracheal catheter
and the oral mucosal tissue resulted in continuous pressure,
leading to tissue deformation in the mucosa. Research indicates
that tracheal catheters and their fixation devices are stiffer than
oral soft tissues. When the mechanical properties of these
instruments do not align with those of the soft tissues,
deformation occurs in the latter, concentrating mechanical stress
and strain at the points of direct contact, which then gradually
extends to the surrounding areas [15,16].
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Continuous vertical pressure on soft tissues is a significant factor
in the occurrence of stress injuries. The incidence of OMPI
correlates with the intensity and duration of pressure; the greater
the pressure and the longer its application, the higher the risk
of developing OMPI is [17]. Furthermore, when the tracheal
tube is improperly fitted and fixed too tightly, the pressure and
shear force exerted will increase [14]. Shear forces applied to
deep skin tissues can obstruct capillaries, leading to localized
ischemia and hypoxia, which may result in deep tissue necrosis.
Consequently, damage from shear forces is often undetected in
the early stages and is more challenging to heal than damage
from typical wounds [13]. Friction arises from the movement
between the oral mucosal tissue and the surface of the tracheal
tube; while it does not directly cause OMPI, it can compromise
the epidermal cuticle, leading to the shedding of the mucosal
surface layer and heightened sensitivity to pressure injuries.
Once the compromised oral mucosal tissue is subjected to
stimuli from saliva and other secretions, the risk of pressure
injury escalates. Additionally, friction raises the temperature of
the local mucosal tissue, disrupts the local microenvironment,
alters pH levels, and increases tissue oxygen consumption,
further exacerbating tissue ischemia and heightening the risk
of OMPI [16].

The magnitude of the internal mechanical load required to cause
tissue damage depends on the duration of the applied force and
the specific biomechanical tolerance of the stressed tissue, which
is influenced by factors such as age, shape, health status, and
the functional capacity of the body systems, including tissue
repair ability [18]. Both high loads applied for short durations
and low loads sustained over extended periods can lead to tissue
damage [18-20]. Continuous loading is one of the primary
contributors to this damage; it refers to loads applied over
prolonged periods (ranging from a few minutes to several hours
or even days), also known as quasi-static mechanical loading.
Research indicates that when soft tissues come into contact with
the support surfaces of medical devices, pressure and shear
forces are generated between the soft tissues and these surfaces
[21]. This interaction results in distortion and deformation of
the soft tissues under pressure, affecting both the skin and deeper
tissues (including fat, connective tissue, and muscle), leading
to stress and strain within the tissues [21]. Excessive internal

stress in the tissues can disrupt intracellular material transport
by damaging cellular structures (such as the cytoskeleton or
plasma membrane) or by hindering the transport process itself
(for example, by reducing blood perfusion, impairing lymphatic
function, and affecting material transport in the interstitial
space), which can ultimately result in cell death and trigger an
inflammatory response. Concurrently, the emergence of
endothelial cell spacing increases vascular permeability, leading
to inflammatory edema, which further exacerbates the
mechanical load on cells and tissues due to elevated tissue
pressure, thus contributing to the development of pressure
injuries [22-24].

According to the results of finite element analysis, the stress
experienced by the lower lip is the highest, followed by the
upper lip, with levels significantly exceeding those at the corners
of the mouth. Therefore, in clinical practice, when fixing a
tracheal catheter, it is advisable to select the mouth corner to
maximize the contact surface area between the catheter and this
region. Placing the tracheal catheter in the middle of the mouth
minimizes the contact time between the catheter and the oral
mucosa. Additionally, regular changes in the fixation position
can help redistribute pressure, thereby reducing pressure, shear
forces, and friction on the oral mucosa, ultimately lowering the
risk of OMPI.

This study analyzed alterations in the stress experienced by oral
soft tissue under pressure at various fixation positions of the
tracheal catheter within the mouth, from a biomechanical
perspective. It provides a theoretical foundation for preventing
OMPI in patients with tracheal catheters in the ICU. While this
study effectively simulates the biomechanical effects of contact
between oral soft tissue and the tracheal catheter, it does not
fully replicate the actual forces experienced by oral soft tissue
in real-life situations, as the area of contact between the tracheal
catheter and the oral soft tissue cannot be completely simulated.
Additionally, the study included only one young adult male,
which limits the generalizability of the findings. Therefore, it
is essential to include participants of varying genders and ages
to enhance the scientific validity of the research. Furthermore,
improvements in the identification rate and curvature of the 3D
grid of the model should be pursued to generate higher-quality
3D models, thereby enhancing data accuracy.
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Abstract

Background: Bladder cancer is a disease characterized by complex perturbations in gene networks and is heterogeneous in
terms of histology, mutations, and prognosis. Advances in high-throughput sequencing technologies, genome-wide association
studies, and bioinformatics methods have revealed greater insights into the pathogenesis of complex diseases. Network
biology–based approaches have been used to identify complex protein-protein interactions (PPIs) that can lead to potential drug
targets. There is a need to better understand PPIs specific to urothelial carcinoma.

Objective: This study aimed to elucidate PPIs specific to papillary and nonpapillary urothelial carcinoma and identify the most
connected or “hub” proteins, as these are potential drug targets.

Methods: A novel PPI analysis tool, Proteinarium, was used to analyze RNA sequencing data from 132 patients with papillary
and 270 patients with nonpapillary urothelial carcinoma from the TCGA Cell 2017 dataset and 39 patients with papillary and 88
patients with nonpapillary urothelial carcinoma from the TCGA Nature 2014 dataset. Hub proteins were identified in distinct PPI
networks specific to papillary and nonpapillary urothelial carcinoma. Statistical significance of clusters was assessed using the
Fisher exact test (P<.001), and network separation was quantified using the interactome-based separation score.

Results: RPS27A, UBA52, and VAMP8 were the most connected or “hub” proteins identified in the network specific to the
papillary urothelial carcinoma. In the network specific to the nonpapillary carcinoma, GNB1, RHOA, UBC, and FPR2 were
found to be the hub proteins. Notably, GNB1 and FPR2 were among the proteins that have existing drugs targeting them.

Conclusions: We identified distinct PPI networks and the hub proteins specific to papillary and nonpapillary urothelial carcinomas.
However, these findings are limited by the use of transcriptomic data and require experimental validation to confirm the functional
relevance of the identified targets.

(JMIR Bioinform Biotech 2025;6:e76736)   doi:10.2196/76736

KEYWORDS

urothelial carcinoma; comprehensive genomic profiling; protein-protein interactions; network biology; drug repurposing

Introduction

According to the National Cancer Institute Surveillance,
Epidemiology, and End Results program report, the estimated
number of deaths from bladder cancer in the United States in
2025 was 17,420. Urothelial carcinoma contributes to more

than 90% of bladder cancers and is more prevalent in men than
in women [1]. Urothelial carcinomas can be divided into
papillary and nonpapillary based on their architecture. Papillary
urothelial carcinomas grow in slender projections with
fibrovascular cores. Although most do not penetrate the deeper
layers of the bladder (noninvasive papillary carcinoma), others
can become invasive. Nonpapillary urothelial carcinomas do
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not grow toward the hollow center of the bladder and can be
invasive or noninvasive (flat carcinoma in situ) [2]. Invasive
nonpapillary urothelial carcinomas can aggressively infiltrate
the bladder wall, leading to metastasis in lymph nodes and
invade adjacent surrounding anatomical structures, such as the
prostatic stroma, seminal vesicles, uterus, vagina, pelvic wall,
and the abdominal wall. Previous studies have used gene
expression profiling and whole-genome comparative genomic
hybridization to provide evidence that papillary and nonpapillary
urothelial carcinomas have distinct molecular origins and
characteristics [3].

Network biology is an emerging paradigm that aims to
understand the complex interactions between molecules at the
cellular level [4]. Experimental studies describing biological
networks demonstrate that they are not random and are
characterized by well-known organizing principles. With the
advancement of high-throughput screening methods,
protein-protein interaction (PPI) networks have been discovered
[5]. In addition, large-scale PPI maps showed that proteins
involved in specific phenotypes often interact physically.
Moreover, it was also shown that similar phenotypes share
neighboring network environments not only in model organisms
but also in humans [6-9]. Network biology can be used to
identify molecular biomarkers for cancer identification and
progression. At the proteomic level, PPI network analysis is
used for the discovery of novel biomarkers and disease-related
functional modules. Several studies based on transcriptomic or
microarray data for bladder cancer have identified PPI networks
based on differentially expressed genes or coexpressed genes
in clusters [10-13]. Most of the time, differentially expressed
genes between patients and healthy participants or among
patients with different tumor stages are used as an input for
building PPI networks. Despite the advances in PPI analysis
algorithms, none of the current network analysis tools are
designed to identify clusters of patients based on their PPI
networks by using the data from individual patient samples. In
order to address this, we developed a novel PPI analysis and
visualization tool, Proteinarium [14]. Proteinarium is a
multisample PPI tool that identifies clusters of samples with
shared networks [14]. The Proteinarium tool builds PPI networks
from genomic data for individual samples, measures network
similarity between samples using the Jaccard distance, clusters
them based on these similarities, and identifies shared PPI
networks associated with a disease phenotype. In this study, we
aimed to identify distinct PPI networks as well as hub proteins
specific to papillary and nonpapillary urothelial carcinomas
using the Proteinarium tool, leading to potential drug targets
for those 2 architectures.

Methods

Datasets
We studied 2 datasets, including clinical and genomic data from
patients with urothelial carcinoma. The datasets including The
Cancer Genome Atlas (TCGA) Cell 2017 [15] and TCGA
Nature 2014 [16] were obtained from the cBioPortal for Cancer
Genomics [17,18]. Only patients with mRNA z-score data were
included in the analysis. Patient groups were identified based

on urothelial carcinoma architecture (papillary or nonpapillary),
sex, patient status (alive, recurrent, or deceased), and cancer
stage (stage I, II, III, and IV) using custom-made R scripts (R
version 4.0.4). The TCGA Cell 2017 dataset [15] included 133
patients with papillary urothelial carcinoma and 273 patients
with nonpapillary urothelial carcinoma. Of these patients, 132
with papillary and 270 with nonpapillary carcinomas had
RNA-seq data and were included in the PPI network analysis.
In the TCGA Nature 2014 dataset [16], there were 39 patients
with papillary urothelial carcinoma and 88 patients with
nonpapillary urothelial carcinoma with RNA-seq data.
Histologic variants of urothelial carcinoma were not included
in either dataset. For both studies, the data were downloaded
as gene expression z scores.

In the phenotypic data analysis, sex, age, follow-up time, overall
survival, disease-free time, pathological distant metastasis stage,
survival status, disease-free status, histologic grade, pathological
primary tumor stage, pathological regional lymph node stage,
and stage grouping data were included in the analysis of the
TCGA Cell 2017 dataset. For the TCGA Nature 2014 dataset,
patient data such as sex, age, survival status, overall survival,
disease-free status, and disease-free time were included. A total
of 346 and 129 patients with urothelial carcinoma were analyzed
in the TCGA Cell 2017 and TCGA Nature 2014 datasets,
respectively. Patients without phenotypic data were excluded
from the analysis. Thus, there were differences in the number
of patients in the PPI network analysis and phenotypic data
analysis.

Proteinarium Analysis and Network Construction
We used the Proteinarium tool to identify shared PPI networks
in patients with papillary and nonpapillary urothelial carcinoma
using the RNA-seq data from the TCGA Cell 2017 and TCGA
Nature 2014 datasets. For each patient, we ranked the genes
based on their z scores to identify the upregulated genes. To
determine the number of seed genes used to build the PPI
networks of each patient, we applied cophenetic correlation
scores to the dendrogram output from the Proteinarium tool
comparison of patients with papillary and nonpapillary urothelial
carcinomas using the top 50, 100, 125, 150, 200, 250, and 300
seed genes. For papillary versus nonpapillary comparisons in
both the TCGA Cell 2017 and TCGA Nature 2014 datasets, the
cophenetic correlation coefficients remained stable after
increasing the number of seed genes to 125, indicating that the
overall dendrogram structure was not substantially altered by
the larger number of seed genes (Figures S1-S3 in Multimedia
Appendix 1). Therefore, we used the top 125 most upregulated
seed genes for each patient as inputs for the Proteinarium tool.
We performed the same cophenetic correlation score analysis
for the downregulated genes in the TCGA Cell 2017 dataset
(Figure S4 in Multimedia Appendix 1). Downregulated genes
were chosen by ranking the genes from lowest to highest z score,
then choosing the top N number of seed genes.

As a first step, the Proteinarium tool converts gene names to
their protein names and uses PPI information from the STRING
Database [19]. It builds the network graphs based on the seed
genes for each patient. It calculates the similarity between each
pair of graphs by using the Jaccard distance and records it in a
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matrix. Proteinarium uses this similarity matrix as an input for
clustering graphs. The unweighted pair group method with
arithmetic mean was used for clustering. Patients were clustered
based on their network similarities as an output. The significance
of clusters was assessed using the Fisher exact test, based on
the relative abundance of cases and controls within each cluster.
Networks of the significant clusters can be visualized and
analyzed. In the Proteinarium analysis, we used the default
parameters of the tool for building the graphs, and the maximum
path length parameter was set to 2. By applying this, we included
only the seed proteins connected directly to each other or via a
single intermediary protein referred to as an imputed protein.

The analysis was performed using the following configuration
settings: maximum number of vertices to render: 50, meta cluster
threshold: 0.8, number of bootstrapping rounds: 0, maximum
path length: 2, and repulsion constant: 1.2. Proteinarium was
executed using the following command: java -jar <path to
Proteinarium.jar> <arguments>, where <arguments> includes
user-defined input files and options consistent with the
parameters described earlier. A reproducibility package is
provided in Multimedia Appendix 2, which includes (1)
per-patient seed gene lists, (2) the exact Proteinarium command
and configuration file, (3) the final network edge lists, and (4)
the README file. The Proteinarium repository is available on
GitHub [14].

The primary aim of the Proteinarium analysis was to identify
hub and unique proteins in the PPI networks specific to papillary
and nonpapillary urothelial carcinoma. Hub proteins were further
examined using a drug repurposing tool to identify potential
therapeutics, as targeting these highly connected nodes may
disrupt critical interactions within the network. Unique proteins
were evaluated through enrichment analysis to determine
biological pathways significantly associated with each network.

Network Annotation and Modularity
Networks of the significant clusters were annotated by g:Profiler,
a web server for identifying enriched biological categories [20].
The unique proteins specific to the papillary and nonpapillary
PPI networks were analyzed using g:Profiler to identify enriched
gene ontology terms and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. Only those with a false discovery
rate less than 0.05 were included. GEPHI version 0.9.2, a
network visualization tool, was used to visualize the networks
and their network-specific modularity [21]. We used the
modularity function that was based on the Blondel algorithm
on GEPHI [22]. Modularity is defined as a measure of network
structure that identifies the strength of division of a network
into modules.

Separation Test
Separation testing is a computational method to determine the
genetic similarity between 2 groups by comparing their PPI

networks in the interactome. We performed separation tests to
determine the distance between the networks specific to patients
with papillary and nonpapillary urothelial carcinomas in the
interactome using a Python script adapted from Menche et al
[23]. The interactome is composed of 141,296 experimentally
determined physical interactions between 13,460 proteins. sAB

is a measure of separation between the networks of 2 groups in
the interactome. sAB>0 indicates a topological separation of the
networks specific to 2 groups, and those groups can be regarded
as distinct molecular entities. sAB<0 indicates that the networks
specific to 2 groups overlap in the interactome.

Connectivity Map and Drug Repurposing Tool
We used the connectivity map (CMap) from the Broad Institute
and applied the repurposing tool to explore potential drugs that
may target the hub genes of networks A, B, and C for CMapap
[24]. CMap-L1000 Build 03 was queried with the genes of
interest from networks A, B, and C; compounds with |τ| >90
were considered hits.

Statistical Analysis
The chi-square or Fisher exact test were used for categorical
variables when appropriate. Paired t tests (2-sided) were used
to compare the means of pairs of groups. All statistical analyses
were carried out using JMP Pro (version 16.0; SAS Institute).
P values <.05 were considered to be statistically significant.

Ethical Considerations
In this study, we used publicly available, deidentified datasets
obtained from cBioPortal. Because all data were fully
anonymized and accessible to the public, institutional review
board approval was not required.

Results

Clinicopathologic Characteristics of the Study Cohorts
Of all the 346 patients with urothelial carcinoma in the TCGA
Cell 2017 dataset [15], no significant differences were found
between patients with papillary and nonpapillary urothelial
carcinoma regarding sex, age, follow-up time, overall survival,
disease-free time, and pathological distant metastasis stage.
However, statistically significant differences were observed in
survival status, disease-free status, histologic grade, pathological
primary tumor stage, pathological regional lymph node stage,
and stage grouping (Table 1). In 129 patients with urothelial
carcinoma in the TCGA Nature 2014 dataset [16], no significant
differences were found between the patients with papillary and
nonpapillary carcinoma regarding age, overall survival,
disease-free status, and disease-free time. However, statistically
significant differences were observed in terms of sex and
survival status (Table 2).
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Table . Clinical parameters of urothelial carcinomas in the Cancer Genome Atlas Cell 2017 dataset.

P valuePatients with nonpapillary carcino-
ma

Patients with papillary carcinomaParameter

.13Sex, n/n (%)

60/213 (28.2)27/133 (20.3%)    Female

153/213 (71.8)106/133 (79.7%)    Male

.2168.4 (0.7)66.9 (1.0)Age (y), mean (SEM)

.21652.5 (72.5)521.8 (69.8)Follow-up timea (d), mean (SEM)

<.001Survival status, n/n (%)

104/213 (48.8)90/133 (67.7)    Living

109/213 (51.2)43/133 (32.3)    Deceased

.3427.1 (1.9)24.4 (2.0)Overall survivalb (mo), mean (SEM)

<.001Disease-free statusc, n/n (%)

79/167 (47.3)75/108 (69.4)    Disease-free

88/167 (52.7)33/108 (30.6)    Recurred or progressed

.2326.8 (2.3)22.8 (2.2)Disease-free timed (mo), mean
(SEM)

<.001Histologic gradee, n/n (%)

1/213 (0.5)18/131 (13.7)    Low-grade

212/213 (99.5)113/131(86.3)    High-grade

<.001Pathological primary tumor stage, n/n (%)f

53/199 (26.6)56/118 (47.5)    T1 or T2

117/199 (58.8)41/118 (34.7)    T3

29/199 (14.6)21/118 (17.8)    T4

.03Pathological regional lymph node; stage, n/n (%)

117/187 (62.6)89/116 (76.7)    N0

27/187 (14.4)8/116 (6.9)    N1

43/187 (23.0)19/116 (16.4)    N2

>.99Pathological distant metastasis stage, n/n (%)

89/93 (95.7)75/79 (94.9)    M0

4/93 (4.3)4/79 (5.1)    M1

<.001Stage groupingg, n/n (%)

53/213 (24.9)61/129 (47.2)    Stage Ih or II

84/213 (39.4)34/129 (26.4)    Stage III

76/213 (35.7)34/129 (26.4)    Stage IV

aFollow-up time was not available for 26 patients with papillary urothelial carcinoma and 68 patients with nonpapillary urothelial carcinoma; t test was
performed for the available data in patients with papillary urothelial carcinoma (n=107) and patients with nonpapillary urothelial carcinoma (n=145).
bOverall survival was not available for 3 patients in patients with papillary urothelial carcinoma; a t test was performed for the available data in patients
with papillary urothelial carcinoma (n=130) and nonpapillary group (n=213).
cDisease-free status was not available for 25 patients in the papillary and 46 patients in the nonpapillary group; a chi-square test was performed for the
available data in patients with papillary urothelial carcinoma (n=108) and patients with nonpapillary urothelial carcinoma (n=167).
dDisease-free time was not available for 26 patients with papillary and 46 patients with nonpapillary carcinoma; a t test was performed for the available
data in patients with papillary carcinoma (n=107) and patients with nonpapillary carcinoma (n=167).
eHistologic grade was not available for 2 patients with papillary carcinoma; a chi-square test was performed for the available data in patients with
papillary urothelial carcinoma (n=131) and patients with nonpapillary carcinoma (n=213).
fThere were 1 T1 stage patient, 15 Tx patients, 12 Nx patients, and 54 Mx patients among patients with papillary urothelial carcinoma and 1 T1 patient,
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14 Tx patients, 24 Nx patients, and 120 Mx patients among patients with nonpapillary carcinoma.
gStage information was unavailable for 2 patients in the papillary group; a chi-square analysis was conducted using the available data (papillary: n=131,
nonpapillary: n=213).
hThere was only 1 patient with a T1 stage tumor among patients with papillary urothelial carcinoma and 1 patient with T1 stage tumor among patients
with nonpapillary urothelial carcinoma.

Table . Clinical parameters of urothelial carcinomas in the Cancer Genome Atlas Nature 2014 dataset.

P valuePatients with nonpapillary urothelial
carcinoma (n=88)

Patients with papillary urothelial
carcinoma (n=41)

Parameter

.03Sex, n (%)

27 (30.7)5 (12.2)    Female

61 (69.3)36 (87.8)    Male

.4569.0 (1.0)67.5 (1.8)Age (y), mean (SEM)

.006Survival status

49 (55.7)33 (80.5)    Living, n (%)

39 (44.3)8 (19.5)    Deceased, n (%)

.3319 (2.7)14.6 (3.3)Overall survival (mo), mean (SEM)

.15Disease-free statusa, n (%)

37 (46.2)20 (62.5)    Disease-free

43 (53.8)12 (37.5)    Recurred or progressed

.4911.0 (1.5)9.0 (1.8)Disease-free timeb (mo), mean
(SEM)

aDisease-free status was not available for 9 patients with papillary and 8 patients with nonpapillary carcinoma; chi-square test was performed for the
available data in patients with papillary urothelial carcinoma (n=32) and nonpapillary group (n=80).
bDisease-free time was not available for 30 patients in papillary and 54 patients in nonpapillary group; t test was performed for the available data in
patients with papillary urothelial carcinoma (n=11) and nonpapillary group (n=34).

Proteinarium Identifies Distinct PPI Networks in
Urothelial Carcinoma
We performed Proteinarium analysis using RNA-seq data from
patients with papillary and nonpapillary urothelial carcinoma
to compare their PPI networks. We analyzed the top 125
upregulated genes obtained from RNA-seq data from TCGA
Cell 2017 [15] and TCGA Nature 2014 [16] datasets, as well
as the top 125 downregulated genes from the TCGA Cell 2017
dataset.

In the analysis of the TCGA Cell 2017 dataset, 1 significant
cluster (n=393; P<.001) was identified for further analysis,
which included 89 (67.4%) of 132 patients with papillary
urothelial carcinoma and 214 (79.3%) of 270 patients with

nonpapillary urothelial carcinoma (Figure 1). In the network
specific to papillary urothelial carcinoma (network A), RPS27A,
UBA52, and VAMP8 were the most connected or hub proteins
identified. In the network specific to nonpapillary carcinoma
(network B), GNB1, RHOA, UBC, and FPR2 were found to be
the hub proteins (Figure 1). In the analysis of the TCGA Nature
2014 dataset, 1 cluster of 6 patients with papillary urothelial
carcinoma (network C) was identified as a significant cluster
based on Fisher exact test (P<.001; Figure 2). In this PPI
network, CCDC22, ANAPC4, and UBR4 were identified as
hub proteins unique to papillary urothelial carcinoma. Six
proteins were shared between the 2 papillary urothelial
carcinoma consensus networks (networks A and C), including
UBR4, CUL1, UBE2K, CDC5L, UBA52, and RPS27A.
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Figure 1. Dendrogram and consensus networks specific to papillary and nonpapillary urothelial carcinoma from The Cancer Genome Atlas Cell 2017
dataset (upregulated genes). The dendrogram shows 402 patients who were clustered based on their network similarities. Patients with green branches
are part of the significant cluster whose networks are next to the dendrogram. In the networks, larger circles represent more connected nodes. Proteins
specific to the papillary and nonpapillary groups are shown in yellow and blue, respectively. Proteins in both groups are shown in green. Proteins in
red were imputed from the network analysis.

Figure 2. Dendrogram and consensus networks specific to papillary and nonpapillary urothelial carcinoma from The Cancer Genome Atlas Nature
2014 dataset (upregulated genes). The dendrogram shows 127 patients, who were clustered based on their network similarities. Patients with yellow
branches are part of the significant cluster, whose network is shown to the left of the dendrogram. In the networks, larger circles represent more connected
nodes. Proteins specific to the papillary and nonpapillary groups are shown in yellow and blue, respectively. Proteins shared by both groups are shown
in green (none were identified in this dataset). Proteins in red were imputed from the network analysis.

We calculated the separation score between the papillary- and
nonpapillary-specific networks from the TCGA Cell 2017

dataset (networks A and B). Using only the seed genes unique
to each network, the separation score was sAB=0.1722. This
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value indicated that the papillary and nonpapillary consensus
networks contained protein modules that did not overlap in the
interactome and can therefore be considered distinct. Per
Menche et al [23], strongly segregated phenotypes, such as
mismatch repair-deficient and mismatch repair-intact breast
cancer, have sAB of approximately 0.32. Thus, an sAB equal to
0.1722 reflects a moderate yet biologically meaningful network
separation. The separation score comparing networks A and C
was calculated as sAB=–0.0661. The negative sAB value
demonstrated that there was an overlap between the consensus
PPI networks specific to papillary urothelial carcinoma using
2 independent datasets.

We analyzed PPI using the 125 most downregulated genes
(Figure S4 in Multimedia Appendix 1). In the downregulated
consensus networks, proteins unique to patients with papillary
urothelial carcinoma included APP, RTP2, TP53, TAS2R13,
SPTAN1, EPHB2, HIST1H2BH, MAPK9, and TAS2R42,
whereas proteins unique to the PPI network specific to
nonpapillary urothelial carcinoma included ANAPC13, LNX1,
TAS2R46, REEP5, UBE2V2, UBB, EP300, and GPR31.
Negative separation score (sAB=–1.4706) indicated an overlap
between these 2 PPI networks.

Given the distinct genetic differences between low-grade and
high-grade urothelial carcinomas, we compared the PPI
networks of patients with high-grade papillary carcinoma
(n=114) and high-grade nonpapillary carcinoma (n=267; Figure
S5 in Multimedia Appendix 1). Several proteins were shared
between high-grade papillary and nonpapillary consensus
networks, suggesting shared genetic features of high-grade
urothelial carcinomas. The hub proteins shared between the
high-grade papillary and nonpapillary networks included
UBA52, CDC5L, CDC42, PIK3R1, and MAPK1. The proteins
unique to the high-grade papillary network included SRC,
ACTR2, WASL, CDC73, PSMD1, and JUN. The proteins
unique to the network specific to high-grade nonpapillary
urothelial carcinoma included GNB1, UBC, FPR2, GNGT1,
RHOA, PIK3CA, PIK3CG, PXN, UBE2N, SLC11A1, CCT7,
HSP90AA1, and DOCK4. The separation score comparing the
high-grade papillary and nonpapillary urothelial
carcinoma-specific PPI networks was −0.2739, demonstrating
the overlap between these networks.

We annotated network modularity for patients with papillary
and nonpapillary urothelial carcinoma in both datasets by using
GEPHI, a network and graph visualization tool. In this context,
modules represented clusters of proteins that were more densely
connected to each other than to the rest of the network. We
found 5 modules in which proteins were grouped by common
functionality for each network in networks A and C, and 6
modules in network B. We used the default setting in GEPHI.
gProfiler was used to annotate the modules for networks A, B,
and C to identify significant Gene Ontology (GO) terms and
KEGG pathways [20]. Notably, the papillary networks from
both datasets (networks A and C) contained 1 module enriched
in proteins involved in ubiquitin-related activities. The KEGG
pathway “Ubiquitin-mediated proteolysis” and the molecular
function GO terms “ubiquitin-like protein conjugating enzyme

activity” as well as “ubiquitin protein ligase binding” were
common to the module found in networks A and C.

Pathway and Gene Set Enrichment Analysis
We used the g:GOSt functional profiling tool from g:Profiler
to visualize significant GO terms and KEGG pathways for the
genes in networks A, B, and C [20] to visualize significant GO
terms and KEGG pathways for the genes in networks A, B, and
C (Table S1, S2, and S3 in Multimedia Appendix 3). The
proteins unique to nonpapillary urothelial carcinoma (network
B) were enriched in the PI3K-Akt signaling pathway (KEGG
pathway, q=o.0040), with the most significant molecular
f u n c t i o n  G O  t e r m  b e i n g
phosphatidylinositol-4,5-bisphosphate-3-kinase activity. The
GO terms and KEGG pathways related to the PI3K-Akt
signaling pathway were unique to network B.
Ubiquitin-mediated proteolysis was the most significant KEGG
pathway for network C (q=2.742e-12), and ubiquitin-like protein
ligase binding was the most significant molecular function term
for network A (q=0.00110187).

Drug Repurposing
GNB1, the hub protein unique in the network specific to
nonpapillary urothelial carcinoma, encodes the beta subunit of
G proteins, which modulate transmembrane signaling, including
that of the PI3K/AKT signaling pathway [25]. Using the CMap
drug repurposing tool, we identified Y16 as a potential drug to
target GNB1. Y16 is a rho-associated kinase inhibitor in
preclinical trials. Other rho-associated kinase inhibitors,
including Y-27632 and HA-1077, were shown to inhibit the
proliferation and invasion of urothelial carcinoma cells and
induce apoptosis, respectively [26,27]. FPR2, another hub
protein unique in the networks specific to nonpapillary urothelial
carcinoma, encodes the formyl peptide receptor 2 and is
involved in the response to amyloid beta, regulation of the
defense response, and positive regulation of monocyte
chemotaxis [28]. TC-FPR2-43 is a formyl peptide receptor
agonist in preclinical trials, which may be considered for use
in treating nonpapillary urothelial carcinoma. We also identified
drugs targeting other proteins unique to nonpapillary urothelial
carcinoma, including PIK3CA and PAK1. PIK3CA, which
encodes the p100α catalytic subunit of PI3K [29], is the target
of several PI3K inhibitors used to treat breast cancer (alpelisib),
follicular lymphoma (copanlisib), and chronic lymphocytic
leukemia (idelalisib). PAK1, a member of the serine/threonine
p2-activating kinase family, is targeted by several drugs in
preclinical trials—serine/threonine kinase inhibitor FRAX486,
p21 activated kinase inhibitors IPA-3 and NVS-PAK1-1, and
rho-associated kinase inhibitor RKI-1447.

Discussion

Principal Findings
The genomic landscape distinguishing papillary and
nonpapillary urothelial carcinoma architectures is not completely
understood. Using a network biology approach, we sought to
understand how the PPI networks differed between patients
with papillary and nonpapillary urothelial carcinoma.
Proteinarium, a multisample PPI analysis tool, was used to
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analyze gene expression data from patients with papillary and
nonpapillary urothelial carcinoma and identify the distinct PPI
networks and hub proteins specific to these 2 architectures.
Using the CMap drug repurposing tool, we identified known
drugs that target the identified hub proteins. Our results showed
that RPS27A, UBA52, and VAMP8 were the hub proteins in
the network specific to papillary urothelial carcinoma (network
A). This PPI network shared 6 proteins with network C, also
specific to papillary urothelial carcinoma, obtained using the
validation dataset. These 6 proteins—UBR4, CUL1, UBE2K,
CDC5L, UBA52, and RPS27A—were enriched in gProfiler for
ubiquitination processes, including ubiquitin-mediated
proteolysis. Dysregulation of the ubiquitin-proteasome system,
which regulates tumor suppressors and oncogenic proteins, is
observed across cancer types [30]. In the PPI network specific
to nonpapillary urothelial carcinoma, network B, we identified
GNB1, RHOA, UBC, and FPR2 as hub proteins, which were
involved in the PI3K/AKT signaling pathway. Additionally, we
compared the PPI networks specific to high-grade papillary and
nonpapillary urothelial carcinoma. Networks F and G (Figure
S5 in Multimedia Appendix 1) exhibited an overlap. This finding
is consistent with the shared genetic drivers that underlie
high-grade tumors.

Comparison to Prior Work
Of the proteins shared by networks A and C, the 2 PPI networks
specific to papillary urothelial carcinoma, CDC5L and CUL1,
have been found to be upregulated in urothelial carcinoma in
previous studies. It has been shown that their overexpression is
significantly associated with poorer prognosis in patients
diagnosed with urothelial carcinoma [31,32]. Knockdown of
CDC5L inhibited the proliferation of urothelial carcinoma cells
by inducing apoptosis and limiting bladder cancer cell migration,
invasion, and epithelial-mesenchymal transition [32]. Currently,
there are no drugs in development that target CDC5L or CUL1.
RPS27A and UBA52, which are hub proteins unique to papillary
urothelial carcinoma in network A, have been found to be
overexpressed in colon cancer [33], prostate cancer [34], and
leukemia [35]. RPS27A and UBA52 are both ribosomal fusion
proteins composed of ubiquitin conjugated to the ribosomal
proteins S27a and L40, respectively. RPS27A, an RNA-binding
protein part of the ribosomal 40S subunit [36], plays a role in
inhibiting apoptosis, regulating the progression of the cell cycle,
and promoting proliferation [35].

UBA52 was identified as a hub protein in the network specific
to papillary urothelial carcinoma from the TCGA Cell 2017
dataset, and it also emerged as a shared hub protein in both
high-grade papillary and nonpapillary urothelial
carcinoma-specific PPI networks. UBA52 encodes a
ubiquitin-ribosomal fusion protein involved in essential
processes such as protein synthesis and degradation, both of
which are upregulated in rapidly proliferating cancers. UBA52
is required for embryonic development and regulates protein
synthesis and the cell cycle by modulating the expression of
cyclins D1 and D3 [37]. Other shared hub proteins, including
MAPK1, CDC42, and PIK3R1, are also involved in key
signaling and regulatory pathways that support tumor
progression.

PIK3CA is a protein in the nonpapillary urothelial
carcinoma-specific PPI network [29]. PIK3CA upregulation
has been implicated in bladder cancer by promoting cell growth
and regulating metastasis [38-40]. Specifically, knockdown of
PIK3CA was found to substantially inhibit cell proliferation
[40], whereas overexpression of PIK3CA promoted bladder
cancer cell growth, migration, invasion, and metastasis [39].
Higher levels of PIK3CA expression were associated with worse
prognosis in bladder cancer [39]. Subsequent activation of PI3K
at the plasma membrane by dimerized receptor tyrosine kinases
causes phosphorylation of phosphatidylinositol 4,5-bisphosphate
to produce the secondary messenger phosphatidylinositol
3,4,5-trisphosphate. Several PI3K inhibitors have been
developed to treat breast cancer (alpelisib), follicular lymphoma
(copanlisib), and chronic lymphocytic leukemia (idelalisib).
PI3K inhibition has been found to suppress the growth,
migration, and colony formation of bladder cancer cells in vitro
[41].

RHOA is a unique hub protein in the PPI network specific to
the nonpapillary urothelial carcinoma. Overexpression of
RHOA, a member of the rho family of small guanosine
triphosphatases that regulates cell attachment, motility, and
shape [29], has been associated with bladder cancer cell
proliferation and metastasis [41-43]. Ras-induced RhOA and
NF-kappaB activation were implicated in promoting the invasion
and migration of bladder cancer cells [44,45]. Three of the 4
hub proteins of network B, the PPI network specific to
nonpapillary urothelial carcinoma—GNB1, RHOA, and
FPR2—have been found to be associated with worse prognosis
in gastric cancer [46], bladder cancer [42], lung cancer [47],
and cervical squamous cell carcinoma [48].

Limitations
There are several limitations in this study. First, given
tumor-node-metastasis (TNM) staging data were not available
for the TCGA Nature 2014 dataset, and 344 (99.4%) out of 346
patients in the TCGA Cell 2017 dataset were muscle invasive
(T2, T3, and T4). Therefore, these findings may not apply to
nonmuscle invasive disease (T1) and should not be generalized.
Second, the data were based on z scores of RNA-seq data.
Although RNA transcript abundance reflects relative protein
abundance, it is not a direct measurement of the quantity of
each specific protein. By using z scores rather than absolute
RNA transcript counts, we were able to draw conclusions about
how a gene is upregulated or downregulated relative to the rest
of the samples.

Conclusions
This study identified 2 distinct PPI networks associated with
the molecular architecture of papillary and nonpapillary
urothelial carcinoma, suggesting that these architectures
represent biologically distinct entities driven by different
molecular mechanisms. The hub proteins within each network
may serve as potential targets for papillary and nonpapillary
urothelial carcinoma. Further studies are required to determine
the efficacy of these identified drug targets.
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Abstract

Background: The COVID-19 pandemic requires a deep understanding of SARS-CoV-2, particularly how mutations in the
spike receptor-binding domain (RBD) chain E affect its structure and function. Current methods lack comprehensive analysis of
these mutations at different structural levels.

Objective: This study aims to analyze the impact of specific COVID-19–associated point mutations (N501Y, L452R, N440K,
K417N, and E484A) on the SARS-CoV-2 spike RBD structure and function using predictive modeling, including a graph-theoretic
model, protein modeling techniques, and molecular dynamics simulations.

Methods: The study used a multitiered graph-theoretic framework to represent protein structure across 3 interconnected levels.
This model incorporated 19 top-level vertices, connected to intermediate graphs based on 6-angstrom proximity within the
protein’s 3D structure. Graph-theoretic molecular descriptors or invariants were applied to weigh vertices and edges at all levels.
The study also used Iterative Threading Assembly Refinement (I-TASSER) to model mutated sequences and molecular dynamics
simulation tools to evaluate changes in protein folding and stability compared to the wildtype.

Results: A total of 3 distinct predictive modeling and analytical approaches successfully identified structural and functional
changes in the SARS-CoV-2 spike RBD (chain E) resulting from point mutations. The novel graph-theoretic model detected
notable structural changes, with N501Y and L452R showing the most pronounced effects on conformation and stability compared
to the wildtype. K147N and E484A mutations demonstrated less significant impacts compared to the severe mutations, N501Y
and L452R. Ab initio modeling and molecular simulation dynamics findings corroborated the results from graph-theoretic analysis.
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The multilevel analytical approach provided a comprehensive visualization of mutation effects, deepening our understanding of
their functional consequences.

Conclusions: This study advanced our understanding of SARS-CoV-2 spike RBD mutations and their implications. The
multifaceted approach characterized the effects of various mutations, identifying N501Y and L452R as having the most substantial
impact on RBD conformation and stability. The findings have important implications for vaccine development, therapeutic design,
and variant monitoring. Our research underscores the power of combining multiple predictive analytical approaches in virology,
contributing valuable knowledge to ongoing efforts against the COVID-19 pandemic and providing a framework for future studies
on viral mutations and their impacts on protein structure and function.

(JMIR Bioinform Biotech 2025;6:e73637)   doi:10.2196/73637

KEYWORDS

COVID-19; graph-theoretic modeling; 6M0J; predictive modeling; unsupervised machine learning; molecular dynamics simulations;
E484A; SARS-CoV-2 spike mutations (N501Y, E484A, L452R, N440K, K417N)

Introduction

Background
The COVID-19 pandemic, caused by SARS-CoV-2, had a
devastating global impact, with hundreds of millions of
confirmed cases and millions of deaths worldwide [1-4]. The
virus’ spike protein shares significant structural and sequence
similarities with the severe acute respiratory syndrome virus
from 2003, including the use of the angiotensin-converting
enzyme 2 (ACE2) receptor for cell entry. The SARS-CoV-2
spike protein’s receptor-binding domain (RBD) has undergone
various mutations, each with distinct impacts on viral behavior
and infectivity [5]. The wildtype phenotype serves as a baseline,
exhibiting no significant changes or enhanced impacts [1].
Protein folding, maintenance, mutation, aggregation,
neurodegenerative diseases, and COVID-19 are interconnected
through complex biological processes [6-8]. Except for
intrinsically disordered proteins, most proteins must fold
correctly to function properly, but mutations can disrupt this
process, leading to misfolding and aggregation. Cells have
protective mechanisms to maintain protein homeostasis, but
when these fail, aggregates can form and contribute to
neurodegenerative diseases like Alzheimer disease (AD) and
Parkinson disease [6-10]. COVID-19 has been linked to AD,
Parkinson disease, and other neurodegenerative diseases through
various mechanisms [11-13]. The SARS-CoV-2 spike protein
contains aggregation-prone regions that can form amyloid
aggregates, potentially contributing to neurological
complications [14-16]. In addition, the virus’ 3CL protease has
been shown to induce tau protein aggregation, a hallmark of
neurodegenerative diseases. Genetic studies have revealed a
causal association between COVID-19 hospitalization and
increased risk of AD [17]. The virus may accelerate
neurodegeneration through inflammation, microvascular injury,
and prion-like spread of misfolded protein. These aggregates
were observed in vitro using various experimental techniques,
including fluorescence spectroscopy and electron microscopy
[18-20].

Specific mutations have emerged that alter the virus’
characteristics in different ways. Mutations such as K417N,
associated with the Beta, Gamma, and Omicron variants,
demonstrate moderate severity due to their role in immune
evasion [21-23]. These mutations reduce antibody neutralization,

potentially compromising the effectiveness of vaccines and
natural immunity [24]. Similarly, N440K and S477N mutations,
linked to localized outbreaks, show mild impacts by enhancing
binding to the ACE2 receptor, which increases infectivity
without causing major antigenic alterations [25,26]. More
concerning are mutations like T478K and L452R, found in Delta
and Omicron variants, which display moderate to severe
consequences. L452R, in particular, is associated with immune
evasion and increased transmission due to its resistance to
neutralizing antibodies [27]. The E484 mutations (A, K, Q),
present in Beta, Gamma, and other variants, exhibit moderate
to severe immune escape capabilities, significantly reducing
neutralization by vaccine-induced or convalescent sera [28]. Of
note is the profound N501Y mutation, observed in Alpha, Beta,
and Omicron variants. This mutation is classified as very severe
due to its dual role in enhancing binding affinity to the ACE2
receptor and aiding in immune escape [29]. N501Y has been a
pivotal factor in increasing transmissibility and contributing to
widespread outbreaks [30]. These diverse mutations in the
SARS-CoV-2 RBD demonstrate varying degrees of severity
and impact, ranging from mild infectivity increases to severe
immune evasion and transmissibility. The evolving nature of
these mutations underscores the critical importance of
continuous genomic surveillance and adaptive vaccine strategies
in combating the COVID-19 pandemic [31-33]. As
SARS-CoV-2 has spread, it has evolved into various strains,
with the D614G mutation becoming nearly ubiquitous. Several
“variants of concern” (VOCs) have emerged, characterized by
mutations that may affect viral behavior and immune evasion
[34-38]. These VOCs, identified in different regions, include
B.1.1.7 (UK), P.1 and P.2 (Brazil), B.1.351 (South Africa),
B.1.617 (India), and B.1.526 (US), among others [39]. The
emergence of these variants has significant implications for
treatment strategies and vaccine efficacy. Some variants, such
as B.1.351, have shown resistance to neutralization by
convalescent plasma and certain monoclonal antibody treatments
[40]. In addition, in vitro studies suggest that sera from
vaccinated individuals may have reduced neutralizing capacity
against variants with specific mutations, like E484K and N501Y
[23,41,42]. While VOCs are defined by specific mutation
patterns, the interplay between these mutations in affecting viral
behavior is not fully understood [43-46]. Analysis of a large
dataset of SARS-CoV-2 spike sequences revealed hundreds of
amino acid variants, with a significant number occurring in the
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RBD [47,48]. Machine learning algorithms have revolutionized
data analysis by uncovering hidden patterns in datasets and
addressing critical questions across various disciplines, including
disease diagnostics, among others [49-52]. Unsupervised
learning techniques like clustering and dimensionality reduction
reveal intrinsic structures in data [53], enabling applications
such as customer segmentation, anomaly detection, and in the
field of bioinformatics [54]. To better understand the emergence
and spread of new variants, novel bioinformatics approaches
are being developed to identify spatially and temporally
correlated mutations [55,56]. The evolving nature of
SARS-CoV-2 suggests that future vaccine design may need to
be tailored to address the specific strain ensembles prevalent in
different regions [57-59]. This approach could enhance vaccine
efficacy against locally dominant variants and potentially
provide broader protection against emerging strains.

Previous Work
Recent advancements in graph-theoretic modeling have provided
valuable insights into the complex relationship between point
mutations and disease phenotypes [60,61]. Researchers have
developed various graph-based approaches to model and analyze
the intricate connections between genes, mutations, and
phenotypes. These methods leverage the ability of graphs to
represent complex biological relationships and interactions
[62-75]. This approach has been particularly effective in
elucidating the structural and functional impacts of genetic
variations in proteins associated with hereditary disorders. One
application of graph theory in mutation analysis involves the
use of protein-protein interaction networks to identify
discriminative subnetworks associated with specific diseases
[9,76-84], allowing researchers to uncover patterns of mutations
that may collectively contribute to phenotypes, going beyond
the limitations of single-gene analyses.

Additionally, other studies exemplify the power of this
methodology in understanding the molecular basis of point
mutation-associated diseases like cystic fibrosis and sickle cell
disease (SCD). Previously, we developed a hierarchical
graph-theoretic model to investigate the effects of point
mutations on the NBD2 domain of the CFTR protein, which is
implicated in cystic fibrosis [60,85]. By constructing a multilevel
graph (nested graph) representation of interacting amino acid
residues, they developed a nested graph capable of quantifying
both local and global structural changes resulting from virtual
point mutations. This innovative method enabled the
differentiation of mild mutations (such as Y1219G and G1271E)
from severe ones (like N1303K) when compared to the wildtype,
demonstrating the sensitivity and relevance of their
graph-theoretic methods and resulting molecular descriptors
(graph invariants) in analyzing complex biological networks.
Building on this framework, Netsey et al [61] applied similar
graph-theoretic techniques to explore the impact of point
mutations on the hemoglobin protein (1A3N) in SCD. Using
author-adopted and molecular descriptors from our previous
works [60,85], the authors successfully captured the structural
effects of various mutations, including E6V, V23I, and K82N
associated with SCD. Their analysis not only distinguished mild
mutations from the wildtype but also highlighted the significant
devastation caused by the severe E6V mutation, further

validating the usability of graph-theoretic molecular nested
graphs in understanding many disease mechanisms. These
studies collectively demonstrate the power of graph-theoretic
modeling in bridging the gap between genetic mutations and
their phenotypic manifestations in complex diseases. In recent
years, the fields of ab initio modeling and molecular dynamics
(MD) simulations have revolutionized our approach to studying
intricate biological systems and networks [86-89]. These
advanced computational methods enable researchers to create
detailed models of biological entities, ranging from individual
proteins to entire cellular structures, with unprecedented
atomic-level precision [90]. By combining these techniques
with systems biology principles, researchers can now explore
the complex relationships between genetic alterations and
disease manifestations. These sophisticated MD simulations
provide a unique window into the molecular consequences of
mutations, allowing scientists to track cascading effects from
the smallest cellular components up to organism-wide changes
[86-89]. This multitiered modeling strategy offers valuable
insights into disease mechanisms, illuminating how specific
genetic changes can influence protein behavior, disrupt cellular
functions, and ultimately result in diverse clinical phenotypes.
The fusion of structural data with network analysis significantly
enhances our ability to predict and understand the connections
between genetic makeup and disease outcomes. This integrated
approach provides a more holistic view of the intricate
relationships between genotypes and phenotypes in complex
disorders, paving the way for more targeted and effective
therapeutic interventions [91]. By providing a computational
framework for quantifying structural changes at multiple levels,
this approach offers a promising avenue for predicting disease
severity and potentially informing therapeutic strategies.

Goal of This Study
In this study, we hypothesized that specific point mutations in
the SARS-CoV-2 spike protein significantly alter its structural
conformation, dynamic behavior, and stability, thereby
influencing its binding affinity, immune escape potential, and
overall viral fitness. To test this hypothesis, we employed a
multifaceted computational approach combining graph-theoretic
modeling with ab initio protein structure prediction and MD
simulations to create a comprehensive analysis framework.
Using the Iterative Threading Assembly Refinement
(I-TASSER) [92] platform, we generated detailed 3D models
of mutated spike proteins, which allowed us to visualize how
point mutations affect protein structure, including potential
changes in binding sites and overall conformation. We then
conducted MD simulations to study the dynamic behavior of
these mutated proteins, revealing how mutations impact protein
movement and stability compared to the wildtype. By integrating
these computational methods with our graph-based approach,
we developed a holistic understanding of mutation effects,
bridging the gap between genetic changes and their structural
consequences. This comprehensive approach provided insights
into both sequence-level alterations and their macromolecular
impacts, enhancing our understanding of SARS-CoV-2’s
evolution and potential behavioral changes. Through the use of
these complementary methods, we were able to construct a more
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complete picture of how spike protein mutations influence the
virus’s structure and function.

Methods

Graph-Theoretic Model of SARS-CoV-2 Spike RBD
(Chain E)
This work extends our previous graph-theoretic modeling
approaches [60,85] by focusing specifically on the chain E of
the SARS-CoV-2 spike protein and expanding combinatorial
descriptors to include edge-weight assignments, among others.
In this study, we focused exclusively on the spike protein, and

human ACE2 (hACE2) was not included as part of the analysis.
The study incorporates molecular indices from earlier research
[60,85] and introduces additional graph invariants. As a result,
the molecular descriptors for subdomain graphs, the chain E of
the SARS-CoV-2 spike protein, and the examined mutations
are tailored to chain E of the SARS-CoV-2 spike RBD protein.

Subsequence Partition of SARS-CoV-2 Spike Protein
Chain E
Figure 1 shows the tertiary crystal structure of SARS-CoV-2
spike RBD bound with ACE2 [93], which was retrieved from
the Protein Data Bank [94] (PDB; 6M0J) and visualized using
UCSF Chimera [95].

Figure 1. Overall structure of the SARS-CoV-2 receptor-binding domain (RBD) in complex with human angiotensin-converting enzyme 2 (ACE2).
The crystal structure of the SARS-CoV-2 spike protein RBD bound to human ACE2 receptor is shown in two orientations related by a 180° rotation.
ACE2 (green) forms the primary attachment point for viral entry, with its N-terminal helix directly accommodating the concave surface of the viral
RBD. The SARS-CoV-2 RBD consists of 2 major regions: the core structure (cyan) containing a twisted 5-stranded antiparallel β sheet (β1-β7, labeled
in right panel), and the receptor-binding motif (RBM; red) that directly interfaces with ACE2. A total of 4 critical disulfide bonds are highlighted as
yellow sticks and indicated by arrows: 3 within the core (C336–C361, C379–C432, and C391–C525) stabilizing the β sheet structure, and one (C480–C488)
connecting loops at the distal end of the RBM. The N-terminal helix of ACE2, which serves as the primary interaction surface with the viral RBD, is
specifically labeled. This binding interface is the initial critical point of contact during viral infection and serves as a major determinant of host range
and transmissibility. The structure was determined by x-ray crystallography at 2.45 Å resolution (Protein Data Bank [PDB] 6M0J). This figure was
adapted from Lan et al [93].

To provide a more comprehensive understanding of the
SARS-CoV-2 Spike RBD structure, we generated a network
graph for only the SARS-CoV-2 spike protein, without the
ACE2, using Cytoscape (Cytoscape Consortium) [96]. Figure
2 illustrates this network visualization, offering valuable insights

into the RBD’s intricate architecture and its potential functional
significance. This graphical representation elucidates the
complex relationships between various structural elements
within the RBD, enhancing our understanding of its overall
organization and possible mechanistic implications.
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Figure 2. Network graph of SARS-CoV-2 spike receptor-binding domain (RBD). This figure illustrates a network graph representation of the
SARS-CoV-2 spike protein's RBD, derived from the crystal structure 6M0J obtained from the Protein Data Bank. Each vertex in the graph represents
an individual amino acid residue of the RBD. Edges connecting these vertices were established using a 6-angstrom proximity threshold, where two
residues are connected if any of their atoms are within 6Å of each other. This representation provides a comprehensive view of the RBD structure, from
individual amino acids to their network interactions.

The spike protein RBD, corresponding to chain E of the structure
[93], was meticulously divided into 19 subsequences (G1 to
G19), while preserving the integrity of crucial biological
information within the protein’s secondary structures. This
partitioning approach, following our previously published
method [60,85], enables a more detailed analysis of the RBD’s

structure, which in turn informs the graph-theoretic modeling
of the subsequence. During the partitioning for analyzing the
SARS-CoV-2 RBD (chain E), we followed 3 key principles to
maintain structural integrity and facilitate detailed analysis. We
preserved binding sites and secondary structures, isolated
different structural elements into separate subsequences, and
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limited each subsequence to 13 amino acid residues. To account
for protein complexity, loop regions were given more flexibility,
allowing for the inclusion of turns, 3/10-helices, and short alpha
helices. This careful approach provided a comprehensive view
of the RBD’s structure, enabling more in-depth analysis and
modeling. The core structure of the SARS-CoV-2 RBD consists
of a twisted 5-stranded antiparallel β sheet (β1, β2, β3, β4, and
β7), interconnected by short helices and loops. This detailed

structural breakdown sets the foundation for further study of
the RBD’s composition and function [93,97]. Table 1 provides
a comprehensive overview of the subsequence partition,
including subsequence identifiers (G1 to G19), corresponding
amino acid residues, secondary structure classification,
corresponding subdomains, and reason for the partitions. This
detailed structural breakdown facilitates in-depth analysis of
the SARS-CoV-2 spike RBD (chain E).

Table . Subsequence partition of SARS-CoV-2 spike receptor-binding domain (chain E).

Structural or functional regionsAmino acid sequenceSubsequenceSubdomain graph

Coil and turn333‐337TNLCPG1

Alpha helix, turn, genome variant
site (339), and mutagenesis (343)

338‐344FGEVFNAG2

Alpha helix, coil, and genome vari-
ant site (346)

345‐352TRFASVYAG3

Beta sheet and coil353‐362WNRKRISNCVG4

Alpha helix, coil, and genome vari-
ant site (371, 373)

363‐373ADYSVLYNSASG5

Beta sheet, coil, and genome variant
site (375)

374‐381FSTFKCYGG6

Coil and alpha helix382‐392VSPTKLNDLCFG7

Beta sheet and coil393‐403TNVYADSFVIRG8

Alpha helix and coil404‐413GDEVRQIAPGG9

Alpha helix, coil, and genome vari-
ant site (417)

414‐428QTGKIADYNYKLPDDG10

Beta sheet and coil429‐438FTGCVIAWNSG11

Alpha helix, coil, turn, and genome
variant site (440, 446)

439‐449NNLDSKVGGNYG12

Beta sheet, coil, genome variant site
(452, 453), and mutagenesis (452,
453)

450‐458NYLYRLFRKG13

Coil and turns459‐473SNLKPFERDISTEIYG14

Coil, turns, genome variant site
(477, 478, 484), and mutagenesis
(475, 483)

474‐487QAGSTPCNGVEGFNG15

Beta sheet, coil, genome variant site
(490, 493, 496), and mutagenesis
(490, 493)

488‐497CYFPLQSYGFG16

Alpha helix, coil, genome variant
site (501, 505), and mutagenesis
(501)

498‐506QPTNGVGYQG17

Beta sheet, coil, and mutagenesis
(519)

507‐520PYRVVVLSFELLHAG18

Coil521‐526PATVCGG19

Subdomain Graphs (Corresponding to Subsequence
Partitions) of SARS-CoV-2 Spike Protein Chain E
After partitioning into subsequences, as shown in Table 1, we
applied a sophisticated multistep graph-theoretic modeling
approach. Using I-TASSER [92,98], a state-of-the-art protein
structure prediction tool, we generated ab initio models for each
subsequence, using a proximity threshold of 6 angstroms and

determining end points based on each amino acid residue’s
center of mass. These structural predictions were visualized
using Cytoscape [96], a powerful network visualization software,
resulting in 19 comprehensive subdomain graphs depicted in
Figures 3-6 for all subdomain graphs. Each subdomain graph,
corresponding to a previously classified subsequence in Table
1, offers a detailed visual representation of the structural and
interaction patterns within each RBD subdomain.
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Figure 3. Nested interaction graphs (G1-G6) derived from ab initio modeling of receptor-binding domain subsequences using Iterative Threading
Assembly Refinement (I-TASSER). Graphs represent local structural context of amino acids, with nodes as residues and edges indicating spatial
proximity (≤6Å between residue centers of mass). (A) Subdomain graph G1 corresponding to subsequence S1. (B) Subdomain graph G2 corresponding
to subsequence S2. (C) Subdomain graph G3 corresponding to subsequence S3. (D) Subdomain graph G4 corresponding to subsequence S4. (E)
Subdomain graph G5 corresponding to subsequence S5. (F) Subdomain graph G6 corresponding to subsequence S6.
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Figure 4. Nested interaction graphs (G7-G12) derived from ab initio modeling of receptor-binding domain subsequences using Iterative Threading
Assembly Refinement (I-TASSER). Graphs represent local structural context of amino acids, with nodes as residues and edges indicating spatial
proximity (≤6Å between residue centers of mass). (A) Subdomain graph G7 corresponding to subsequence S7. (B) Subdomain graph G8 corresponding
to subsequence S8. (C) Subdomain graph G9 corresponding to subsequence S9. (D) Subdomain graph G10 corresponding to subsequence S10. (E)
Subdomain graph G11 corresponding to subsequence S11. (F) Subdomain graph G12 corresponding to subsequence S12.
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Figure 5. Nested interaction graphs (G13-G18) derived from ab initio modeling of receptor-binding domain subsequences using Iterative Threading
Assembly Refinement (I-TASSER). Graphs represent local structural context of amino acids, with nodes as residues and edges indicating spatial
proximity (≤6Å between residue centers of mass). (A) Subdomain graph G13 corresponding to subsequence S13. (B) Subdomain graph G14 corresponding
to subsequence S14. (C) Subdomain graph G15 corresponding to subsequence S15. (D) Subdomain graph G16 corresponding to subsequence S16. (E)
Subdomain graph G17 corresponding to subsequence S17. (F) Subdomain graph G18 corresponding to subsequence S18.
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Figure 6. Nested interaction graphs (G19) derived from ab initio modeling of receptor-binding domain subsequences using Iterative Threading Assembly
Refinement (I-TASSER). Graphs represent local structural context of amino acids, with nodes as residues and edges indicating spatial proximity (≤6Å
between residue centers of mass). Subdomain graph G19 corresponding to subsequence S19.

Figure 7 illustrates the subdomain graphs for subsequences G13
and G17 of the SARS-CoV-2 spike protein’s RBD in chain E.
These specific subdomains are of particular interest, as they
contain the locations of severe mutations N501Y and L452R,
respectively. The graphical representation provides a detailed
view of the structural context surrounding these critical mutation

sites, offering insights into how these changes might affect the
protein’s function and interactions.

This methodical approach not only enables a more nuanced
understanding of the RBD’s structure but also lays the
groundwork for further analysis of how mutations might affect
these interactions and, consequently, the entire protein.
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Figure 7. Subdomain graphs of SARS-CoV-2 spike protein receptor-binding domain (RBD; chain E) where N501Y and L452R mutations occur. (A)
Subdomain graph for G13 containing N501Y mutation. (B) Subdomain graph for G17 containing L452R mutation. Ab initio models were generated
for each subsequence, employing a proximity threshold of 6 angstroms and determining end points based on each amino acid residue's center of mass.
These graphs illustrate the local structural context surrounding the mutation sites, with nodes representing amino acid residues and edges indicating
spatial proximity. The central nodes (N501Y in A and L452R in B) highlight the locations of the severe mutations, while surrounding nodes depict
neighboring residues that may influence or be affected by these mutations. This representation aids in visualizing potential structural and functional
impacts of these critical mutations on the spike protein's RBD.

Graph-Theoretic Model of SARS-CoV-2 Spike RBD
(Chain E)
Next, we modeled SARS-CoV-2 spike RBD corresponding to
chain E of the structure protein to consist of 3 distinct levels,
with each level offering a unique perspective on the protein’s
structure and interactions. At the foundation, we have the lowest
level, comprising 20 vertex-weighted amino acids representing
the essential building blocks of the protein. Moving up, the
middle level features 19 distinct vertex-weighted subgraphs
(subdomain graphs), each corresponding to a specific
subsequence of SARS-CoV-2 spike RBD corresponding to
chain E (Table 1 and Figures 3-7) of the structure protein. In
these subgraphs or subdomain graphs, individual amino acids
are represented as vertices, with weights assigned based on
graph invariants derived from the lower-level graphs. The top
level of our model presents a more condensed view, where each
subdomain graph from the middle level is consolidated into a
single weighted vertex. The weights of these vertices are
determined by molecular descriptors calculated from their

respective subdomain graphs. To establish connections between
vertices in the SARS-CoV-2 RBD corresponding to chain E
nested domain graph, we used a proximity threshold of 6
angstroms between adjacent residues. A 6-angstrom proximity
threshold is often used to define connections in the SARS-CoV-2
spike RBD graph because it captures meaningful atomic
interactions, such as hydrogen bonds and van der Waals forces,
essential for protein structure and function. This threshold
ensures accurate representation of residue connectivity, aiding
in understanding how the RBD stabilizes its structure and
interacts with the ACE2 receptor [99]. In addition, it
accommodates the dynamic flexibility of the RBD, reflecting
both stable and transient interactions critical for receptor binding
and regulation [100]. This balance of specificity and inclusivity
makes it effective for modeling structural and functional
relationships. Figure 8 provides a visual representation of our
graph-theoretic model for the SARS-CoV-2 spike RBD
corresponding to chain E, illustrating the hierarchical structure
and interactions captured by this approach.
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Figure 8. Hierarchical graph model of SARS-CoV-2 spike receptor-binding domain (RBD) chain E. This figure depicts a three-level hierarchical graph
model of the SARS-CoV-2 spike RBD (chain E), illustrating the protein's structure and interactions at different scales. The lower level shows 20
vertex-weighted amino acids, the middle level presents 19 vertex-weighted subdomain graphs, and the top level displays a condensed view with single
weighted vertices representing each subdomain. Edges between vertices are established using a 6-angstrom proximity threshold, providing a comprehensive
view from individual amino acids to subdomain interactions.

Building on our previous work [60,85], we used Cytoscape [96]
to analyze the structural properties of subdomain graphs
(referred to as mid-level graphs) by calculating a specific
parameter: the change in molar mass between adjacent vertices
normalized by the average degree of these graphs. This
parameter, termed ΔMd, quantifies the variation in molar mass
between two connected vertices, Ri and Rj, in the mid-level

graphs, adjusted by the average connectivity (degree) of the
graph. The results of this analysis are presented in Table 2 and
are derived using equation 1, as established in our previous
work [101]. Specifically, ΔMd represents the change in molar
mass per average degree along the edge connecting vertices Ri

and Rj. It is calculated using the following equation:

(1)ΔMd=|Ri−Rjd¯|g/deg
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Table . Molar mass as weighted degrees of subdomain.

Molar mass (g/mol)Subdomain

618.7G1

890.9G2

1040.1G3

1437.6G4

1369.4G5

1078.3G6

1416.6G7

1464.5G8

1203.3G9

1993.2G10

1259.4G11

1360.4G12

1416.7G13

2064.2G14

1614.7G15

1386.7G16

1107.2G17

1877.1G18

636.7G19

Here, |Ri - Rj| is the absolute difference in molar mass between
adjacent residues (vertices Ri and Rj), and d¯ is the average
degree of the top-level graph, reflecting the typical number of
connections per vertex [61]. This normalization by the average
degree accounts for the structural density of the graph, providing
a more comparable measure across different subdomains. The
parameter ΔMd is critical to our study as it offers insight into
the structural and chemical heterogeneity within the midlevel
graphs. By measuring the molar mass variation between adjacent
vertices relative to the graph’s connectivity, ΔMd helps us
understand how mass distribution correlates with the network
topology of the subdomains. This is particularly relevant for
identifying regions of significant chemical or structural
divergence, which may influence the functional properties of
the system under study. For instance, a high ΔMd value could

indicate a sharp transition in molecular composition across
connected residues, potentially pointing to functionally
important boundaries or interfaces within the system.
Incorporating this analysis, therefore, supports our broader
objective of mapping structural features to functional outcomes,
as detailed in subsequent sections of our research.

Virtual Mutations in SARS-CoV-2 Spike RBD (Chain
E)
To evaluate the impact of single point mutations on the entire
SARS-CoV-2 spike RBD corresponding to chain E of the
structural protein, we selected 5 prevalent mutations associated
with mild or severe COVID-19 from existing literature. Table
3 provides a comprehensive view of how each mutation
influences the SARS-CoV-2 spike RBD corresponding to chain
E of the structural protein.
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Table . Mutation phenotypes of SARS-CoV-2 spike receptor-binding domain [102-106].

Impact or clinical manifestationPhenotypeStrainMutation

Wildtype ••• No impact/baselineTypical or normal form of a
species as it occurs in nature;
baseline for comparison with
mutated or altered forms

Wuhan-Hu-1

K417N ••• Immune evasion, associated
with reduced neutralization by
antibodies

ModerateBeta (B.1.351)
• Gamma (P.1)
• Omicron (BA.1)
• Omicron (BA.2)

N440K ••• Potential immune escape, en-

hances binding to ACE2a recep-
tor but not a major antigenic
change

MildOmicron (BA.1)
• Omicron (BA.2)

L452R ••• Immune evasion and transmis-
sion, linked to resistance to
neutralizing antibodies and
higher infectivity

SevereDelta (B.1.617.2 and AY lin-
eages)

• Kappa (B.1.617.1)

E484A ••• Immune evasion, reduces neu-
tralization by convalescent and
vaccine-induced sera

ModerateOmicron

N501Y ••• Increased binding affinity and
immune escape, enhances
ACE2 binding and is associat-
ed with immune evasion

Very severeAlpha
• Beta
• Omicron
• Mu

aACE2: angiotensin-converting enzyme 2.

Subsequently, the changes in molar mass between adjacent
vertices per average degree (as shown in Table 2), derived from
the weighted network interaction data, were assigned as vertex
weights for the subdomain graphs within the top-level graph,
G. This step enabled the generation of molecular descriptors
(graph invariants) based on the weighted network interaction
data in Cystoscape [92], representing the edge-interaction
weights of the top-level graph. The resulting molecular database
of graph invariants represented the wildtype graph (no mutation).
For each of the 5 mutations, a virtual mutation process was
performed. This involved identifying the specific amino acid
in the relevant subdomain graph, mutating it via substitution or
deletion, and creating a “mutant-specific vertex-weighted graph”
for the affected subdomain by submitting the mutated FASTA
sequence to I-TASSER [90,91] for ab initio modeling (see
Multimedia Appendix 1 for mutant-specific vertex-weighted

graphs). New graph-theoretic molecular descriptors were then
computed for each mutated subdomain graph and applied to the
top-level graph. Subsequently, the same molecular descriptors
previously computed for the top-level graph of the wildtype
were recalculated to capture the mutation’s impact. This
approach allowed us to observe both local (subdomain) and
global (entire SARS-CoV-2 spike RBD, corresponding to chain
E of the structural protein) effects of each point mutation on
the SARS-CoV-2 spike protein. Table 4 presents a
comprehensive set of molecular descriptors for the wildtype
SARS-CoV-2 spike RBD and its various mutations. These graph
invariants offer quantitative insights into how mild and severe
mutations affect the RBD’s structural and functional
characteristics. Through analysis of these metrics across various
variants, we elucidated the distinct effects of each mutation on
the spike protein’s characteristics and functional implications.
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Table . Edge (interaction) weights of mutation phenotypes for SARS-CoV-2 spike receptor-binding domain (chain E).

E484AN501YL452RN440KK417NWildtypeSubdomain interac-
tion

0.101500.089900.089900.089900.089900.08990G14 (meta) G15

0.129500.129500.120900.129500.129500.12950G13 (meta) G14

0.011260.011260.019860.008440.011260.01126G12 (meta) G13

0.020200.020200.020200.023020.020200.02020G11 (meta) G12

0.092100.092100.092100.092100.092100.09210G7 (meta) G18

0.197240.197240.197240.197240.197240.19724G2 (meta) G18

0.123540.123540.123540.123540.123540.12354G11 (meta) G18

0.103340.103340.103340.100520.103340.10334G12 (meta) G18

0.134760.134760.134760.134760.134760.13476G9 (meta) G18

0.125320.125320.125320.125320.125320.12532G4 (meta) G14

0.075320.075320.083920.075320.075320.07532G3 (meta) G13

0.167400.167400.167400.167400.167400.16740G3 (meta) G18

0.079500.079500.079500.079500.079500.07950G3 (meta) G4

0.029840.029840.029840.029840.029840.02984G2 (meta) G3

0.204820.204820.204820.204820.204820.20482G3 (meta) G14

0.030440.020620.030440.030440.030440.03044G11 (meta) G17

0.050640.040820.050640.053460.050640.05064G12 (meta) G17

0.019220.009400.019220.019220.019220.01922G9 (meta) G17

0.153980.144160.153980.153980.153980.15398G17 (meta) G18

0.052240.052240.052240.052240.052240.05224G8 (meta) G9

0.082520.082520.082520.082520.082520.08252G8 (meta) G18

0.084880.084880.084880.084880.084880.08488G3 (meta) G8

0.005380.005380.005380.005380.005380.00538G4 (meta) G8

0.071460.061640.071460.071460.071460.07146G8 (meta) G17

0.009580.009580.009580.009580.009580.00958G8 (meta) G7

0.067660.067660.067660.067660.067660.06766G6 (meta) G7

0.036220.036220.036220.036220.036220.03622G6 (meta) G11

0.165560.165560.165560.165560.165560.16556G8 (meta) G19

0.155980.155980.155980.155980.155980.15598G7 (meta) G19

0.160180.160180.160180.160180.160180.16018G4 (meta) G19

0.248080.248080.248080.248080.248080.24808G19 (meta) G18

0.054440.054440.054440.054440.054440.05444G1 (meta) G2

0.163780.163780.163780.163780.163780.16378G1 (meta) G4

0.146540.146540.146540.146540.146540.14654G5 (meta) G19

0.013640.013640.013640.013640.013640.01364G5 (meta) G4

0.150140.150140.150140.150140.150140.15014G1 (meta) G5

0.058220.058220.058220.058220.058220.05822G5 (meta) G6

0.009440.009440.009440.009440.009440.00944G5 (meta) G7

0.034000.045600.045600.045600.045600.04560G16 (meta) G15

0.005260.005260.005260.002440.005260.00526G12 (meta) G16

0.006000.006000.014600.006000.006000.00600G13 (meta) G16
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E484AN501YL452RN440KK417NWildtypeSubdomain interac-
tion

0.055900.046080.055900.055900.055900.05590G16 (meta) G17

0.135500.135500.135500.135500.135500.13550G14 (meta) G16

0.036680.036680.036680.036680.036680.03668G9 (meta) G16

0.105740.105740.105740.105740.102920.10574G8 (meta) G10

0.157980.157980.157980.157980.155160.15798G9 (meta) G10

0.014200.014200.014200.014200.017020.01420G10 (meta) G14

0.146760.146760.146760.146760.143940.14676G10 (meta) G11

0.190620.190620.190620.190620.187800.19062G3 (meta) G10

0.115300.115300.106700.115300.112480.11530G10 (meta) G13

Unsupervised Machine Learning Analysis of Point
Mutations Associated With SARS-CoV-2 Spike RBD
(Chain E)
To analyze the impact of point mutations associated with
SARS-CoV-2 spike RBD (chain E), we used our previous novel
approach combining graph theory and machine learning
[59,84,85]. Our method used graph-theoretic
molecular-weighted invariants or descriptors, as detailed in
Table 4, for the wildtype SARS-CoV-2 spike RBD (chain E)
and mild and severe mutations associated with SCD. We applied
an unsupervised machine learning technique, specifically
hierarchical clustering, to visualize the variations between each
SARS-CoV-2 spike RBD (chain E) point mutation and the
wildtype SARS-CoV-2 spike RBD (chain E). Hierarchical
clustering provided insights into the structure and relationships
within the datasets. The analysis was conducted using Python
statistical software (Python Software Foundation), using the
single linkage function and Euclidean distance without setting
a predefined number of clusters or distance threshold to generate
a dendrogram for the SARS-CoV-2 spike RBD mutation
phenotypes. We opted for the single-linkage function to
minimize potential biases in clustering the SARS-CoV-2 spike
RBD (chain E)–related point mutations [100,107]. This approach
allowed us to create a visual representation of how virtual
SARS-CoV-2 spike RBD (chain E)–related point mutations
affected the entire SARS-CoV-2 spike RBD (chain E) structure
in comparison to the wildtype. Through this approach, we were
able to distinguish how the different virtual mutations differed
from the wildtype, providing an insight into how the point
mutations impacted the entire SARS-CoV-2 spike RBD.

Ab Initio Modeling of Mutated Protein Sequences
Using I-TASSER
To further elucidate the structural and functional implications
of spike protein mutations, we implemented an ab initio
modeling approach using the I-TASSER platform [90]. This
state-of-the-art predictive modeling tool was used to generate
high-resolution, 3D structural models of the spike protein
variants [90,91,101]. The I-TASSER algorithm uses a
hierarchical approach, combining threading, fragment assembly,
and atomic-level structure refinement to predict protein structure
and function. We input the mutated spike protein sequences
into the I-TASSER server [92], which then produced detailed

structural models. These models were analyzed to identify
potential alterations in protein folding, binding site
configurations, and overall conformational changes resulting
from the point mutations. The visual representations derived
from this process provided crucial insights into the
molecular-level effects of the mutations, complementing our
graph-theoretic modeling approach. By integrating these
computational methodologies, we were able to establish a
comprehensive framework for understanding the relationship
between sequence-level mutations and their macromolecular
consequences, offering a multifaceted view of the spike protein’s
structural and functional adaptations.

MD Simulations of Wildtype and Mutated Proteins in
Water
To complement our findings from graph-theoretic modeling,
we investigated whether MD simulations could effectively
replicate the effects of point mutations leading to diverse
phenotypes among the COVID-19 mutations analyzed in this
study. MD simulations have emerged as a critical tool for
elucidating the structural and functional implications of protein
mutations, specifically in the context of the SARS-CoV-2 spike
protein. In this work, we focused exclusively on the spike
protein, both in its wildtype form and mutated variants, without
the inclusion of the hACE2 receptor or other interacting proteins.
This approach allowed us to isolate the intrinsic dynamic
behavior and stability of the spike protein under varying
mutational conditions. The dynamic insights gained from these
simulations have proven instrumental in designing stabilized
S2 immunogens for SARS-CoV-2, which demonstrate enhanced
protein expression, superior thermostability, and preserved
immunogenicity against sarbecoviruses.

The MD simulations were conducted using the WebGRO for
Macromolecular Simulations server [108], which operates on
the GROMACS simulation package [102]. This platform was
selected for its intuitive interface and capability to perform fully
solvated MD simulations. The wildtype spike protein structures
were obtained from the PDB, while mutated variants were
generated using I-TASSER [90]. Both wildtype and mutated
structures were prepared in orthorhombic simulation boxes,
solvated with simple point charge (SPC) water, counterions,
and 0.15 M NaCl to mimic physiological conditions. This setup
was designed to closely replicate the biological environment,
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ensuring accurate observations of protein behavior in a dynamic
state.

Before the production runs, energy minimization was carried
out using the steepest descent integrator to eliminate steric
clashes or unfavorable contacts within the system. This step is
essential to position the system at a local energy minimum, a
prerequisite for stable MD simulations. Subsequently, the system
was equilibrated at 300 K and 1.1023 bar, reflecting the
temperature and pressure conditions of the human body
[103,109]. Position restraints on protein atoms were applied
during the initial equilibration phase to stabilize the system
before full MD production runs were initiated.

To ensure the robustness and reliability of our findings, triplicate
simulations were performed at 3 distinct timescales: 50
nanoseconds, 100 nanoseconds, and 200 nanoseconds. Each
simulation incorporated varied random sampling seed inputs to
account for stochastic variations in the system’s dynamics. This
methodology enabled the capture of both short-term fluctuations
and long-term stability trends, providing a comprehensive view
of the dynamic behavior of the spike protein over extended
periods.

Protein interactions were modeled using the Optimized
Potentials for Liquid Simulations–All Atom (OPLS-AA) force
field, recognized for its precision in simulating protein-water
interactions. The SPC/extended (SPC/E) water model was
chosen for its ability to accurately represent the properties of
water, particularly its dielectric constant and density, which are
critical for realistic solvation dynamics. This combination of
force field and water model ensured a high-fidelity
representation of the protein’s environment during simulations.

Postsimulation analyses were conducted to evaluate the stability
and conformational changes of the spike protein trajectories.
Root mean square deviation (RMSD) was calculated to assess
trajectory stability and deviations in atomic positions over time.
RMSD plots provided visual insights into how much the protein
structure deviated from its initial configuration, shedding light
on conformational stability. Statistical metrics, including
minimum and maximum RMSD values, SDs, and SEs, were
computed to compare the stability between wildtype and mutated
variants. In addition, the Kolmogorov-Smirnov test was applied
to determine whether mutations significantly altered the
distribution of protein conformations relative to the wildtype.
Visualization and detailed analysis of trajectories were
performed using VMD [104,110] and BIOVIA Discovery Studio
(Dassault Systèmes BIOVIA, Discovery Studio Modeling
Environment, Release 2017; Dassault Systèmes), enabling an
in-depth examination of conformational changes and
protein-water interactions. The simulations revealed dynamic
insights into how mutations influence the stability of the spike
protein, particularly with respect to conformational flexibility
and hydration patterns around active sites, as observed through
bundled SPC water models. These differences in hydration
could potentially impact enzymatic activity or antigenicity.

The methodologies used in these MD simulations, from system
setup to detailed postsimulation analysis, highlight the value of
computational approaches in complementing experimental data.
By focusing solely on the spike protein and excluding

interactions with hACE2, we obtained a clearer understanding
of the intrinsic effects of mutations on protein structure and
dynamics. These insights are vital for structure-based vaccine
design, as understanding the dynamic behavior of the spike
protein can guide the development of vaccines targeting stable,
immunogenic conformations. Ultimately, the MD simulations
adopted in this study provide a powerful lens through which
the effects of mutations on protein function can be observed in
a dynamic, physiological context, contributing to a deeper
comprehension of how mutations in the SARS-CoV-2 spike
protein may influence its behavior and interaction with the host
immune system.

Results

Graph-Theoretic Modeling Reveals Impact of Point
Mutations on SARS-CoV-2 Spike RBD
We developed a 3-level weighted hierarchical graph-theoretic
model of the SARS-CoV-2 spike RBD corresponding to chain
E (see Figure 8). The model consisted of a foundation level with
20 vertex-weighted amino acids, a middle level with 19
vertex-weighted subdomain graphs, and a top level where
subdomain graphs are consolidated into single weighted vertices.
Key features of the model included vertex connections
established using a 6-angstrom proximity threshold, subdomain
graph vertex weights based on molar mass changes between
adjacent vertices per average degree, and a virtual mutation
process applied for 5 specific mutations (K417N, N440K,
L452R, N501Y, and E484A). Mutant-specific vertex-weighted
graphs were created using I-TASSER [90] for ab initio
modeling, and new graph-theoretic molecular descriptors were
computed for mutated subdomains and applied to the top-level
graph. This approach enabled observation of both local
(subdomain) and global (entire RBD) effects of each point
mutation on the SARS-CoV-2 spike protein, facilitating
understanding of how point mutations lead to different
COVID-19 phenotypes. Hierarchical clustering analysis of
SARS-CoV-2 spike protein variants was performed in Python
using interaction data imported from a CSV file (see Multimedia
Appendix 1) via the pandas library [111]. The data matrix was
transposed to organize protein variants as rows, and clustering
was conducted with the scipy.cluster.hierarchy.linkage function
[112], applying the Euclidean distance metric and single linkage
method to determine pairwise similarities. Variant labels
included their respective mutated phenotypes for clarity. The
dendrogram was visualized using matplotlib with bold axis
labels and tick marks, and x-axis labels were rotated for
readability. The figure was rendered at 300 dpi.

Figure 9 displays the resulting dendrogram, constructed from
graph-theoretic descriptors (see Table 4 and the Methods
section), providing a visual summary of how each virtual point
mutation affects the SARS-CoV-2 spike RBD (chain E) relative
to the wildtype. This clustering diagram highlights the structural
and functional relationships among the mutated variants and
the original wildtype RBD.

Dendrogram analysis (see Figure 8) revealed varying degrees
of divergence between the wildtype and the analyzed mutations
based on Euclidean distance. The severe N501Y mutation,
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characterized by the substitution of asparagine with tyrosine at
position 501, showed the greatest divergence from the wildtype,
with an approximate Euclidean distance of 0.023. The L425R
mutation, involving the replacement of leucine with a positively
charged arginine at position 425, also exhibited a significant
difference, with a Euclidean distance of approximately 0.019.
Similarly, the E484A mutation, where glutamic acid is
substituted with alanine at position 484, demonstrated a

divergence of approximately 0.017 Euclidean distance from the
wildtype. In contrast, the K147N mutation, which replaces lysine
with asparagine at position 147 within the N-terminal domain,
was closer to the wildtype but still distinct, with an approximate
Euclidean distance of 0.007. These results underscore the
structural and functional variability introduced by these
mutations relative to the wildtype.

Figure 9. Clustering analysis of COVID-19 mutation-associated point mutations in SARS-CoV-2 receptor-binding domain. The hierarchical clustering
dendrogram of SARS-CoV-2 spike protein variants based on interaction data (Table 4). Clustering was performed using the Euclidean distance metric
and single linkage method. Each tip on the x-axis is labeled with the protein variant and its associated mutated phenotype: N501Y
(Alpha/Beta/Gamma/Omicron), L452R (Delta/Epsilon), E484A (Omicron), T478K (Delta/Omicron), K417N (Beta/Gamma), wildtype (Reference),
and N440K (Immune escape). The y-axis represents the Euclidean distance, indicating the degree of dissimilarity between variants. Both axis labels
and tick marks are displayed in bold for clarity. The dendrogram reveals that N501Y and L452R form a distinct cluster, reflecting greater divergence
from the other variants, while wildtype, K417N, and N440K group together, indicating higher similarity in their interaction profiles. This clustering
highlights the structural and functional relationships among spike protein variants and their phenotypic classifications, providing insights into how
specific mutations may influence SARS-CoV-2 spike protein network architecture. The clustering analysis was performed using Python with the
scipy.cluster.hierarchy.linkage function [111], applying the Euclidean distance metric and single linkage method to determine pairwise similarities.

Ab Initio Models Reveal Structural Alterations in
Mutated SARS-CoV-2 Spike RBD
To gain deeper insights into the impact of COVID-19–specific
mutations on the SARS-CoV-2 spike RBD (chain E) protein
conformation, ab initio models were generated using I-TASSER
[92] and visualized in Cystoscape [96]. These models provide
a comparative view of selected point mutations (N440K, E484A,
N501Y, K417N, and L452R) against the wildtype structure.
Figures 10-12 illustrate the structural changes induced by each
mutation, revealing that even a seemingly mild mutation like
E484A can significantly affect secondary structures and global
protein folding. The models demonstrate alterations in protein
folding patterns, changes in structural integrity, and
modifications to local and global conformations. These
visualizations highlight the profound impact of mutations on

the SARS-CoV-2 spike RBD, emphasizing how small changes
can lead to substantial structural rearrangements. Such
alterations may influence the virus’s infectivity, immune
evasion, and interaction with the ACE2 receptor. Notably, the
N501Y mutation shows significant local and regional changes
in the ab initio model, affecting protein folding and structural
integrity. These modifications are more pronounced when
compared to the wildtype structure, indicating that the N501Y
mutation substantially impacts the RBD’s conformation as
shown by the ab initio modeling results in Figure 11F. The
E484A mutation, despite appearing mild, demonstrates
detrimental effects on secondary structures and global protein
folding (see Figure 10A). Other mutations (N440K, K417N,
and L452R) exhibit varying degrees of impact on the RBD
structure (see Figures 10D-12), potentially influencing the spike
protein’s function and stability. These structural insights provide
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a foundation for understanding the molecular mechanisms
behind the enhanced transmissibility and potential immune
evasion of SARS-CoV-2 variants, contributing to our knowledge

of the virus’ evolution and informing future therapeutic
strategies.

Figure 10. Local and global effects of mutations E484A and L452R on the SARS-CoV-2 spike receptor-binding domain (RBD; chain E) compared to
wildtype. (A) Mutated subdomain graph G15 illustrating the mild E484A mutation. (B) Ab initio model of wildtype SARS-CoV-2 spike RBD (chain
E). (C) Ab initio model of SARS-CoV-2 spike RBD (chain E) following the mild E484A mutation. (D) Mutated subdomain graph G13 depicting the
severe L452R mutation. (E) Ab initio model of wildtype SARS-CoV-2 spike RBD (chain E). (F) Ab initio model of SARS-CoV-2 spike RBD (chain
E) after the severe L452R mutation, illustrating significant alterations in protein folding and structural integrity.
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Figure 11. Local and global effects of mutations K417N and N501Y on the SARS-CoV-2 spike receptor-binding domain (RBD; chain E) compared
to wildtype. (A) Mutated subdomain graph G10 illustrating the mild K417N mutation. (B) Ab initio model of wildtype SARS-CoV-2 spike RBD (chain
E). (C) Ab initio model of SARS-CoV-2 spike RBD (chain E) following the mild K417N mutation. (D) Mutated subdomain graph G17 depicting the
severe N501Y mutation. (E) Ab initio model of wildtype SARS-CoV-2 spike RBD (chain E). (F) Ab initio model of SARS-CoV-2 spike RBD (chain
E) after the N501Y mutation, illustrating significant alterations in protein folding and structural integrity.
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Figure 12. Local and global effects of mutation N440K on the SARS-CoV-2 spike receptor-binding domain (RBD; chain E) compared to wildtype.
(A) Mutated subdomain graph G12 illustrating the mild N440K mutation. (B) Ab initio model of wildtype SARS-CoV-2 spike RBD (chain E). (C) Ab
initio model of SARS-CoV-2 spike RBD (chain E) following the mild N440K mutation.

MD Simulation Analysis Unveils Differential Structural
Stability Between Wildtype and Mutated SARS-CoV-2
Spike Proteins
To complement our graph-theoretic and ab initio modeling
findings, we conducted MD simulations to investigate the effects
of point mutations on COVID-19 variants. These simulations
provided insights into the binding interactions and stability of
wildtype and mutated SARS-CoV-2 spike proteins in dynamic
states. Our approach aligns with recent studies that have used
MD simulations to examine the conformational behavior of
SARS-CoV-2 spike protein variants.

We utilized the WebGRO server [108], based on GROMACS
[109], to prepare modeled structures in orthorhombic simulation
boxes. The proteins were solvated with SPC water, counterions,

and 0.15 M NaCl to mimic physiological conditions. To
maintain consistency, only the spike protein and the mutated
spike proteins were used in the protein-in-water simulation
studies, mirroring the approach used in the graph-theoretic and
ab initio modeling. Energy minimization was performed using
the steepest descent integrator, followed by equilibration at 300
K and 1.1023 bar. For robustness, we conducted triplicate 50-,
100-, and 200-nanosecond simulations with varied random
sampling seed inputs. Both wildtype protein structures from
PDB and mutated variants generated via I-TASSER [92,98]
were simulated using the OPLS-AA force field and SPC/E water
models.

Postsimulation analyses focused on RMSD plots to assess
trajectory stability and atomic position deviations. Visualization
and analysis of trajectories were performed using VMD and
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BIOVIA Discovery Studio. This comprehensive approach
enabled detailed comparisons of protein-water interactions and
stability across variants, providing valuable insights into the
effects of mutations on protein behavior in dynamic

environments. As illustrated in Figure 13, RMSD analysis
revealed differential structural stability between wildtype and
mutated SARS-CoV-2 spike proteins.
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Figure 13. Molecular dynamics simulations reveal timescale-dependent differential structural stability of wildtype and mutated SARS-CoV-2 spike
proteins. Root mean square deviation (RMSD) analysis was performed on wildtype (black) and mutated spike proteins—E484A (green), K417N
(lavender), L452R (pink), N440K (olive), and N501Y (indigo)—across short (50 ns), intermediate (100 ns), and long (200 ns) timescales. Each panel

displays the RMSD trajectory for wildtype and a specific mutant at a given timescale: E484A (green) in panels (A) 50 ns (RMSD range 4.00×10-7 to

0.4477065; mean 0.2435, standard error of the mean [SEM] 0.000727), (B) 100 ns (RMSD range 4.00×10-7 to 0.4236228; mean 0.3108, SEM 0.000896),

and (C) 200 ns (RMSD range 4.00×10-7 to 0.4477065; mean 0.2435, SEM 0.000727); K417N (lavender) in panels (D) 50 ns (RMSD range 5.00×10-7

to 0.3620131; mean 0.2492, SEM 0.000624), (E) 100 ns (RMSD range 4.00×10-7 to 0.4897364; mean 0.3362, SEM 0.000897), and (F) 200 ns (RMSD

range 5.00×10-7 to 0.3620131; mean 0.2492, SEM 0.000624); L452R (pink) in panels (G) 50 ns (mean 0.3224, SEM 0.000984), (H) 100 ns (RMSD

range 5.00×10-7 to 0.561134; mean 0.4151, SEM 0.000957), and (I) 200 ns (mean 0.3224, SEM 0.000984); N440K (olive) in panels (J) 50 ns (RMSD

range 5.00×10-7 to 0.3220472; mean 0.2230, SEM 0.00048), (K) 100 ns (RMSD range 1.10×10–6 to 0.3744204; mean 0.2123, SEM 0.000862), and

(L) 200 ns (RMSD range 4.00×10-7 to 0.367109; mean 0.2796, SEM 0.000353); N501Y (indigo) in panels (M) 50 ns (RMSD range 4.00×10-7 to

0.320323; mean 0.2279, SEM 0.000559), (N) 100 ns (RMSD range 3.00×10-7 to 0.3636647; mean 0.2529, SEM 0.000484), and (O) 200 ns (RMSD

range 4.00×10-7 to 0.320323; mean 0.2279, SEM 0.000559); and wildtype (black) with RMSD values of 50 ns (RMSD range 3.00×10-7 to 0.284101;

mean 0.1838, SEM 0.000381), 100 ns (RMSD range 3.00×10-7 to 0.3198064; mean 0.2351, SEM 0.000495), and 200 ns (RMSD range 3.00×10-7 to
0.284101; mean 0.1838, SEM 0.000381). The 2-sample Kolmogorov-Smirnov tests confirmed significant conformational deviations for all mutations

compared to wildtype (P<2.2×10–16; α=.05), except for N440K (P=1.43×10–232) and N501Y (P=1.18×10–64) at the 100-ns timescale. L452R consistently
exhibited the highest RMSD means among all mutants, especially at the intermediate timescale, while N440K showed the lowest RMSD mean among

mutants at 100 ns. For N440K at 200 ns, the RMSD ranged from 4.00×10-7 to 0.367109, with a mean of 0.2796 (SEM 0.000353) and a

Kolmogorov-Smirnov test P value of 2.20×10–16, indicating significant structural deviation from wildtype. These results highlight mutation and
timescale-dependent destabilization of the spike protein structure.
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In Figure 13, RMSD analysis shows timescale-dependent
structural stability for wildtype and mutated SARS-CoV-2 spike
proteins. The wildtype (black) consistently exhibited stability

at 50 nanoseconds (range 3×10–7 to 0.2841; mean 0.1838,
standard error of the mean [SEM] 0.000381), 100 nanoseconds

(range 3×10–7 to 0.3198; mean 0.2351, SEM 0.000495), and

200 nanoseconds (range 3×10–7 to 0.2841; mean 0.1838, SEM
0.000381). Mutants showed increased instability: E484A (green)

had 50 nanoseconds (range 4×10–7 to 0.4477; mean 0.2435,

SEM 0.000727), 100 nanoseconds (range 4×10–7 to 0.4236;
mean 0.3108, SEM 0.000896), and 200 nanoseconds (range

4×10–7 to 0.4477; mean 0.2435, SEM 0.000727); K417N

(lavender) had 50 nanoseconds (range 5×10–7 to 0.3620; mean

0.2492, SEM 0.000624), 100 nanoseconds (range 4×10–7 to
0.4897; mean 0.3362, SEM 0.000897), and 200 nanoseconds

(range 5×10–7 to 0.3620; mean 0.2492, SEM 0.000624); L452R
(pink) showed a mean of 0.3224 (SEM 0.000984) at 50
nanoseconds and 200 nanoseconds, and at 100 nanoseconds
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(range 5×10–7 to 0.5611; mean 0.4151, SEM 0.000957); N440K

(olive) had 50 nanoseconds (range 5×10–7 to 0.3220; mean

0.2230, SEM 0.000480), 100 nanoseconds (range 1.10×10–6 to
0.3744; mean 0.2123, SEM 0.000862), and 200 nanoseconds

(range 4×10–7 to 0.3671; mean 0.2796, SEM 0.000353, SD
0.02494), with the Kolmogorov-Smirnov test confirming
significant deviation from wildtype at 200 nanoseconds

(P=2.20×10–16); N501Y (indigo) had 50 nanoseconds (range

4×10–7 to 0.3203; mean 0.2279, SEM 0.000559), 100

nanoseconds (range 3×10–7 to 0.3637; mean 0.2529, SEM

0.000484), and 200 nanoseconds (range 4×10–7 to 0.3203; mean
0.2279, SEM 0.000559). Statistical tests confirmed significant
conformational deviation for most mutations compared to

wildtype (P<2.2×10–16; α=.05), except for N440K

(P=1.43×10–23) and N501Y (P=1.18×10–64) at 100 ns. L452R
exhibited the highest mean RMSD especially at 100
nanoseconds, while N440K showed the lowest among mutants
at 100 nanoseconds, highlighting mutation- and
timescale-dependent destabilization. Figure 14 presents
corresponding RMSD trajectories.

Figure 14. Overlaid root mean square deviation (RMSD) plots illustrate the conformational stability of wildtype (black) and mutated SARS-CoV-2
spike proteins—E484A (green), K417N (lavender), L452R (pink), N440K (olive), and N501Y (indigo)—across molecular dynamics simulation timescales
of 50 ns, 100 ns, and 200 ns. At 50 ns, mean (standard error of the mean [SEM]) values for WT, E484A, K417N, L452R, N440K, and N501Y were
0.1838 (SEM 0.000381), 0.2435 (SEM 0.000727), 0.2492 (SEM 0.000624), 0.3224 (SEM 0.000984), 0.2230 (SEM 0.000480), and 0.2279 (SEM
0.000559) Å, respectively. At 100 ns, values were mean 0.2351 (SEM 0.000495) for WT, mean 0.3108 (SEM 0.000896) for E484A, mean 0.3362 (SEM
0.000897) for K417N, mean 0.4151 (SEM 0.000957) for L452R, mean 0.2123 (SEM 0.000862) for N440K, and mean 0.2529 (SEM 0.000484) for
N501Y. At 200 ns, WT, E484A, K417N, L452R, N440K, and N501Y had mean (SEM) values of 0.1838 (SEM 0.000381), 0.2435 (SEM 0.000727),
0.2492 (SEM 0.000624), 0.3224 (SEM 0.000984), 0.2796 (SEM 0.000353, SD 0.02494), and 0.2279 (SEM 0.000559) Å, respectively. L452R demonstrates
the highest RMSD means across all timepoints, indicating pronounced instability, while N440K shows the lowest mean among mutants at 100 ns but
increased deviation at 200 ns. These overlaid RMSD trajectories highlight mutation- and timescale-dependent conformational changes in the spike
protein structure.

In Figure 13, RMSD analysis shows timescale-dependent
structural stability for wildtype and mutated SARS-CoV-2 spike
proteins. The wildtype (black) consistently exhibited stability

at 50 nanoseconds (range 3×10–7 to 0.2841; mean 0.1838, SEM

0.000381), 100 nanoseconds (range 3×10–7 to 0.3198; mean

0.2351, SEM 0.000495), and 200 nanoseconds (range 3×10–7

to 0.2841; mean 0.1838, SEM 0.000381). Mutants showed
increased instability: E484A (green) had 50 nanoseconds (range

4×10–7 to 0.4477; mean 0.2435, SEM 0.000727), 100

nanoseconds (range 4×10–7 to 0.4236; mean 0.3108, SEM

0.000896), and 200 nanoseconds (range 4×10–7 to 0.4477; mean
0.2435, SEM 0.000727); K417N (lavender) had 50 nanoseconds

(range 5×10–7 to 0.3620; mean 0.2492, SEM 0.000624), 100

nanoseconds (range 4×10–7 to 0.4897; mean 0.3362, SEM

0.000897), and 200 nanoseconds (range 5×10–7 to 0.3620; mean
0.2492, SEM 0.000624); L452R (pink) showed a mean of 0.3224
(SEM 0.000984) at 50 nanoseconds and 200 nanoseconds, and

at 100 ns (range 5×10–7 to 0.5611; mean 0.4151, SEM

0.000957); N440K (olive) had 50 nanoseconds (range 5×10–7

to 0.3220; mean 0.2230, SEM 0.000480), 100 nanoseconds

(range 1.10×10–6 to 0.3744; mean 0.2123, SEM 0.000862), and

200 nanoseconds (range 4×10–7 to 0.3671; mean 0.2796, SEM
0.000353, SD 0.02494), with the Kolmogorov-Smirnov test

confirming significant deviation from wildtype at 200

nanoseconds (P=2.20×10–16); N501Y (indigo) had 50

nanoseconds (range 4×10–7 to 0.3203; mean 0.2279, SEM

0.000559), 100 nanoseconds (range 3×10–7 to 0.3637; mean

0.2529, SEM 0.000484), and 200 nanoseconds (range 4×10–7

to 0.3203; mean 0.2279, SEM 0.000559). Statistical tests
confirmed significant conformational deviation for most

mutations compared to wildtype (P<2.2×10–16; α=.05), except

for N440K (P=1.43×10–2) and N501Y (P=1.18×10–64) at 100
nanoseconds. L452R exhibited the highest mean RMSD
especially at 100 nanoseconds, while N440K showed the lowest
among mutants at 100 nanoseconds, highlighting mutation- and
timescale-dependent destabilization; Figure 14 presents
corresponding RMSD trajectories.

Discussion

Principal Findings
The dendrogram analysis (see Figure 9) highlights significant
structural and functional differences between several mutations
and the wildtype SARS-CoV-2 spike protein, particularly the
N501Y, L452R, E484A, and K147N mutations. These
differences, quantified by Euclidean distances from the wildtype,
reflect the profound alterations induced by these mutations. The
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N501Y mutation (asparagine to tyrosine at position 501) and
L452R mutation (leucine to arginine at position 452) exhibit
substantial deviations from the wildtype, with Euclidean
distances of approximately 0.023 and 0.019, respectively. These
mutations significantly impact the spike RBD, enhancing
infectivity and immune evasion. As illustrated in Figure 8, these
mutations are distinctly clustered within the dendrogram,
highlighting their significant divergence from the wildtype. The
notable Euclidean distances (N501Y: 0.023; L452R: 0.019)
indicate substantial structural alterations, which correspond to
their clinical relevance in enhancing viral transmission and
facilitating immune escape. Specifically, the N501Y mutation
increases binding affinity to the hACE2 receptor, enhancing
viral transmissibility and infectivity. It has been linked to VOCs,
such as Alpha, Beta, and Gamma, and enables infection across
a broader range of hosts, including mice. This mutation
represents a critical adaptive change in SARS-CoV-2 evolution,
underscoring its role in the pandemic [28,100]. Similarly, the
L452R mutation introduces a positively charged arginine in
place of leucine within a hydrophobic region of the RBD. This
disrupts local hydrophobic interactions and destabilizes the
protein structure, contributing to immune evasion and enhanced
infectivity. The dendrogram clustering (see Figure 8)
underscores its significant impact, consistent with clinical
observations of resistance to neutralizing antibodies and
increased viral transmission [101,102].

The E484A mutation (glutamic acid to alanine at position 484)
and the K147N mutation (lysine to asparagine at position 147)
also exhibit deviations from the wildtype, with Euclidean
distances of approximately 0.017 and 0.0075, respectively.
Although these mutations show less pronounced structural
alterations compared to N501Y and L452R, as indicated by
their Euclidean distances in Figure 9, they still represent
significant changes in protein structure and function, as
illustrated in Figure 9. Research has demonstrated that the
E484A mutation impairs antibody recognition, enhancing
immune evasion [103]. Similarly, the K147N mutation, located
in the N-terminal domain, reduces neutralization by antibodies
[104,105]. Although their effects are milder compared to N501Y
and L452R, these findings highlight that even seemingly minor
mutations can induce important structural changes with
functional consequences.

Our study used I-TASSER [90] models and Cytoscape
visualizations to investigate structural changes in mutated RBDs
of the SARS-CoV-2 spike protein. The analysis revealed
significant alterations in the mutated RBDs compared to the
wildtype, both at the local mutation sites and in the overall RBD
conformation. These findings suggest potential long-range
effects on protein dynamics. Our visualizations highlighted
localized changes in protein folding near mutation sites and
potential impacts on the overall stability and flexibility of the
RBD. These structural changes provide a molecular basis for
understanding the observed impacts on binding affinity and
dynamics of the spike protein. A prime example of these effects
is the N501Y mutation in the SARS-CoV-2 spike RBD, known
to enhance ACE2 receptor binding. Our study showed that this
mutation induces significant local and regional changes in the
ab initio model of chain E. Specifically, N501Y leads to

substantial alterations in protein folding and notable changes
in structural integrity. These modifications are more pronounced
when compared to the wildtype structure, indicating that the
N501Y mutation substantially impacts the RBD’s conformation.
Such structural changes suggest that this mutation may have
considerable implications for the RBD’s function, potentially
affecting viral behavior and interactions with host cells.

In addition, our research, as demonstrated in Figure 10, further
illustrates that even small local perturbations can significantly
affect the overall structure of the spike protein’s RBD. Both
L452R and N501Y mutations disrupt protein folding and
secondary structures of the SARS-CoV-2 spike protein RBD,
as evident from our results in Figures 10-12. Consistent with
research findings, the L452R mutation, at a local level,
introduces a positively charged residue that alters hydrophobic
interactions and stability. On a global scale, it enhances spike
protein stability, promotes viral fusion with host membranes,
and strengthens ACE2 receptor binding [105]. Similarly, the
N501Y mutation is known to form additional hydrogen bonds
and π-π interactions with ACE2 locally while globally shifting
the spike protein into an “open” prefusion conformation that
facilitates receptor engagement. Collectively, these mutations
increase ACE2-binding affinity, enhance viral infectivity and
transmissibility, and contribute to immune evasion by reducing
neutralizing antibody recognition.

Conclusively, our ab initio models offer a valuable structural
framework for interpreting experimental data on these mutations.
They also provide hypotheses for future investigations into their
functional consequences, such as altered receptor binding or
antibody recognition. This research contributes significantly to
our understanding of how SARS-CoV-2 mutations affect the
virus’ structure and function, potentially informing future
strategies for treatment and prevention.

To gain further insights into the structural stability and dynamic
behavior of both wildtype and mutated spike proteins, we
conducted 3 sets of MD simulation studies at 50, 100, and 200
nanoseconds. Our results from MD simulations presented in
Figure 13 provide a foundational understanding of short-,
intermediate-, and long-term dynamics and structural changes
for both wildtype and mutated spike proteins. All simulations
offered valuable additional insights into conformational changes
and stability patterns, demonstrating the high levels of instability
of the mutated spike proteins when compared to the wildtype,
thus providing a more robust independent confirmation of our
graph-theoretic and ab initio model promising predictive analytic
tools for complex networks and systems biology. These MD
studies complemented our static structural analyses, offering a
dynamic perspective on the effects of mutations on the spike
protein’s behavior over time. Figure 13 displays the overlaid
RMSD plots comparing the structural stability of wildtype
(black) and mutated SARS-CoV-2 spike proteins (E484A: green;
L452R: pink; K417N: lavender) across MD simulation
timescales of 50 nanoseconds, 100 nanoseconds, and 200
nanoseconds. For each panel, mean RMSD values are indicated:
at 50 ns, wildtype (0.1838, SEM 0.000381), E484A (0.2435,
SEM 0.000727), L452R (0.3224, SEM 0.000984), K417N
(0.2492, SEM 0.000624); at 100 ns, wildtype (0.2351, SEM
0.000495), E484A (0.3108, SEM 0.000896), L452R (0.4151,
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SEM 0.000957), K417N (0.3362, SEM 0.000897); at 200 ns,
wildtype (0.1838, SEM 0.000381), E484A (0.2435, SEM
0.000727), L452R (0.3224, SEM 0.000984), K417N (0.2492,
SEM 0.000624). The plot demonstrates the minimal fluctuation
and high stability of the wildtype protein across all timescales,
while mutants—most notably L452R—show significantly higher
RMSD means, reflecting greater conformational variability and
instability, especially at intermediate and longer durations.

To further validate our initial findings, we conducted extended
MD simulations up to 100 nanoseconds and 200 ns, which
revealed significant differences in structural stability for most
mutant structures compared to the wildtype across these
timescales, highlighting the mutation- and timescale-dependent
destabilization of the spike protein structure. E484A, K417N,
and L452R mutations consistently displayed higher RMSD
values, indicating increased instability compared to the wildtype,
with L452R demonstrating the highest instability among severe
mutations. In contrast, the N440K mutation showed lower
RMSD means, suggesting milder effects on protein stability.
These findings indicate that mutations can substantially impact
the structural dynamics of the spike protein, potentially affecting
its function and interactions with host receptors. The observed
changes in structural stability across different mutations correlate
with clinical observations, suggesting a mechanistic link
between altered protein dynamics and enhanced viral properties
[105,106,109,110]. Specifically, these structural changes may
contribute to the increased infectivity, immune evasion
capabilities, and resistance to therapeutic antibodies observed
in variants carrying these mutations. This alignment between
MD simulations and clinical data underscores the importance
of studying protein structural changes in understanding and
predicting the behavior of SARS-CoV-2 variants
[105,106,109,110].

The overlaid RMSD plot for the N440K (olive) and N501Y
(indigo) variants compares their conformational stability with
the wildtype spike protein across 50-nanosecond,
100-nanosecond, and 200-nanosecond simulations. For N440K,
mean values were 0.2230 (SEM 0.000480) at 50 nanoseconds,
0.2123 (SEM 0.000862) at 100 nanoseconds (the lowest mean
among all mutants at this timescale), and 0.2796 (SEM
0.000353) at 200 nanoseconds (SD 0.02494), with increasing
mean and range at longer duration signifying greater fluctuation;
at 200 nanoseconds, N440K displayed significant deviation

from wildtype (Kolmogorov-Smirnov P=2.20×10–16). The
N501Y mutation yielded mean RMSDs of 0.2279 (SEM
0.000559) at both 50 nanoseconds and 200 nanoseconds, and
0.2529 (SEM 0.000484) at 100 nanoseconds, indicating
persistent but moderate structural alteration relative to wildtype.
Statistical analyses confirmed significant conformational

deviations for both mutations across timescales (P<2.2×10–16

at α=.05), except for N440K (P=1.43×10–23) and N501Y

(P=1.18×10–64) at 100 nanoseconds, where deviations were less
pronounced, as represented in Figures 13 and 14.

To further validate our initial findings, we conducted extended
MD simulations up to 100 nanoseconds and 200 nanoseconds,
which revealed significant differences in structural stability for
most mutant structures compared to the wildtype across these

timescales, highlighting the mutation- and timescale-dependent
destabilization of the spike protein structure. E484A, K417N,
and L452R mutations consistently displayed higher RMSD
values, indicating increased instability compared to the wildtype,
with L452R demonstrating the highest instability among severe
mutations. In contrast, the N440K mutation showed lower
RMSD means, suggesting milder effects on protein stability.
These findings indicate that mutations can substantially impact
the structural dynamics of the spike protein, potentially affecting
its function and interactions with host receptors. The observed
changes in structural stability across different mutations correlate
with clinical observations, suggesting a mechanistic link
between altered protein dynamics and enhanced viral properties
[105,106,109,110]. Specifically, these structural changes may
contribute to the increased infectivity, immune evasion
capabilities, and resistance to therapeutic antibodies observed
in variants carrying these mutations. This alignment between
MD simulations and clinical data underscores the importance
of studying protein structural changes in understanding and
predicting the behavior of SARS-CoV-2 variants
[105,106,109,110].

Comparison With Previous Work
A few studies have applied graph-theoretic models to investigate
the effects of point mutations on protein structures and their
associated disease phenotypes [84,85,107]. This research on
SARS-CoV-2 spike protein mutations, particularly N501Y,
L452R, E484A, and K147N, provides a detailed computational
molecular analysis of the structural and functional alterations
induced by these mutations. Specifically, it highlights the impact
of mutations on the RBD of the spike protein, quantified using
Euclidean distances and MD simulations. For instance, the
N501Y and L452R mutations significantly disrupt protein
folding, enhance ACE2 binding affinity, and contribute to
immune evasion [21,28,29,41]. These findings align with
previous studies like Knisley et al’s [113] graph-theoretic
analysis of cystic fibrosis mutations in NBD1 of CFTR proteins,
which quantified local and global structural changes caused by
mutations. However, unlike previous studies that relied solely
on graph-theoretic metrics to model structural perturbations in
CFTR proteins [22,84,85,107-109], this research integrated MD
simulations to compute RMSD values for mutated spike proteins
in comparison to the wildtype. This approach reveals varying
degrees of instability among the analyzed mutations, providing
insights into mutation-induced conformational dynamics absent
in earlier works. Similarly, while Kakraba and Knisley [60,85]
focused on CFTR mutations in NBD2, and Netsey et al [61]
examined point mutations like Glu6Val in sickle cell
hemoglobin [85], this study uniquely addresses structural
changes in SARS-CoV-2 spike protein RBD mutations. By
combining quantitative approaches with molecular-level
dynamics, this research offers additional strengths over previous
methodologies that primarily used graph-theoretic models to
analyze mutation effects [84,85,107]. Together, these
complementary studies underscore the diverse applications of
computational methods in unraveling mutation-driven
phenomena across biological systems. While previous research
has addressed distinct biological contexts, such as cystic fibrosis
and SCD, this study emphasizes the importance of integrating
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multifaceted approaches, such as ab initio modeling and MD
simulations with graph-theoretic modeling, to achieve a deeper
understanding of mutation-induced structural and functional
changes.

Limitations and Future Directions
Despite these valuable insights from graph-theoretic analysis
and MD simulations, certain limitations remain with this study.
Specifically, our graph-based model did not fully capture the
impact of mutations like N440K—associated with increased
infectivity and immune evasion—as it may require more
comprehensive molecular descriptors [107,108]. To address
this concern, future research should aim to refine these models
for better representation of such mutations. In addition, other
mutations like S477N and T478K might be included in future
studies. Also, future studies can use our graph-theoretic
modeling approach to predict point mutations with potentially
devastating consequences by analyzing changes in vertex
weights and combinatorial descriptors in protein structure
graphs, thereby providing a valuable tool for disease surveillance
and early intervention strategies. Another limitation of this study
is that our MD simulations focus solely on the isolated spike
protein (chain E) of SARS-CoV-2, without considering its
interaction with ACE2 or other ligands. As a result, we were
unable to assess the direct impact of mutations on binding
affinity or calculate binding energies, such as DeltaG, for the
spike-ACE2 complex. Future studies could address this
limitation by conducting molecular simulations of the spike
protein bound to ACE2, which would provide deeper insights
into how specific mutations affect their interaction and binding
dynamics. More so, incorporating transmembrane domains and
membrane anchoring in such models could further enhance the
physiological relevance of the findings. We recognize that the
appropriateness and impact of our chosen vertex-weighting
scheme (ΔMd per degree) would benefit from systematic
benchmarking against more established alternatives, such as

hydrophobicity scores, residue centrality measures, and
B-factor–based weights. While a comprehensive, side-by-side
comparison of these metrics is beyond the scope of the present
dataset and analysis, we acknowledge this as a limitation and
a key opportunity for future work. Moving forward, we plan to
undertake such comparative evaluations to more rigorously
justify the selection of our weighting strategy. We also
encourage others in the field to explore and refine these
benchmarking efforts to better elucidate the strengths and
limitations of alternative vertex-weighting methodologies within
graph-theoretic modeling of protein mutation effects.

Conclusions
This study provides a detailed computational analysis of key
SARS-CoV-2 spike protein mutations, including N501Y,
L452R, E484A, and K147N, and their structural and functional
impacts. Using dendrogram clustering, Euclidean distance
measurements, and MD simulations, the research highlights
how these mutations disrupt protein stability and alter RBD.
Mutations, such as N501Y and L452R, significantly enhance
ACE2 binding affinity, viral transmissibility, and immune
evasion, while even milder mutations like E484A and K147N
contribute to structural perturbations and reduced antibody
recognition. RMSD analysis revealed varying degrees of
instability among mutated proteins, with L452R causing the
greatest disruption. These findings align with clinical
observations of increased infectivity and immune resistance
associated with these mutations. While the study underscores
the usability of computational models in understanding
mutation-driven phenomena, it also highlights areas for future
research, such as refining models to better capture the effects
of additional mutations like S477N and T478K.

Overall, this research advances our understanding of
SARS-CoV-2 evolution and provides critical insights for
monitoring viral mutations and developing effective therapeutic
strategies.
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Abstract

Background: Cancer is one of the leading causes of disease burden globally, and early and accurate diagnosis is crucial for
effective treatment. This study presents a deep learning–based model designed to classify 5 common types of cancer in Saudi
Arabia: breast, colorectal, thyroid, non-Hodgkin lymphoma, and corpus uteri.

Objective: This study aimed to evaluate whether integrating RNA sequencing, somatic mutation, and DNA methylation profiles
within a stacking deep learning ensemble improves cancer type classification accuracy relative to the current state-of-the-art
multiomics models.

Methods: Using a stacking ensemble learning approach, our model integrates 5 well-established methods: support vector
machine, k-nearest neighbors, artificial neural network, convolutional neural network, and random forest. The methodology
involves 2 main stages: data preprocessing (including normalization and feature extraction) and ensemble stacking classification.
We prepared the data before applying the stacking model.

Results: The stacking ensemble model achieved 98% accuracy with multiomics versus 96% using RNA sequencing and
methylation individually, 81% using somatic mutation data, suggesting that multiomics data can be used for diagnosis in primary
care settings. The models used in ensemble learning are among the most widely used in cancer classification research. Their
prevalent use in previous studies underscores their effectiveness and flexibility, enhancing the performance of multiomics data
integration.

Conclusions: This study highlights the importance of advanced machine learning techniques in improving cancer detection and
prognosis, contributing valuable insights by applying ensemble learning to integrate multiomics data for more effective cancer
classification.

(JMIR Bioinform Biotech 2025;6:e70709)   doi:10.2196/70709
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deep learning; ensemble learning; cancer classification; omics data; stacking ensemble

Introduction

Cancer is a complex worldwide health problem associated with
high mortality [1]. Recent years have seen the use of a variety
of machine learning techniques applied to high-throughput
sequencing technology, which has advanced the classification
of cancers based on omics data and offered a promising future
for precise treatment choices.

Omics data provide a thorough understanding of biological
systems, facilitating research into disease pathways, molecular
causes, and ecological dynamics. Omics comprises the following
fields: metagenomics (eg, microbial genomes), proteomics (eg,
protein abundances), metabolomics (eg, small molecule
concentrations), epigenomics (eg, DNA methylation patterns),
and genomics (eg, DNA sequences and mutations) [2]. RNA
sequencing is one type of omics data and is a powerful

sequencing-based method that enables researchers to discover,
characterize, and quantify RNA transcripts across the entire
transcriptome [3]. RNA sequencing can tell us which genes are
turned on in the cell, their expression levels, and at what time
they are turned on or off [4]. This allows scientists to better
understand cell biology and evaluate changes that might indicate
disease. These data are characterized as high-throughput and
high-dimensional [5]. Methylation, an epigenetic process
involving the addition of methyl groups to DNA, plays a vital
role in gene expression regulation [6]. Aberrant methylation
patterns are pervasive in human cancers, impacting
carcinogenesis stages and serving as potential biomarkers for
cancer diagnosis and prognosis [7,8]. A somatic mutation is a
permanent change that can arise naturally or be brought about
by environmental influences in the DNA sequence of a gene or
chromosome. It may have an impact on the structure or function
of proteins. In cancer research, they are essential markers that
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shed light on the genetic causes of carcinogenesis and inform
the creation of patient-specific targeted therapy [9].

Studies have shown that while single-genome research has
yielded significant results, integrating multiple omics can
enhance our understanding of diseases and provide patients with
better treatment options. Therefore, integrating data from
multiple omics, rather than using single-omic techniques, may
provide a better understanding of biological systems and the
causes of diseases. This integration improves prediction
accuracy and facilitates more efficient identification of
therapeutic targets [10,11].

Dealing with omics data poses several challenges, one of which
is that sequencing data are high-dimensional. Second, class
imbalance in patient data will reduce the model’s performance.
The third challenge is that the number of patients in the study
is still relatively small, which may cause overfitting problems
[12]. Based on these challenges, there is a need for development
and contribution in this field, including the development of
models that can successfully distinguish between types of cancer
while considering the 3 challenges.

Recent studies on the analysis of critical data for cancer
disorders have used a variety of machine learning strategies,
including the multilayer perceptron [13-16]. The multilayer
perceptron is a 3-layer system that consists of an input layer,
an output layer, and a hidden layer positioned in the middle. A
convolutional neural network (CNN) [17,18] is another kind of
neural network that is used. It functions similarly to a
feed-forward neural network and consists of a convolutional
layer that processes the input and outputs the result to the next
layer. They also used random forest (RF) [13,19], which is a
technique that involves training a large number of decision trees.
The final output of the RF is the class that the majority of the
trees select. Deep neural architectures for classification have
also been used in [18,20,21]. In addition, the support vector
machine (SVM) and k-nearest neighbors (KNN), which are
typically used for regression and classification, are commonly
applied in this field.

Working with omics data presents several challenges, such as
overfitting and class imbalance, which we outline below, along
with an overview of how previous work has addressed them.
Overfitting is common due to the limited amount of data, often
resulting in lower model performance. The model’s accuracy
is directly influenced by the amount of data used. This issue
has been noted in several studies where models are excessively

trained to fit the training examples. Upon review, some papers
overlooked this issue, while others addressed it through
approaches such as regularization, cross-validation, and dropout
techniques. Class imbalance is another significant issue in this
type of data, affecting model training by biasing it toward the
class with more data. Summarizing the methods for dealing
with this problem involves 2 main approaches. First,
oversampling techniques such as SMOTE (Synthetic Minority
Oversampling Technique) and undersampling methods such as
downsampling are used to balance class distribution in the
dataset. Second, another effective strategy is to use ensemble
learning, where different models are trained on either different
subsets of data or using various algorithms, pooling their
predictions for improved overall performance. These methods
collectively aim to address the challenges posed by class
imbalance in data-driven tasks such as cancer classification
using omics data.

The model proposed in this paper uses ensemble learning of 5
common models to classify the 5 most common types of cancer
in the Kingdom of Saudi Arabia using 3 types of omics data.
The objective is to investigate whether the model’s classification
accuracy improves upon integrating multiomics data into our
stacking model, which combines 5 of the most popular methods
in this field.

Methods

Overview
Our proposed model presents a classification of the 5 most
common types in the Kingdom of Saudi Arabia, which are
breast, colorectal, thyroid, non-Hodgkin lymphoma, and corpus
uteri [22], by using deep learning, which in turn extracts features
that are believed to have an important role. The model was
designed using stacking ensemble learning as shown in Figure
1, which goes through 2 phases: a preprocessing phase that
includes normalization and feature extraction (FE), and a
classification phase using an ensemble stacking model. Data
entered the preprocessing phase, and the output was then
directed to the stacking model. We have performed our
experiments in Python 3.10 (Python Software Foundation) on
the Aziz Supercomputer of King Abdulaziz University, which
is the second fastest supercomputer in the Middle East and North
Africa region. The following sections explain how the proposed
model works, starting with data collection, followed by
preprocessing, and ending with the stacking model.
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Figure 1. Methodology of the proposed model. ANN: artificial neural network; CNN: convolutional neural network; FE: feature extraction; KNN:
k-nearest neighbors; RF: random forest; SVM: support vector machine; TPM: transcripts per million.

Data Collection and Preprocessing
For RNA sequencing data in this investigation, we used The
Cancer Genome Atlas (TCGA) dataset, which is openly
accessible to researchers. TCGA comprises approximately
20,000 primary cancer and matched normal samples across 33
cancer types, including the 5 cancer types addressed in our work.
Its main goal is to provide scientists with information to improve
cancer detection, treatment, and prevention [23]. Furthermore,
somatic mutation and methylation data were obtained from the
publicly accessible LinkedOmics dataset, which includes

multiomics data from all 32 TCGA cancer types and 10 Clinical
Proteomic Tumor Analysis Consortium (CPTAC) cohorts [24].

Figure 2 shows a screenshot of the data types. These are tabular
data, with columns representing genes and rows representing
cases that are infected by cancer. In Figure 2A, RNA sequencing
data capture gene expression levels as continuous values. In
Figure 2B, somatic mutation data are sparse and binary (0 or
1), indicating the presence of genomic alterations. In Figure 2C,
methylation data provide continuous epigenetic information
reflecting gene regulation patterns, with values ranging from
−1 to 1.

Figure 2. Show screenshots of the data types: (A) RNA sequencing, (B) somatic mutations, and (C) methylation.

Initially, the data underwent extensive cleaning to ensure the
integrity of the model by identifying and removing 7% of cases
with missing or duplicate values. Table 1 describes the number
of cases of the 5 types of cancer after preprocessing. Regarding

RNA sequencing data, preparation is required before use to
provide a precise model evaluation. Thus, 2 processes were
carried out in order to preprocess the data: normalization and
Feature Extraction (FE).
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Table . Show the number of samples in each cancer type after preprocessing.

MethylationSomatic mutationRNA sequencingAbbreviationCancer type

7849761223BRCAaBreast

394490521COADbColorectal

504496568THCAcThyroid

288240481NHLdNon-Hodgkin lymphoma

432249587UCECeCorpus uteri

aBRCA: breast invasive carcinoma.
bCOAD: colon adenocarcinoma.
cTHCA: thyroid carcinoma.
dNHL: non-Hodgkin lymphoma.
eUCEC: uterine corpus endometrial carcinoma.

Next, for the normalization step, we used the transcripts per
million method to eliminate systematic experimental bias and
technical variation while maintaining biodiversity. In addition,
it can reduce the bias resulting from the choice of technique
used and the conditions tested, or from the experimental
procedure, and it can reduce the variance resulting from natural
variation and measurement precision [25]. Transcripts per
million can be calculated by equation 1 and should be read as
“for every 1,000,000 RNA molecules in the RNA-seq sample,
x came from this gene/transcript” [26].

(1)TPM=106×reads mapped to transcript / transcript lengthsum (reads mapped to transcript / transcript length)

Feature Extraction
RNA sequencing data are high-dimensional. Therefore, to reduce
the dimensionality, we use an autoencoder technique based on
the results of a study [27] that concluded that autoencoders
perform effectively while preserving essential biological
properties, allowing for better visualization and interpretation
of complex data structures. The architecture of the autoencoder

model is composed of an encoder, a code, and a decoder. The
encoder compresses the input (features), and the decoder
attempts to recreate the input (features) from the compressed
version provided by the encoder. The autoencoder model has 5
dense layers, each with 500 nodes and a rectified linear unit
(ReLU) activation function. A dropout of 0.3 was applied to
handle the overfitting.

Methods for Handling Class Imbalances
In particular, for classes with tiny sample sizes, imbalanced
class sizes in the dataset may result in subpar prediction
accuracy. Downsampling and SMOTE are 2 methods used to
address class imbalances and enhance model performance [28].
In the study by Dittman et al [29], researchers tried class
oversampling and class undersampling; then, after evaluating
the data, they concluded that undersampling has better results
than the oversampling method. Therefore, we decided to apply
the downsampling method for the data used in this paper and
verified that the data were free of duplicates and then divided
into 80% training and 20% test data (Figure 3).
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Figure 3. Downsampling for data. NHL had 481 cases in RNA-seq data; 80% (385 cases) were allocated for training and 20% (96 cases) for testing.
Somatic mutation types were downsampled to 80% (192 cases) for training and 20% (48 cases) for testing. Methylation data followed suit, with 80%
(230 cases) and 20% (58 cases) for training and testing, respectively. BRCA: breast invasive carcinoma; COAD: colon adenocarcinoma; NHL:
non-Hodgkin lymphoma; RNA-seq: RNA sequencing; THCA: thyroid carcinoma; UCEC: uterine corpus endometrial carcinoma.

In this dataset, the smallest class (ie, non-Hodgkin lymphoma)
included 481 cases in the RNA sequencing data. To balance the
dataset, 481 cases were randomly selected from each of the
other classes. This resulted in 80% (385 cases) used for training
and 20% (96 cases) for testing. For somatic mutations data,
each of the 5 types was downsampled to 80% (192 cases) for
training and 20% (48 cases) for testing. Similarly, for
methylation data, 80% (230 cases) were assigned for training
and 20% (58 cases) for testing.

Stacking Ensemble Model
Stacking builds a model with improved performance by training
multiple models to come up with the best combination of
predictions from these models. The model structure consists of
5 base models and a meta-model that collects the predictions
of the base models.

The hyperparameters of each model were described using
GridSearchCV (scikit-learn developers), providing a
comprehensive configuration for testing and optimization. For
the nearest neighbor classifier (BM1), GridSearchCV was used
to discover the optimal number of neighbors from values of (1,
3, 5, 10, 5, and 0) and found that the optimal number of
neighbors was 10. For the RF classifier (BM2), GridSearchCV
was used to explore combinations of “n_estimators” and
“min_samples_leaf,” achieving the best performance using 500

trees and a minimum of 2 samples per leaf. For the support
vector classifier (BM3), the regularization parameter “C” was
tuned across a range of values (0.1, 1, 5, 7, and 10), with C=10
achieving the highest accuracy. For CNN (BM4) and artificial
neural network (ANN; BM5), GridSearchCV was used to find
the optimal activation function from ReLU and softmax, choose
dropout rates from 0.1 to 0.6, and finally find the filter value in
CNN. Table 2 shows the hyperparameters that we used in each
model. Next, the stacking ensemble uses an ANN as the
meta-model to combine predictions from BM1 to BM5. The
meta-model architecture consists of a neural network with
multiple layers. The first dense layer has 32 units and uses a
ReLU activation function, followed by a dropout layer with a
50% rate to reduce overfitting. The second dense layer has 16
units and a ReLU activation function, followed by a dropout
layer with a 50% rate. The model ends with an output layer that
has 5 units and a softmax activation function, suitable for
multiclass classification. The model is trained using an Adam
optimizer with a learning rate of 0.001 and sparse categorical
cross-entropy loss. The integration of the 5 models (SVM, KNN,
ANN, CNN, and RF) follows a stacking ensemble approach,
where the predictions from each model serve as input features
for the meta-model. These base models are trained
independently, and their outputs are concatenated to form the
input layer of the meta-model.
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Table . Hyperparameters of each base model.

HyperparameterClassifierModel

Neighbors=10KNNaBM1

n_estimators=500 and min_samples_leaf=2RFbBM2

C=10SVMcBM3

Conv1D with filters= 64, activation=“ReLU,”
optimizer= “adam,” loss= “sparse_categori-
cal_crossentropy,” and dropout=0.3

CNNdBM4

3 dense layers, activation=”ReLU,” “softmax,”
optimizer=“adam,” loss=“sparse categorical
crossentropy,” and dropout=0.4

ANNfBM5

aKNN: k-nearest neighbor.
bRF: random forest.
cSVM: support vector machine.
dCNN: convolutional neural network.
eReLU: rectified linear unit.
fANN: artificial neural network.

Ethical Considerations
This study exclusively used publicly available datasets obtained
from TCGA and LinkedOmics with project names
“TCGA-BRCA,” “TCGA-COAD,” “TCGA-THCA,”
“TCGA-DLBC,” and “TCGA-UCEC”. All datasets were fully
anonymized and complied with the respective repository’s data
usage policies.

Results

Overview
In this section, we present the results of our study. First, in the
“Performance Evaluation Metrics” section, we analyze critical
metrics including the classification report, the confusion matrix,
and the receiver operating characteristic (ROC) curve. Second,
we present the results of the 5 models individually to compare
with our results.

Performance Evaluation Metrics
To assess the effectiveness of the multiclass classification model,
various performance metrics were calculated and are shown in
Figure 4. The graph shows the performance metrics for a
multiclass classification model, including precision, recall, and
F1-score for each class. Precision indicates the accuracy of
positive predictions, while recall measures how many actual
positives were correctly identified. The F1-score balances
precision and recall. The model achieved an overall accuracy
of 98%. Both the macro and weighted averages of the metrics
are very similar, reflecting consistent performance across all
classes. Subsequently, in Figure 5, we examined the confusion
matrix to assess the model’s classification performance across
the 5 classes. The matrix percentages indicated that the correct
classification rates (the diagonal values) were between 91.67%
and 100%, showing accurate classification results with error
rates (the off-diagonal values) of roughly 8% or less for each
class.
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Figure 4. Classification report visualizing precision, recall, F1-score, and support for each class in the stacking ensemble model. BRCA: breast invasive
carcinoma; COAD: colon adenocarcinoma; NHL: non-Hodgkin lymphoma; THCA: thyroid carcinoma; UCEC: uterine corpus endometrial carcinoma.
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Figure 5. Confusion matrix illustrating the true versus predicted classifications generated by the stacking ensemble model.

Furthermore, we analyzed the ROC curve, which is a tool for
assessing the model’s discriminative abilities across multiple
classifications. The ROC curve, which provides information
about model performance, was modified for our multiclass
scenario even though it is usually used in binary classification.
In our experiment, we observed compromises between true and

false positive rates, which validates the discriminative power
of the model. The results, shown in Figure 6, indicate that all
classes had consistent performance, as indicated by the area
under the curve ranging from 0.90 to 1. These results
demonstrate how well the model can classify cases in various
classes.
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Figure 6. Receiver operating characteristic curve demonstrating the performance of the stacking ensemble model.

To evaluate the performance of different machine learning
approaches on individual omics datasets, we evaluated 5
commonly used classifiers—KNN, RF, SVM, CNN, and
ANN—as well as a stacking model composed of all 5 models
for each omics type. As shown in Table 3, the RF achieved the
highest accuracy on the RNA sequencing dataset (0.98), while
the CNN outperformed all other models on the somatic
mutations dataset with an accuracy of 0.87. On the methylation
dataset, the ANN slightly outperformed the other models with
an accuracy of 0.97. The proposed stacking model demonstrated
balanced performance across all 3 genome types, achieving
accuracies of 0.96 (RNA sequencing), 0.81 (somatic mutations),
and 0.96 (methylation). To detail the stacking results, we present
Table 4, which shows the performance metrics—precision,
F1-score, recall, and accuracy—for different inputs: RNA
sequencing, somatic mutations, methylation separately, and the
multiomics approach. For the RNA sequencing input, the model
consistently performs well across all 3 folds, with an average

precision, F1-score, recall, and accuracy of 0.96. For the somatic
mutations data, the model’s accuracy, F1-score, and recall were
relatively low at 0.60, with a slightly higher precision of 0.70.
With a mean of 0.97, the accuracy of the model tested on the
methylation dataset varied between 0.95 and 0.99 across folds.
Similarly, F1-score and recall averaged 0.96 and 0.97,
respectively, while accuracy averaged 0.96. In the multiomics
approach, the model achieved an average score of 0.98 across
all metrics. Specifically, the model demonstrates near-perfect
performance in folds 2 and 3, achieving a precision, recall, and
F1-score of 0.99, reflecting the added value of incorporating
multiple data modalities. Overall, the multiomics approach
outperforms using each omics type separately, offering a more
robust and accurate model across all evaluation metrics. Our
analysis showed that some models performed better in terms of
recall and precision for certain cancer types when using
multiomics, highlighting the importance of combining data to
get the most out of the analysis.
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Table . Classification accuracy of individual models and the stacking model across RNA sequencing, somatic mutations, and methylation datasets.

MethylationSomatic mutationRNA sequencingClassification model

0.950.720.91K-nearest neighbors

0.960.730.98Random forest

0.960.790.95Support vector machine

0.960.870.96Convolutional neural network

0.970.800.96Artificial neural network

0.960.810.96Stacking with the five model

Table . Performance of the stacking model using RNA sequencing, somatic mutations, methylation, and multiomics data.

AccuracyRecallF1-scorePrecisionInput type and k-fold

RNA sequencing

0.940.940.940.95    1

0.960.960.960.97    2

0.980.980.980.98    3

0.960.960.960.96    Avga

Somatic mutations

0.70.60.60.6    1

0.860.860.850.86    2

0.910.910.910.92    3

0.810.790.790.79    Avg

Methylation

0.940.940.940.95    1

0.960.970.960.97    2

0.990.990.980.99    3

0.960.970.960.97    Avg

Multiomics (RNA sequencing, somatic mutations, and methylation)

0.950.950.950.96    1

0.990.990.990.99    2

0.990.990.990.99    3

0.980.980.980.98    Avg

aAvg: average.

Discussion

Principal Findings
The results of this study provide insights into ensemble learning
for cancer classification and diagnosis, using 5 different machine
learning models. These models were selected based on their
proven effectiveness in previous studies and their popularity in
the literature, offering a balanced approach to handling the
complex nature of multiomics data.

Comparison With Prior Work
Table 5 summarizes several studies that used multiomics data
and machine learning techniques to classify and predict various
types of cancer. It is worth noting that these studies are not
based on the same data but have been reviewed to support our

findings that using multiomics data enhance accuracy. As seen,
models from recent studies such as Koh et al [30] and Mohamed
and Ezugwu [31] show high area under the curve scores (0.96)
and accuracy (97%). Other models, such as Cappelli et al [32]
and Jagadeeswara Rao and Sivaprasad [33], also report strong
results, typically in the range of 91%‐95%. Overall, these
studies highlight the power of integrating multiomics data with
advanced machine learning techniques, which consistently led
to high accuracy, with models achieving between 91% and 98%
accuracy across different cancer types [34]. Although, when
comparing the performance of our model with theirs, our
approach shows the highest overall accuracy (98%) across a
range of cancer types and data modalities. We addressed
common challenges in omics data analysis, such as overfitting,
class imbalance, and high dimensionality, through the
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application of techniques such as dropout, downsampling, and
FE. These methods significantly contributed to the robustness

of our models, though their effectiveness varied depending on
the model and data type.

Table . Comparison of cancer classification performance across multiomics research.

Results (accura-
cy)

Class imbalance
handling

Overfitting han-
dling

Classification
model

Cancer typesData typeYearPaper

95%N/AgFeature regular-
ization methods

C4.5, RFd,

RIPPERe,

and CAMURf

BRCAa,

THCAb,

and KIRPc

RNA sequencing
and methylation

2018Cappelli et al
[32]

91%-98%N/ACross-validationAdaBoost,

MLPk, and LRl
LUADjcfDNAh and

CNVsi

2023Kwon et al [34]

AUCn 0.96Balanced
datasets

Regularization

and QCm

Machine learn-
ing

LungProteomics,
RNA sequenc-
ing,
metabolomics,
and targeted im-
munoassays

2024Koh et al [30]

95%SMOTEpEnsemble tech-
niques

Ensemble learn-
ing

PAADoRNA sequencing
and methylation

2024Jagadeeswara
Rao and
Sivaprasad [33]

97%SMOTEDropoutCNNrLUADRNA sequenc-

ing, miRNAq,
and DNA
methylation

2024Mohamed and
Ezugwu [31]

98%DownsamplingCross-validation
and dropout

Ensemble learn-
ing

BRCA , THCA,

NHLs, UCECt,

and COADu

RNA sequenc-
ing, methylation,
and somatic mu-
tations

2024Our model

aBRCA: breast carcinoma.
bTHCA: thyroid carcinoma.
cKIRP: kidney renal papillary cell carcinoma.
dRF: random forest.
eRIPPER: Repeated Incremental Pruning to Produce Error Reduction.
fCAMUR: Computer Assisted Molecular Unified Receptor.
gN/A: not available.
hcfDNA: cell-free DNA.
iCNV: copy number variation.
jLUAD: lung adenocarcinoma.
kMLP: multilayer perceptron.
lLR: logistic regression.
mQC: quality control.
nAUC: area under the curve.
oPAAD: pancreatic adenocarcinoma.
pSMOTE: Synthetic Minority Oversampling Technique.
qmiRNA: microRNA.
rCNN: convolutional neural network.
sNHL: non-Hodgkin lymphoma.
tUCEC: uterine corpus endometrial carcinoma.
uCOAD: colon adenocarcinoma.

Typically, deep learning components benefit from graphics
processing unit acceleration and need a large amount of
computational power, particularly when trained on
high-dimensional clinical data. Nevertheless, after training, the
model inference time is rather short, allowing for quick
predictions that can assist with clinical decisions made in real

time. Even while low-resource systems might not be able to
support model training, these pretrained models could be used
for clinical deployment, particularly in settings with recent
computer technology.
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Strengths and Limitations
Typically, deep learning components benefit from graphics
processing unit acceleration and need a large amount of
computational power, particularly when trained on
high-dimensional clinical data. Nevertheless, the model
inference time is rather short after the ensemble has been trained,
allowing for quick predictions that can assist with clinical
decisions made in real time. Even while low-resource systems
might not be able to support model training, pretrained models
can be used for clinical deployment, particularly in settings with
recent computer technology.

However, the study has several limitations that must be
acknowledged. Data availability constraints limited the scope
of our analysis, and the absence of clinical data meant that our
findings are based solely on omics data. This restricts the
generalizability of our results to real-world clinical settings,
where the integration of clinical and omics data is crucial for
accurate cancer diagnosis and prognosis. Furthermore, the
common limitation in omics data is dataset size, which may
result in overfitting. Another restriction is the absence of
external validation.

Future Directions
Future research should focus on expanding the types of data
used in cancer classification, particularly by incorporating
patient clinical data and exploring additional omics layers such
as metabolomics and proteomics. Furthermore, the integration
of multiomics data with advanced machine learning methods

holds promise for deepening our understanding of the molecular
mechanisms underlying cancer development. This could lead
to more precise cancer staging and prognosis, ultimately
improving patient outcomes.

Conclusions
In conclusion, while our study advances the accuracy of cancer
classification algorithms, it underscores the need for continuous
improvement and validation in diverse and clinically relevant
datasets. By addressing these challenges, future research can
enhance the applicability of these models in clinical practice,
contributing to more effective cancer detection and treatment
strategies.

The study aimed to investigate whether incorporating multiomics
data into a stacking model that integrates 5 key methods, namely
SVM, KNN, ANN, CNN, and RF, enhances the model’s ability
to classify cancer. With multiomics, the stacking ensemble
model obtained 98% accuracy, compared to 96% with RNA
sequencing and methylation separately and 81% with somatic
mutation data. It emphasizes the importance of integrating
advanced machine learning techniques into health care for more
effective cancer detection and prognosis. This highlights the
need for continuous improvement and validation of classification
models in real-world clinical settings to maximize their impact
on cancer care. Future research should focus on incorporating
clinical metadata and multiomics data to enhance cancer
classification, which would improve patient outcomes and
clinical applicability.
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ANN: artificial neural network
CNN: convolutional neural network
FE: feature extraction
KNN: k-nearest neighbors
ReLU: rectified linear unit
RF: random forest
ROC: receiver operating characteristic
SMOTE: Synthetic Minority Oversampling Technique
SVM: support vector machine
TCGA: The Cancer Genome Atlas
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Abstract

Background: Previous machine learning approaches for prostate cancer detection using gene expression data have shown
remarkable classification accuracies. However, prior studies overlook the influence of racial diversity within the population and
the importance of selecting outlier genes based on expression profiles.

Objective: We aim to develop a classification method for diagnosing prostate cancer using gene expression in specific populations.

Methods: This research uses differentially expressed gene analysis, receiver operating characteristic analysis, and MSigDB
(Molecular Signature Database) verification as a feature selection framework to identify genes for constructing support vector
machine models.

Results: Among the models evaluated, the highest observed accuracy was achieved using 139 gene features without oversampling,
resulting in 98% accuracy for White patients and 97% for African American patients, based on 388 training samples and 92
testing samples. Notably, another model achieved a similarly strong performance, with 97% accuracy for White patients and 95%
for African American patients, using only 9 gene features. It was trained on 374 samples and tested on 138 samples.

Conclusions: The findings identify a race-specific diagnosis method for prostate cancer detection using enhanced feature
selection and machine learning. This approach emphasizes the potential for developing unbiased diagnostic tools in specific
populations.

(JMIR Bioinform Biotech 2025;6:e72423)   doi:10.2196/72423

KEYWORDS

prostate cancer; feature selection; gene expression; race specific; classification; support vector machine; machine learning

Introduction

Prostate Cancer Statistics
Prostate cancer is the most common type of organ cancer and
the second leading cause of death in the United States among
men [1,2]. In 2019, over 893,660 cancer cases were recorded
in the United States, with prostate cancer being over 191,930
of them, along with the 2020 estimated number of deaths caused
by cancer being 321,160, of which 33,310 were prostate cancer
[3-5]. This is likely caused by risk factors found in prostate
cancer that include age, family history, and lifestyle. Studies
have shown that Asians tend to have a lower risk of prostate
cancer than Europeans and Africans due to their genetics and
environmental differences [6]. This indicates racial disparity in
prostate cancer, which has been extensively documented by

numerous studies, with African American men having a higher
risk of developing prostate cancer and facing a 2.5-fold higher
mortality rate compared to European American men [7,8]. This
disparity is attributed to socioeconomic and biological
differences, including aggressive tumor phenotypes documented
at the molecular level in African American men [9].

Prostate Cancer Detection Methods
In the early 1990s, digital rectal examination was used for
screening prostate cancer, which had a significant impact on
prostate cancer diagnosis at the time. Digital rectal examination
remains beneficial for distinguishing between benign and
malignant conditions in the prostate, but it is limited by its low
sensitivity and inability to detect cancer at an early stage
[3,10,11]. Another screening method is the prostate-specific
antigen (PSA) test. While widely used, PSA testing is
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controversial due to its susceptibility to false positives, as PSA
is a gland-specific biomarker rather than cancer-specific
biomarker [10,12]. The lack of a reliable and robust detection
method gives rise to the need for a race-based approach to detect
prostate cancer.

Machine Learning and Support Vector Machine
In recent years, machine learning applications in health care
and biotechnology have grown rapidly, driving advancements
in disease diagnostics, personalized medicine, and
bioinformatics [13]. In this research, support vector machines
(SVMs) were selected for their remarkable performance in
classification tasks in the medical field using gene expression
data [14-18]. Being a supervised machine learning algorithm
that is proficient at distinguishing between 2 sample classes,
SVM works by creating a hyperplane that optimally separates
sample classes. SVM transforms class data into a
higher-dimensional space to effectively identify complex,
nonlinear relationships. This makes SVM especially powerful
in cases with small sample sizes and high-dimensional data,
such as gene expression profiles or genomic datasets. These
characteristics made SVM an invaluable algorithm in
bioinformatics, where the classification of diseases such as
cancer requires robust, data-driven methods to handle variability
and heterogeneity [10,15].

Gene Expression Data
Gene expression is a process where information in DNA
becomes instructions to make proteins or other molecules
[16,19]. The process starts when DNA is copied into mRNA
and changed into proteins. Gene expression analysis is typically
used for monitoring genetic changes in tissues or single cells
under certain conditions. It checks how many DNA transcripts
are in a sample to know which genes are active and by how
much, including comparing the sequenced reads with the number
of base pairs from a DNA piece to a known genome or
transcriptome. The process’ accuracy depends on the clarity of
information obtained, which allows bioinformatics tools to
match them to the right genes. However, the gene expression
dataset poses an additional challenge due to their high
dimensionality, where the ratio of features to samples is high,
hindering the performance of classification models. To address
this, researchers have used feature selection methods to filter
out irrelevant or redundant genes [20,21]. Feature selection has
a critical role in improving machine learning models’
classification outcomes in high-dimensional datasets, making
it a basis for an efficient classification model for cancer
detection [22,23].

Racial Dataset Influence in Artificial Intelligence
Racial-based genomic datasets present challenges for machine
learning applications. Studies have shown that using race-based
genomics data for artificial intelligence algorithms may exhibit
biases where trained models favor the majority race in training
data, lowering the accuracy on the minority races [8,24]. Racial
class imbalance in the dataset, where certain races have more
samples, can influence the accuracy of algorithms. However,
when the class imbalance is less severe, the algorithms tend to
achieve higher balanced accuracy across all racial groups [25].

To mitigate this, an approach that reweighs the minority classes
is performed, yet this approach was unreliable when the class
imbalance is severe [24,26]. This research uses race-based
genomics data instead of a combined race dataset to address the
biases that may appear when using a combined dataset.

Prior Research and Objective
Despite significant advancements in machine learning and
prostate cancer diagnosis, a gap remains in addressing racial
disparities in prostate cancer. A recent study by Alshareef et al
[27] introduces artificial intelligence–based feature selection
with deep learning model for prostate cancer detection, a newly
developed method of prostate cancer detection using deep
learning approach using microarray gene expression data with
52 prostate samples and 50 normal samples on 2135 genes [28].
It focuses on feature selection using Chaotic Invasive Weed
Optimization and hyperparameter tuning over multiple iterations
of the proposed artificial intelligence–based feature selection
with deep learning model for prostate cancer detection model
which leads to an average accuracy of 97.19%, precision of
97.14%, and F1-score of 97.28%. Similarly, Ravindran et al
[29] proposed a prediction deep learning model for prostate
cancer which focuses on data augmentation using the
Wasserstein Tabular Generative Adversarial Network technique,
which enables powerful discriminators that supply reliable
gradient information to the sample generator even with poor
sample qualities, allowing for a more stable training process
[27]. The research uses a Micro Gene Expression Cancer Dataset
(MGECD), of which the prostate cancer MGECD consists of
102 samples and 6033 features, and feature selection based on
correlation coefficients with the goal of reducing the features
to 1/3 of the initial MGECD by applying a threshold of 0.7.
This results in 1833 features being used for the final model that
has a 97% accuracy, 98% precision, and 97% recall values, a
total of 3.4% accuracy improvement on prostate cancer
classification using Wasserstein Tabular Generative Adversarial
Network SVM compared to only using SVM. Previous research
has demonstrated admirable results with limited amounts of
samples, yet the proposed methods do not account for the racial
biases that may be present in gene expression data and the
number of genes needed to efficiently train machine learning
models. To bridge this gap, we use feature selection methods
such as differentially expressed gene (DEG) analysis, receiver
operating characteristic (ROC) analysis, and MSigDB
(Molecular Signature Database) verification. Our goal is to
develop a race-based SVM model that improves prostate cancer
detection for White populations and provides a novel
genomics-based approach for health care professionals.

Methods

Study Design
This study implements data collection, preprocessing, feature
selection, and SVM modeling and evaluation as seen in Figure
1. These methods are conducted using Python (version 3.12.3;
Python Software Foundation) programming language and the
necessary libraries using Visual Studio Code editor (version
1.95.3; Microsoft Corp) [30].
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Figure 1. Race-specific prostate cancer detection modeling framework. DEG: differentially expressed gene; GDC: Genomic Data Commons; MSigDB:
Molecular Signature Database; ROC: receiver operating characteristic; STAR: Spliced Transcripts Alignment to a Reference; SVM: support vector
machine; TCGA: The Cancer Genome Atlas; UCSC: University of California, Santa Cruz.
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Ethical Considerations
This study used publicly available datasets from the University
of California, Santa Cruz Xena [31]. University of California,
Santa Cruz Xena allows users to explore functional genomic
data sets for correlations between genomic or phenotypic
variables. Thus, no ethics approval was required.

Data Collection
This study implements a structured methodology to identify
and model significant genes for prostate cancer using gene
expression data. There are 2 datasets used and obtained in
August 2024 from Xenabrowser’s GDC (Genomic Data
Commons) TCGA-PRAD (The Cancer Genome Atlas Prostate
Adenocarcinoma) cohort, of which 1 contains gene expression
counts data, and the other contains the clinical information of
the samples [29]. Gene expression dataset has been
prenormalized by Xenabrowser using log2(count+1).

Data Preprocessing
Data preprocessing involved separating the counts dataset
racially by mapping the samples to their race in the phenotype
dataset, filtering samples with missing gene expression values,
and labeling samples as normal or cancer via the TCGA (The
Cancer Genome Atlas) barcode. These steps were conducted
using the Pandas (version 2.2.2; NumFOCUS, Inc) and NumPy
(version 1.26.4; NumPy Developers) libraries in a Jupyter
Notebook (LF Charities) environment [32-34].

Feature Selection
Feature selection to train the machine learning model was
achieved through refining the filtered genes from DEG analysis,
performed using the PyDESeq2 package (version 0.4.10;
OWKIN) [35-37]. After creating metadata and the appropriate
data frame, we used the DESeqDataSet function to create a
suitable dataset for the DESeq2 process. There are 3 parameters
used in creating the DESeqDataSet. First is counts, which is
where the data frame of gene expression values of each gene
ID and sample ID is used. To create metadata for the
DeseqDataSet function, we specify the design of the DEG
experiment and the factors to be analyzed. The factors in this
research are labeled sample IDs with their condition that has
been converted to a data frame by using the DeseqStats function.
Lastly, we defined the design factor to guide the DEG analysis
to focus on the important variables, in this case, the sample
conditions. Identifying significant genes is based on the set
threshold of baseMean≥10 and p-adj<.05. The filtered genes
were used to create 5 experimental scenarios, with the first
scenario focusing on the outlier genes identified through
PyDESeq2 that met the specified thresholds.

The second and third scenarios were developed by introducing
additional thresholds to the DEG results. The additional
scenarios further narrowed down the outlier genes by applying
log2FoldChange>0.35 and >0.4, respectively.

For the fourth scenario, ROC analysis was performed using the
scikit-learn metrics library (version 1.5.1; scikit-learn
developers) to isolate genes with high predictive impact [38,39].
Genes were filtered based on a cutoff threshold of area under
the curve value above 0.90, and the results were visualized using

the matplotlib library (version 3.9.1; The Matplotlib
development team) [40]. These genes were then used to create
the fourth scenario.

The final scenario involves converting the isolated genes’
Ensembl IDs into gene symbols using BioTools.fr for the human
species Ensembl format [41] and verifying using gene set
enrichment analysis (GSEA). Gene symbols were queried to
MSigDB from GSEA to compute overlaps on curated gene sets
which enables identification of well-established biological
pathways and is widely used in cancer immunology and
metabolic research, computational gene sets to complement the
curated gene sets by providing unbiased large-scale insights
and specific gene expression patterns, oncogenic gene sets that
are directly relevant to cancer research and linked to gene
expression changes on specific oncogenic events, and False
Discovery Rate q-value less than 0.05 to reduce the likelihood
of false positives in enrichment results [22,42-46]. Overlaps
between the queried genes and the gene sets in MSigDB were
analyzed to validate their relevance to prostate cancer. Genes
with confirmed prostate cancer relevance were selected for use
in the final scenario.

SVM Modeling
The dataset initially shows a strong class imbalance, with a
cancer-to-normal ratio of 1:9. To address this class imbalance,
the data were split into training and testing sets using various
stratified splits: 60%/40%, 70%/30%, and 80%/20%.
Stratification ensures that the class distribution among the
training data class imbalance was then addressed on all the
training data scenarios using oversampling methods, including
RandomOverSampler, SVMSMOTE, SMOTEENN,
SMOTETomek, ADASYN, BorderlineSMOTE, and
KMeansSMOTE from sci-kit libraries with a sampling strategy
of 0.3, meaning the training data consists of 66.66% cancer
samples and 33.33% normal samples, creating a balanced dataset
for model training and preserving the authenticity of the testing
data, making a realistic environment for the model to perform
in.

Multimedia Appendix 1 (Table S1) and Table 1 show multiple
experimental scenarios that were designed to test different
parameter combinations and datasets. Two modeling scenarios
were used; first, using the default SVC function with linear
kernel. Second, conducting hyperparameter tuning to optimize
model performance. Hyperparameter tuning was performed
using GridSearchCV with a linear kernel SVC classifier and
5-fold cross-validation. The hyperparameters and their ranges
were as follows: multiple kernels of the SVC function were
used, linear, polynomial, and radial basis function. C values
were ranging from 0.01, 0.1, 1, and 10, with gamma values of
0.01, 0.1, and 1, coef0 values of 0 and 1, and lastly class weights
of none and balanced.

Evaluation of the model was obtained and inspected using the
classification_report function, by focusing on harmonization
between F1-score, recall, accuracy, precision, and macro-avg
values, we evaluated the models’ performance on training and
test sets to ensure reliability of the model with no over- or
underfitting present. To further validate the results of the
obtained machine learning model, we tested the model on a
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black dataset with corresponding gene amounts to further
investigate the racial differences in prostate cancer. This

approach aligns with the goal of improving the identification
of prostate cancer within a specific population.

Table . Top 5 models for 4-gene scenario.

BlackWhiteHyper-pa-
rameter

Data split-
ting ratio

Balancing
method

Recall
(%)

Precision
(%)

F1-score
(%)

Test accu-
racy (%)

Recall
(%)

Precision
(%)

F1-score
(%)

Test accu-
racy (%)

Train accu-
racy (%)

98.294.996.593.710094.39794.694.2Yes80:20KMeansS-
MOTE

98.294.996.593.798.494.696.593.592.8No70:30KMeansS-
MOTE

96.594.895.692.297.695.396.493.592.8No80:20KMeansS-
MOTE

94.796.495.692.296.495.295.892.494.9Yes80:20SVMSMOTE

98.291.894.990.699.292.595.79293.6Yes70:30KMeansS-
MOTE

Results

Datasets
Data for this research consists of 2 correlated secondary datasets,
obtained through an open-source prostate cancer gene expression
database, Xenabrowser GDC TCGA gene expression RNAseq
Spliced Transcripts Alignment to a Reference–counts, and
Xenabrowser GDC TCGA phenotypes. Gene expression
RNAseq Spliced Transcripts Alignment to a Reference–counts
contains 550 samples and 60,480 gene IDs in Ensembl format.
On the other hand, the phenotype dataset contains 623 rows and
127 samples of clinical information on the samples included,
from which sample types and race demographics columns are
used to create a dataset based on race demographics. Out of the
550 samples present in the phenotype dataset, 458 were White,
12 were Asian, 1 was American Indian, 64 were African
Americans, and 15 were not reported. The filtered-out White
race count data that contains 57,429 gene IDs and 458 samples
with their respective classes are presented in Multimedia
Appendix 1 (Table S2).

Feature Selection
To create a more enhanced feature selection method, several
scenarios were made combining multiple methods based on
DEG analysis thresholds. These scenarios reveal the most
optimal combination of methods to identify genes relevant to
prostate cancer.

From DEG analysis, various genes are extracted with several
thresholds (Table S3 in Multimedia Appendix 1), the most being
139 genes. This result is further refined with ROC analysis and
MSigDB investigation, which reveals 9 of 139 genes to have a
direct correlation to prostate cancer.

Of the 139 genes identified through DEG analysis, PCA3
showed the strongest up-regulated correlation with prostate
cancer (Table S4 in Multimedia Appendix 1). PCA3 had a
baseMean of 12.33, indicating high expression across samples,
a log2FoldChange of 0.6198, reflecting increased expression
in cancerous tissue, and a p-adj value of <.001, confirming
statistical significance.

Among the 139 genes identified from DEG analysis, WFDC2
has the strongest down-regulated correlation with prostate cancer
(Table S5 in Multimedia Appendix 1). This is evident with a
baseMean of 10.17 indicating a moderate expression level across
samples, a log2FoldChange of −0.3069 which shows a decrease
in expression levels in cancerous tissue compared to normal
tissue, and a p-adj<.001 indicating high statistical significance
after adjustment for multiple testing.

ROC analysis was performed on 139 genes obtained using the
White race DEG analysis, applying an area under the curve
score threshold above 0.9. This process identified 13 genes as
outliers, as shown in Figure 2, significantly narrowing down
the initial gene set.
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Figure 2. A total of 13 genes were identified to have a strong correlation (AUC>0.9) with prostate cancer obtained through ROC analysis of 139 genes.
AUC: area under the curve; ROC: receiver operating characteristic.

Genes that were identified from ROC analysis were converted
from Ensembl format to gene symbol using BioTools.fr (Table
S1 in Multimedia Appendix 1) to be verified through MSigDB.

GSEA MSigDB investigation results reveal that the genes’
correlation varies between gene sets. We found that out of 13
genes, 9 were found to have a correlation to MSigDBs’
LIU_PROSTATE_CANCER_DN gene set with a P<.001 and

False Discovery Rate q-value of 2.05 e−11 as seen in Figure 3.
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Figure 3. GSEA MSigDB investigation results of 139 genes selected from DEG analysis reveal 9 genes that are down-regulated in prostate cancer.
3CA / PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; AILT: Angioimmunoblastic T-cell lymphoma; CNS: Central
Nervous System; DEG: differentially expressed gene; FDR q: False Discovery Rate q-value; GSEA: gene set enrichment analysis; HDAC:Histone
Deacetylase; k/K: is a ratio of number of genes in GSEA MSigDB data set (k) divided by the number of genes in the indicated dataset (K); LIU: protein
LIU; MSigDB: Molecular Signature Database; PDGFB: Platelet-Derived Growth Factor Subunit B; PTC: papillary thyroid carcinoma; RNAi: RNA
interference; U2OS: a human osteosarcoma cell line;

SVM Classifier
Various scenarios with different balancing methods and splitting
percentages were implemented for constructing the ideal SVM
model, creating minimal but important differences in class
counts as seen in Multimedia Appendix 1 (Table S7).

From the various scenarios, we identified the top 5
best-performing models across different feature categories. The
model using 139 genes from DEG analysis combined with the
SMOTEENN balancing technique achieved the most consistent
results, with a training accuracy of 100% and test accuracies of
97% for the White race and 96% for the Black race, alongside
strong harmonization across F1-score, precision, and recall.

Compared to models using 4 and 7 genes, obtained through
DEG analysis thresholds of log2FoldChange>0.35 and 0.4,
achieved accuracies of 95% or below with unfavorable
harmonization, thus the need for more advanced feature selection
methods, such as ROC analysis combined with online GSEA.
Models with 13 and 9 selected genes obtained through ROC
analysis and GSEA demonstrated competitive performance,
achieving 97% accuracy for the White race and 95% for the
Black race, though slight deviations in precision and recall for
the Black race were observed. Detailed metrics for all scenario
models can be found from Tables 1-5.
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Table . Top 5 models for 7-genes scenario.

BlackWhiteHyper-pa-
rameter

Data split-
ting ratio

Balancing
method

Recall
(%)

Precision
(%)

F1-score
(%)

Test accu-
racy (%)

Recall
(%)

Precision
(%)

F1-score
(%)

Test accu-
racy (%)

Train accu-
racy (%)

98.296.597.495.310095.497.695.694.9Yes80:20KMeansS-
MOTE

9396.494.690.697.696.49794.697.9Yes80:20SVMSMOTE

98.294.996.593.798.895.39794.694.4No80:20KMeansS-
MOTE

98.296.597.495.397.694.796.192.996No60:40KMeansS-
MOTE

98.296.597.495.398.493.996.192.798.7Yes70:30SVMSMOTE

Table . Top 5 models for 9-genes scenario.

BlackWhiteHyper-pa-
rameter

Data split-
ting ratio

Balancing
method

Recall
(%)

Precision
(%)

F1-score
(%)

Test accu-
racy (%)

Recall
(%)

Precision
(%)

F1-score
(%)

Test accu-
racy (%)

Train accu-
racy (%)

96.598.297.395.398.498.498.497.198.4Yes70:30SVMSMOTE

9310096.493.797.698.898.296.796.5No80:20KMeansS-
MOTE

98.298.298.296.997.698.898.296.795.6Yes80:20KMeansS-
MOTE

96.598.297.395.397.698.49896.498.7Yes70:30SMOTE-
Tomek

96.598.297.395.396.899.29896.495.7No70:30KMeansS-
MOTE

Table . Top 5 models for 13-genes scenario.

BlackWhiteHyper-pa-
rameter

Data split-
ting ratio

Balancing
method

Recall
(%)

Precision
(%)

F1-score
(%)

Test accu-
racy (%)

Recall
(%)

Precision
(%)

F1-score
(%)

Test accu-
racy (%)

Train accu-
racy (%)

96.598.297.395.397.699.298.497.195.2No70:30KMeansS-
MOTE

94.710097.395.398.897.698.296.798.1Yes80:20SMOTE-
Tomek

94.710097.395.396.899.297.996.490.4No70:30Borderli-
neS-
MOTE

9398.195.592.297.698.297.996.296.9No60:40KMeansS-
MOTE

96.598.297.395.396.898.497.695.695.2Yes70:30KMeansS-
MOTE
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Table . Top 5 models for the 139 genes scenario.

BlackWhiteHyper-pa-
rameter

Data split-
ting ratio

Balancing
method

Recall
(%)

Precision
(%)

F1-score
(%)

Test accu-
racy (%)

Recall
(%)

Precision
(%)

F1-score
(%)

Test accu-
racy (%)

Train accu-
racy (%)

96.510098.296.998.898.898.897.8100No80:20SMO-
TEENN

96.510098.296.997.699.498.597.398.8Yes60:40Borderli-
neS-
MOTE

96.510098.296.997.699.298.497.1100Yes70:30SMO-
TEENN

96.510098.296.997.699.298.497.1100No70:30SMO-
TEENN

96.510098.296.997.698.898.296.7100Yes80:20SMO-
TEENN

Discussion

Principal Results
In this study, we explored multiple feature selection scenarios
for race-based SVM classification models aimed at prostate
cancer detection using gene expression data. Our findings
demonstrate that race-based models with significantly reduced
features are capable of achieving competitive performance
comparable to models using thousands of genes. The
best-performing model, achieved without hyperparameter tuning
or cross-validation, demonstrated outstanding results with a
training accuracy of 100% and test accuracies of 98% on the
White race and 97% on the Black race. Additionally, the model
showed strong harmonization across F1-score, precision, and
recall values, which indicates consistent model classification
performance. However, models in scenarios with 4 and 7 genes,
selected using DEG analysis with thresholds of
log2FoldChange>0.35 and 0.4, respectively, showed lower
accuracies of 95% or lower, despite noteworthy harmonization
between F1-score, precision, and recall values. This shows the
limitations of feature selection solely using DEG analysis
thresholds, as it failed to capture the critical biomarkers
necessary for reliable classification.

Moreover, models with 9 and 13 selected genes through ROC
analysis and GSEA present matched performance, achieving
accuracies of 97% on the White race and 95% on the Black
race. These models also demonstrated good stability,
consistently performing well over different train-test dataset
splits. While these reduced-feature models showed strong
metrics for the White race, the slight drop in accuracy for the
Black race indicates the presence of racial disparities in feature
selection. This highlights the need for further research to
improve model generalizability across more diverse populations.

Strengths
This study addresses racial disparities in prostate cancer gene
expression datasets to create a race-specific SVM classification
model with multiple scenarios. Our testing demonstrated greater
accuracies on scenarios using 139 genes; however, models with

13 and 9 selected genes also yielded 97% accuracy, highlighting
the effectiveness of an optimized feature selection strategy. This
feature reduction implies the significance of feature selection
along with model construction parameters such as balancing
methods, data splitting ratios, and hyperparameter optimization
in achieving a robust classification model.

From a clinical standpoint, these results imply significant cost
reduction and practical applicability. Reducing the number of
genes required for sequencing substantially lowers the financial
and computational cost of diagnostic workflows, making this
approach more accessible and scalable for routine prostate
cancer screening and early detection [47-49].

Comparison With Prior Works
While prior works used feature selection methods with
correlation-based and evolutionary algorithm approaches without
further validations, our approach used tools such as PyDESeq2
and MSigDB investigation to further validate the biological
relevance of our selected genes to prostate cancer to improve
the diagnostic accuracy and provide insights into race-specific
prostate cancer biology, an area often neglected by other studies.

Our study achieved comparable accuracies to prior works while
significantly reducing the number of features used. For example,
Ravindran et al [29] reported a 97% accuracy while using 1833
features selected from the initial 6033 genes through a
correlation-based approach [27]. Conversely, our models
achieved similar accuracy using only 13 or 9 features, validating
the performance of our feature selection method. Additionally,
our study integrates racially based datasets to account for racial
disparities while achieving robust performance for both the
White (98% accuracy) and Black populations (97% accuracy).
This further addresses the gap between prior works such as the
model by Alshareef et al [27], with 52 prostate cancer samples
and 1833 features, which overlook racial disparities [28]. To
further appraise our model, we also compared it to a recent study
by Xie and Xie [50] using an artificial neural network model
on a DEG panel of 220 genes and reporting an accuracy of 78%,
our optimized racial-based SVM model outperformed it with
higher accuracy and fewer features, while maintaining consistent
results across multiple dataset splits. These comparisons

JMIR Bioinform Biotech 2025 | vol. 6 | e72423 | p.215https://bioinform.jmir.org/2025/1/e72423
(page number not for citation purposes)

Agustriawan et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


highlight the competitiveness and reliability of our SVM-based
framework in prostate cancer detection.

Limitations
However, this study has the following limitations. The datasets
used are heavily imbalanced, with an overrepresentation of
White individuals and cancer samples compared to normal
samples. Only a single dataset source was used due to restricted
access to other publicly available datasets, which limits the
diversity and variability of the data. Future work should
prioritize the inclusion of larger, more diverse populations to
enhance the model’s generalizability and consider an external
independent dataset to validate the model’s performance.
Additionally, exploring other genomic and epigenomic features,
such as DNA methylation patterns, may yield further insights
into race-specific prostate cancer biology.

Conclusions
This research used enhanced feature selection methods such as
DESeq2 DEG analysis and ROC analysis to reduce feature
quantity in machine learning models for prostate cancer
detection in specific racial groups. Our findings show that while
testing on White race reducing features-maintained model,
performance was comparable to studies with larger feature sets.
To examine racial disparities, we tested the model on African
American data, revealing minimal (~1%) accuracy differences
between racial groups. These findings indicate a low influence
of racial features on classification while emphasizing the
importance of feature selection in developing race-based SVM
models for prostate cancer using gene expression data.

 

Acknowledgments
This research is funded by Universitas Multimedia Nusantara Research Department (0020-RD-LPPM-UMN/P-INT/VI/2024).

Authors' Contributions
Conceptualization: DA (lead), MVO (equal), MW (equal)
Data curation: AM (lead), VK (sopporting), JS (supporting)
Formal analysis: AM
Funding acquisition: DA
Investigation: AM
Methodology: DA (lead), MVO (equal), MW (equal), MIA (equal)
Project administration: AM (lead), VK (sopporting), JS (supporting)
Resources: AM (lead), VK (sopporting), JS (supporting)
Supervision: DA (lead), MVO (equal), MW (equal), MIA (equal)
Validation: DA (lead), MVO (equal), MW (equal), MIA (equal)
Visualization: AM (lead), VK (sopporting), JS (supporting)
Writing – original draft: AM (lead), VK (sopporting), JS (supporting)
Writing – review & editing: AM (lead), VK (sopporting), JS (supporting)

Conflicts of Interest
None declared.

Multimedia Appendix 1
Tables on modeling scenarios, dataset, genes, and the machine learning training model.
[DOC File, 88 KB - bioinform_v6i1e72423_app1.doc ]

References
1. Cook MB, Beachler DC, Parlett LE, et al. Testosterone therapy in relation to prostate cancer in a U.S. commercial insurance

claims database. Cancer Epidemiol Biomarkers Prev 2020 Jan 1;29(1):236-245. [doi: 10.1158/1055-9965.EPI-19-0619]
2. Wang M, Chi G, Bodovski Y, et al. Temporal and spatial trends and determinants of aggressive prostate cancer among

Black and White men with prostate cancer. Cancer Causes Control 2020 Jan;31(1):63-71. [doi: 10.1007/s10552-019-01249-0]
3. Iqbal S, Siddiqui GF, Rehman A, et al. Prostate cancer detection using deep learning and traditional techniques. IEEE

Access 2021;9:27085-27100. [doi: 10.1109/ACCESS.2021.3057654]
4. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality

worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021 May;71(3):209-249. [doi: 10.3322/caac.21660] [Medline:
33538338]

5. Castaldo R, Cavaliere C, Soricelli A, Salvatore M, Pecchia L, Franzese M. Radiomic and genomic machine learning method
performance for prostate cancer diagnosis: systematic literature review. J Med Internet Res 2021 Apr 1;23(4):e22394. [doi:
10.2196/22394] [Medline: 33792552]

JMIR Bioinform Biotech 2025 | vol. 6 | e72423 | p.216https://bioinform.jmir.org/2025/1/e72423
(page number not for citation purposes)

Agustriawan et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=bioinform_v6i1e72423_app1.doc&filename=eab63931-6e5d-11f0-8b41-a57fc9466c8c.doc
https://jmir.org/api/download?alt_name=bioinform_v6i1e72423_app1.doc&filename=eab63931-6e5d-11f0-8b41-a57fc9466c8c.doc
http://dx.doi.org/10.1158/1055-9965.EPI-19-0619
http://dx.doi.org/10.1007/s10552-019-01249-0
http://dx.doi.org/10.1109/ACCESS.2021.3057654
http://dx.doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33538338&dopt=Abstract
http://dx.doi.org/10.2196/22394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33792552&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


6. Albertsen PC, Hanley JA, Gleason DF, Barry MJ. Competing risk analysis of men aged 55 to 74 years at diagnosis managed
conservatively for clinically localized prostate cancer. JAMA 1998 Sep 16;280(11):975-980. [doi: 10.1001/jama.280.11.975]
[Medline: 9749479]

7. Dess RT, Hartman HE, Mahal BA, et al. Association of Black race with prostate cancer-specific and other-cause mortality.
JAMA Oncol 2019 Jul 1;5(7):975-983. [doi: 10.1001/jamaoncol.2019.0826] [Medline: 31120534]

8. Lachance J, Berens AJ, Hansen MEB, Teng AK, Tishkoff SA, Rebbeck TR. Genetic hitchhiking and population bottlenecks
contribute to prostate cancer disparities in men of African descent. Cancer Res 2018 May 1;78(9):2432-2443. [doi:
10.1158/0008-5472.CAN-17-1550] [Medline: 29438991]

9. Zhang W, Dong Y, Sartor O, Flemington EK, Zhang K. SEER and gene expression data analysis deciphers racial disparity
patterns in prostate cancer mortality and the public health implication. Sci Rep 2020 Apr;10(1):6820. [doi:
10.1038/s41598-020-63764-4]

10. Sarkar S, Das S. A review of imaging methods for prostate cancer detection. Biomed Eng Comput Biol 2016;7(Suppl
1):1-15. [doi: 10.4137/BECB.S34255] [Medline: 26966397]

11. Naji L, Randhawa H, Sohani Z, et al. Digital rectal examination for prostate cancer screening in primary care: a systematic
review and meta-analysis. Ann Fam Med 2018 Mar;16(2):149-154. [doi: 10.1370/afm.2205] [Medline: 29531107]

12. Barry MJ. Clinical practice. prostate-specific-antigen testing for early diagnosis of prostate cancer. N Engl J Med 2001
May 3;344(18):1373-1377. [doi: 10.1056/NEJM200105033441806] [Medline: 11333995]

13. Raghu A, Raghu A, Wise JF. Deep learning–based identification of tissue of origin for carcinomas of unknown primary
using MicroRNA expression: algorithm development and validation. JMIR Bioinform Biotech 2024 Jul;5:e56538. [doi:
10.2196/56538]

14. Ng KLS, Mishra SK. De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global
and intrinsic folding measures. Bioinformatics 2007 Jun 1;23(11):1321-1330. [doi: 10.1093/bioinformatics/btm026]
[Medline: 17267435]

15. Akinnuwesi BA, Olayanju KA, Aribisala BS, et al. Application of support vector machine algorithm for early differential
diagnosis of prostate cancer. Data Sci Manag 2023 Mar;6(1):1-12. [doi: 10.1016/j.dsm.2022.10.001]

16. Alharbi F, Vakanski A. Machine learning methods for cancer classification using gene expression data: a review.
Bioengineering (Basel) 2023 Jan 28;10(2):173. [doi: 10.3390/bioengineering10020173] [Medline: 36829667]

17. Khalsan M, Machado LR, Al-Shamery ES, et al. A survey of machine learning approaches applied to gene expression
analysis for cancer prediction. IEEE Access 2022;10:27522-27534. [doi: 10.1109/ACCESS.2022.3146312]

18. Xiao J, Mo M, Wang Z, et al. The application and comparison of machine learning models for the prediction of breast
cancer prognosis: retrospective cohort study. JMIR Med Inform 2022 Feb 18;10(2):e33440. [doi: 10.2196/33440] [Medline:
35179504]

19. Anna A, Monika G. Splicing mutations in human genetic disorders: examples, detection, and confirmation. J Appl Genet
2018 Aug;59(3):253-268. [doi: 10.1007/s13353-018-0444-7] [Medline: 29680930]

20. Alhenawi E, Al-Sayyed R, Hudaib A, Mirjalili S. Feature selection methods on gene expression microarray data for cancer
classification: a systematic review. Comput Biol Med 2022 Jan;140:105051. [doi: 10.1016/j.compbiomed.2021.105051]
[Medline: 34839186]

21. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. Distributed feature selection: an application to microarray data
classification. Appl Soft Comput 2015 May;30:136-150. [doi: 10.1016/j.asoc.2015.01.035]

22. Gomes R, Paul N, He N, Huber AF, Jansen RJ. Application of feature selection and deep learning for cancer prediction
using DNA methylation markers. Genes (Basel) 2022 Aug 29;13(9):1557. [doi: 10.3390/genes13091557] [Medline:
36140725]

23. Sheikhpour R, Berahmand K, Mohammadi M, Khosravi H. Sparse feature selection using hypergraph Laplacian-based
semi-supervised discriminant analysis. Pattern Recognit DAGM 2025 Jan;157:110882. [doi: 10.1016/j.patcog.2024.110882]

24. Dai B, Xu Z, Li H, Wang B, Cai J, Liu X. Racial bias can confuse AI for genomic studies. Oncologie (Paris)
2022;24(1):113-130. [doi: 10.32604/oncologie.2022.020259]

25. Kapur S. Reducing racial bias in AI models for clinical use requires a top-down intervention. Nat Mach Intell 2021
Jun;3(6):460-460. [doi: 10.1038/s42256-021-00362-7]

26. Monterroso P, Moore KJ, Sample JM, Sorajja N, Domingues A, Williams LA. Racial/ethnic and sex differences in young
adult malignant brain tumor incidence by histologic type. Cancer Epidemiol 2022 Feb;76:102078. [doi:
10.1016/j.canep.2021.102078] [Medline: 34896933]

27. Alshareef AM, Alsini R, Alsieni M, et al. Optimal deep learning enabled prostate cancer detection using microarray gene
expression. J Healthc Eng 2022;2022:7364704. [doi: 10.1155/2022/7364704] [Medline: 35310199]

28. Zhu L, Wang H, Jiang C, et al. Clinically applicable 53-gene prognostic assay predicts chemotherapy benefit in gastric
cancer: a multicenter study. EBioMedicine 2020 Nov;61:103023. [doi: 10.1016/j.ebiom.2020.103023] [Medline: 33069062]

29. Ravindran U, Gunavathi C. Deep learning assisted cancer disease prediction from gene expression data using WT-GAN.
BMC Med Inform Decis Mak 2024 Oct 24;24(1):311. [doi: 10.1186/s12911-024-02712-y] [Medline: 39449042]

30. Van Rossum G, Drake FL. Python 3 Reference Manual: CreateSpace; 2009.
31. Welcome to the xena functional genomics explorer. UCSC Xena. URL: https://xenabrowser.net/ [accessed 2025-07-04]

JMIR Bioinform Biotech 2025 | vol. 6 | e72423 | p.217https://bioinform.jmir.org/2025/1/e72423
(page number not for citation purposes)

Agustriawan et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.1001/jama.280.11.975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9749479&dopt=Abstract
http://dx.doi.org/10.1001/jamaoncol.2019.0826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31120534&dopt=Abstract
http://dx.doi.org/10.1158/0008-5472.CAN-17-1550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29438991&dopt=Abstract
http://dx.doi.org/10.1038/s41598-020-63764-4
http://dx.doi.org/10.4137/BECB.S34255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26966397&dopt=Abstract
http://dx.doi.org/10.1370/afm.2205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29531107&dopt=Abstract
http://dx.doi.org/10.1056/NEJM200105033441806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11333995&dopt=Abstract
http://dx.doi.org/10.2196/56538
http://dx.doi.org/10.1093/bioinformatics/btm026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17267435&dopt=Abstract
http://dx.doi.org/10.1016/j.dsm.2022.10.001
http://dx.doi.org/10.3390/bioengineering10020173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36829667&dopt=Abstract
http://dx.doi.org/10.1109/ACCESS.2022.3146312
http://dx.doi.org/10.2196/33440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35179504&dopt=Abstract
http://dx.doi.org/10.1007/s13353-018-0444-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29680930&dopt=Abstract
http://dx.doi.org/10.1016/j.compbiomed.2021.105051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34839186&dopt=Abstract
http://dx.doi.org/10.1016/j.asoc.2015.01.035
http://dx.doi.org/10.3390/genes13091557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36140725&dopt=Abstract
http://dx.doi.org/10.1016/j.patcog.2024.110882
http://dx.doi.org/10.32604/oncologie.2022.020259
http://dx.doi.org/10.1038/s42256-021-00362-7
http://dx.doi.org/10.1016/j.canep.2021.102078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34896933&dopt=Abstract
http://dx.doi.org/10.1155/2022/7364704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35310199&dopt=Abstract
http://dx.doi.org/10.1016/j.ebiom.2020.103023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33069062&dopt=Abstract
http://dx.doi.org/10.1186/s12911-024-02712-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39449042&dopt=Abstract
https://xenabrowser.net/
http://www.w3.org/Style/XSL
http://www.renderx.com/


32. Harris CR, Millman KJ, van der Walt SJ, et al. Array programming with NumPy. Nature New Biol 2020
Sep;585(7825):357-362. [doi: 10.1038/s41586-020-2649-2] [Medline: 32939066]

33. McKinney W. Data structures for statistical computing in python. 2010 Presented at: Python in Science Conference; Jun
28 to Jul 3, 2010; Austin, Texas p. 51-56. [doi: 10.25080/Majora-92bf1922-00a]

34. Kluyver T, Benjain RK, Fernando P, et al. Jupyter notebooks – a publishing format for reproducible computational workflows.
In: Loizides F, Schmidt B, editors. Positioning and Power in Academic Publishing: Players, Agents and Agendas: IOS
Press; 2016:87-90.

35. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol 2014;15(12):550. [doi: 10.1186/s13059-014-0550-8] [Medline: 25516281]

36. Risk MC, Knudsen BS, Coleman I, et al. Differential gene expression in benign prostate epithelium of men with and without
prostate cancer: evidence for a prostate cancer field effect. Clin Cancer Res 2010 Nov 15;16(22):5414-5423. [doi:
10.1158/1078-0432.CCR-10-0272] [Medline: 20935156]

37. Gunasekaran H, Ramalakshmi K, Arokiaraj ARM, Kanmani SD, Venkatesan C, Dhas CSG. Analysis of DNA sequence
classification using CNN and hybrid models. Comput Math Methods Med 2021;2021:1835056. [doi: 10.1155/2021/1835056]
[Medline: 34306171]

38. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. J Mach Learn Res 2011
Nov;12:2825-2830 [FREE Full text]

39. Hou C, Zhong X, He P, et al. Predicting breast cancer in Chinese women using machine learning techniques: algorithm
development. JMIR Med Inform 2020 Jun 8;8(6):e17364. [doi: 10.2196/17364] [Medline: 32510459]

40. Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng 2007;9(3):90-95. [doi: 10.1109/MCSE.2007.55]
41. da Silva AR, Malafaia G, Menezes IPP. Biotools: an R function to predict spatial gene diversity via an individual-based

approach. Genet Mol Res 2017 Apr 13;16(2):2. [doi: 10.4238/gmr16029655] [Medline: 28407196]
42. Goldman MJ, Craft B, Hastie M, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat

Biotechnol 2020 Jun;38(6):675-678. [doi: 10.1038/s41587-020-0546-8] [Medline: 32444850]
43. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting

genome-wide expression profiles. Proc Natl Acad Sci USA 2005 Oct 25;102(43):15545-15550. [doi:
10.1073/pnas.0506580102]

44. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database
(MSigDB) 3.0. Bioinformatics 2011 Jun 15;27(12):1739-1740. [doi: 10.1093/bioinformatics/btr260] [Medline: 21546393]

45. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB)
hallmark gene set collection. Cell Syst 2015 Dec 23;1(6):417-425. [doi: 10.1016/j.cels.2015.12.004] [Medline: 26771021]

46. Castanza AS, Recla JM, Eby D, Thorvaldsdóttir H, Bult CJ, Mesirov JP. The molecular signatures database revisited:
extending support for mouse data. bioRxiv. Preprint posted online on Oct 25, 2022. [doi: 10.1101/2022.10.24.513539]

47. Pruneri G, De Braud F, Sapino A, et al. Next-generation sequencing in clinical practice: is it a cost-saving alternative to a
single-gene testing approach? Pharmacoecon Open 2021 Jun;5(2):285-298. [doi: 10.1007/s41669-020-00249-0] [Medline:
33660227]

48. Stoddard JL, Niemela JE, Fleisher TA, Rosenzweig SD. Targeted NGS: a cost-effective approach to molecular diagnosis
of PIDs. Front Immunol 2014;5:531. [doi: 10.3389/fimmu.2014.00531] [Medline: 25404929]

49. Ndiaye M, Prieto-Baños S, Fitzgerald LM, et al. When less is more: sketching with minimizers in genomics. Genome Biol
2024 Oct 14;25(1):270. [doi: 10.1186/s13059-024-03414-4] [Medline: 39402664]

50. Xie Y, Xie J. Integrates differential gene expression analysis and deep learning for accurate and robust prostate cancer
diagnosis. ACE 2024;57(1):66-74. [doi: 10.54254/2755-2721/57/20241312]

Abbreviations
DEG: differentially expressed gene
GDC : Genomic Data Commons
GSEA: gene set enrichment analysis
MGECD: Micro Gene Expression Cancer Dataset
MSigDB: Molecular Signature Database
PSA: prostate-specific antigen
ROC: receiver operating characteristic
SVM: support vector machine
TCGA: The Cancer Genome Atlas
TCGA-PRAD: The Cancer Genome Atlas Prostate Adenocarcinoma

JMIR Bioinform Biotech 2025 | vol. 6 | e72423 | p.218https://bioinform.jmir.org/2025/1/e72423
(page number not for citation purposes)

Agustriawan et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32939066&dopt=Abstract
http://dx.doi.org/10.25080/Majora-92bf1922-00a
http://dx.doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25516281&dopt=Abstract
http://dx.doi.org/10.1158/1078-0432.CCR-10-0272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20935156&dopt=Abstract
http://dx.doi.org/10.1155/2021/1835056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34306171&dopt=Abstract
https://jmlr.csail.mit.edu/papers/volume12/pedregosa11a/pedregosa11a.pdf
http://dx.doi.org/10.2196/17364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32510459&dopt=Abstract
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.4238/gmr16029655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28407196&dopt=Abstract
http://dx.doi.org/10.1038/s41587-020-0546-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32444850&dopt=Abstract
http://dx.doi.org/10.1073/pnas.0506580102
http://dx.doi.org/10.1093/bioinformatics/btr260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21546393&dopt=Abstract
http://dx.doi.org/10.1016/j.cels.2015.12.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26771021&dopt=Abstract
http://dx.doi.org/10.1101/2022.10.24.513539
http://dx.doi.org/10.1007/s41669-020-00249-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33660227&dopt=Abstract
http://dx.doi.org/10.3389/fimmu.2014.00531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25404929&dopt=Abstract
http://dx.doi.org/10.1186/s13059-024-03414-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39402664&dopt=Abstract
http://dx.doi.org/10.54254/2755-2721/57/20241312
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by J Finkelstein; submitted 04.03.25; peer-reviewed by K Berahmand, SD Johnson; revised version received 23.05.25; accepted
20.06.25; published 31.07.25.

Please cite as:
Agustriawan D, Mulia A, Overbeek MV, Kurniawan V, Syechlo J, Widjaja M, Ahmad MI
Framework for Race-Specific Prostate Cancer Detection Using Machine Learning Through Gene Expression Data: Feature Selection
Optimization Approach
JMIR Bioinform Biotech 2025;6:e72423
URL: https://bioinform.jmir.org/2025/1/e72423 
doi:10.2196/72423

© David Agustriawan, Adithama Mulia, Marlinda Vasty Overbeek, Vincent Kurniawan, Jheno Syechlo, Moeljono Widjaja,
Muhammad Imran Ahmad. Originally published in JMIR Bioinformatics and Biotechnology (https://bioinform.jmir.org), 31.7.2025.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Bioinformatics and Biotechnology, is properly cited. The complete bibliographic
information, a link to the original publication on https://bioinform.jmir.org/, as well as this copyright and license information
must be included.

JMIR Bioinform Biotech 2025 | vol. 6 | e72423 | p.219https://bioinform.jmir.org/2025/1/e72423
(page number not for citation purposes)

Agustriawan et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

https://bioinform.jmir.org/2025/1/e72423
http://dx.doi.org/10.2196/72423
http://www.w3.org/Style/XSL
http://www.renderx.com/


Estimating Antigen Test Sensitivity via Target Distribution
Balancing: Development and Validation Study

Miguel Bosch1,2, PhD; Adriana Moreno2, MSc; Raul Colmenares2, MSc; Jose Arocha1, MSc; Sina Hoche1, PhD; Auris

Garcia1, BSc; Daniela Hall1, PhD; Dawlyn Garcia1, MSc; Lindsey Rudtner1, BSc; Nol Salcedo1, MSc; Irene Bosch1,
PhD
1IDX20 Inc, 166 Clinton Road, Brookline, MA, United States
2Info Analytics Innovations LLC, Houston, TX, United States

Corresponding Author:
Irene Bosch, PhD
IDX20 Inc, 166 Clinton Road, Brookline, MA, United States

Abstract

Background: Sensitivity—expressed as percent positive agreement (PPA) with a reference assay—is a primary metric for
evaluating lateral-flow antigen tests (ATs), typically benchmarked against a quantitative reverse transcription polymerase chain
reaction (qRT-PCR). In SARS-CoV-2 diagnostics, ATs detect nucleocapsid protein, whereas qRT-PCR detects viral RNA copy
numbers. Since observed PPA depends on the underlying viral load distribution (proxied by the number of cycle thresholds [Cts],
which is inversely related to load), study-specific sampling can bias sensitivity estimates. Cohort differences—such as enrichment
for high- or low-Ct specimens—therefore complicate cross-test comparisons, and real-world datasets often deviate from regulatory
guidance to sample across the full concentration range. Although logistic models relating test positivity to Ct are well described,
they are seldom used to reweight results to a standardized reference viral load distribution. As a result, reported sensitivities
remain difficult to compare across studies, limiting both accuracy and generalizability.

Objective: The aim of this study was to develop and validate a statistical methodology that estimates the sensitivity of ATs by
recalibrating clinical performance data—originally obtained from uncontrolled viral load distributions—against a standardized
reference distribution of target concentrations, thereby enabling more accurate and comparable assessments of diagnostic test
performance.

Methods: AT sensitivity is estimated by modeling the PPA as a function of qRT-PCR Ct values (PPA function) using logistic
regression on paired test results. Raw sensitivity is the proportion of AT positives among PCR-positive samples. Adjusted
sensitivity is calculated by applying the PPA function to a reference Ct distribution, correcting for viral load variability. This
enables standardized comparisons across tests. The method was validated using clinical data from a community study in Chelsea,
Massachusetts, demonstrating its effectiveness in reducing sampling bias.

Results: Over a 2-year period, paired ATs and qRT-PCR–positive samples were collected from 4 suppliers: A (n=211), B
(n=156), C (n=85), and D (n=43). Ct value distributions varied substantially, with suppliers A and D showing lower Ct (high
viral load) values in the samples, and supplier C skewed toward higher Ct values (low viral load). These differences led to
inconsistent raw sensitivity estimates. To correct for this, we used logistic regression to model the PPA as a function of Cts and
applied these models to a standardized reference Ct distribution. This adjustment reduced bias and enabled more accurate
comparisons of test performance across suppliers.

Conclusions: We present a distribution-aware framework that models PPA as a logistic function of Ct and reweights results to
a standardized reference Ct distribution to produce bias-corrected sensitivity estimates. This yields fairer, more consistent
comparisons across AT suppliers and studies, strengthens quality control, and supports regulatory review. Collectively, our results
provide a robust basis for recalibrating reported sensitivities and underscore the importance of distribution-aware evaluation in
diagnostic test assessment.

Trial Registration: ClinicalTrials.gov NCT05884515; https://clinicaltrials.gov/study/NCT05884515

(JMIR Bioinform Biotech 2025;6:e68476)   doi:10.2196/68476
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Introduction

Antigen tests (ATs) have been a common tool utilized to provide
evidence for diagnosis and health care decisions and have been
used as such for several decades [1-4]. During the COVID-19
pandemic, the worldwide use of ATs demonstrated relevance
for disease monitoring and diagnosis of new cases [5,6]. ATs
are rapid, economical, and portable; can be self-administered;
are quick to develop; and provide direct evidence for the
presence of the pathogen in the tested sample—this combination
is not equaled by more sophisticated laboratory tests. Due to its
increasing use, it is important to accurately evaluate the AT
performance for quality and regulatory control.

The common statistic used to evaluate the positive agreement
performance of ATs has been sensitivity, calculated over a set
of samples known to be positive by a gold standard reference.
However, the sensitivity of ATs is known to be strongly
dependent on the sample viral load [7-9]. Hence, the sensitivity
per se is not an appropriate measure of the AT positive
agreement performance because it is largely dependent on the
distribution of the viral load of statistical support (ie, the set of
samples used to calculate the statistic). Instead, a description
of the percent positive agreement (PPA) as a function of viral
load is a more accurate measure of positive agreement
performance. The PPA function (PPAf) is commonly calculated
with a logistic regression of the binary test result on positive
agreement (1=agreement, 0=disagreement) against a variable
related to the viral load. In the case of COVID-19, the viral load
is commonly measured with the quantitative reverse
transcription polymerase chain reaction (qRT-PCR) cycle
threshold (Ct) result [10,11]; hence, the PPA is a function of
the Cts.

Once the PPAf of a given AT supplier’s product has been
estimated from collected data in real-world application
conditions, it is straightforward to estimate the expected
sensitivity for any given Ct distribution or Ct sample set. This
is particularly useful for equalizing the expected sensitivity to
a common standard or reference distribution of Cts for a
comparison of the performance across suppliers for product
quality or regulatory purposes. This process removes the bias
introduced into sensitivity by the circumstantial uneven
representation of viral load in the statistical support (ie, the data
used to calculate the statistic).

Common methods used to calculate the sensitivity of an AT
product, whether for regulatory compliance or clinical diagnostic
research purposes, typically involve collecting real-world test
results paired with the qRT-PCR gold standard. However, in
the case of lateral-flow ATs, sensitivity uncertainty does not
adhere to a straightforward Bernoulli process, as the underlying
positive agreement probability is not constant and is instead
conditioned by viral load. To accurately calculate sensitivity,
it would be necessary to segment the collected samples based
on the most influential variable affecting underlying probability,
using a standard reference histogram. In our case, the influential
variable is the viral load, measured as Cts. Yet, implementing
such a process in the field with real-world data would be
cumbersome and would require a much larger dataset. The

proposed balancing method overcomes this challenge by
adjusting the raw sensitivity calculation to any desired
standardized reference distribution of the viral load, without
the need for extended data collection and segmentation.

Methods

Study Description
We conducted a study of AT use in real-world conditions in the
city of Chelsea, Massachusetts, during the years 2022‐2023.
The objectives of the study were multifold: (1) performing
frequent COVID-19 testing at 2 vulnerable population sites
(elderly housing), (2) evaluating the performance of ATs from
different suppliers in the laboratory and in the real-world
context, (3) collecting longitudinal (time series) AT data for
qRT-PCR positive samples, and (4) implementing a digital AT
data collection platform.

The participants of the study were enrolled after consent. The
participant was provided with a single self-testing AT of any
of the available 4 participating suppliers. The tests were home
tests, and data were self-logged by the participants into an
internet-based informatics platform. The participants registered
the AT results (their own assessment) and uploaded a
photograph of the test after completion (15 min). The fraction
of positive AT tests was followed daily with paired qRT-PCR
testing. A random number of negative ATs were also analyzed
by PCR.

Support personnel were available on scheduled days throughout
the week within the community to provide devices, training,
and participant follow-up. This minimized potential confounding
factors related to test interpretation and self-reporting via the
app. In addition to textual reports, participants uploaded an
image of their test result, allowing our team to perform
retrospective verification. Discrepancies between self-reported
results and staff-reviewed interpretations were found to be
negligible, occurring in 5 eye assessments of 500 positive tests.

The data analyzed come from ATs provided by 4 different
suppliers, labeled A through D, and the corresponding qRT-PCR
test results, all of which were processed at a Clinical Laboratory
Improvement Amendments–certified laboratory using the same
RNA extraction as well as PCR protocol. The total negative
qRT-PCR tests were 57 for A, 91 for B, 145 for C, and 114 for
D, and positive qRT-PCR tests were 211 for A, 156 for B, 84
for C, and 43 for D. Each participant was tested with a single
brand (ie, AT supplier), so the distribution of viral load could
be different between the data collected for each brand. These
data were used to calculate AT performance statistics and
demonstrate the methodology for distribution-balanced
sensitivity according to a reference standard distribution.
Lineage annotations used in this study for laboratory assays
were Delta comparator (B.1.617.2/AY sublineages) using the
US WA 1/1 isolate and Omicron (BA.5). Among Chelsea study
participants in 2022-2023, we detected BA.1.1, BA.2,
BA.2.12.1, BA.5, BA.5.1, BA.5.2, BA.5.2.1, BQ.1.1, BQ.1.1.4,
BQ.1.1.5, BQ.1.14, and XBB.1.5. Clinical sample sequences
were generated at the Broad Institute.
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Ethical Considerations
This study was reviewed and approved by the Advarra
Institutional Review Board (IRB) for protocol “Center of
Complex Interventions – IDx20-001, Community frequent
antigen testing to monitor COVID-19 in senior public housing
setup” (Pro00059157). The most recent continuing review
approval was granted on November 13, 2023, with approval
through November 13, 2024. Advarra is registered with the
Office for Human Research Protections/Food and Drug
Administration (IRB #00000971) and conducts reviews in
accordance with US HHS 45 CFR 46 and FDA 21 CFR 50/56.
All procedures adhered to institutional and national ethical
standards and the World Medical Association Declaration of
Helsinki. In accordance with JMIR Publications requirements,
the IRB review outcome is explicitly reported here.

Before any study procedures, participants were informed of the
study purpose, procedures, potential risks and benefits, data
uses, and their right to withdraw without penalty. Written
informed consent was obtained from each participant using
IRB-approved consent materials. No monetary compensation
was given to participants. All study personnel completed
human-subjects protection training prior to participant
interaction.

Data were collected and stored under IRB-approved procedures
to protect privacy and confidentiality. Only deidentified or
aggregated data are presented in this study; no identifiable
personal information is reported.

Any protocol amendments, consent-form changes, or reportable
events (eg, unanticipated problems; adverse device effects; or
protocol deviations that could affect participant rights, safety,
or data integrity) were submitted to Advarra in accordance with
IRB requirements before implementation.

PPA Function
As commonly used, AT operative reading involves steps of
device reaction to the nasal swab sample, a waiting time after
the sample is deposited, an observation using the naked eye,
and interpretation of the results by the user. For all kits utilized
(eg, cassettes), the user observed the presence or absence of a
colored line in a test area (test band) on a nitrocellulose strip
of the lateral-flow test. The result is considered positive when
the test band visualized (a color band) and can be distinguished
from the no color or white background even if the color signal
is faint, while a negative result is when the test band cannot be
visualized by the user. For performance statistics, the result of
the AT provided to the user is compared to the gold standard
reference test [12], a COVID-19 qRT-PCR test conducted in a
state-approved clinical laboratory.

For the positive agreement analysis of each AT supplier dataset,
we compare only the AT results that have a paired positive
qRT-PCR result (ie, having a positive qRT-PCR result in a
parallel swab sample taken the same day and time as the AT
swab sample). For the logistic regression analysis, we identified
the AT results with a binary variable: 1 for a positive result
(agreement with the standard test) and 0 for a negative result
(disagreement with the standard test). The outcome of the user
assessment can be described by a binary random variable. We

modeled the PPAf with a logistic function, having the qRT-PCR
Ct as the function domain (ie, the independent variable). Logistic
regression is a well-known analysis to estimate the probability
as a function of a dependent variable [13]. It has been used to
describe the probability of positive agreement in ATs [14].

In addition to estimating the PPAf that characterized each AT
supplier, the regression also accounts for the uncertainties of
the probability function and parameters. We implement the
logistic regression with a Bayesian approach, combining the
objectives of (1) fitting the binary observed data and (2)
honoring the Clopper-Pearson binomial confidence limits at the
raw Ct data sensitivity prediction. Hence, the posterior model
uncertainty description ensures compliance with the
Clopper-Pearson confidence limits for the sensitivity at the raw
Ct data. The numerical calculations are performed by Markov
chain Monte Carlo methods.

The logistic model is a well-established method for modeling
binary outcomes in which the probability, px, varies with a
predictor variable, x, particularly when the probability increases
monotonically with x. It assumes that the log-odds of the
outcome (ie, the logit transformation of the probability) is a
linear function of the predictor. Compared to the traditional
approach to raw sensitivity estimation—which treats test
outcomes as the result of a Bernoulli process with constant
(homogeneous) probability—the logistic model offers a
first-order improvement by accounting for the dependence of
the outcome probability on the target concentration. Although
alternative parametric models could be used to describe the
relationship between probability and the predictor (eg, probit,
splines), the logistic model provides a widely accepted and
practical framework for improving sensitivity estimation
accuracy. Logistic and probit models both yield nearly identical
monotone dose-response curves; we selected the logistic model
for its interpretability in terms of log-odds, its ability to directly
estimate the concentration at which PPA=0.5, and its widespread
use in diagnostics. Spline approaches are not appropriate in this
context, as they do not satisfy the boundary conditions of
approaching 0 at the lower end and 1 at the upper end of the
concentration axis.

Distribution-Balanced Sensitivity Method
The sensitivity, s, is the fraction of the positive agreement cases
divided by the total positive cases in the experimental gold
standard results (eg, collected real-world AT binary data on
positive qRT-PCR cases). Based on the PPAf characterized for
each AT supplier data, we can estimate the sensitivity for any
set of Ct cases. Let us consider that the experimental data for a
given AT supplier involves N cases with qRT-PCR cycle counts,
x={x1,x2,…xn,…,xN}. The expected value of the sensitivity
is the average of the PPAf, px, over the cases:

(1)E(s)=1N∑1Np(xn)

Likewise, the expected sensitivity over a data support with any
Ct probability density function (PDF), g(x), is given by the
probability product integration:

. (2)E(s)=1xf−x0∫x0xfp(x)g(x)dx

Equations 1 and 2 use the PPAf to calculate the expected
sensitivity over a specific Ct data or distribution. Adequate
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comparison of sensitivity across different AT datasets requires
a transformation of raw sensitivity (ie, calculated from the
observed data) to the expected sensitivity over a common
reference of Ct data values, or a Ct support distribution (ie,
histogram or PDF). Considering observed binary data for several
AT suppliers, our proposed process to equalize the sensitivity
support involves (1) estimating the PPAfs by logistic regression
of the observed AT binary data for each one of the supplier’s
datasets; (2) defining a common reference Ct distribution by a
PDF, gx; and (3) calculating for each AT supplier dataset the
estimated sensitivity over the common reference Ct support by
equation (2).

Equation 2 can be evaluated by discretizing the Ct domain.
Alternatively, it can be computed by Monte Carlo integration,

drawing Ct realizations from the target distribution and applying
equation 1 to each draw. To balance viral load distributions
across assays, we select a reference Ct sample set as the
empirical Ct distribution from supplier A and evaluate all other
suppliers over this common range. The procedure is as follows:
(1) for each nonreference supplier, fit a logistic regression for
PPA as a function of Ct using the observed binary AT outcomes
and (2) compute expected sensitivity by averaging the fitted
PPA over supplier A’s Ct values via equation 1.

The described viral load balance processes removed the effect
of the Ct distribution on sensitivity, providing a common base
for comparison and evaluation of the test performance.

Table 1 presents a glossary of terms and their corresponding
meanings.

Table . Glossary of relevant terms and corresponding meanings.

DefinitionTerm

Lateral flow antigen testAntigen test (AT)

Specific analyte that the test is designed to detect (protein present in a bi-
ological matrix sample)

Target

qRT-PCRa cycle at which the fluorescence signal crosses a set threshold
above background

Cycle threshold (Ct)

It is the concentration of the target protein, expressed by cycle thresholds

or ng mL–1, or by plaque forming units of virus mL–1
Target concentration

The distribution of target concentrations among the tested population;
when grouped into concentration ranges, it can be represented as a his-
togram.

Target concentration distribution

Proportion of positive cases detected by the antigen tests according to the
reference qRT-PCR gold standard. It represents the percent positive
agreement.

Sensitivity

In a Bernoulli process, it is the probability that the test outcome is positive;
in the context of antigen tests, this probability varies with the target con-
centration.

Percent positive agreement (PPA)

It is a function assigning the value of the probability of positive agreement
for a given target concentration.

Percent positive agreement function (PPAf)

The modeled value of the sensitivity at a selected (balanced) cycle distri-
bution distribution different from that of the real-world dataset.

Distribution-balanced sensitivity

A distribution of the target concentration that is adopted as reference to
model the sensitivity.

Reference distribution

aqRT-PCR: quantitative reverse transcription polymerase chain reaction.

Results

Raw Positive Agreement Statistics
This section describes the basic performance statistics of the
ATs of the 4 suppliers analyzed, and the estimated PPAfs, based
on the binary data collected from the Chelsea study [15]. The

agreement matrix was determined for each supplier AT, and
the common performance agreement fractions were calculated:
sensitivity, specificity, positive prediction, negative prediction,
and total prediction. Table 2 displays the basic performance
statistics for each one of the test suppliers, including the
Clopper-Pearson 95% confidence limits [16].
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Table . Basic performance statistics for COVID-19 in vitro diagnostics suppliers A, B, C, and D.

Upper 95% confi-
dence limit

Lower 95% confi-
dence limit

ValueTotal cases, nPositive agreement
cases, n

Supplier

A

0.890.780.84211177    Sensitivity

1.000.880.965755    Specificity

1.000.960.99179177    Positive prediction

0.710.510.628955    Negative prediction

0.900.820.87268232    Total agreement

B

0.820.670.75156117    Sensitivity

1.000.940.999190    Specificity

1.000.950.99118177    Positive prediction

0.770.610.7012990    Negative prediction

0.880.790.84247207    Total agreement

C

0.750.540.658555    Sensitivity

1.000.971.00144144    Specificity

1.000.941.005555    Positive prediction

0.880.760.83174144    Negative prediction

0.910.820.87229199    Total agreement

D

0.920.670.814335    Sensitivity

0.970.880.94114107    Specificity

0.930.690.834235    Positive prediction

0.970.850.93115107    Negative prediction

0.950.880.90157142    Total agreement

Sensitivities show large differences across the suppliers A, B,
C, and D, with values 0.84, 0.75, 0.65, and 0.81, respectively.
A comparison plot of the raw AT sensitivities for each supplier
and confidence limits is shown (Figure 1). Differences are
significant with a large departure of 19% (percentage points of
the sensitivity) between suppliers A and C. However, the

histograms of qRT-PCR Cts supporting the sensitivity
calculations have marked differences across the suppliers (Figure
2). Note that suppliers A and D have a larger proportion of low
Cts (large viral sample concentration). On the other hand,
supplier C has a larger representation of large Cts (low viral
sample concentration).
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Figure 1. Raw sensitivities resulting from the real-world Chelsea study for lateral flow in vitro diagnostics suppliers A, B, C, and D. The boxes and
whiskers indicate the median and 50% and 95% confidence limits calculated using the Clopper-Pearson statistical method. The horizontal dotted line
across all histograms indicates the 0.8 sensitivity value, which is acceptable for in vitro diagnostics clinical performance according to regulatory standards
at 0.8 sensitivity for COVID-19 antigen tests.

Figure 2. Histogram distributions of cycle thresholds (Cts) for antigen test suppliers A-D using quantitative reverse transcription polymerase chain
reaction (qRT-PCR) Cts for each antigen test supplier’s dataset. Cts are the average of N and ORFab gene segments of SARS-CoV-2 and reported from
Clinical Laboratory Improvement Amendments–certified laboratory using a PerkinElmer SARS-CoV-2 Food and Drug Administration–approved kit.

Probability of Positive Agreement Functions
Raw sensitivities (Figure 1) superpose the effects of the viral
concentration support to the true performance of the ATs.

Following our method, a first step to decouple the 2 effects is
estimating the PPAf from the raw data of each AT supplier by
logistic regression, as explained in the previous section. Figure
3 shows the binary data collected for each AT supplier plotted
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against the Cts and the estimated PPAf for each test supplier.
The estimation of the PPAf by fitting the observed binary AT
data also provides the description of the uncertainties in the

PPAf. With the 95% confidence intervals of the PPAf, our
formulation estimates the full distribution of the PPA
conditioned to the Ct value.

Figure 3. Positive percent agreement (PPA) as a function of the quantitative reverse transcription polymerase chain reaction (qRT-PCR) cycle thresholds
(Cts) for naked-eye assessments of the Chelsea project participants after self-application of the antigen tests. Naked-eye assessments of the antigen test
result are plotted in the vertical axis with value 1 for positive and 0 for negative. The PPA function is obtained by logistic regression of the binary
naked-eye results and shows the strong dependency of the agreement probability with the qRT-PCR Cts.

The PPAfs for suppliers A and B are similar (Figure 3). Note
that the Ct of median probability (ie, limit of detection at
probability P=.50) and the slope of the line function are similar
to one another. The PPAf for supplier C shows a slightly larger
Ct at median probability and lower slope of the function. The
PPAf for supplier D is also close to the A and B functions but
shows a wider range of uncertainties, also expected from the
smaller dataset supporting supplier D.

Several factors influence the estimation of the PPAf: the
representation of the Ct range, the balance between positive and
negative samples, and the overall sample size. Smaller sample
sizes increase the uncertainty of the PPAf, as illustrated in the
case of supplier D. However, in this case, the estimation
remained reliable because the Ct range and the positive-negative
representation were sufficiently well balanced. The Ct values
in supplier D’s dataset are comparable to those observed in other
supplier datasets. Similarly, the distribution of positive and
negative samples is appropriate, with a higher frequency of
negatives at lower viral loads (ie, higher Ct values), as expected.
In contrast, datasets with limited coverage of the Ct range,

underrepresentation of positives or negatives, or a distribution
that fails to reflect the expected polarization, with negatives
concentrated at higher Ct values and positives at lower Ct values,
would not support a reliable estimation.

Reference Distributions of Viral Load
Due to the specific Ct value distributions, the comparison of
raw sensitivities is biased by the uneven distribution of the Ct
support. This is shown by the corresponding histograms (Figure
2). Utilizing the balance methodology, we computed the
sensitivities of the ATs from the 4 suppliers across 4 distinct
reference distributions of the Cts. The sample statistics of the
PPA exhibit particular sensitivity to low positive samples, that
is, those with low viral concentration. Consequently, we opt for
a uniform distribution of qRT-PCR cycles spanning 10‐35
Cts, with variable proportions within the 35‐40 range, to
underscore the significance of representing low-positive cases
in the overall sample PPA (Figure 4A-C). Additionally, we
employed the combined Ct distribution of all 4 tests as a
reference, that is, the joint positive qRT-PCR Ct counts of the
4 suppliers’ data (Figure 4D).
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Figure 4. Comparison of selected reference distributions of the raw data. Histograms A, B, and C correspond to 200 dataset points with a range of low
virus load (from 5% to 15% of sample at 35‐40 quantitative reverse transcription polymerase chain reaction [qRT-PCR] cycle threshold [Ct] range)
and uniform distribution in the range of high-to-moderate virus load (10‐35 qRT-PCR Ct range). Histogram D corresponds to the overlap of the 4
antigen test in vitro diagnostics suppliers’ real-world data.

We present 4 different Ct distributions to illustrate how Ct
values, and therefore virus load, influence the adjusted
sensitivity. The purpose of the distribution-balancing process
is 2-fold: (1) to enable accurate comparison of AT sensitivities
across studies and (2) to improve real-world sensitivity
estimation. First, comparing sensitivities across studies becomes
more reliable when distribution-balanced is referenced to a
common distribution. Second, clinical studies often have limited
numbers of cases and may not adequately reflect the real-world
distribution of target concentrations observed in broader
populations (eg, regional or national data). In this context,
distribution-balanced sensitivity provides a closer approximation
of real-world performance. For our clinical dataset, the
distribution that best represents the broader population is the
overall Ct dataset (Figure 4D), as it includes all cases pooled
from the 4 devices.

Sensitivities for the Reference Distributions
According to the described viral load balance method, we
estimated the sensitivities of the ATs of the 4 suppliers (Figure
5) over each one of the reference distributions (Figure 4)
utilizing the PPAf. It is interesting to compare the results shown
(Figure 4) to the raw sensitivities previously calculated (Figure
1). Although the order of performance of the 4 suppliers has
been preserved, in order of best to worst performances, the order
was supplier A, B, D, and C. The sensitivity differences are
smaller among suppliers once the effect of the source
distribution is removed. The difference between suppliers A
and C is only at 5% instead of the 19% for the raw sensitivity
calculation. A large proportion of the raw sensitivity difference
between these 2 suppliers originated from the overrepresentation
of high viral concentration samples for supplier A and the
overrepresentation of low viral concentration samples for
supplier C.
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Figure 5. Sensitivities of antigen test brands calculated from reference distributions of cycle thresholds as shown in Figure 4. The boxes and whiskers
indicate median and 50% and 95% confidence limits. Horizontal dotted line across each panel shows the threshold of 0.8 sensitivity acceptable for in
vitro diagnostics clinical performance according to regulatory standards for COVID-19 antigen tests. RW: real world.

Figure 5 shows the impact of the reference distributions of Ct
values on the resulting sensitivity. The absolute value of the
sensitivity shows a variation of over 8% difference across the
different distributions—larger than the difference across the
supplier sensitivities. In particular, the fraction of low virus
concentration positives plays an important role, as expected:
the PPAfs (Figure 3) show that the probability of positive
agreement is very low for low positives (35‐40 Cts) in all
suppliers. The indicated line at 0.8 sensitivity in Figure 5 helps
to illustrate this point. With the reference distribution including
5% of low positives, the 4 suppliers have sensitivities over the
0.8 threshold. With the reference distribution including 15% of
low positives, suppliers B and C are below the threshold,
whereas suppliers A and D are borderline at the 0.8 threshold
value. With the distribution that combines the 4 suppliers’
observed samples, all the suppliers are below the 0.8 threshold.

Discussion

Accurate estimation of AT performance in real-world studies
is often confounded by heterogeneous viral load distributions,
sample collection conditions, and demographic factors [17]. In
particular, the Ct values derived from qRT-PCR, which serve
as a surrogate for viral concentration, exhibit considerable
variability across study populations. This variability can bias
sensitivity—or PPA—estimates when derived directly from
unbalanced datasets.

To address the limitation, we introduce a mathematically
grounded approach that estimates a PPAf via logistic regression
and then recalculates sensitivity over a standardized reference
Ct distribution. This method transforms raw sensitivity estimates
into a harmonized metric that is independent of the original
data’s viral load distribution, enhancing comparability across
studies and diagnostic platforms. By modeling the entire range

of Ct values, rather than focusing solely on predefined
low-positive bins, our approach enables more comprehensive
and statistically balanced evaluations. A reference distribution
of qRT-PCR Ct values serves as a standardized representation
of viral load across a target population, enabling consistent
evaluation of diagnostic test sensitivity. Unlike raw distributions
derived from individual clinical studies—which are subject to
variability in recruitment timing, population demographics,
testing strategies, and local epidemiology—a reference
distribution is designed to reflect a controlled or representative
viral load profile against which diagnostic performance can be
compared. The reference Ct distribution may be empirically
derived from large, well-characterized datasets collected during
peak transmission periods or constructed synthetically based
on known viral kinetics in the population. For example, an ideal
reference might be a unimodal distribution centered around the
Ct range associated with peak transmissibility and highest
clinical relevance (eg, Ct 20‐30), or it might reflect the full
spectrum of observed viral loads (eg, Ct 10‐40), weighted to
mirror realistic clinical case presentations across settings. The
purpose of applying such a reference is to enable adjusted
sensitivity calculations that are independent of the viral load
biases inherent in the original data. This is particularly important
when comparing AT performance across different suppliers or
studies, where raw sensitivities may differ simply due to the
proportion of high- or low-Ct samples in each dataset. In the
diagnostic settings, a broader distribution capturing both early
and late stages of infection may be more appropriate. Ultimately,
the choice of reference distribution must be consistent, allowing
for harmonized sensitivity comparisons that reflect diagnostic
utility across diverse real-world scenarios.

While regulatory frameworks have moved toward including
“lower viral load specimens” in performance assessments to
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mitigate overestimation, these approaches often lack
generalizability and do not account for the full spectrum of
observed Ct values. Our methodology advances this paradigm
by providing a distribution-based recalibration mechanism,
capturing the full continuum of viral concentrations, and
generating sensitivity estimates that are both internally consistent
and externally comparable. Critically, FDA Emergency Use
Authorization evaluation criteria anchored to qRT-PCR
(including use of highly sensitive PCR comparators and
mandated proportions of “low-positive” samples) shaped
apparent clinical sensitivity and reinforced PCR-first policies
for confirmation, which—despite PCR’s analytical
advantages—dampened uptake of antigen testing for rapid,
frequent screening where time-to-result drives transmission
control.

Furthermore, genetic strain diversity, specific amino acid
mutations in the SARS-CoV-2 nucleoprotein, and host
disease–related comorbidities and immunological factors [18,19]
may influence AT performance. These factors that could alter
antigen detection are also limitations that apply to molecular
diagnostics, where ongoing monitoring of performance and
vigilance for unexpected results are required. To date, both the
original SARS-CoV-2 Delta strain and its descendant Omicron
lineages have been detected with comparable efficiency across
ATs. From the list of virus lineages we reported, we did not

detect differences in AT performance. Kinetics of binding or
other more sensitive analysis was outside the scope of this paper.
Under the assumption of a relatively genetically uniform
circulating viral strain, PCR Ct-based adjustments provided a
pragmatic and scientifically valid strategy to reduce bias in
estimating AT performance. In contexts where variant
heterogeneity becomes relevant, the proposed distribution
balancing approach could be extended by calculating
variant-specific PPAfs and integrating them into proportionally
weighted models. While Ct values serve as quantitative proxies
with platform-dependent variability, internal laboratory
calibrations (ie, processing of all nasal swabs within the same
laboratory and RNA extraction and PCR protocol) mitigate this
source of error. In the study, a single RNA extraction and PCR
protocol of the Clinical Laboratory Improvement Amendment
generated Ct values, thereby minimizing variability and
controlling for recalibration effects.

In summary, we propose a robust statistical framework that
corrects for real-world sampling biases through distributional
modeling. This approach yields adjusted sensitivity estimates
that more accurately reflect intrinsic test performance, thereby
supporting improved diagnostic evaluation, regulatory
decision-making, and public health comparisons across
populations and settings.
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Abstract

Background: The systemic treatment of cancer typically requires the use of multiple anticancer agents in combination or
sequentially. Clinical narrative texts often contain extensive descriptions of the temporal sequencing of systemic anticancer
therapy (SACT), setting up an important task that may be amenable to automated extraction of SACT timelines.

Objective: We aimed to explore automatic methods for extracting patient-level SACT timelines from clinical narratives in the
electronic medical records (EMRs).

Methods: We used two datasets from two institutions: (1) a colorectal cancer (CRC) dataset including the entire EMR of the
199 patients in the THYME (Temporal Histories of Your Medical Event) dataset and (2) the 2024 ChemoTimelines shared task
dataset including 149 patients with ovarian cancer, breast cancer, and melanoma. We explored finetuning smaller language models
trained to attend to events and time expressions, and few-shot prompting of large language models (LLMs). Evaluation used the
2024 ChemoTimelines shared task configuration—Subtask1 involving the construction of SACT timelines from manually
annotated SACT event and time expression mentions provided as input in addition to the patient’s notes and Subtask2 requiring
extraction of SACT timelines directly from the patient’s notes.

Results: Our task-specific finetuned EntityBERT model achieved 93% F1-score, outperforming the best results in Subtask1 of
the 2024 ChemoTimelines shared task (90%). It ranked second in Subtask2. LLM (LLaMA2, LLaMA3.1, and Mixtral) performance
lagged the task-specific finetuned model performance for both the THYME and shared task datasets. On the shared task datasets,
the best LLM performance was 77% macro F1-score, 16% points lower than the task-specific finetuned system (Subtask1).

Conclusions: In this paper, we explored approaches for patient-level timeline extraction through the SACT timeline extraction
task. Our results and analysis add to the knowledge of extracting treatment timelines from EMR clinical narratives using language
modeling methods.

(JMIR Bioinform Biotech 2025;6:e67801)   doi:10.2196/67801

KEYWORDS

systemic anticancer therapy; electronic medical records; treatment timelines extraction; natural language processing; large language
models
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Introduction

The systemic treatment of cancer typically requires the use of
multiple anticancer agents in combination or sequentially.
Systemic anticancer therapy (SACT), which includes traditional
cytotoxic chemotherapy, endocrine therapy, targeted therapy,
and immunotherapy, has both a low therapeutic index as well
as synergistic potential when agents are given in combination.
Due to cumulative toxicities, the order in which SACT
components are received is much more important than only
whether individual drug exposures happened or not, whether
in the curative or noncurative setting. Furthermore, patients
may receive an extended sequence of treatments across multiple
health care settings, systems, and insurance arrangements,
making an accurate tally of the totality of treatment using
standard structured data resources extremely challenging if not
impossible. Meanwhile, clinical narrative texts often contain
extensive descriptions of the temporal sequencing of SACT,
setting up an important task that may be amenable to automated
extraction approaches.

Clinical natural language processing (NLP) is a field that builds
computational methods to enable machines to process clinical
narratives. Temporality has been a key research area within
clinical NLP as it has a wide range of applications including
temporal sequencing of SACT [1]. The focus of temporality
extraction in clinical NLP has been mainly on instance-level
pairwise temporal relation extraction from electronic medical
records (EMRs). Instance-level pairwise temporal relations
(TLINKs) are the links between an event (EVENT) mention
and a temporal expression (TIMEX3) mention or between two
event mentions, constituting a triple of the TLINK and the other
two components. The set of TLINKs values, that is, type of
temporal relations, is CONTAINS, BEFORE, OVERLAP,
BEGINS-ON, ENDS-ON, and NOTED-ON [1]. The event that
CONTAINS another event is referred to as a narrative container
(CONTAINS-1 is the reverse of CONTAINS, meaning an
EVENT is contained by the narrative container). In addition,
each EVENT has a temporal relation with the document creation
time (DocTimeRel), one of BEFORE, BEFORE-OVERLAP,
OVERLAP, or AFTER.

The construction of benchmarks, such as THYME (Temporal
Histories of Your Medical Event) and i2b2 [1,2], along with
the SemEval shared tasks [3-6] on temporality advanced the
methodologies and established the state-of-the-art (SOTA) for
the task [7-12]. The sophisticated SOTA methods for temporal
relation extraction open the door for exploring automatic
patient-level timeline construction.

The 2024 ChemoTimelines shared task [13] formulated SACT
timeline construction as an information extraction task and
provided the deidentified free text documents (except for dates)
from the EMRs of 57,520 (breast and ovarian cancer) and 15,946
(melanoma) patients from University of Pittsburgh Medical
Center. The documents represented a wide variety of notes, for
example, pathology reports, clinical notes, radiology reports,
emergency department visits, discharge summaries, etc. A subset
of 149 patients was expert-annotated for EVENT mentions,
TIMEX3 mentions, and instance-level pairwise temporal
relations following the THYME2 schema [1,14] and
patient-level timelines of SACT events. The shared task offered
2 subtasks. “Subtask1” involved creating timelines from gold
EVENTS and TIMEX3 mentions. “Subtask2” challenged the
participants to build end-to-end systems that extracted
patient-level SACT timelines directly from the free texts. In
this work, “end-to-end” means all text processing is done
automatically. Figure 1 summarizes the 2 subtasks. Various
approaches were explored by the shared task participants—from
supervised finetuning [15,16] to LLM prompting [17,18]. The
impressive results (F1-score=90 for Subtask1 and F1-score=70
for Subtask2) achieved by the systems from top participants
[15] demonstrated the usability and effectiveness of NLP models
for this task. The top systems implemented task-specific
finetuning of smaller pretrained language models (LMs).
Specifically, the LAILab system [15] cast the task as a
sequence-to-sequence task, and finetuned Flan-T5-XXL [19]
and BART-large [20]. It achieved the best results in the shared
task for both subtasks. The Wonder system [16] generated
synthetic data using GPT-4 for data augmentation, then
finetuned BioLM [21]. The baseline system offered by the
organizers [13] also took the supervised finetuning approach
with PubMedBERT [22] and secured the second place in both
subtasks. In the rest of the paper, for simplicity, we refer to the
2024 ChemoTimelines shared task as the shared task.

In this paper, we further researched SACT timeline extraction
using the shared task dataset and adding the dataset of another
frequent type of cancer (such as CRC) from another academic
medical center. We explored task-specific finetuning approaches
and LLM prompting [23-29] to extract SACT timelines. We
compared our results on the breast, ovarian, and melanoma
datasets from the shared task to the results of the shared task
participants. We achieved a new SOTA in Subtask1. We
established the SOTA for the CRC dataset as this is a new
dataset. Our LLM-based system investigations add to the
research of using LLMs for end-to-end SACT treatment timeline
extraction from clinical narratives, as only one team explored
end-to-end timeline extraction using LLMs in the shared task.
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Figure 1. Summary of the 2024 ChemoTimelines shared task. TIMEX3: time expressions; CONTAINS-1: reverse of CONTAINS, meaning
“chemotherapy” is contained by “last Thursday”; DocTime: document creation time.

The contributions of this paper are as follows.

First, the approaches for patient-level timeline extraction through
the task of SACT timeline extraction. We perform experiments
on the 2024 ChemoTimelines shared task as well as on the
THYME CRC patients. Our results and analysis on this task
add to the knowledge of extracting treatment timelines from
EMRs using LLM-based methods.

Second, the SOTA performance of our finetuned LM-based
system for Subtask1 of the 2024 ChemoTimelines shared task.

Third, SOTA performance with LLM prompting approaches
for Subtask1 and Subtask2 of the 2024 ChemoTimelines shared
task outperformed the shared task participant systems that took
the approach of prompting LLMs.

Methods

Ethical Considerations
All electronic health record (EHR) data used in this study are
deidentified in accordance with the datasets’ relevant privacy
regulations [1,13,14]. We strictly adhered to the terms outlined
in the data use agreement, ensuring that no data were transmitted
to any external or public APIs. Ethics approval was not required
because the study used secondary data that was aggregated and
anonymized before analysis. All experiments were conducted
on a secure local machine operating behind a firewall,
maintaining full data confidentiality and integrity throughout
the study.

Tasks and Datasets
The first dataset we used was from the shared task [13]. The
EMR notes of 149 patients with breast, ovarian, and melanoma
cancers from the University of Pittsburgh Medical Center were

expert-annotated by the shared task organizers for instance-level
pairwise temporal relations following the THYME2 schema
[1,14] and SACT patient-level timelines.

The second dataset we used included the THYME patients—199
CRC patients from Mayo Clinic. This dataset was NOT part of
the 2024 ChemoTimelines shared task. Note that the original
THYME corpus consisted of one radiology, one pathology, and
one oncology note for each of the 199 CRC patients—not
sufficient to extract SACT timelines. Therefore, for the work
described in this paper, we obtained the entire EMR
documentation for these 199 CRC patients (all manually
deidentified except for dates). As with the shared task patients,
the CRC patient EMRs were represented by a wide variety of
document types. Following the shared task protocol, the CRC
notes were expert-annotated for instance-level pairwise temporal
relations following the THYME2 schema and SACT
patient-level timelines. Table 1 shows the dataset distributions.
Table S1 in Multimedia Appendix 1 provides the pairwise label
distributions. The label set for the pairwise relations is
CONTAINS, BEGINS-ON, ENDS-ON, OVERLAP, and
BEFORE. In the final SACT timeline, we converted
CONTAINS to CONTAINS-1 so that all triples are structured
as <EVENT, TLINK, TIMEX3>, where CONTAINS-1
semantically indicates that the drug was administered on the
date specified by the temporal expression (TIMEX3). Note that
we did not use i2b2 2012 because we focused on cancer
treatment timeline extraction only in this work. Textbox 1
presents a concrete example of patient-level SACT timelines.

As is the established convention, in this paper, we refer to the
labels in the shared task and THYME datasets as “gold.” All
datasets come with predefined training (train), development
(dev), and test splits that we used accordingly. Note that the
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gold labels of the shared task test set were not publicly available;
however, participants could submit their system predictions to
the shared task organizers to get evaluation results, thus

providing independent evaluation over a held-out, eyes-off
dataset.

Table . Dataset summary.

TLINKscTIMEX3b mentionsEVENT mentionsWordsaNotesPatientsSplits

Ovarian cancer (from 2024 ChemoTimelines shared task)

49459711681,183,632167526    Train

226312790308,8145628    Devd

Not releasede381664257,1165598    Test

Breast cancer (from 2024 ChemoTimelines shared task)

4555761023465,644100233    Train

113146279225,58849916    Dev

Not released11182560786,896133335    Test

Melanoma (from 2024 ChemoTimelines shared task)

4878147124,92423310    Train

201261789178,3082113    Dev

Not released193398156,08322910    Test

Colorectal cancer (CRC)

5897615511,1616,038,43112,99098    Train

1924219439643,105,675681050    Dev

4403361275523,587,387735751    Test

a“Words” denotes tokens delimited by white spaces.
bTIMEX3: time expressions.
cTLINKs: pairwise temporal relations.
dDev: development set.
eNote that the number of test set TLINKs for the 2024 ChemoTimelines shared task was not released publicly.

Textbox 1. An example of a summarized patient-level SACT timeline extracted from the entire patient’s EMR chart.

• ['chemotherapy', 'contains-1', '2013-06-20']

• ['carboplatin', 'contains-1', '2013-10-24']

• ['carboplatin', 'contains-1', '2013-09-19']

• ['carboplatin', 'contains-1', '2013-07-18']

• ['carboplatin', 'contains-1', '2013-08-08']

• ['carboplatin', 'contains-1', '2013-08-29']

• ['taxol', 'contains-1', '2013-10-24']

• ['taxol', 'contains-1', '2013-09-19']

• ['taxol', 'contains-1', '2013-07-18']

• ['taxol', 'contains-1', '2013-08-08']

• ['taxol', 'contains-1', '2013-08-29']

Approaches
We explored 2 approaches for the task of SACT timelines
extraction: (1) finetuning smaller LMs and (2) prompting LLMs.

Figure 2 shows the complete pipeline of both approaches. We
describe each approach in detail in this section.

JMIR Bioinform Biotech 2025 | vol. 6 | e67801 | p.235https://bioinform.jmir.org/2025/1/e67801
(page number not for citation purposes)

Yao et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Methods summary. On the left-hand side, temporal relations are classified via a small finetuned language model (FT LM). On the right-hand
side, temporal relation triplets are extracted by prompting large language models (LLMs). In both approaches, EVENTS are extracted using a
Begin-Inside-Outside (BIO) tagger. Output for both systems is the same, see Textbox 1. cTAKES: Apache Clinical Text Analysis and Knowledge
Extraction System; TIMEX3: time expressions; TLINK: pairwise temporal relation.

Approach 1: Finetuning LMs for Temporal Relation
Extraction

Overview

In this approach, we cast the task of SACT timeline extraction
as a pairwise temporal relation extraction task followed by a
temporal relation summarization step. Given input texts, we
designed a pipeline with the following steps: (1) extracting
SACT EVENT mentions, (2) extracting TIMEX3 mentions, (3)
classifying pairwise EVENT-TIMEX3 temporal relations, (4)
normalizing TIMEX3 mentions, and (5) summarizing and
refining patient-level timelines.

Extracting SACT EVENT Mentions

We trained a sequence labeling tagger that marks the beginning,
inside, and outside (BIO) of a SACT treatment EVENT mention
in the text. The tagger was trained on the train split of the gold
labeled data by finetuning a pretrained LM [22,30]. The
“Experimental Settings” section shows more details.

Extracting TIMEX3 Mentions

TIMEX3 mentions were extracted by the temporal module of
the Apache Clinical Text Analysis and Knowledge Extraction
System (cTAKES) [31], a publicly available text processing
system. The precision, recall, and F1-scores of cTAKES for
TIMEX3 mention extraction are 57.17%, 83.95%, and 67.25%,
respectively; evaluated on the original THYME dataset
described in the “Tasks and Datasets” subsection. Different
methodologies were used for SACT EVENT mention extraction
and TIMEX3 mention extraction because there was no publicly
available SACT EVENT extractor with solid performance at
the time of the experiments.

Classifying Pairwise EVENT-TIMEX3 Temporal Relations

Given an EVENT-TIMEX3 pair, the task is to determine the
temporal relation between them according to a predefined label
set of TLINKs (described in the “Introduction” and “Tasks and
Datasets” sections). For example, if the patient started a regimen
of Taxol on August 1, 2012, the relation between “Taxol” and
“August 1, 2012” is BEGINS-ON. Inspired by previous works
[11], we finetuned EntityBERT for this step to create an LM
specifically trained to attend to EVENT and TIMEX3 mentions.
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The input to the model was the EVENT and TIMEX3 mentions
within a context window with the EVENT and TIMEX3
mentions highlighted by special tokens, possibly crossing
sentence boundaries. We followed the same data preprocessing
format as described in [7,9,11]. Concretely, EVENT and TIMEX
mentions are highlighted by XML tags “<e>,” “</e>,” “<t>,”
and “</t>.” The context window that defines the token distances
between an EVENT and TIMEX3 in an EVENT-TIMEX3 pair
is set to 60 tokens, empirically derived to cover over 95% of
the EVENT-TIMEX3 pair instances. The model was trained on
the train split of the gold-labeled data for multiclass
classification.

Normalizing TIMEX3 Mentions

The goal of this step is to map TIMEX3 mentions to a
computable format. We used TimeNorm [32,33] to normalize
the TIMEX3 mentions and the document creation time
(DocTime) to ISO-TimeML standard [34] (eg, “yesterday” in
a note with a DocTime of “2022-04-29” would be normalized
to “2022-04-28”).

Summarizing and Refining Patient-Level Timelines

A patient’s SACT history can be mentioned in multiple notes
in different contexts. For example, the physician may discuss
the termination of one treatment due to side effects; despite that,

in another note, they may say that the therapy will be given to
the patient for 3 more cycles. Therefore, after the instance-level
temporal relation extraction, deduplication and conflict
resolution are necessary to get the final patient-level SACT
timelines. For this step, we followed the heuristics from the
shared task [13].

Approach 2: Prompting LLMs for SACT Timeline
Extraction

Overview
We developed an end-to-end timeline extraction pipeline via
LLM prompting. This pipeline involved two steps: Step 1
focused on extracting <EVENT, TLINK, TIMEX3> triplets
from clinical texts, and Step 2 was designed for TIMEX3
normalization. We took the approach of in-context learning,
which refers to the method of adding exemplars of gold
examples with answers to the prompt [25], a common practice
in prompt engineering. Textbox 2 provides the prompt templates
we used in both steps. For Step 1, we provide 4 exemplars for
each TLINK label. For Step 2, we provide 5 exemplars in total.
The exemplars are selected from the training split of the data.
We explored the discrete prompting strategy where the prompts
are created manually, ultimately settling on the prompts with
the best performance.

Textbox 2. Prompt templates used in our large language model (LLM) experiments. For Step 1, we provide 4 exemplars for each label. For Step 2, we
provide 5 exemplars in total.

• Step 1 prompt: You are a helpful assistant for oncologists. You will read the given PATIENT EHR and summarize the patient's chemotherapy
treatment TIMELINES. Please only output TIMELINES in the requested format. Please do not include any other text or reasoning, do not include
timelines for any other treatments besides chemotherapy. Please do not use any labels other than the ones given in the examples, i.e., BEGINS-ON,
ENDS-ON, CONTAINS. Here are some examples.

• Step 2 prompt: You are asked to decide the date of a time expression. If today was 2013-05-02, what would the date of yesterday be? Please only
output the date in the format of “YYYY-MM-DD”. Answer “Unknown” if you don't know. Here are some examples.

Step 1: Extracting < EVENT, TLINK, TIMEX3> Triplets
The construction of patient-level treatment timelines requires
the system to process all notes of a patient, thus the input can
exceed the LLM context window. Current open LLMs have a
limited number of tokens they can process per time, for example,
LLaMA1 [35] supports up to 2048 tokens and LLaMA2 [23]
supports up to 4096 tokens; however, even if the LLM could
ingest all the notes of one patient as input per time, which would
not be an efficient way of processing texts as transformers’
self-attention scales quadratically with input length. Therefore,
sending all the notes of a patient to LLMs at one time is not
practical. To make this task more feasible for LLMs, we
prompted the LLM with only relevant snippets of notes and
assembled the timelines afterwards. Specifically, we extracted
SACT EVENT mentions using the BIO tagger trained in
Approach 1, then fed the LLM the sentences containing the
SACT EVENT mentions to extract the triplets. Note, the input
to the LLM was a sentence, unlike the context window instances
fed to the pairwise classifier in Approach 1. In our initial
experiments, we used context window instances with the LLMs
as well; however, the partial sentences confused them as tokens
outside of the window are discarded. To give LLMs a
self-contained input with a reasonable sequence length, we

decided to give a complete sentence as input for LLMs instead
of a context window as we did in Approach 1.

Step 2: TIMEX3 Normalization With LLMs
We applied in-context learning to normalize the TIMEX3
mentions. For each output triplet from Step 1, we prompted the
model to normalize the date of the TIMEX3 mention given the
DocTime of the note. We then assembled the final timelines,
using the same heuristics as in Approach 1.

Experimental Settings
We explored two approaches for the task of SACT timelines
extraction: (1) finetuning smaller LMs and (2) prompting LLMs.
For the first approach, we finetuned PubMedBERT base model
[22] to train the SACT event tagger. For the temporal relation
classification task, we finetuned EntityBERT based on the
results reported by Lin et al [11], where they finetuned
BioBERT, PubMedBERT, and EntityBERT for clinical temporal
relation classification and found that EntityBERT outperformed
the other two models. For the experiments with LLMs, we chose
LLaMA2-70B [23], LLaMA3.1-70B [36], and
Mixtral-8×7B-Instruct-v1 [24], which are current SOTA open
LLMs. We did not use proprietary LLMs such as GPT4 [26]
because we did not have access to their Health Insurance
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Portability and Accountability Act (HIPAA)-compliant versions.
The open models we experimented with are reported to have
yielded results competitive with those of the proprietary models
[24]. Furthermore, we compare our results with those systems
in the shared task for the types of cancers included in the shared
task. For the CRC dataset (not included in the shared task), we
establish the first result that will serve as the baseline for the
community. See Table S2 in Multimedia Appendix 1 for details
on the computational settings.

We experimented with prompting LLMs for both Subtask1 and
Subtask2. In Subtask1, we provided explicit gold SACT events
and time expressions in the text, then prompted the LLM to
predict the temporal relation between them. The prompt template
for this subtask is shown in Table S3 in Multimedia Appendix
1. In Subtask2, we passed to the LLM only plain text as input,
then asked the LLM to extract the SACT events, time
expressions, and temporal relation between them in 1 step.
Textbox 2 lists the prompt template for Subtask2.

Evaluation and Baseline
We used the evaluation metric provided by the shared task,
which computed the average F1-scores across all patients. There
were 4 settings with different temporal granularities: strict,
relaxed-to-day, relaxed-to-month, and relaxed-to-year. For
example, the relaxed-to-month setting required the model to
correctly predict the year and month when the therapy was
given, while the strict setting required the model to capture the
exact date when the patient received the therapy. The official
metric for the 2024 shared task was relaxed-to-month scores,
which we used as our metric to report the main results in this
paper. Results using other metrics are given in Table S4 in
Multimedia Appendix 1.

As a baseline, we used the baseline system used in the shared
task, which implemented a predefined dictionary as a lookup
table for SACT EVENT extraction and a finetuned LM for
temporal relation classification. We also compared our results
on the 3 types of cancer (breast cancer, ovarian cancer, and
melanoma) to the shared task leaderboard results.

Results

In Table 2, we present our results on the development (Dev)
and test sets. As the CRC dataset was not available for the shared
task, we also present the results of our model finetuned only on
the shared task data (under EntityBERT 3 Cr) for a direct
comparison with other participating systems. That is, using
Approach 1 described above, we trained 2 versions of the model.
“EntityBERT” was trained on the shared task data and CRC
data. “EntityBERT 3 Cr” was trained only on the shared task
data (we combined the training datasets of multiple cancer types
into 1 training dataset to train the EntityBERT 3 Cr model and
EntityBERT model). Subtask1 in Table 2 shows the results with
gold SACT EVENT and TIMEX3 mentions as input. In general,
the finetuned EntityBERT and EntityBERT (3 Cr) outperformed
LLaMA2, LLaMA3.1, and Mixtral LLMs by a large margin.
Among the LLMs, LLaMA achieved higher scores than Mixtral.
In Table 2, Subtask2 shows the end-to-end evaluation results.
The SACT event extraction evaluation results using the BIO
tagger can be found in Table S5 in Multimedia Appendix 1. We
note a wide gap between the performance with gold mention
input (Subtask1) and the performance with automatically
extracted mentions (Subtask2), suggesting that the errors in the
mention extraction stage propagate to the relation extraction
stage and dramatically affect the overall accuracy of the system.
We also notice that the smaller finetuned models outperform
LLMs in most cases except for melanoma, the reasons for which
we discuss in the Discussion section.
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Table . Evaluation results of our systems across 4 types of cancers from 2 academic centers. Scores are macro F1-score, relaxed-to-month.

Subtask2b, %Subtask1a, %Cancer type and models

Test setDevelopment setTest setDevelopment set

Ovarian cancer

616495e93eEntityBERTc

69e67e9493eEntityBERT (3 Cr)c,d

42297070LLaMA2f

56317475LLaMA3.1g

2776760Mixtralh

Breast cancer

6388e9797eEntityBERTc

66e8798e97eEntityBERT (3 Cr)c

50618381LLaMA2

48667079LLaMA3.1

25376366Mixtral

Melanoma

394391e86eEntityBERTc

40468886eEntityBERT (3 Cr)c

47e47e7980LLaMA2

38267167LLaMA3.1

2546565Mixtral

Colorectal cancer (CRC)

56e58e83e90eEntityBERTc

32407766LLaMA2

38456866LLaMA3.1

15196658Mixtral

aSubtask1: input is gold entities (systemic anticancer therapy [SACT] events and time expressions).
bSubtask2: entities are automatically generated by the system.
cThese are systems using small finetuned models.
dEntityBERT (3 Cr): EntityBERT model trained only on the shared task data.
eThese are the best results.
fLLaMA2-70B.
gLLaMA3.1-70B.
hMixtral-8×7B-Instruct-v1.

Furthermore, unlike the LLM prompting approaches, both our
systems based on the smaller finetuned models can be deployed
for inference on a laptop without a GPU. Our Subtask1 system
is able to process approximately 14 notes/minute. Our Subtask2
system is able to process approximately 10 notes/minute.
Assuming a typical patient with 200 notes, our Subtask1 system
takes on average 14.5 minutes to process all of the patient’s
notes, and our Subtask2 system takes on average 20 minutes to
process all of the patient’s notes. On the other hand, the LLM
prompting experiments were conducted on NVIDIA A100
GPUs. It took the LLaMA3.1 70B model approximately 28
minutes for Subtask1 and 13 minutes for Subtask2 to process

200 notes. It took LLMs less time to complete Subtask2 because
only sentences containing TIMEX3 mentions needed to be
processed in Subtask2.

We position our systems within the broader context of the 2024
ChemoTimelines shared task by comparing them with the shared
task participants’ systems. If 1 shared task participant has
multiple submissions, we take their best result for comparison.
Note the official metric for the leader board is relaxed-to-month
scores on the Test set. We first compare the result of our
EntityBERT (3 Cr) model with the results of the participating
systems using similar approaches, that is, finetuning smaller
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LMs [13,15,16,18,37]. In Figure 3-Part A, we can see that in
Subtask1 our model achieved the best results overall and on the
individual cancer types. Our Subtask1 result was 3 points higher
than the best shared task score achieved by LAILab [15] (93%
vs 90%). In Subtask2 (Figure 3-Part B), our system had the
second-best overall scores. However, it is worth noting that
LAILab finetuned Flan-T5-XXL [19], a model with 11B
parameters, which was much bigger than the EntityBERT model
we used that had about 100 million parameters.

Finally, we observe in Table 2 that the model trained only on
the breast, ovarian, and melanoma data from the train split of
the shared task (ie, EntityBERT 3 Cr) performed slightly better
than its counterpart trained on the full train split containing all
4 types of cancer (ie, EntityBERT) in Subtask2. We conjecture
that since there was more data for CRC than the other types of
cancer within our dataset, the representation of the signal from
the CRC data overwhelmed that of the other three cancer types
inside the model. The addition of the second dataset (CRC) in
this work aims to create a larger pool of datapoints adding a
new type of cancer and a different institution as the data source.
It also helps answer the questions of whether (1) a model built
off data across different EMR sources might be feasible and (2)
the quantity of the data matters. Our experiments on these two
datasets show that (1) it is likely that institution-specific models
capture treatment patterns better but not by a large margin and
(2) patterns of the data-rich source likely dominate.

In Figure 4 we compare our LLM-based approaches with the
shared task systems that prompted LLMs. With gold mentions
as input (Subtask1), our system based on prompting LLaMA2
achieved the highest overall score compared to the shared task
systems. When using Mixtral as the starting point, our system
and the NLPeers [18] system achieved similar overall scores
(65% vs 64%), which are significantly lower than the overall
score of LLaMA2 and LLaMA3.1, suggesting that LLaMA
family models are more suitable for this subtask than Mixtral.
Only 1 team from the shared task explored end-to-end timeline
construction using an LLM. In Figure 4-Part B, Subtask2 we
can see that the overall performance of the two Mixtral-based
systems is similar. Again, we see a performance discrepancy
between LLaMA and Mixtral. Jiang et al [24] show that Mixtral
performed better than or comparable to LLaMA2 across multiple
benchmarks. Our results suggest that the decision of choosing
the right LLM should be made empirically. Note that the two
LLaMA models we used have the same number of parameters,
70B. Compared to LLaMA2, LLaMA3.1 improved the results
on the ovarian dataset, but fell short on the breast and melanoma
datasets. Across 64 evaluation settings (4 cancer types, 4
metrics, 2 subtasks, both development and test sets), LLaMA3.1
achieved higher or same F1-scores as LLaMA2 in 39 cases
(61%; see Table S4 in Multimedia Appendix 1). Overall, we
observe similar trends across strict, relaxed-to-day,
relaxed-to-year evaluation settings as relaxed-to-month setting.
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Figure 3. Comparison to finetuning-based models in the shared task [13,15,16,18,37]. Scores are relaxed-to-month macro F1-score on the test set. “Our
EntityBERT, 3 cr” refers to the EntityBERT model trained only on the shared task data. The best-performing team in the shared task was LAILab [15].
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Figure 4. Comparison to LLM prompting systems in the shared task [13,17]. Scores are relaxed-to-month macro F1-scores on test set. “Our LLaMA2”
and “Our LLaMA3.1” are LLaMA2-70B and LLaMA3.1-70B, respectively. “Our Mixtral” is the Mixtral-8 × 7B-Instruct-v1 model. FS and ZS refer
to few-shot and zero-shot settings.

We performed error analysis on the relaxed-to-month output
for each cancer type cohort. An incorrect prediction within a

predicted patient timeline against a gold patient timeline is either
a false positive, that is, a predicted triplet that is not present in
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the gold timeline, or a false negative, that is, a triplet in the gold
timeline, which is not in the predicted timeline. There is also
the possibility of an apparent false positive or false negative
being actually correct due to an annotation error, for which we
also review. We analyze which of the components in the system
pipeline or the annotation process is the root cause of an error
in the predicted or gold timelines. For the predicted timeline,
this can consist of any combination of one of the extraction
components for SACT EVENT mentions (SACT Detection
Error) and temporal expression mention (TIMEX3 Detection
Error), the TLINK classifier (TLINK Error), and summarization
error (Total incorrect summarized predictions). For the gold
timeline, this can only consist of an annotation error.

We present the breakdown per error type from the test set in
Table S6 in Multimedia Appendix 1. We randomly sampled
each type of false positive errors to collect a sample size using
a 95% CI, a margin of error of 5%, and a population proportion
of 50%. We analyzed the instance-level false positives since

each was associated with a specific TLINK classification
instance. The incorrect unsummarized predictions are inputs to
the summarization algorithm which result in the incorrect
summarized predictions. We found that most of the errors came
from incorrect TLINK classification, followed by annotation
errors, and finally detection of SACT EVENT and TIMEX3
mentions. We identified the annotation errors for the most part
as resulting from likely missed screening of some notes by the
expert annotators, as this is a highly cognitively demanding task
for a human to perform (see Table 3 for examples). The false
negatives tended to be the result of formatting issues, complex
reasoning, and some level of hedging around the event. We
found that in many notes, there are subsections that start with
dates, which are used as the headings for these subsections (see
examples in “False negative: formatting” in Table 3); then all
events described in that subsection are related to these dates.
This is especially challenging as the subsections could consist
of multiple sentences.

Table . Types of errors and examples. Note that the dates have been intentionally altered for the purpose of this paper.

ExplanationTextType of error

Annotation error •• No gold TLINKa for “anastrozole (Arim-
idex)” and “10/18/2033”.

Anastrozole (Arimidex) 1 mg once a day
by mouth [Order Comment : can take am].

• Last dose : 10/18/2033.

Annotation error •• No gold TLINK for “later today” and
“chemotherapy”.

Dr Person17, later today, to discuss manage-
ment from the standpoint of chemotherapy
or hormonal.

Annotation error •• No gold link for “chemo” and “2055”.Chemo and radiation in 2055.

False negative: formatting •• No prediction TLINK for “December 2055”
and “5-FU/leucovorin”.

July through December 2055: Completed
his 12 cycles of FOLFOX. The first 8 cycles
included oxaliplatin and the last 4 cycles
were 5-FU/leucovorin.

• The dates are used as subsection headings
with all events related to them.

False negative:

complex reasoning

•• No prediction TLINK to indicate that
XELIRI/Avistin was discontinued May
2055 through August 2055.

November 2055, CEA begins to increase.
There is abnormal uptake on a PET scan
near the rectosigmoid junction. Patient is
then initiated on XELIRI/Avastin in Febru-
ary 2055. [more text..].

• May 2055 through August 2055, managed
with observation alone off of all
chemotherapeutic administration.

False negative:

hedging

•• Gold TLINK is (last week, CONTAINS,
ipilimumab). No predicted TLINK due to
the expressed uncertainty of whether the
event happened.

We had attempted to treat him with ipili-
mumab last week; however, when he got
the bathroom in the office, he tripped over
a wheel of one of the beds and had a fall.

False positive:

complex reasoning

•• Predicted TLINKs are correct. However,
the treatment is associated with the patient’s
leukemia, not the melanoma which was the
targeted extraction.

…cycles of Cytoxan, fludarabine, and Rit-
uxan chemotherapy through July 2055.

aTLINK: pairwise temporal relations.

Discussion

Principal Findings
The implications of the automatic and faithful extraction of
treatment timelines from patients’ EMRs affect the spectrum

of patient-physician interactions, decision-making processes,
and advances in cancer research. At the point of care, a clinician
presented with the patient’s treatment timeline would be able
to quickly gain insights into the complex disease and treatment
process for that patient, especially helpful in oncology where
patients come to specialized centers with hundreds of notes.
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For research, the automatic generation of timelines opens the
door to creating large-scale cohorts to answer important research
questions. One such question is related to the treatment regimens
as key details in understanding the effects of genetic, epigenetic,
and other factors on tumor behavior and responsiveness. As
precision oncology progresses, insights into the fine interplay
of treatment with tumor molecular characteristics and patient
phenotypes become even more critical not only as a source of
research data, but as a means of translating findings into
patient-tailored therapies similar to those that have been applied
to breast cancer and melanoma [38].

Although there is a lot of excitement around LLMs and prompt
engineering, there is a major constraint that needs to be factored
into engineering decisions—that of the length of the input text.
This is especially pronounced for tasks where the entire patient
EMR narrative needs to be considered, for example, treatment
timeline extraction. When considering the input prompt for
LLMs, we first considered sending 1 note at a time to LLMs,
or concatenating all the sentences that contain SACT EVENT
mentions in a note and sending them to LLMs. However, our
experiments showed that extracting timelines from long
sequences (even just one patient note) was too challenging for
the LLMs we evaluated (although these were the SOTA open
LLMs). For example, on the ovarian cancer development set,
we saw a 10-point drop in relaxed-to-month scores when we
sent multiple sentences from the same document to LLaMA2.

As the error analysis pointed out, the main source of the error
is TLINK classification, that is the assignment of the correct
temporal relation between an EVENT and TIMEX. The
technology we experimented with is LM-based—finetuning
smaller LMs and LLM prompting. A path of research to improve
TLINK extraction lies in combining the outputs of various
technologies into an ensemble with a voting mechanism, for
example, majority vote or a classification layer. The ensemble
could potentially include the output of LLM-based and

non–LLM-based methods such as classic support vector
machines [39]. Another potential solution might lie in exploring
a 2-stage LLM finetuning strategy, which is a refined ensemble
method [40]. The first stage decreases bias and variance
iteratively, while in the second stage, a selected fixed-bias model
is used to further reduce variance due to optimization in
ensembling. Soft prompting [41] might be another viable path
to explore, especially given the availability of labeled data.

Our experiments show that LLMs struggle with end-to-end
timeline extraction from clinical narratives (see Figure 4B). In
Table 4, an examination of label distribution across the
development set highlights a strong tendency of the system to
overproduce BEGINS-ON and ENDS-ON relations while
underrepresenting CONTAINS-1. For example, in colorectal
cancer, the system predicted 381 BEGINS-ON and 281
ENDS-ON events, vastly exceeding the gold counts of 82 and
73, respectively. A notable source of error in the system’s
predictions stems from confusion in relation directionality,
particularly with the CONTAINS-1 relation. By design, all
triples are structured as <EVENT, TLINK, TIMEX3>, where
CONTAINS-1 semantically indicates that the drug was
administered on the date specified by the TIMEX3 (see the
Tasks and Datasets subsection in the Methods section).
However, the system frequently reversed this logic, producing
incorrect <EVENT, CONTAINS, TIMEX3> triples. Such
mispredictions not only result in spurious labels (captured under
the CONTAINS category in the label distribution) but also
reflect a deeper modeling issue: the model’s difficulty in
internalizing fine-grained relational semantics. To mitigate this,
future work could incorporate explicit prompt instruction or
soft constraints to enforce the expected directionality of relations
during inference in the spirit of constrained decoding [42]. In
addition, postprocessing steps could validate predicted relations
by checking for allowable type-direction combinations,
correcting or filtering those that violate domain-specific rules.

Table . Label distribution across the gold timelines and large language model (LLM) predicted timelines (LLAMA2 70B model, end-to-end setting)
on the development set.

System timelines, nGold timelines, nCancer type

ENDS-ONBEGINS-ONCONTAINS-1CONTAINSENDS-ONBEGINS-ONCONTAINS-1

214921121116Breast cancer

3810411712865Ovarian cancer

2247821539Melanoma

281381087738297Colorectal can-
cer

The error analysis also revealed incorrect annotations in the
gold labels. We identified 30 annotation errors in the sample of
the shared task dataset (~3.5 million words). The number of
annotation errors in the CRC dataset sample is higher, but this
is also the largest dataset (12 million+ words). Thus, as a
proportion, the estimated annotation error rates across the
independent datasets are similar. Annotation error is a standard
hazard of the annotation process, especially for a highly
cognitively demanding task as the timeline extraction from the
entire patient’s chart. One has to review every single document
from the patient’s chart, which for oncology patients translates

into hundreds, if not thousands, of notes. Human errors are
bound to happen. This further underscores the importance of
developing methods for automatic and faithful timeline
extraction.

A curious result emerges on the melanoma dataset. As shown
in Table 2, the performance on the melanoma dataset is lower
than the performance on other types of cancer using task-specific
finetuned model. We believe this is caused by the data scarcity
in the melanoma dataset because (1) SACT is not the main
treatment modality for most melanoma presentations; therefore,
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there are fewer instances of SACT in the melanoma data and
(2) the melanoma test set is the smallest of the 4 datasets. As
the evaluation script computed the average F1-scores across all
patients, the overall performance on the melanoma test set
fluctuated greatly with the score of individual patients.

In this work, we focus on cancer treatment timeline extraction.
However, the methodology described in this work can be applied
to treatment timelines extraction of other diseases. For instance,
if gold standard datasets are available for an out-of-domain
disease type, one can finetune a small LM for temporal relation
extraction. If gold annotations are not available for a type of
disease, prompting LLMs with a few domain-specific examples
would be a viable solution.

Limitations
In this work, we did not use powerful, but proprietary LLMs
such as GPT-4 [26] or Gemini [43], as we do not have access
to nonretaining versions of these models for large scale
processing. Despite the fact that our dataset was deidentified
per HIPAA requirements, we did not feel that it was ethically
appropriate to submit patient-derived data to a retaining LLM.
However, experimenting with open models presents a realistic
scenario for the average academic center as experimenting with
proprietary LLMs comes at a significant cost. The LLMs we
selected in our study were those reported to have competitive
performance to proprietary models [24,36]. During paper
revision, the DeepSeek-R1 [44] open model was released which
outperformed the proprietary models on several general
benchmarks. We leave experimentation with it as a future study.
We did not use prompting techniques such as chain-of-thought
[45] because it is not clear how to directly convert a complex
task such as timeline extraction from the entire EMR clinical
narrative into a series of reasoning steps. We leave the
exploration of using HIPAA-compliant versions of proprietary
LLMs (access-dependent) and other prompting methods such
as prompt-tuning [46-48] for future research. Another limitation
is that the datasets represent 2 medical centers and thus may
introduce institutional or regional biases. However, to the best

of our knowledge, these datasets are the only ones on cancer
treatment timelines available to the community. In addition,
this study focuses on colorectal cancer, breast cancer, ovarian
cancer, and melanoma. While these common cancer types are
broadly representative, future work should extend the SACT
timeline extraction task to other cancer types. We should note
that such pan-cancer extensions necessitate significant resources
for the creation of the gold annotations. We also acknowledge
that some cancer journeys are complex, with lines of therapy
containing SACT interspersed with other therapeutic modalities
such as radiation; these complexities are out of scope for the
current approach but should be a focus of future work. Finally,
this work uses an established set of predefined temporal relations
(CONTAINS, BEGINS-ON, ENDS-ON, OVERLAP, and
BEFORE) and preexisting annotations. We acknowledge that
modeling more complex and nuanced temporal scenarios might
potentially provide additional insights; however, this is the core
set the clinical temporal information extraction community has
converged on with some minor nuances [1,2,14].

Conclusions
In this paper, we explored approaches for patient-level timeline
extraction through the task of SACT timeline extraction. We
performed experiments on the 2024 ChemoTimelines shared
task as well as on the THYME dataset, thus the data represented
4 types of cancer across two institutions. We finetuned an LM
that was specifically trained to attend to EVENT and TIMEX3
mentions. In that, we achieved higher scores than all shared task
participants in Subtask1. We also explored LLM-based systems
via prompting. In both subtasks, our LLM-based systems
outperformed the shared task participant systems that took the
approach of prompting LLMs. Our results contribute to the body
of work that shows that task-specific finetuning based on rich,
disease-specific datasets outperforms prompting the current
generalist LLMs. We believe our results and analysis on this
task add to the knowledge of extracting treatment timelines in
EMRs using NLP methods. Our code will be released publicly
upon acceptance.
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Abstract

Background: Approximately 90% of the 65,000 human diseases are infrequent, collectively affecting ~400 million people,
substantially limiting cohort accrual. This low prevalence constrains the development of robust transcriptome-based machine
learning (ML) classifiers. Standard data-driven classifiers typically require cohorts of more than 100 participants per group to
achieve clinical accuracy while managing high-dimensional input (~25,000 transcripts). These requirements are infeasible for
microcohorts of ~20 individuals, where overfitting becomes pervasive.

Objective: To overcome these constraints, we developed a classification method that integrates three enabling strategies: (i)
paired-sample transcriptome dynamics, (ii) N-of-1 pathway-based analytics, and (iii) reproducible machine learning operations
(MLOps) for continuous model refinement.

Methods: Unlike ML approaches relying on a single transcriptome per subject, within-subject paired-sample designs—such as
pre- versus post-treatment or diseased versus adjacent-normal tissue—effectively control intraindividual variability under isogenic
conditions and within-subject environmental exposures (eg, smoking history, other medications, etc), improve signal-to-noise
ratios, and, when pre-processed as single- studies (N-of-1), can achieve statistical power comparable with that obtained in animal
models. Pathway-level N-of-1 analytics further reduces each sample’s high-dimensional profile into ~4000 biologically interpretable
features, annotated with effect sizes, dispersion, and significance. Complementary MLOp practices—automated versioning,
continuous monitoring, and adaptive hyperparameter tuning—improve model reproducibility and generalization.

Results: In two case studies of distinct diseases, human rhinovirus infection (HRV) versus matched healthy controls (n=16
training; n=3 test) and breast cancer tissues harboring TP53 or PIK3CA mutations versus adjacent normal tissue (n=27 training;
n=9 test)—this approach achieved 90% precision and recall on an unseen breast cancer test set and 92% precision with 90% recall
in rhinovirus fivefold cross-validation. Incorporating paired-sample dynamics boosted precision by up to 12% and recall by 13%
in breast cancer and by 5% each in HRV. MLOps workflows yielded an additional ~14.5% accuracy improvement compared to
traditional pipelines. Moreover, our method identified 42 critical gene sets (pathways) for rhinovirus response and 21 for breast
cancer mutation status, selected as the most important features (mean decrease impurity) of the best-performing model, with
retroactive ablation of top 20 features reducing accuracy by ~25%.

Conclusions: These proof-of-concept results support the utility of integrating intrasubject dynamics, “biological knowledge”-based
feature reduction (pathway-level feature reduction grounded in prior biological knowledge; eg, N-of-1-pathway analytics), and
reproducible MLOp workflows can overcome cohort size limitations in infrequent disease, offering a scalable, interpretable
solution for high-dimensional transcriptomic classification. Future work will extend these advances across various therapeutic
and small cohort designs.

(JMIR Bioinform Biotech 2025;6:e80735)   doi:10.2196/80735
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Introduction

Precision medicine seeks to personalize health care by
accounting for individual differences in genetic makeup,
environmental exposures, and lifestyle factors. This tailored
approach becomes especially challenging when analyzing
high-dimensional transcriptomic data derived from small patient
cohorts (microcohorts), a scenario frequently encountered in
studies of rare or infrequent diseases. Microcohorts typically
involve datasets characterized by high dimensionality
(approximately 25,000 transcriptomic features) juxtaposed
against limited sample sizes (approximately 20 persons),
conditions that commonly induce overfitting in traditional
machine learning models. Advanced analytical methodologies
have thus become essential in identifying robust and clinically
meaningful biomarkers from these small-scale studies to
facilitate personalized patient care.

A large share of the ~65,000 known human diseases are
infrequent—neither rare nor common—making it difficult to
assemble statistically robust cohorts without multiyear,
multicenter efforts. Around 5.9% of the global population is
affected by rare diseases [1], highlighting their substantial
impact on global health.

Moreover, finely stratified subtypes of otherwise common
diseases present similar challenges as their reduced prevalence
within heterogeneous populations undermines statistical power.
For example, in highly heterogeneous diseases, such as cancer,
where tumor subtypes and genetic mutation profiles can vary
substantially between individuals, conventional machine
learning approaches often suffer from insufficient statistical
power and heightened risk of overfitting. To mitigate these
challenges, single-subject (N-of-1) transcriptome analytics has
emerged as an innovative approach, allowing individuals to
serve effectively as their own controls. By measuring
within-subject transcriptomic changes and integrating these
measurements into biologically interpretable pathway-level
features, N-of-1 analyses significantly reduce noise and enhance
the detection of biologically meaningful signals, even amidst
substantial intersubject variability [2-8].

Concurrently, the emergence of machine learning operations
(MLOps), inspired by DevOps practices, has significantly
improved the deployment, optimization, and monitoring of
machine learning (ML) models. MLOps leverage automated
experiment tracking, hyperparameter tuning, and continuous
integration, enhancing workflow efficiency, reliability,
reproducibility, and scalability—factors essential for developing
robust and maintainable models in biomedical research [9-15].

We hypothesized that integrating three complementary strategies
would enhance classification accuracy and robustness in
microcohort scenarios: (i) implementing MLOp frameworks to
achieve robust and reproducible model performance and (ii)
leveraging transcriptomic dynamics observed between paired
biological samples (eg, diseased versus healthy tissues from the
same individual). Paired-sample information can be incorporated
in two distinct ways: (ii-a) as continuous fold-change values

between matched samples or (ii-b) through single-subject
(N-of-1) pathway analysis, which aggregates paired gene-level
signals into biologically interpretable, ternary pathway features
(upregulated, downregulated, or unchanged) across ~4000
human curated biological pathways annotated along with their
respective effect sizes and significance levels.

To empirically test this hypothesis, we conducted a
proof-of-concept analysis on two distinct human microcohorts,
one in breast cancer (BC) (TP53 vs PIK3CA tumors) and one
in human rhinovirus (HRV) infection (symptomatic vs
asymptomatic), each comprising paired biological samples
representing two different tissue conditions per subject. For
each cohort, we systematically evaluated three distinct data
transformation strategies: [i] conventional analysis using only
the affected tissue per subject [ii], fold-change transformation
involving the ratio of affected tissue mRNA expression to paired
control tissue expression for each subject, and [iii]
N-of-1-pathway transformation, summarizing individual
subject-level pathway effect sizes and P values. The
TP53–PIK3CA contrast provides a clinically relevant and
mechanistically distinct testbed: both genes are frequent drivers
in BC, associated with divergent transcriptomic programs and
prognostic implications across the Cancer Genome Atlas and
independent cohorts. Their prevalence and biological differences
make them suitable paired-sample targets to evaluate whether
within-subject transformations amplify signal over baseline
variability.

Each of these 3 data transformations was subjected to
classification modeling both with and without incorporating
MLOps, resulting in a total of 12 experimental conditions across
both cohorts. To further validate the robustness and relevance
of features selected by the best-performing classifier, we
conducted a rigorous retrospective ablation analysis.
Specifically, in ablation analysis, we masked the top 20 y
discriminative features from the dataset and assessed the
resulting impact on classification accuracy and stability. This
comprehensive analysis framework allowed us to quantify the
individual contributions of key biomarkers to the model’s
predictive performance.

Methods

Ethical Considerations
All transcriptomes were obtained as expression files from public
published USA NIH datasets (gene Expression Omnibus and
TCGA). Such expression data are not considered protected
human information under HIPAA.

Human Cohort Datasets
Two distinct human cohorts, spanning cancer and infection,
were selected to test our framework: a BC cohort (oncogene
drivers TP53 vs PIK3CA) and a HRV infection cohort
(symptomatic vs asymptomatic). Both cohorts were
characterized by small sample sizes, varying heterogeneity, and
paired tissue samples per subject (Table 1). Processing followed
published methods, ensuring prior studies' comparability [16,17].
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Table . Description of the two human cohort datasetsa.

BCc DatasetHRVb DatasetDataset

The Cancer Genome Atlas (TCGA-BRCA
(downloaded 03/05/2019) [19,20]

GSE17156 (downloaded 9/17/2014) [18]Source-reference

Illumina Hi-Seq 2000 (version 2 analyses)Microarrays: Human Gene U133A 2.0Platform

Primary breast carcinoma biopsies (affected)
versus unaffected breast tissue margins

PBMCd samples drawn before and 48 hours after
HRV nasal inoculation

Paired tissues

Somatic (tumor) mutations in either [1] TP53 or
[2] PIK3CA (cases with both mutations or none
of these excluded)

Symptom measures before and after successful
inoculation (virus present in sputum confirmed):
[1] asymptomatic vs [2] symptomatic (headache,
throat ache, rhinorrhea, and/or mild fever)

Experimental

groups

42 patients

TP53 (23 patients)

PIK3CA (19 patients)

19 healthy adult volunteers

10 symptomatic for common cold

9 asymptomatic

Individuals

#total

84 RNAseq count files38 gene expression microarray filesSample

a #: count of individuals.
bHRV: human rhinovirus
cBC: breast cancer.
dPBMC: peripheral blood mononuclear cell

The classification task in BC was to identify one of two
oncogene drivers that influence the treatment and prognosis,
because in primary, early-stage, nonmetastatic breast carcinoma,
TP53-mutated and PIK3CA-mutated tumors are generally not
reliably distinguishable by histopathology alone—that is,
without molecular (immunochemistry or genetic) assays. In
addition, the TP53-driven subtype has substantially poorer
5-year survival and presents substantial resistance to therapy
[21]. While the classification task in HRV was classifying
symptomatic infected individuals versus asymptomatic infected
ones.

Additionally, we downloaded Gene Ontology (GO) Biological
Process and their gene annotations termed “gene sets,”
downloaded from Ashburner et al on January 3, 2024 [22].

Dataset Transformations

One Affected Tissue Transcriptome Per Individual
Most conventional transcriptome classifiers typically analyze
a single transcriptome derived from the affected tissue of each
individual. To evaluate the accuracy achievable with traditional
classification methods using one sample per individual, we used
the affected tissue of the datasets and did not use the paired
control tissue. The BC cohort [16]included 22,279 TMM
(trimmed mean of M values) normalized gene expression [23]
values from 42 individuals, and two samples per individual (BC
and unaffected margins). The HRV cohort [16]included 20,502
RMA-normalized Affymetrix GeneChip expressions of probe
sets from 19 individuals and two samples per individual
(peripheral blood mononuclear cells 48 h before HRV
inoculation and after successful inoculation and shedding of
virus) (Figure 1, Panel A).
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Figure 1. Panel A. Overview of methods and process flow of the proof-of-concept study. Classification methods are applied to 2 cohorts (Table 1),
each with two distinct clinical phenotypes: (I) Individuals with BC, stratified by oncogenic drivers (TP53 vs PIK3CA), and (ii) HRV-infected patients
(symptomatic vs asymptomatic). Each subject provides 2 samples under different conditions: (i) BC—within-subject comparison of cancerous tissue
vs. unaffected margins, and (ii) HRV—within-subject comparison before versus during infection. Six classification experiments are conducted on each
cohort’s extracted transcriptomes, evaluating 3 complementary classification strategies for microcohorts: (i) MLOps-driven robustness (Panel B), (ii)
transcriptome dynamics between paired samples (eg, exposed vs unexposed tissue), and (iii) single-subject pathway analytics (N-of-1; details in Figure
2). Panel B. RF classifier pipeline of the BC dataset. The RF classification workflow consists of 5 key steps after extracting an unseen evaluation set:
(i) hyperparameter tuning using Weights & Biases MLOp sweep definition, (ii) human-in-the-loop expert heuristics to assess failure patterns and
overfitting (YAML‐based sweep configuration: criterion, max_depth, max_features, n_estimators via wandb.sweep function), (iii) iterative model
refinement via 300 resampling cycles of 5-fold cross-validation (80% samples in the training set, 20% in the validation set, orchestrated by W&B
MLOps (wandb.agent), (iv) MLOps Automated Best Model Selection, and (v) final evaluation on unseen dataset. Panel C. Retroactive feature ablation
analysis: feature importance is assessed in both datasets to evaluate the impact of individual features on classification performance. BC: breast cancer;
HRV: human rhinovirus; RF: Random Forest;
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Figure 2. Description of the N-of-1-pathway Wilcoxon analytics in each single subject. We used the “N-of-1-pathways” method [17], which aggregates
paired RNA-level signals of each subject into pathway-level effect sizes, conducts a nonparametric Wilcoxon test comparing the pathway-associated
mRNAs in each Gene Ontology (GO) Biological Processes [P <.05; other thresholds studied elsewhere [2,3,6,16,17] for each subject, enabling downstream
classification over a smaller number of human-interpretable GO features. This method identifies significantly altered mRNA sets associated with a
pathway between two samples of one subject, yielding 4,442 GO mRNA sets in the BC cohort and 2,332 GO mRNA sets in the HRV cohort. The output
consists of ternary matrices indicating response status 1−: negatively regulated, +1: positively regulated, and 0: unaltered GO pathway. For each GO
pathway, we compute FC of mRNA expression values between the affected and control tissue of a single individual. A Wilcoxon test is then performed
on these values, where the sum of positive ranks (W+) and negative ranks (W−) determine the test statistic W by min (W+,W−). The relative magnitude
of W+versus W− indicates whether the pathway is positively or negatively regulated in a significant test (eg, W+>W− indicates a positively regulated
pathway; W−>W+ indicates a negatively regulated pathway, and a nonsignificant test indicates an unaltered pathway). HRV scores were refined with
a coefficient of variation <31%. FC: fold change; n: number of subjects; P or p: number of features (transcripts); W+: statistically significant Wilcoxon
test with up-regulated gene set (pathway score positive); W-l: statistically significant Wilcoxon test with downregulated gene set (pathway score positive);
negative): mRNA=messenger RNA; X2: indices of the affected tissue; X1: indices of the control tissue.

Paired Samples: One Affected Tissue Transcriptome
and One Control Tissue Per Subject.
We calculated the fold change by dividing the expression of
each mRNA value of the affected tissue by that of the control
tissue, in each subject, in each dataset, followed by a log2

transformation [6]. Single-subject studies (N-of-1-pathways)
are described in Figure 1 Panel A and Figure 2.

Model Selection
We evaluated several ML models, including Random Forest
(RF), XGBoost, Support Vector Machine (SVM), and Logistic
Regression. Random Forest was ultimately chosen due to its
robustness, capacity to model nonlinear interactions, and
superior predictive performance in identifying symptomatic
patients and relevant gene sets. Multimedia Appendix 1 provides
a comparative analysis of the ML models, highlighting the
factors underlying RF’s superior performance.

Classification, Cross-validation, and MLOps
Model robustness was evaluated in both datasets using 5-fold
cross-validation. The RF model was integrated into the Weights
& Biases (W&B) MLOp framework (W&B v0.17.0, Python
3.11.4) [24] to systematically identify features whose
interactions significantly contribute to class differentiation.
MLOps facilitated robust experiment tracking, hyperparameter
optimization, and model monitoring, applying consistent
hyperparameter ranges across the BC dataset (42 samples) and
the HRV dataset (19 samples). This setup allowed us to assess
MLOps’ effectiveness in guiding hyperparameter tuning and
model tracking while maintaining human oversight. This study
was designed to compare the ability of different combinations

of data transformations (single-sample per individual, FC,
N-of-1-pathways analytics) to improve performance in small
human cohorts (small n<30 individuals) with high feature
dimensionality (very large p, transcriptomes=25,000 mRNA
features)

In W&B MLOps, the sweep.yaml file configured hyperparameter
sweeps by defining key parameters, search strategies,
optimization metrics, and other relevant settings for systematic
model optimization. Python’s StratifiedKFold strategy ensured
class proportion consistency and class imbalance across 5 folds,
and this process was repeated across 5 iterations with different
folds serving as the validation set, constituting a stratified 5-fold
cross-validation unbiased model selection protocol. Accuracy,
precision, and recall performance metrics were calculated across
cross-validation folds and held-out unseen test sets (Tables 2
and 3). The held-out unseen test partition was sequestered
throughout model development and accessed only once, after
cross-validation and hyperparameter selection were completed,
ensuring that no tuning decisions were informed by test data.
To refine hyperparameter ranges, a human expert in the sweep
configuration loop revised the best hyperparameter intervals
using the sweep.yaml configuration. This YAML file specifies
the parameters to be tuned, the search strategy, optimization
metrics, and other pertinent settings (Figure 1, Panel B). To
further evaluate generalizability given the limited cohort sizes,
we performed a learning curve analysis and accompanying
power calculations; results are provided in Multimedia Appendix
2, which details experimental reproducibility safeguards (eg,
immutable YAML configurations, dataset/hyperparameter
hashes, deterministic folds, and logging of all trials to MLOps).
Methods for tracing RF classifier decisions to biological
mechanisms are addressed in Multimedia Appendix 3.
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Table . Performance summary of analysis in human rhinovirus (symptomatic vs asymptomatic) Random Forest classifier.a

Two-sample (one sample in each condition) mRNAsSingle-sample mRNAsFeature (transcript) transformation
design

N-of-1 pathways (single-subject
studies)

Fold change

Number of features and samples

553 (no. of GOsb)12,496 features22,279 features    Number of mRNA transcripts

161515    Training samples

344    Validation samples

Cross validation (CV) values

.88 (.14).95 (.15).85 (.16)    CV accuracy: mean (SD)

.92 (.14).97 (.21).87 (.22)    CV precision: mean (SD)

.90 (.16).95 (.17).85 (.16)    CV recall: mean (SD)

.96.91.86    CV F1: mean

42 GOs112 mRNAs266 mRNAsSelected feature count

Hyperparameters

421887    Entropy criterion maximum depth

sqrt n-estimators: 24null n-estimators: 56log2 n-estimators: 148    Maximum features

aFold-change model achieves highest CV precision (0.97), while N-of-1 pathway model offers greater stability with the lowest CV (SD 0.14), outperforming
single-sample designs across all metrics. Corresponding 90% CIs are provided in Supplement File 5 in Multimedia Appendix 4.
bGO: Gene ontology Biological Process gene set.

Table . Performance summary analysis in the breast cancer Random Forest (PTP53 vs PIK3CA) classifiera.

Two sample (one in each condition) mRNAsSingle mRNAsFeature (transcript) transformation
design

N-of-1 pathways (single-subject
studies)

Fold change

4442 features (no. of GOsb)16,384 features20,502 featuresNumber of mRNA transcripts

272727Training sample

666Validation sample

999Test samples

.73 (.07).62 (.15).72 (.18)Cross validation (CV) accuracy:
mean (SD)

Unseen test set accuracy

.89.78.78    Test accuracy

.90.86.78    Test precision

.90.78.77    Test recall

.90.82.78    Test F1

21 GOs97 mRNAs105 mRNAsSelected feature count

165148115Entropy criterion maximum depth

null n-estimators: 8log2 n-estimators: 23sqrt n-estimators: 17Maximum features

aOn the unseen test set, pathway-level features achieved 12% higher accuracy and greater stability compared with fold-change and single-sample
classifications. Corresponding 90% CIs are provided in Multimedia Appendix 4.

Feature Importance, Stability, and Top-K Retroactive
Feature Ablation
For each dataset and representation (single-sample mRNA,
fold-change mRNA, and N-of-1 pathway scores), we trained

RF under repeated, stratified 5-fold cross-validation. Within
each fit, “feature importance” was computed as a mean decrease
in impurity (MDI)—the sample-weighted reduction in node
impurity attributable to a feature—and then aggregated across
trees, folds, and repeats to yield a global ranking [25]. To assess
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the “stability” of per-repeat rankings, we computed (i) Spearman
rank correlation (ρ) on the full ordering and (ii) Jaccard overlap
of the Top-k feature sets [26-28]. Top-K denotes the k
highest-ranked features by aggregated MDI computed on the
full, unpruned feature space.

We conducted a retroactive feature ablation analysis on both
datasets to assess the impact of the top-ranked features identified
by our selected classifiers. To harmonize ablations across
representations, we prespecified k=20 (two final models selected
21 features, motivating a common k). For retroactive ablation,
we removed the top 20 features from the training, validation,
and held-out test partitions. We then refit from scratch the
previously selected model configuration with its exact,
prechosen hyperparameters, without additional tuning or
human-in-the-loop changes. The held-out test set, transformed
once by dropping the same training-derived top 20 indices, was
evaluated a single time. This remove-and-refit procedure
estimates the marginal contribution of top-ranked features while
minimizing information leakage [29]. This retraining step was
conducted to measure the influence of the ablated features on
performance metrics such as precision and recall (Figure 1,
Panel C). Together, MDI rankings, stability metrics, and ablation
results provide post hoc explainability of the model’s global
feature contributions [30].

Results

In both datasets, RF model robustness was evaluated using
5-fold cross-validation (Methods 2.3‐2.4, Figure 1 Panels
A-B). For the 42 individuals BC dataset (23 TP53 and 19
PIK3CA), 80% (27 individuals) was used for training, while
the remaining 20% was split into 6 individuals for validation
and 9 individuals for testing, ensuring consistent evaluation.
Similarly, in the HRV dataset, consisting of 19 individuals (10
symptomatic and 9 asymptomatic), the data were split into 80%

(16 individuals) for training and 20% (3 individuals) for
validation. The StratifiedKFold approach from the scikit-learn
Python package was used to maintain consistent class
proportions across folds, ensuring validation consistency and
reproducibility, and preserve class proportions in every
training/validation split (class imbalance results not shown). In
MLOp-guided studies (Methods 2.4, Figure 1 Panel B), after
testing various hyperparameter interval ranges, a
human-in-the-loop (expert) confirmed the following optimal
RF hyperparameters: criterion (gini or entropy), number of
estimators (5 to 150), maximum features (sqrt, log2, or None),
and tree depth (5 to 200). SVM and XGBoost hyperparameters
are not shown as they yielded lower accuracies. As summarized
in Table 2 (HRV), Table 3 (BC), and Figure 3,
paired-sample–based feature transformation strategies
outperformed single-sample approaches across all major
evaluation metrics. In the HRV cohort, the fold-change model
yielded the highest cross-validation (CV) precision (0.97±0.21
SD) and recall (0.95±0.17 SD), while the N-of-1 pathway-based
classifier demonstrated superior stability, achieving lower CV
SDs across all metrics, including CV precision. By contrast, the
single-sample model achieved a CV precision of only 0.87±0.22
SD. To further assess generalizability given the limited cohort
sizes, we performed a learning-curve analysis using N-of-1
pathways as an exemplar; these results are provided in
Multimedia Appendix 2. To trace classifier-selected features
back to underlying biological processes, we performed heatmap
clustering of features and pathway enrichment of transcripts,
provided in Multimedia Appendix 3. To address the concern
that the superior performance of the N-of-1 pathway method
may reflect dimensionality reduction rather than pathway
biology, we performed an additional analysis applying
comparable feature reduction (~4000 features) to the
single-sample and fold-change models; these results are provided
in Multimedia Appendix 5.
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Figure 3. Paired sample per subject machine learning designs outperform single-sample designs. As illustrated, paired-sample per subject designs,
either using log₂ fold change (purple) or single-subject N-of-1-pathway analysis (yellow), achieved higher classification accuracies compared to
single-sample per subject designs (green), across both Breast Cancer (BC) and Human Rhinovirus (HRV) microcohorts. However, pathway-based
classification surpassed fold-change performance in only one dataset, suggesting that the underlying biology (eg, structure of the information model)
of a condition may determine whether pathway-level or gene-level (fold-change) features are more informative for classification. No MLOps indicates
a conventional cross-validation run without iterative retraining or sweep-based refinement, serving as the baseline against which the orchestrated MLOp
pipeline was compared. Incorporating MLOps (circles and squares) yielded an average accuracy improvement of ~14.5% compared to traditional
approaches without iterative retraining (ie, single cross-validation runs). By contrast, classifiers subjected to retroactive top 20 feature ablation (indicated
by squares) experienced a performance drop of approximately 25%. MLOps: Machine Learning Operations; mRNA: messenger RNA; Log2: logarithm
base 2

In the BC cohort, the N-of-1 pathway–based model achieved
the highest test precision and recall of 0.90, reflecting an
approximate 12% absolute improvement over the single-sample
classifier (0.78 precision, 0.77 recall). This model also
demonstrated greater stability, with a cross-validation SD
approximately half that of the single-sample and fold-change
approaches. These findings are further illustrated in Figure 3,
which compares performance across transformation strategies.
Collectively, the results demonstrate the effectiveness of
paired-sample transformations—particularly when combined
with MLOp-guided optimization—in improving classification
accuracy and model stability in micro-cohort settings.

Retroactive feature ablation studies were conducted in breast
cancer and HRV datasets (Figure 3; Multimedia Appendix 5).
To assess the impact of top-ranked features on model
performance, an ablation study was performed by sequentially
removing the 20 highest-ranked features identified by the
classifiers and retraining the optimal Random Forest model with
previously tuned hyperparameters. It consisted of masking these
features from the data input and retraining (Methods 2.5; Figure
1 Panel C). This analysis quantified the contribution of these

features by evaluating changes in precision and recall, revealing
a significant decline in predictive accuracy upon their removal.
The results underscore the robustness of the selected features
derived through the MLOps-driven pipeline, with performance
degradation observed across all feature sets. Of note, most
classifiers retained on the order of ~100 features, whereas the
final BC model retained only 21 N-of-1 pathway features;
nonetheless, the ablation step uniformly removed the top 20
features across all methods to maintain consistency, regardless
of the total feature count. In addition, we evaluated models
trained using only the top 20 features, which performed
substantially better than the ablated models but below the full
models (Multimedia Appendix 5), thereby quantifying both the
predictive value and the limitations of this small feature subset.

Discussion

Principal Findings and Comparison With Previous
Works
Transcriptome classifiers traditionally analyze a single
transcriptome per subject, providing a baseline for evaluating
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the performance of standard classification methods. In our study,
this conventional approach was represented by the single-sample
per subject design. Specifically, the BC cohort [11] included
22,279 gene expression values normalized using the trimmed
mean of M values (TMM) method [20] from 42 individuals,
while the HRV cohort [6] comprised 20,502 Affymetrix
GeneChip probe-set expressions normalized using Robust
Multiarray Average (RMA) from 19 individuals.

We systematically compared 3 mRNA feature transformation
strategies—single-sample, log₂ fold-change (paired design),
and N-of-1 pathways (paired design)—across both datasets,
using identical hyperparameter sweeps implemented within the
W&B MLOp platform (wandb v0.17.0, Python 3.11.4). Among
the evaluated classifiers (Random Forest, XGBoost, SVM,
Logistic Regression), RF was selected for final implementation
based on its ability to model nonlinear interactions and superior
predictive performance in distinguishing symptomatic
individuals and uncovering relevant gene sets (data not shown).

Results consistently demonstrated that paired-sample per designs
outperformed single-sample designs, with up to 12% higher
precision accuracy observed for the N-of-1 pathway–based
approach in BC and 5% in HRV, while recall was increased by
13% and 5%, respectively. However, this performance
advantage varied across datasets: while pathway-based
classification outperformed fold-change in the BC cohort,
fold-change achieved 10% increase in both precision and recall
in the HRV dataset. The impact of pathway-level features on
classification outcomes is demonstrated by their high importance
rankings and the sharp ~25% accuracy drop observed in
retroactive ablation, showing that the model not only learns
from these features but also relies on them as key decision
boundaries. Thus, the consistent finding is that 2-sample
transformations outperform single-sample designs, although
which representation (fold-change vs pathway) is optimal
appears task- and biology-specific. At present, methods to
prospectively identify which 2-sample representation will
perform best in a given dataset remain undeveloped; however,
the differential results here are consistent with biological
granularity as oncogene-level classification in breast cancer is
inherently pathway mediated, while HRV organism-level
symptom classification reflects broader organismal phenotypes.
These differences suggest that the underlying disease biology
influences whether gene-level or pathway-level features are
more informative. In our framework, pathway-level features
contribute to classification by encoding coordinated
transcriptomic changes into ternary indicators of pathway
activation (upregulated, downregulated, or unchanged). Unlike
raw expression values or continuous fold-change variables,
these ternary ordinal features emphasize significant, coordinated
shifts at the pathway level, providing interpretable signals that
capture biological mechanisms rather than gene-level noise.
These ternary variables act as global indicators of pathway
perturbation, enabling the classifier to learn patterns of
coordinated biological dysregulation that are not captured by
individual transcripts alone. This representation reduces
dimensionality by several orders of magnitude, mitigates noise
from gene-level variability, and provides features with direct
biological meaning.

Distinguishing TP53- from PIK3CA-driven breast cancers is
clinically important: TP53 mutations predominate in estrogen
receptor–negative tumors and portend poor prognosis, whereas
PIK3CA mutations are frequent in estrogen receptor–positive
tumors and guide PI3K/mTOR–targeted therapy [21].
Transcriptome-based classifiers that stratify TP53 versus
PIK3CA mutations therefore have direct translational value for
prognosis and treatment selection. Classifying
transcriptome-level signals (~10   m) by oncogenic driver
mutations—molecular alterations occurring at the nanometer
scale is inherently a proximal task in the biological hierarchy,
especially when contrasted with symptom-based classifications
for HRV infection, which manifest at the meter scale. Moreover,
early-stage primary breast carcinoma remains fundamentally a
disease of genetic, genomic, and subcellular pathways. It is
therefore more amenable to gene set–based transformations as
conventional histology alone cannot reliably distinguish its
molecular subtypes without adjunct immunohistochemical or
genomic markers. In summary, paired-sample designs
consistently improved precision and recall, as hypothesized;
however, the optimal transformation method may vary by
disease context, with some conditions favoring fold-change
models and others better suited to single-subject gene set
analysis.

Integrating MLOps into the modeling pipeline led to a ~14.5%
improvement in classification accuracy compared with
non-MLOps workflows that relied on a single cross-validation
run without iterative retraining. This finding underscores the
benefit of programmatic, reproducible, and feedback-driven
model development. Moreover, our retroactive top feature
ablation analysis, which involved retraining classifiers after
removing the top 20 features, revealed a ~25% reduction in
accuracy, demonstrating the importance of retaining
high-contribution features in high-dimensional settings.

In the HRV microcohort, the MLOp-guided fold-change model
achieved excellent precision (0.97) and recall (0.95), while
single-sample designs were more susceptible to overfitting and
noise due to higher dimensionality. By contrast, the
N-of-1-pathway approach proved more effective in the BC
cohort, which is characterized by heterogeneous tumor biology;
this model achieved test precision and recall of 0.90. Conversely,
MLOp-guided fold-change analysis in BC yielded lower
precision (0.86) and recall (0.75), highlighting the relative
strength of pathway-informed features for modeling complex
biological variation.

Collectively, these results highlight how paired-sample
designs—particularly when paired with MLOps—yield more
accurate and interpretable models, especially in small cohort
scenarios. Furthermore, our study demonstrates how
expert-guided decisions about feature transformations (eg,
fold-change vs pathways), integrated with programmatic MLOp
workflows, can lead to substantial performance gains. The
combination of human-in-the-loop oversight and automated
optimization (as shown in Tables 2–3 and Multimedia Appendix
1) offers a pragmatic framework for building biologically
grounded classifiers in data-limited settings.
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Few studies have systematically addressed classifier
development requirements in very small cohorts. Our previous
work demonstrated feasibility in a prospective cohort [6] without
comparative evaluations against conventional methods or MLOp
integration. Transfer learning has shown promise in classifying
cell types in single-cell RNA sequencing [31] and transcriptomic
datasets derived from large human cohorts [32], but these
methods have not yet been applied specifically to small human
cohorts for clinical predictive analytics.

Several limitations must be noted: (i) alternative machine
learning models (SVM, Logistic Regression, XGBoost)
consistently underperformed relative to RF, and results were
omitted for brevity. Future research should explore fusion deep
learning and transfer learning approaches. (ii) Our conclusions
are based on limited datasets, necessitating additional
transcriptomic data or simulation studies to robustly assess
generalizability. (iii) Despite efforts to control overfitting,
inherent constraints persist due to small sample sizes,
emphasizing the need to develop microcohorts through
subsampling larger paired-sample datasets in future studies;
though such datasets are uncommon.

Conclusions
Most of the approximately 65,000 known human diseases remain
inadequately treated due to their rarity and the consequent
scarcity of comprehensive studies. The low prevalence of these
diseases severely limits conventional transcriptomic approaches
as bulk RNA sequencing (bRNAseq) typically requires larger
cohorts for effective classifier development. Emerging
technologies such as spatial RNA sequencing and single-cell
RNA sequencing present promising alternatives suitable for
smaller cohort studies; however, these methods currently incur
approximately 20 times higher costs per sample and capture
around 5 times fewer mRNA transcripts. As these technologies
become more affordable and achieve improved transcriptomic
coverage, novel analytical methodologies tailored for small
cohorts are expected to evolve. Additionally, transfer learning
techniques, already successfully applied to large-scale
transcriptomic datasets, offer considerable potential for
small-cohort classification. However, standardized frameworks
for applying transfer learning specifically to paired-sample

designs are not yet established, highlighting an important area
for future research.

This study systematically evaluated multiple complementary
approaches designed to enhance the statistical power of bulk
mRNA-based classification within microcohorts. Our results
demonstrate that the integration of these approaches improves
precision and recall by approximately 12.5%‐14.5% compared
to traditional single-sample methodologies. Specifically, we
propose strategies that include the following: (i) leveraging
paired comparisons of affected and control tissues within
individual subjects, and (ii) using MLOp-guided analytical
workflows combined with expert-in-the-loop oversight to ensure
robustness, transparency, and reproducibility. This
paired-sample methodology has been shown to improve
classifier development in large cohorts [6,33-38], and here we
show that, in very small cohorts, it also facilitated classifier
development at both the individual mRNA level (via fold-change
analysis) and the biologically interpretable knowledge-anchored
pathway level (through N-of-1-pathway-based analyses
leveraging Gene Ontology gene sets). Our results indicate that
both paired-sample representations can outperform
single-sample approaches, with fold-change or pathway-based
features proving more effective depending on the underlying
biological context. The adoption of MLOps practices optimized
hyperparameter tuning and model deployment, as well as
mitigated overtraining, while expert oversight ensured the
biological validity of the results. Collectively, these strategies
effectively address the challenges posed by high feature
dimensionality and limited sample sizes, thereby laying the
groundwork for advancing personalized therapeutic interventions
in rare disease contexts.

Although this investigation primarily targeted a specific
transcriptomic scale, optimal classifiers for clinical prediction
are likely to incorporate comprehensive data across diverse
biological scales (metabolome, genome, proteome, methylome,
etc) jointly with real-world evidence and clinical dimensions.
Future research endeavors should integrate transcriptomic data
with multiomics approaches, medical imaging, and
patient-centric outcomes to further enhance predictive accuracy
and personalized medicine capabilities.
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Abstract

Background: Deep learning (DL) shows promise for automated lung cancer diagnosis, but limited clinical data can restrict
performance. While data augmentation (DA) helps, existing methods struggle with chest computed tomography (CT) scans across
diverse DL architectures.

Objective: This study proposes Random Pixel Swap (RPS), a novel DA technique, to enhance diagnostic performance in both
convolutional neural networks and transformers for lung cancer diagnosis from CT scan images.

Methods: RPS generates augmented data by randomly swapping pixels within patient CT scan images. We evaluated it on
ResNet, MobileNet, Vision Transformer, and Swin Transformer models, using 2 public CT datasets (Iraq-Oncology Teaching
Hospital/National Center for Cancer Diseases [IQ-OTH/NCCD] dataset and chest CT scan images dataset), and measured accuracy
and area under the receiver operating characteristic curve (AUROC). Statistical significance was assessed via paired t tests.

Results: The RPS outperformed state-of-the-art DA methods (Cutout, Random Erasing, MixUp, and CutMix), achieving 97.56%
accuracy and 98.61% AUROC on the IQ-OTH/NCCD dataset and 97.78% accuracy and 99.46% AUROC on the chest CT scan
images dataset. While traditional augmentation approaches (flipping and rotation) remained effective, RPS complemented them,
surpassing the performance findings in prior studies and demonstrating the potential of artificial intelligence for early lung cancer
detection.

Conclusions: The RPS technique enhances convolutional neural network and transformer models, enabling more accurate
automated lung cancer detection from CT scan images.

(JMIR Bioinform Biotech 2025;6:e68848)   doi:10.2196/68848

KEYWORDS

lung cancer diagnosis; deep learning; data augmentation; convolutional neural network; transformer; random pixel swap

Introduction

Background
Lung cancer is a lethal disease characterized by uncontrolled
cell growth in the lungs [1]. These malignant cells can
proliferate, invade nearby tissues, and metastasize to other parts
of the body [2]. The disease progresses through distinct stages,
with advanced stages often proving fatal [3]. Lung cancer
comprises multiple histological types and subtypes, affecting
individuals regardless of gender [4]. Globally, lung cancer
remains the leading cause of cancer-related mortality [5]. In
2020 alone, it accounted for 1.8 million deaths, ranking as the
6th leading cause of death worldwide among individuals
younger than 70 years [2]. A key contributor to this high
mortality is the frequent absence of early symptoms, leading to
late-stage diagnosis and poorer outcomes [6]. The 5-year

survival rate for lung cancer patients remains low, emphasizing
the critical need for early detection [7]. Early diagnosis
significantly improves prognosis, reduces long-term treatment
costs, expands therapeutic options, and alleviates the burden on
caregivers and families [1,8-10]. However, most cases are still
detected at advanced stages, drastically limiting survival rates
[5]. These challenges underscore lung cancer as a major public
health priority.

Computed tomography (CT) is a medical imaging technique
that produces high-resolution cross-sectional images of the
lungs, providing detailed anatomical information for clinical
evaluation [11]. As a noninvasive diagnostic tool, CT imaging
has become indispensable for the early detection of lung cancer,
offering superior sensitivity compared to conventional
radiography [12,13]. However, the interpretation of CT scans
presents significant challenges in clinical practice. The process
demands considerable expertise from radiologists, as subtle
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early-stage malignancies may demonstrate imaging features
that escape human detection, potentially leading to diagnostic
oversights [14,15]. The subjective nature of image interpretation
introduces variability in diagnostic accuracy among
practitioners, which can result in false-positive identification
of pulmonary nodules. Such errors may prompt unnecessary
invasive procedures for confirmation, exposing patients to
avoidable risks and health care systems to additional costs [13].
Furthermore, the comprehensive evaluation of CT examinations
is particularly demanding, as each study comprises numerous
sequential slices, requiring both individual assessment and
integrated analysis. This labor-intensive process frequently
overwhelms available radiological resources, contributing to
diagnostic delays and extended patient waiting periods [15-17].
To address these limitations, computer-assisted diagnostic
systems have been developed to augment radiologists’
interpretive capabilities [18]. These automated solutions employ
advanced algorithms to analyze CT images, enhancing
diagnostic accuracy while improving workflow efficiency [19].
By integrating such technological advancements into clinical
practice, health care providers can mitigate the current
challenges associated with manual CT interpretation, ultimately
improving patient outcomes through more timely and reliable
diagnoses.

The application of computer algorithms for the automated early
diagnosis of lung cancer from CT scan images has evolved
considerably. Early approaches used radiomics and machine
learning techniques, but recent advancements have established
deep learning (DL) as the predominant methodology [20].
Unlike traditional methods that depend on manually engineered
features, a process prone to bias and time constraints, DL
employs artificial neural networks to autonomously extract
sophisticated features through training [21]. Among DL
architectures, both convolutional neural networks (CNNs) and
Vision Transformers have demonstrated exceptional potential
for the early detection of lung cancer [22]. CNNs gained
prominence after 2012, while Vision Transformers emerged in
2020 [23], with both now leading innovations in automated CT
scan analysis [18,19].

CNNs and transformers offer distinct advantages for medical
image analysis. CNNs, with their inductive bias for spatial
locality and translation invariance, benefit from a simpler,
parameter-efficient architecture rooted in spatial priors, which
is highly effective and easier to train on smaller datasets [24,25].
They specialize in extracting local features and understanding
spatial relationships between adjacent pixels. In contrast,
transformers excel at capturing long-range dependencies across
the entire image [26]. Vision Transformers are particularly
scalable, maintaining image resolution better than CNNs during
processing [27]. Their parallel processing capability also enables
faster training times compared to similarly complex CNNs [28],
although they typically require larger training datasets to achieve
comparable performance [29]. Recent developments have seen
the rise of hybrid networks that combine CNN and transformer
architectures, successfully integrating both local and global
feature extraction to overcome the limitations of standalone
approaches [30,31].

Despite their capabilities, DL models face significant
data-related challenges. While these architectures proficiently
automate nodule detection, classification, and segmentation in
CT scans [32], they demand extensive training data to
outperform radiologist interpretations [33]. The scarcity of
annotated medical CT datasets presents a major constraint [34],
as creating such datasets requires time-consuming, expert-driven
image labeling [35]. Data augmentation (DA) has emerged as
a crucial solution to expand dataset size and diversity [36],
enhancing both the quantity and quality of available training
samples [37]. However, selecting appropriate DA techniques
for chest CT analysis remains challenging due to several factors,
including the variable effectiveness of methods across different
datasets and domains [38], potential label distortions and crucial
information loss caused by certain transformations [39], and
current limitations in improving performance for both CNN and
transformer architectures [37,40]. To address these challenges,
this study proposes the Random Pixel Swap (RPS) augmentation
method, specifically designed to enhance the generalization
capabilities of both architectural paradigms in lung cancer
diagnosis from chest CT scan images.

Related Work
The effectiveness of DA in training large neural networks was
first conclusively demonstrated in 2012 [41], sparking the
development of numerous innovative techniques [37]. These
methods primarily fall into 2 categories: data synthesis and data
transformation [36]. Data synthesis techniques generate novel
samples that maintain statistical similarity to the original training
data, while data transformation techniques create variations by
modifying existing training samples. Both approaches effectively
increase training dataset size, quality, and diversity, although
they differ significantly in implementation. Data synthesis
typically requires parameter learning, a process that can prove
computationally intensive and often demands substantial training
data to achieve optimal results [42]. In contrast, data
transformation techniques generally avoid parameter learning
and consequently require less computational resources.
Traditional data transformation methods include fundamental
image manipulations such as flipping, rotation, cropping,
translation, and photometric adjustments (modifications to
brightness, saturation, contrast, and hue) [36]. More
sophisticated approaches like Cutout [43], Random Erasing
[44], MixUp [45], and CutMix [46] have subsequently emerged,
achieving state-of-the-art performance across various domains.
These advanced techniques have been employed in lung cancer
diagnosis from CT scan images [47-49].

The following section provides a comprehensive examination
of the Cutout, Random Erasing, MixUp, and CutMix techniques,
analyzing their limitations in medical imaging applications and
contrasting them with the proposed RPS method. This
comparative analysis establishes the foundation rationale for
developing specialized augmentation approaches optimized for
medical image analysis challenges.

Cutout DA Technique
The Cutout technique randomly selects square regions within
images and masks their pixel values [43]. While effective for
improving model robustness against occlusions in natural
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images, this approach presents significant limitations for medical
CT scans. The method’s potential to eliminate critical diagnostic
information (such as cancerous regions) may degrade
performance [38]. Additionally, the masking process can
inadvertently alter image labels, further limiting effectiveness
[39]. Unlike Cutout, our RPS approach avoids information loss.
It preserves diagnostic information by replacing masked regions
with pixel values that are derived from other areas within the
same CT scan while maintaining original labels.

Random Erasing DA Technique
Random Erasing extends Cutout’s functionality by supporting
both square and rectangular masks of varying sizes [44]. This
technique randomly selects image regions for erasure and
replaces them with random pixel values. While the variable
mask sizes increase dataset diversity compared to Cutout, the
method still suffers from information loss and label alteration
issues [36,40]. These limitations are particularly problematic
for medical imaging, where preserving anatomical content is
crucial.

MixUp DA Technique
MixUp generates new samples through linear interpolation of
pixel values and labels from 2 distinct images [45]. This

approach enhances model generalization by preventing label
memorization and improving adversarial robustness. However,
the technique’s potential to blur important anatomical boundaries
and the requirement of careful hyperparameter tuning can create
a bottleneck in medical contexts [47,48]. Furthermore, its
convergence speed is often suboptimal [47]. RPS addresses
these limitations by operating within single patient scans rather
than mixing data across patients and employs a single
hyperparameter for more efficient training.

CutMix DA Technique
CutMix combines aspects of previous methods by cutting
patches from one image and pasting them onto another while
proportionally blending labels [46]. Although this approach
leverages the benefits from both Cutout and MixUp, the label
blending can introduce noise that degrades model performance
[50]. For medical CT scans, combining patches from different
patients may confuse learning models, particularly when dealing
with subtle pathological features [51]. RPS overcomes these
challenges by performing pixel swaps exclusively within
individual patient scans and preserving original labels without
blending. Figure 1 visually contrasts these techniques with the
proposed RPS method.

Figure 1. Computed tomography images for various data augmentation techniques. (A) MixUp; (B) CutMix; (C) Cutout; (D) Random Erasing; (E)
Random Pixel Swap. The original image is in column 1, while the augmented images are in columns 2, 3, 4, and 5.
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Methods

RPS DA Technique
The RPS technique is a parameter-free DA algorithm that
operates with a predefined transformation probability. This
method partitions input images into 2 distinct regions that serve
as source and target areas for patch selection and swapping
operations. The study proposes 4 specific implementation
approaches, designated as RPSH (vertical), RPSW (horizontal),
RPSU (upper right diagonal), and RPSD (upper left diagonal)
swap configurations, as illustrated in Figure 2. This

multidirectional swapping mechanism provides several
advantages: it generates diverse transformations within
individual patient CT scans while maintaining pathological
plausibility, introduces meaningful variability in the training
dataset without requiring parameter learning, and preserves all
critical diagnostic information by operating exclusively within
each scan’s original pixel values. The technique’s ability to
produce multiple distinct transformations from a single image
significantly enhances dataset diversity while avoiding the label
alteration and information loss issues associated with other
augmentation methods.

Figure 2. Four possible swap approaches for the Random Pixel Swap (RPS) data augmentation technique. I is the original image. Areas A1 and A2 are
the swap regions. RPSH (vertical), RPSW (horizontal), RPSU (upper right diagonal), and RPSD (upper left diagonal) are the possible swap configurations.

RPS possesses distinct invariant properties compared to other
techniques. For an image with N pixels and Li intensity levels,
the RPS transformation preserves global intensity, as shown in
Equations (1)-(3). The technique employs a controlled,
systematic, random patch-based pixel swap, rather than a
random point-based pixel swap, ensuring that image content is
preserved. This approach generates meaningful variations while
maintaining pathological truth, thereby retaining clinical
relevance in the context of lung cancer diagnosis.

(1)X′=T(X)

where T is permutation transform

(2)p=n(i)N=n(i)′N′;i=0,1,2,...,L−1

(3)Ig=∑i=0L−1iN=∑i=0L−1i′N′
where P is the probability of a pixel having intensity i; n(i),n(i)′
is the number of pixels with intensity level i∈X∧X′,
respectively; N,N′ is the total number of pixels in X∧X′,
respectively; L is the intensity level; and Ig is the average global
intensity.

Implementation of RPS
The RPS technique is implemented by first randomly selecting
2 coordinate points (x₁, x₂) along the x-axis and 2 points
(y₁, y₂) along the y-axis within the input image. These
coordinates define 2 equal subswap regions: region X bounded
by swap area A1:(x₁, y₁) and (x₂, y₂), and As2 bounded
by swap area A2:(x₁, y₁)′ and (x₂, y₂)′. The method
incorporates a key hyperparameter called the swap area factor
Sf, which ranges from 0.1 to 1.0, to control the extent of
augmentation. The actual swap areas Sa1 and Sa2 are derived
by scaling the subswap regions using this factor, as specified
in Equations (4) and (5). During the augmentation process, the
contents of swap area Sa1 are cropped and pasted into swap
area Sa2 while simultaneously transferring the contents of swap
area Sa2 to swap area Sa1. This bidirectional swapping ensures
comprehensive data transformation while preserving all original
image information. The complete RPS procedure is formally
described in Textbox 1.

(4)Sa1=As1∗Sf

(5)Sa2=As2∗Sf
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Textbox 1. Algorithm 1: Random Pixel Swap data augmentation procedure.

Input: data X; with shape H×W

Output: Augmented data X∗

1: A1∈12(H∗W)

2: Init: All points P within A1

3: Sf ← Sf     : Sf   [0.1, 1.0]

4: forPi,Pj P,do

5: Randomly select Pi , Pj ,

Pi′ ,Pj′ = Pi∗2 , Pj∗2

6: As1 = Area (Pi , Pj )

7: As2 = Area (Pi′ , Pj′ )

8: Sa1 = As1 * Sf

9: Sa2 = As2 * Sf

10: X* ←Replace Sa1 with Sa2 in X and Sa2 with Sa1 in X

11: end for

12: returnX*

Swap Area Factor
The swap area factor Sf is a crucial parameter in the RPS
technique, representing the ratio between the subswap region
and the total swap area as described in Equation (6). This factor
plays a vital role in the augmentation process for two key
reasons: (1) it allows customization for different DL
architectures that may benefit from varying swap region sizes,
and (2) it helps maintain clinical relevance by limiting distortion
of diagnostically important anatomical features. The study
proposes two distinct implementations of this parameter: (1)
single-value swap area factor (SVSF), which applies a fixed
value throughout the augmentation process, and (2) multivalue
swap area factor (MVSF), which uses multiple values to
generate more diverse swap areas. In both implementations, the
swap area factor operates within a defined range of 0.1 to 1.0,
providing controlled flexibility for different medical imaging
scenarios.

(6)Sf=AsSa

Experimental Validation of the RPS Technique
We conducted comprehensive experiments to validate the
effectiveness of the proposed RPS technique in enhancing DL
model performance across both CNN and transformer
architectures. For our evaluation, we selected 4 established
models: ResNet-34 [52], MobileNetV3 (small variant) [53],
Vision Transformer (base-16) [23], and Swin Transformer (tiny
version) [29], all initialized with preactivated weights. These
architectures were chosen based on three key criteria: (1) public
availability for reproducible benchmarking, (2) widespread
adoption in methodological comparisons [29,48], and (3)
efficient training characteristics due to their relatively fewer
trainable parameters compared to larger variants.

Our experimental design incorporated three key comparisons:
(1) models trained without any augmentation, (2) models trained
with RPS augmentation, and (3) models trained with 4

state-of-the-art DA techniques (Cutout [43], Random Erasing
[44], MixUp [45], and CutMix [46]). These comparison
techniques were selected because they represent current best
practices in parameter-free augmentation methods that share
conceptual similarities with RPS [48]. We evaluated all models
using two key metrics: (1) classification accuracy and (2) area
under the receiver operating characteristic curve (AUROC),
providing a comprehensive assessment of both overall
performance and diagnostic discrimination capability.

Experimental Setup and Implementation
All experiments were conducted using Python 3.12.2 (Python
Software Foundation) and PyTorch 2.2.2+ cu118 (PyTorch
Foundation) within Jupyter Notebook 7.0.8 (IPython Project),
running on an NVIDIA Quadro RTX 3000 GPU (Nvidia
Corporation). We adopted the AdamW optimizer with a
cross-entropy loss function, using a batch size of 16. The StepLR
scheduler was configured with a step size of 10 and a gamma
value of 0.5 [52]. Models were trained for 50 epochs, as
additional training resulted in overfitting and performance
degradation. After evaluating various learning rates, we selected
1×10 ⁴ as it yielded optimal results. Image normalization was
applied with mean and SD values of 0.5 to enhance training
stability and accelerate convergence [53].

For RPS implementation, we used a swap area factor of 1.0
with an augmentation probability of 1.0 for all experiments.
CNN models processed images at 512×512 and 224×224
resolutions, while transformer architectures used 224×224
resolution due to the Vision Transformer’s input size limitations.
Although the Swin Transformer supports 512×512 inputs, we
maintained a consistent 224×224 resolution across all
transformer experiments for fair comparison. All experiments
were conducted with a random seed of 42 after verifying
consistent performance patterns across 3 different seeds.
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Statistical Analysis
To evaluate our hypothesis that an effective DA technique
should perform consistently across both CNN and transformer
architectures, we treated each technique as an independent
variable and considered model performance as the dependent
variable. We used paired sample t tests [54] to assess significant
differences between techniques, considering P values <.05 as
statistically significant.

For comprehensive technique comparison, we implemented a
ranking system based on cumulative scores C (Equations (7)
and (8)), where higher scores received lower rank numbers R.
This approach enabled holistic performance benchmarking
across all models and architectures.

(7)C=∑model=1nmodel(A+AUROC)

(8)R1,R2,R3,…,Rm+1=C1,C2,C3,…,Cm+1∨ C1>C2>C3,…,>Cm+1

where C is cumulative score, R is rank, m is the total number
of data augmentation techniques, n is the total number of
selected models, A is accuracy, and AUROC is the area under
the receiver operating characteristic curve.

Iraq-Oncology Teaching Hospital/National Center for
Cancer Diseases Dataset
The Iraq-Oncology Teaching Hospital/National Center for
Cancer Diseases (IQ-OTH/NCCD) dataset contains 1097 JPEG
CT images collected from 110 patients [35]. These images were
obtained using a SOMATOM Siemens scanner (Siemens
Healthineers) and encompass a diverse range of demographic
characteristics. The dataset is organized into 3 categories: normal
scans, benign tumor scans, and malignant tumor scans.
Specifically, it includes 15 cases of benign tumors, totaling 120
images; 40 cases of malignant tumors, totaling 416 images; and
55 cases of normal findings, totaling 561 images. Each image
has a resolution of 512×512 pixels. We divided the images in
a ratio of 7:3 for training and testing.

Chest CT Scan Images Dataset
The chest CT scan images dataset contains 1000 lung CT scans
from patients diagnosed with 3 different types of lung cancers,
as well as scans from healthy individuals, all in JPG format
[55]. The lung cancer types included in the dataset are
adenocarcinoma, squamous cell carcinoma, and large cell
carcinoma. The images are organized into training, testing, and
validation sets for each lung cancer category.

Ethical Considerations
Ethics approval was obtained from the Sefako Makgatho
University Research Committee (ethics reference number:
SMUREC/M/12/2022:PG).

Results

Average Training Time Overhead
To evaluate the computational impact of the RPS technique,
we measured training duration for 4 architectures (ResNet-34,
MobileNetV3 [small], Vision Transformer [base-16], and Swin
Transformer [tiny]) with and without RPS implementation. The
training time overhead was calculated as the difference between
augmented and nonaugmented training times. Experiments were
conducted on both the IQ-OTH/NCCD and chest CT scan
datasets using 224×224 image resolution, with results averaged
across 3 independent runs for reliability.

Our analysis included a comparative assessment of 4 established
DA techniques: Cutout, Random Erasing, MixUp, and CutMix.
Results demonstrated that while RPS increased training times
across all models compared to nonaugmented training, this
increase was not statistically significant (P=.07). Similarly,
comparisons between RPS and other DA techniques revealed
no statistically significant differences in computational overhead
(Cutout: P=.06; Random Erasing: P=.17; MixUp: P=.49;
CutMix: P=.16). Among all evaluated methods, RPS showed
the highest training time overhead, followed sequentially by
MixUp, CutMix, Random Erasing, and Cutout. Complete results
are presented in Figure 3.
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Figure 3. Average training time overhead of 5 data augmentation techniques across 4 deep learning models.

Performance Comparison of RPS With
State-of-the-Art DA Techniques for Lung Cancer
Detection
To evaluate pulmonary nodule detection in chest CT scan
images, the selected CNN and transformer models (ResNet-34,
MobileNetV3 [small], Vision Transformer [base-16], and Swin
Transformer [tiny]) were trained on the IQ-OTH/NCCD dataset
to classify the scan images as normal or containing benign or
malignant pulmonary nodules. Experimental results
demonstrated that RPS significantly enhanced performance
across all 4 architectures (P=.008). The MobileNetV3 model
achieved particular success when combined with RPS using
512×512 image resolution, reaching a peak classification
accuracy of 94.21%, representing a 1.22% accuracy
improvement and 0.86% AUROC increase over the baseline
model.

At 224×224 image resolution, our comprehensive comparison
of RPS against the 4 established DA methods (Cutout: P=.03;
Random Erasing: P=.008; MixUp: P=.02; CutMix: P=.02)
revealed consistent superiority of the RPS technique (P<.05).
For ResNet-34, RPS exceeded CutMix (the best alternative) by
2.44% and Random Erasing (the least effective) by 5.49% in
accuracy. MobileNetV3 showed a 0.3% improvement over
Cutout (best alternative) and 1.83% over MixUp (least effective)
in accuracy. Transformer architectures demonstrated even more
pronounced benefits: Vision Transformer with RPS
outperformed Random Erasing by 1.52% and MixUp by 16.77%,
while Swin Transformer showed a 1.53% improvement over
MixUp and 4.57% over Cutout in accuracy. Across all
architectures, performance ranking was as follows: (1) RPS
(best technique), (2) Random Erasing, (3) CutMix, (4) MixUp,
and (5) Cutout. The detailed results are presented in Table 1.
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Table . Classification results of the IQ-OTH/NCCDa dataset using preactivated deep learning models with various data augmentation techniques
(224×224 image resolution).

Swin Transformer (tiny)Vision Transformer (base-
16)

MobileNetV3 (small)ResNet-34RankbData augmen-
tation

AUROC, %Accuracy, %AUROC, %Accuracy, %AUROC, %Accuracy, %AUROCc, %Accuracy, %

89.0685.6764.8857.6293.1686.5983.3985.986Base modeld

93.6885.3763.4557.0192.9589.3386.1185.675Cutoutd

91.4286.8975.41e71.6590.1088.7291.2382.622Random

Erasingd

92.5188.4168.5556.4086.5787.8091.0584.454MixUpd

92.0588.4169.6868.9093.0288.4188.3485.673CutMixd,f

94.79e89.94e74.6473.17e93.80e89.63e93.70e88.11e1Random Pix-

el Swapf

aIQ-OTH/NCCD: Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases.
bRank represents the overall rating for each technique, with “1” indicating the best technique across all models.
cAUROC: area under the receiver operating characteristic curve.
dSignificant difference between an augmentation technique and the Random Pixel Swap technique across all models.
eHighest value in the column.
fSignificant difference between training using an augmentation technique and the base model across all models.

At 512×512 image resolution, ResNet-34 exhibited nuanced
performance differences between augmentation techniques:
while CutMix achieved a marginal 0.31% higher accuracy than
RPS, RPS demonstrated significantly superior diagnostic
capability with a 5.31% improvement in AUROC. Furthermore,
RPS outperformed the least effective technique (Random
Erasing) by 2.13% in accuracy and 3.17% in AUROC. For
MobileNetV3, RPS dominated all comparative techniques in

both accuracy and AUROC, except for a 1.23% AUROC
advantage by CutMix. Specifically, RPS exceeded Cutout (the
best alternative technique) by 0.61% and surpassed MixUp (the
least effective) by 4.58% in accuracy. Across all evaluated
methods, the overall performance ranking was as follows: (1)
RPS (best technique), (2) Cutout, (3) CutMix, (4) MixUp, and
(5) Random Erasing. The detailed results are presented in Table
2.

Table . Classification results of the IQ-OTH/NCCDa dataset using preactivated deep learning models with various data augmentation techniques
(512×512 image resolution).

MobileNetV3 (small)ResNet-34RankbData augmentation

AUROC, %Accuracy, %AUROCc, %Accuracy, %

94.8192.9978.5188.726Base modeld

95.4293.6093.2590.242Cutoutd

92.1990.8591.8589.945Random Erasingd

95.1889.6396.13e89.944MixUpd

96.90e92.6889.7192.38e3CutMix

95.6794.21e95.0292.071Random Pixel Swap

aIQ-OTH/NCCD: Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases.
bRank represents the overall rating for each technique, with “1” indicating the best technique across all models.
cAUROC: area under the receiver operating characteristic curve.
dSignificant difference between an augmentation technique and the Random Pixel Swap technique across all models.
eHighest value in the column.

Performance Comparison of RPS With
State-of-the-Art DA Techniques for Lung Cancer

Classification From CT Scan Images Using DL
Architectures
We evaluated the effectiveness of the RPS technique for lung
cancer classification using the chest CT scan images dataset
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across multiple DL architectures. The experimental results
demonstrated that RPS significantly enhanced classification
performance for all architectures (P=.008). RPS combined with
ResNet-34 at 512×512 image resolution achieved optimal
performance, reaching 97.78% accuracy and 99.46% AUROC.

At 224×224 image resolution, RPS consistently outperformed
competing techniques across most models (Cutout: P=.001;
Random Erasing: P=.02; MixUp: P=.047; CutMix: P=.18). For
ResNet-34, RPS exceeded CutMix (the best alternative) by
0.64% and Random Erasing (the least effective) by 5.08% in
accuracy. MobileNetV3 showed even greater improvements

over other methods, with RPS surpassing CutMix by 3.49%
and MixUp by 9.21% in accuracy. For the implementation with
Vision Transformer, RPS surpassed Random Erasing (the best
alternative) by 1.91% and MixUp (the least effective) by 18.85%
in accuracy. While CutMix showed a 2.22% accuracy advantage
over RPS for the Swin Transformer, RPS maintained superior
performance against all other techniques, exceeding Cutout by
7.3% (the least effective). Across all architectures, the overall
performance ranking was as follows: (1) RPS (best technique),
(2) CutMix, (3) Random Erasing, (4) Cutout, and (5) MixUp.
The detailed results are presented in Table 3.

Table . Classification results of the chest CTa scan images dataset using preactivated deep learning models with various data augmentation techniques
(224×224 image resolution).

Swin Transformer (tiny)Vision Transformer (base-
16)

MobileNetV3 (small)ResNet-34RankbData augmen-
tation

AUROC, %Accuracy, %AUROC, %Accuracy, %AUROC, %Accuracy, %AUROCc, %Accuracy, %

96.9284.7695.8482.8697.0987.3099.0093.335Base modeld

96.0584.1394.3580.6397.6285.7198.9493.024Cutoutd,e

97.2888.2596.72f84.7697.4588.8998.5490.483Random

Erasingd

97.8790.7986.9767.8296.8583.4998.5791.436MixUpd

98.74f93.65f92.6076.8297.8089.2198.6994.922CutMix

98.4591.4396.3286.67f98.02f92.70f99.15f95.56f1Random Pix-

el Swape

aCT: computed tomography.
bRank represents the overall rating for each technique, with “1” indicating the best technique across all models.
cAUROC: area under the receiver operating characteristic curve.
dSignificant difference between an augmentation technique and the Random Pixel Swap technique across all models.
eSignificant difference between training using an augmentation technique and the base model across all models.
fHighest value in the column.

At 512×512 image resolution, the RPS technique demonstrated
superior performance compared to all evaluated DA methods
(Cutout: P=.13; Random Erasing: P=.27; MixUp: P=.13;
CutMix: P=.31). For ResNet-34, RPS matched the accuracy of
the top-performing alternative (CutMix) while achieving a
0.21% improvement in AUROC. Furthermore, RPS showed
significant gains over the least effective technique (MixUp),

with a 7.74% accuracy performance advantage. The
MobileNetV3 architecture exhibited even more pronounced
benefits, where RPS outperformed CutMix (the best alternative)
by 2.23% and surpassed MixUp by 4.45% in accuracy. Across
all techniques, the performance ranking was as follows: (1) RPS
(best technique), (2) CutMix, (3) Cutout, (4) Random Erasing,
and (5) MixUp. The detailed results are presented in Table 4.
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Table . Classification results of the chest CTa scan images dataset using preactivated deep learning models with various data augmentation techniques
(512×512 image resolution).

MobileNetV3 (small)ResNet-34RankbData augmentation

AUROC, %Accuracy, %AUROCc, %Accuracy, %

98.2793.0299.2596.835Base model

98.3994.6099.3596.513Cutout

98.82d93.6599.4296.834Random Erasing

98.5192.3898.6492.386MixUp

98.6194.6099.2597.78d2CutMix

98.7596.83d99.46d97.78d1Random Pixel Swap

aCT: computed tomography.
bRank represents the overall rating for each technique, with “1” indicating the best technique across all models.
cAUROC: area under the receiver operating characteristic curve.
dHighest value in the column.

Performance Analysis of Swap Area Factors for Lung
Cancer Diagnosis
The swap area factor serves as a critical hyperparameter in RPS
implementation. We systematically evaluated its influence using
both SVSF and MVSF configurations across the 0.1 to 1.0 range
on the IQ-OTH/NCCD dataset. MVSF provides over 100
possible combinations of lower and upper bounds (eg, 0.1‐0.5
and 0.4‐0.8); however, our experimental configurations
maintained a fixed lower bound of 0.1. Experimental results
revealed distinct optimal configurations for each architecture.
For SVSF implementations, ResNet-34, Vision Transformer,
and Swin Transformer achieved peak performance at 1.0, while

MobileNetV3 performed best at 0.9. For MVSF
implementations, ResNet-34 showed optimal results within
0.1‐0.9, MobileNetV3 performed best at 0.1‐0.7, Vision
Transformer excelled at 0.1‐0.3, and Swin Transformer
achieved peak performance at 0.1‐0.5.

Comparative analysis demonstrated that SVSF generally
outperformed MVSF configurations for a fixed 0.1 lower bound
across most architectures, with the notable exception of
ResNet-34. For this model, MVSF (0.1‐0.9) surpassed SVSF
(1.0) by 0.61% in accuracy and 1.08% in AUROC. The most
effective overall configuration combined MobileNetV3 with
RPS using an SVSF of 0.9, achieving 94.51% accuracy and
95.77% AUROC. The detailed results are presented in Table 5.
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Table . Analysis of the IQ-OTH/NCCDa dataset using different deep learning architectures and Random Pixel Swap data augmentation with single-value
and multivalue swap area factors (224×224 image resolution).

Swin Transformer (tiny)Vision Transformer (base-16)MobileNetV3 (small)ResNet-34Swap factor

AUROC, %Accuracy, %AUROC, %Accuracy, %AUROC, %Accuracy, %AUROCb, %Accuracy, %

Single value

92.0286.2874.97c64.0295.1093.9092.2689.02    0.1

93.5983.2363.2060.9895.0492.9994.6291.16    0.2

91.6389.0267.9564.0295.3892.0793.4890.85    0.3

92.8184.7672.5969.2195.2492.9992.6689.63    0.4

84.1387.8072.4768.6095.0192.6890.9690.55    0.5

89.6384.7672.3669.2195.2492.9994.7690.55    0.6

90.6583.5466.4867.9995.1292.6895.2391.46    0.7

95.95c89.94c69.8367.9995.6093.6092.2289.63    0.8

90.9983.8472.7971.6595.77c94.51c94.4290.85    0.9

94.7989.94c74.6473.17c95.6794.2195.02c92.07c    1.0

Multivalue

94.2985.9869.1466.1694.8393.90c93.8090.55    0.1‐0.2

91.8484.7677.93c72.56c95.1893.2990.5389.33    0.1‐0.3

94.3087.5073.1560.9895.0393.6090.1889.33    0.1‐0.4

94.94c88.11c68.8059.1594.8493.6095.93c91.16    0.1‐0.5

93.4587.2059.8662.2094.6092.3893.2690.55    0.1‐0.6

92.5388.11c70.7361.2895.3393.90c90.9989.94    0.1‐0.7

85.9386.2876.8166.7795.0093.2993.1387.80    0.1‐0.8

92.6986.5964.9868.2995.2993.6095.2992.68c    0.1‐0.9

94.3583.5469.0562.8095.71c93.6092.5389.02    0.1‐1.0

aIQ-OTH/NCCD: Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases.
bAUROC: area under the receiver operating characteristic curve.
cHighest value in the column.

Our evaluation of the chest CT scan images dataset using
different swap area factor configurations revealed
architecture-specific optimal settings. SVSF demonstrated
superior performance at 1.0 for both ResNet-34 and
MobileNetV3, while Vision Transformer achieved peak
accuracy with an SVSF of 0.1. For Swin Transformer, MVSF

configurations between 0.1 and 0.6 yielded optimal results.
Among all tested combinations, ResNet-34 paired with RPS
using an SVSF of 1.0 delivered the highest classification
performance, reaching 97.78% accuracy and 99.46% AUROC.
The detailed results are presented in Table 6.
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Table . Analysis of the chest CTa scan images dataset using different deep learning architectures and Random Pixel Swap data augmentation with
single-value and multivalue swap area factors (224×224 image resolution).

Swin Transformer (tiny)Vision Transformer (base-16)MobileNetV3 (small)ResNet-34Swap factor

AUROC, %Accuracy, %AUROC, %Accuracy, %AUROC, %Accuracy, %AUROCb, %Accuracy, %

Single value

98.7294.29c96.3286.67c98.5594.6099.1396.19    0.1

98.78c92.0694.3781.2798.6094.6099.2797.46    0.2

98.6593.6593.9878.7398.6195.2499.2296.19    0.3

98.4692.0696.1082.5498.6595.2499.2097.46    0.4

98.3891.4396.3185.0898.7494.9299.4197.14    0.5

97.8591.7596.86c85.4098.79c95.5699.3097.14    0.6

98.6593.6595.4883.8198.6995.5699.1997.14    0.7

97.9591.4395.4881.5998.7595.8799.3897.14    0.8

97.8088.8994.2581.2798.6295.8799.3596.83    0.9

98.4591.4391.6275.5698.7596.83c99.46c97.78c    1.0

Multivalue

98.5193.6592.8575.5698.5994.9299.2797.14    0.1‐0.2

98.2091.4395.8684.1398.6293.9799.3096.51    0.1‐0.3

98.7393.6592.7776.8398.5594.6099.0096.51    0.1‐0.4

98.6492.3894.6980.3298.6394.2999.2897.46    0.1‐0.5

98.90c96.19c95.6382.5498.5995.2499.3796.51    0.1‐0.6

98.90c94.2996.84c86.03c98.6594.9299.3997.78c    0.1‐0.7

98.8393.0294.8881.9098.6293.9799.2597.46    0.1‐0.8

98.8693.6594.9981.9098.7094.9299.3297.48    0.1‐0.9

98.7293.3395.2182.2298.75c95.87c99.41c97.46    0.1‐1.0

aCT: computed tomography.
bAUROC: area under the receiver operating characteristic curve.
cHighest value in the column.

RPS With Lung Region of Interest Segmentation
Prior studies have demonstrated that segmenting lung regions
of interest (ROIs) can significantly improve the diagnostic
performance of DL models [33,56]. To evaluate the
effectiveness of the RPS technique when applied to segmented
images, we conducted experiments using the selected models
(ResNet-34, MobileNetV3 [small], Vision Transformer
[base-16], and Swin Transformer [tiny]). Our investigation used
both the IQ-OTH/NCCD dataset and chest CT scan images
dataset at 224×224 resolution.

The segmentation process involved multiple steps. We first
applied a threshold algorithm to generate a lung mask, followed
by dilation and hole-filling operations to ensure comprehensive
coverage of pulmonary structures. The final lung ROI was
extracted by cropping surrounding pixels along the mask
boundaries. The complete procedure is illustrated in Figure 4.
For comparative analysis, we evaluated model performance
under three conditions: (1) training without augmentation, (2)
training with RPS, and (3) training with established
augmentation techniques (Cutout, Random Erasing, MixUp,
and CutMix). This comprehensive evaluation framework
allowed us to assess the relative benefits of RPS when applied
to segmented lung images.
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Figure 4. Lung segmentation procedure.

Our experiments with the IQ-OTH/NCCD dataset demonstrated
that the RPS technique significantly improved performance
across all evaluated models (P=.04) and most techniques
(Cutout: P=.049; Random Erasing: P=.004; MixUp: P=.04;
CutMix: P=.06). The most notable results were achieved by
ResNet-34 with RPS, reaching 97.56% accuracy and 98.61%
AUROC. While RPS outperformed all competing techniques
for MobileNetV3 and Swin Transformer, CutMix showed
superior performance for Vision Transformer, exceeding RPS
by 1.52% in accuracy and 0.67% in AUROC. The overall
performance ranking across techniques was as follows: (1) RPS
(best technique), (2) CutMix, (3) Random Erasing, (4) Cutout,
and (5) MixUp.

For the chest CT scan images dataset, the RPS technique
consistently improved performance across models (P=.06) and
most techniques (Cutout: P=.01; Random Erasing: P=.009;
MixUp: P=.01; CutMix: P=.38). The highest performance was
again achieved by ResNet-34 with RPS (95.51% accuracy and
98.86% AUROC). While RPS showed superior results for
MobileNetV3 and Swin Transformer, CutMix performed better
for Vision Transformer (3.21% higher accuracy and 0.6% higher
AUROC). The comprehensive performance ranking was similar
to that for the IQ-OTH/NCCD dataset and was as follows: (1)
RPS, (2) CutMix, (3) Cutout, (4) Random Erasing, and (5)
MixUp. The detailed results are presented in Table 7.
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Table . Classification results of the IQ-OTH/NCCDa and chest CTb scan images datasets using preactivated deep learning models with various data
augmentation techniques and segmentation of the lung region of interest (224×224 image resolution).

Swin Transformer (tiny)Vision Transformer (base-
16)

MobileNetV3 (small)ResNet-34RankcData augmen-
tation

AUROC, %Accuracy, %AUROC, %Accuracy, %AUROC, %Accuracy, %AUROCd, %Accuracy, %

IQ-OTH/NCCD dataset

98.2193.6096.5189.9497.2895.4399.1396.655    Base mod-

ele

97.8093.9096.2092.3896.3395.4398.8696.044    Cutoute

98.0094.82f96.2791.4697.2996.65f97.4595.733    Random

Erasinge

97.5293.2996.2791.7797.1191.7799.19f95.876    MixUpe,g

97.5293.2997.64f93.90f96.3994.5198.8696.652    CutMix

98.12f94.82f96.9792.3898.00f96.65f98.6197.56f1    Random

Pixel Swapg

Chest CT scan images dataset

98.1190.7195.4882.6996.83f87.8299.0395.192    Base mod-
el

97.3288.1493.8680.7797.6688.1498.8594.554    Cutoute

97.1686.8689.7279.8196.5286.5498.7594.555    Random

Erasinge,g

97.1085.9093.2978.8595.3382.0598.7794.556    MixUpe,g

96.7387.8296.43f86.86f96.8986.5499.05f95.193    CutMix

98.36f91.35f95.8383.6597.5190.71f98.8695.51f1    Random
Pixel Swap

aIQ-OTH/NCCD: Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases.
bCT: computed tomography.
cRank represents the overall rating for each technique, with “1” indicating the best technique across all models.
dAUROC: area under the receiver operating characteristic curve.
eSignificant difference between an augmentation technique and the Random Pixel Swap technique across all models.
fHighest value in the column.
gSignificant difference between training using an augmentation technique and the base model across all models.

Performance Analysis of the Combination of RPS With
Traditional DA Techniques for Lung Cancer Diagnosis
Traditionally, DA techniques, including image flipping and
rotation, are widely employed in medical image analysis with
DL [44]. To evaluate the potential benefits of combining these
methods with the RPS technique, we conducted a systematic
comparison. First, we trained selected models (ResNet-34,
MobileNetV3 [small], Vision Transformer [base-16], and Swin
Transformer [tiny]) using individual traditional techniques:
horizontal flipping, vertical flipping, and random rotation (±90°).
Subsequently, we trained the models using combinations of
each traditional technique with RPS.

Our experiments revealed that the combination of RPS with
traditional techniques generally enhanced model performance
compared to using traditional methods alone. However, when
a traditional technique failed to improve baseline performance,
its combination with RPS did not surpass RPS alone. For the

IQ-OTH/NCCD dataset, using RPS alone surpassed the
individual traditional techniques (horizontal flipping: P=.63;
vertical flipping: P=.22; rotation: P=.93). RPS with rotation
achieved peak performance for ResNet-34 and Vision
Transformer (base-16), improving upon rotation alone by 2.14%
and 2.75% in accuracy, respectively. RPS with vertical flipping
performed the best for MobileNetV3 (small), exceeding vertical
flipping alone by 0.61% in accuracy. However, RPS alone
showed superior results for Swin Transformer (tiny).

Similarly, for the chest CT scan images dataset, using RPS alone
surpassed the individual traditional techniques (horizontal
flipping: P=.01; vertical flipping: P=.03; rotation: P=.04). RPS
with rotation demonstrated the strongest overall performance,
improving upon rotation by 0.95% in accuracy. RPS with
horizontal flipping achieved optimal results for Vision
Transformer (base-16), surpassing horizontal flipping alone by
5.71% in accuracy. However, RPS alone outperformed all
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combinations for MobileNetV3 (small) and Swin Transformer (tiny). The detailed results are presented in Table 8.
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Table . Classification results of the IQ-OTH/NCCDa and chest CTb scan images datasets using preactivated deep learning models when 3 traditional
data augmentation techniques are combined with the Random Pixel Swap data augmentation technique (224×224 image resolution).

Swin Transformer (tiny)Vision Transformer (base-
16)

MobileNetV3 (small)ResNet-34RankcData augmen-
tation

AUROC, %Accuracy, %AUROC, %Accuracy, %AUROC, %Accuracy, %AUROCd, %Accuracy, %

IQ-OTH/NCCD dataset

89.0685.6764.8857.6293.1686.5983.3985.988    Base mod-

ele

91.8687.5086.2073.7893.3688.1186.7082.015    Horizontal
flip

92.1288.7289.31f78.3691.2188.4190.4387.202    Horizontal
flip with
Random Pix-
el Swap

92.4189.0276.5462.5093.89f90.5589.8287.507    Vertical

flipg

93.1088.7273.9468.2993.2891.16f89.5488.116    Vertical
flip with
Random Pix-

el Swape,g

92.6788.4180.7075.9191.5389.6390.3087.804    Rotationg

93.1089.0287.1678.66f91.7589.0290.2889.94f1    Rotation
with Ran-
dom Pixel

Swapg

94.79f89.94f74.6473.1793.8089.6393.70f88.113    Random

Pixel Swapg

Chest CT scan images dataset

96.9284.7695.8482.8697.0987.3099.0093.338    Base mod-

ele

98.3391.7595.8382.8697.3787.6298.5691.437    Horizontal

flipe

98.0992.7097.63f88.57f97.4889.2198.9693.974    Horizontal
flip with
Random Pix-

el Swapg

98.5892.0696.1084.7296.8383.8198.8693.336    Vertical

flipe,g

98.0491.4396.2384.7697.1386.6798.8193.975    Vertical
flip with
Random Pix-

el Swape,g

99.0395.8794.9584.5797.5890.1699.2295.243    Rota-

tione,g

98.9996.1995.1085.2397.7391.7599.24f96.19f1    Rotation
with Ran-
dom Pixel

Swapg

98.90f96.19f96.3286.6798.02f92.70f99.1595.562    Random

Pixel Swapg

aIQ-OTH/NCCD: Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases.
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bCT: computed tomography.
cRank represents the overall rating for each technique, with “1” indicating the best technique across all models.
dAUROC: area under the receiver operating characteristic curve.
eSignificant difference between an augmentation technique and the Random Pixel Swap technique across all models.
fHighest value in the column.
gSignificant difference between training using an augmentation technique and the base model across all models.

Validation Results of the Generalization Capabilities
of the RPS Technique
Enhancing the generalization ability of DL models to unseen
data represents a critical objective of DA [46]. To evaluate the
RPS technique’s capacity to improve model generalization, we
conducted experiments using the selected models (ResNet-18,
MobileNetV3 [small], Vision Transformer [base-16], and Swin
Transformer [tiny]). Models were trained on the IQ-OTH/NCCD
dataset and validated on the chest CT scan images dataset
(distinct collections acquired using different imaging equipment,
protocols, time periods, and geographical locations). All models
performed binary classification (cancerous vs normal) of CT
images.

Our comparative analysis included the base models, RPS
implementation, and selected standard DA techniques. The
results demonstrated RPS’s superior performance across all
architectures (Cutout: P=.05; Random Erasing: P=.054; MixUp:
P=.04; CutMix: P=.03), with an exception for the Vision
Transformer implementation. Random Erasing showed a
marginal 0.8% accuracy advantage over RPS. However, RPS
maintained a significant 9.28% improvement in AUROC over
Random Erasing. Furthermore, the cumulative ranking was as
follows: (1) RPS (best technique), (2) Cutout, (3) CutMix, (4)
Random Erasing, and (5) MixUp. The detailed results are
presented in Table 9.

Table . Validation results of the generalization capabilities of different data augmentation techniques for lung cancer diagnosis using deep learning
(224×224 image resolution).

Swin Transformer (tiny)Vision Transformer (base-
16)

MobileNetV3 (small)ResNet-34RankaData augmen-
tation

AUROC, %Accuracy, %AUROC, %Accuracy, %AUROC, %Accuracy, %AUROCb, %Accuracy, %

95.22d92.2263.6079.2990.0391.2484.3382.533Base modelc

85.7792.2263.4981.8090.7092.0997.2982.652Cutoutc

85.9691.9658.9282.65d89.6691.4578.6688.715Random

Erasinge

79.7391.5852.2480.7490.3691.5895.1783.806MixUpc

86.0992.0966.9081.1280.2690.6994.3684.574CutMixc

95.0492.35d68.20d81.8593.30d92.35d97.48d90.69d1Random Pix-

el Swape

aRank represents the overall rating for each technique, with “1” indicating the best technique across all models.
bAUROC: area under the receiver operating characteristic curve.
cSignificant difference between an augmentation technique and the Random Pixel Swap technique across all models.
dHighest value in the column.
eSignificant difference between training using an augmentation technique and the base model across all models.

Comparison With Prior Work
Our experimental results demonstrated improvements over the
results of previous studies using both the IQ-OTH/NCCD and
chest CT scan images datasets. For the IQ-OTH/NCCD dataset,
our approach achieved a 7.67% performance improvement over
a machine learning technique in the study by Kareem et al [57],
a 4.76% improvement over an ensemble of VGG-16, ResNet-50,

InceptionV3, and EfficientNetB7 models in the study by
Solyman et al [58], and a 2.13% enhancement over an ensemble
of 3 custom CNNs in the study by Abe et al [59]. Similarly, for
the chest CT scan images dataset, our method showed a 5.78%
improvement over a 3-layer custom CNN in the study by
Mamun et al [60] and a 2.22% improvement over a 5-layer CNN
with a custom Mavage Pooling layer in the study by Abe et al
[47]. The comparative results are detailed in Table 10.
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Table . Comparison of our study results with the results of previous studies on the analysis of the IQ-OTH/NCCDa and chest CTb scan images datasets.

Number of classesAccuracy, %Dataset and study

IQ-OTH/NCCD

389.89    Kareem et al [57]

392.80    Solyman et al [58]

395.43    Abe et al [59]

397.56    Our study

Chest CT scan images

492.00    Mamun et al [60]

495.56    Abe et al [47]

497.78    Our study

aIQ-OTH/NCCD: Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases.
bCT: computed tomography.

Discussion

Principal Findings
The experimental results of the study demonstrated that the RPS
DA technique significantly enhanced the diagnostic performance
of both CNN and transformer architectures for lung cancer
diagnosis from CT scan images. Our comprehensive evaluation
demonstrated that RPS consistently outperformed 4 established
augmentation methods (CutMix, Random Erasing, MixUp, and
Cutout) across multiple performance metrics and diverse
experimental conditions. The superior efficacy of RPS stems
from its unique capacity to preserve critical anatomical content
while generating clinically meaningful variations through
controlled intraimage pixel swapping. This characteristic makes
RPS particularly valuable for medical imaging applications
where maintaining content integrity is essential for an accurate
diagnosis.

For CNN architectures, specifically ResNet-34, RPS yielded
remarkable performance improvements. ResNet-34 achieved
peak accuracies of 97.56% for the IQ-OTH/NCCD dataset and
97.78% for the chest CT scan images dataset, with
corresponding AUROC scores of 98.61% and 99.46%,
respectively, at 512×512 image resolution. The technique’s
effectiveness with MobileNetV3 (96.65% accuracy and 98.0%
AUROC for the IQ-OTH/NCCD dataset; 96.83% accuracy and
98.75% AUROC for the chest CT scan images dataset) is
particularly notable given this model’s lightweight architecture,
suggesting RPS’s potential for deployment in
resource-constrained clinical settings where efficient models
are often preferred [56]. The study results represent a substantial
advancement over conventional augmentation approaches, as
RPS effectively addresses the inherent limitation of CNNs in
capturing global relationships by creating localized variations
that enhance feature learning while preserving diagnostically
relevant image features.

The transformer-based architectures (Vision Transformer and
Swin Transformer) showed particularly notable improvements
when augmented with RPS. While transformer models
conventionally demand large-scale training datasets to achieve

peak performance, RPS effectively compensated for data
limitations by generating variations that preserved the overall
image content for proper attention mechanism functioning. For
the Vision Transformer, RPS augmentation significantly
enhanced performance, reaching 92.38% accuracy and 96.93%
AUROC on the IQ-OTH/NCCD dataset and 86.67% accuracy
and 96.32% AUROC on the chest CT scan images dataset. The
Swin Transformer demonstrated robust performance gains,
achieving 94.82% accuracy and 98.12% AUROC on the
IQ-OTH/NCCD dataset and 96.19% accuracy and 98.90%
AUROC on the chest CT scan images dataset when enhanced
with RPS. The study results showed that RPS enables
transformer models to develop more robust and clinically
relevant feature representations, even with limited training data.

Our comparative analysis revealed RPS’s consistent dominance
across evaluation metrics and experimental conditions. While
CutMix showed marginal advantages in specific scenarios
(notably a 0.31% accuracy improvement with ResNet-34 at
512×512 image resolution), RPS maintained substantially better
AUROC scores (5.31% higher in the same comparison),
indicating more reliable diagnostic discrimination capability.
This performance pattern held true across both the
IQ-OTH/NCCD and chest CT scan images datasets, with RPS
consistently ranking the highest in our comprehensive evaluation
framework. Importantly, while conventional augmentation
techniques sometimes degraded model performance in certain
scenarios [38,40], RPS demonstrated universal performance
enhancement across all tested conditions. Three fundamental
characteristics explain RPS’s exceptional effectiveness. The
first characteristic is anatomical content preservation. Unlike
methods that erase or mix image regions, RPS maintains all
original diagnostic information while creating realistic variations
through a controlled, systematic, random patch-based pixel
swap within carefully defined ROIs. This approach preserves
the clinical relevance of training samples while providing
valuable data diversity. The second characteristic is architecture
agnostic adaptability. The technique’s parameter-free
implementation and tunable swap area factor enable optimal
performance across diverse model architectures without
requiring architecture-specific adjustments. This flexibility
makes RPS particularly valuable for medical imaging research,
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where multiple architectures may be explored. The third
characteristic is clinical pathological relevance. By restricting
pixel swaps to anatomically plausible regions within lung tissue
(especially when combined with ROI segmentation), RPS
enhances the learning of pathological features that may appear
anywhere in the pulmonary anatomy, a crucial capability given
the unpredictable spatial distribution of malignant nodules in
many cancer cases [61].

Validation experiments using independently acquired datasets
with different scanning protocols and equipment configurations
demonstrated RPS’s superior generalization capabilities. The
technique achieved these results while adding minimal
computational overhead (statistically insignificant increases in
training time, P>.05), making it practical for real-world clinical
implementation. Furthermore, RPS showed excellent
compatibility with conventional augmentation methods,
providing additional performance gains when combined with
rotation and flipping operations, which suggests easy integration
into existing medical image processing pipelines.

These findings offer significant implications for the development
of computer-aided diagnosis systems. RPS directly addresses
two fundamental challenges in medical AI: (1) the scarcity of
annotated medical imaging data and (2) the limited
generalizability of many models across different clinical settings
[23]. By consistently outperforming current state-of-the-art

techniques while maintaining computational efficiency, RPS
emerges as a versatile solution suitable for both research
investigations and clinical deployment. Additionally, the
technique’s effectiveness suggests promising applications in
educational settings for training radiologists, where realistic
image variations could enhance learning without requiring
additional patient scans.

Conclusions
The findings of this study demonstrate that RPS is a robust and
versatile DA technique that significantly enhances the
performance of both CNN and transformer architectures for
lung cancer diagnosis from CT scan images. By preserving
anatomical content while introducing meaningful variability,
RPS outperforms existing augmentation methods across multiple
metrics and datasets, achieving improved accuracy and AUROC
scores. Its computational efficiency, adaptability to diverse
architectures, and ability to improve generalization make it
particularly valuable for medical imaging applications where
data scarcity and model reliability are critical challenges. RPS
not only advances the technical frontier of DA but also holds
immediate promise for improving computer-aided diagnosis
systems in clinical practice. Future work will explore its
extension to other medical imaging modalities (magnetic
resonance, ultrasound, and x-ray imaging) and extension to 3D
applications.
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Abstract

Artificial intelligence (AI) is poised to become an integral component in health care research and delivery, promising to address
complex challenges with unprecedented efficiency and precision. However, many clinicians lack training and experience with
AI, and for those who wish to incorporate AI into research and practice, the path forward remains unclear. Technical barriers,
institutional constraints, and lack of familiarity with computer and data science frequently stall progress. In this tutorial, we
present a transparent account of our experiences as a newly established interdisciplinary team of clinical oncology researchers
and data scientists working to develop a natural language processing model to identify symptomatic adverse events during pediatric
cancer therapy. We outline the key steps for clinicians to consider as they explore the utility of AI in their inquiry and practice,
including building a digital laboratory, curating a large clinical dataset, and developing early-stage AI models. We emphasize
the invaluable role of institutional support, including financial and logistical resources, and dedicated and innovative computer
and data scientists as equal partners in the research team. Our account highlights both facilitators and barriers encountered spanning
financial support, learning curves inherent with interdisciplinary collaboration, and constraints of time and personnel. Through
this narrative tutorial, we intend to demystify the process of AI research and equip clinicians with actionable steps to initiate new
ventures in oncology research. As AI continues to reshape the research and practice landscapes, sharing insights from past
successes and challenges will be essential to informing a clear path forward.

(JMIR Bioinform Biotech 2025;6:e70751)   doi:10.2196/70751
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Introduction

The development of sophisticated machine learning, deep
learning, natural language processing (NLP), and large language
models has showcased artificial intelligence’s (AI’s) potential
to accelerate advances in health care research and clinical
practice [1-3]. However, growing clinician interest in employing
AI as a research tool is often met with challenges in
understanding its nuances and applications. The proper and safe
use of AI requires in-depth knowledge of computer science, big
data analytics, and specialized data science and biostatistical

approaches – skills that clinicians typically do not possess.
Conversely, computer and data scientists with expertise in AI
who wish to contribute to clinical advances must develop
familiarity with a clinical specialty and acquire a deep
understanding of the intricacies of care delivery, research, and
biomedical needs. As a result, the effective use of AI in health
care environments necessitates collaborative integration between
computer science and health care disciplines, bringing together
expertise from these disparate fields [4-6].

Although clinicians are increasingly eager to incorporate AI
into their research efforts, many face uncertainty on how to
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begin or establish effective collaborations with computer and
data scientists. Using the initial phase of our pilot AI work as
an exemplar, we outline strategies for leveraging AI and NLP
in pediatric cancer inquiry, focusing on the process of building
a team blending AI and clinical oncology research. Our
transparent account details the formation of an interdisciplinary
team bridging clinical oncology and data science, highlights
challenges encountered, and shares lessons learned. The purpose
of this descriptive tutorial is to make AI approachable for
clinical researchers who are motivated to address complex
clinical questions but may lack technical expertise. Key
challenges for teams to consider are explicitly identified within
this study. We aim to equip clinician readers with an
introductory framework for initiating AI-driven research
projects, while emphasizing the logistic, financial, and personnel
resources essential for success.

The Clinical Problem and Need for an
AI-Based Solution

Cancer-directed therapy is inherently toxic, causing a host of
adverse events that are burdensome, costly, dangerous, and
sometimes life-threatening [7-9]. When toxicities become
severe, future therapy doses are reduced, delayed, or omitted,
which potentially compromises long-term survival [10]. Because
of these deleterious effects, research focused on early detection
has been prioritized, so that prompt and effective interventions
can be designed to mitigate toxicity and improve clinical
outcomes [11-13].

Therapy-related toxicities are broadly categorized into
nonsymptomatic and symptomatic adverse events.
Nonsymptomatic adverse events are objective and easy to
identify, quantify, and analyze because they are readily
detectable through structured data like laboratory values or
diagnostic imaging. These clean and structured data allow
researchers to stratify patient cohorts, correlate symptoms with
biomarkers and treatment factors, and derive actionable insights.

In contrast, symptomatic adverse events are subjective and must
be elicited, interpreted, or individually assessed by clinicians
[14,15]. Furthermore, these events are typically captured in
unstructured, free-text clinical notes which constrains systematic
identification and analysis, making data extraction
labor-intensive, time-consuming, and prone to inconsistencies
[7-9,16,17]. Not surprisingly, the data are often unreliable
[18,19], with significant negative repercussions on subsequent
analyses. The inability to reliably study symptomatic adverse
events is particularly concerning because they are among the
most common therapy-related toxicities and frequently lead to
treatment interruptions.

AI is a promising method for the reliable extraction and analysis
of symptomatic adverse events from electronic medical records
(EMRs). In fact, NLP technology has already had preliminary
success in identifying their presence within unstructured,
free-text clinical notes [20-24].

In pediatric oncology, 5 symptomatic adverse events associated
with chemotherapy stand out due to their prevalence and serious
sequelae—nausea, vomiting, constipation, neuropathy, and

mucositis. Herein, we describe our interdisciplinary approach
for assessing the ability of an NLP algorithm to identify these
adverse events in pediatric oncology patient records. The initial
phase of this work, serving as the exemplar for this tutorial, is
to evaluate the degree to which existing NLP models can
identify symptomatic adverse events in pediatric cancer therapy.

Infrastructure, Personnel, and Funding

AI-based health care research necessitates substantial data and
computer science support. Optimally, this support is
institutional, with health care enterprises investing in employing,
contracting, or collaborating with skilled data scientists
dedicated to advancing clinical inquiry. Collaboration between
these technology experts and clinician researchers, along with
departmental backing to support clinical inquiry and innovation,
as well as the necessary data infrastructure, is essential to
cultivating advancements in this emerging domain [25].

Our institution houses a Data Science and Biostatistics Unit
(DSBU), a centralized service unit that comprises a robust mix
of 30 PhD- and master-level biostatisticians and data scientists
who work with principal investigators to address research
questions via data consultation, study design, methodology
expertise, data preparation, data analyses, and manuscripts
development. The DSBU is housed within the Department of
Biomedical and Health Informatics, which provides an academic
home and service base for all research informatics activities at
the institution, including the development and deployment of
intellectual, technical, and educational resources in biomedical
computing.

Through an enterprise-level strategic initiative, our institute
developed a next-generation suite of tools and services, Arcus,
that provides a digital laboratory environment for investigators
and project staff to securely store, access, and process electronic
patient data. The Arcus program is staffed by archivists,
librarians, information analysts, cloud computing engineers,
programmers, statisticians, and privacy experts. Data are
managed through the oversight of the Institutional Review Board
(IRB), and access is governed by multiple institutional policies.
Arcus security configuration and controls are based on the
HIPAA (Health Insurance Portability and Accountability Act)
Security Rule.

For this work, project team members from DSBU and Arcus
included 3 PhD-prepared data scientists and a data integration
manager. Initial services to set up the project were provided at
no cost through the internal consultation mechanisms. As the
project developed and expanded, pilot funding was secured
through internal grant mechanisms and preliminary data were
used to secure external grant funding. A data science supervisor
available through the center provided guidance in approaching
an AI-based research project.

The project team’s clinical experts were 2 oncology clinicians
and researchers who served as coprincipal investigators—a
PhD-prepared scientist and nurse practitioner under the Center
for Pediatric Nursing Research and Evidence-Based Practice
and Cancer Center and an attending pediatric oncologist in the
Division of Pediatric Oncology and School of Medicine.
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Building the Digital Laboratory

The clinician researchers consulted with the data science team
extensively to determine necessary data elements and ensure
feasibility. An IRB application was submitted, the research was
determined to meet exemption criteria, and a HIPAA waiver
was authorized (IRB 24‐021922).

Activities relating to building the digital laboratory, including
data flow and processing, are outlined in Figure 1. Inclusion
criteria were set to any patient aged younger than 25 years who
received treatment for cancer at our institution within the
previous 10 years. We used International Classification of
Diseases, Ninth Revision (ICD-9) or International Classification

of Diseases, Tenth Revision (ICD-10) diagnosis codes, Current
Procedural Terminology codes for cancer-directed therapies in
conjunction with institutional cancer registry data to identify
those who received cancer treatment (“Clinical Encounter” in
Figure 1). Eligible patients were assigned a unique identifier
and added to the digital laboratory. Importantly, each unique
identifier retained a link to the patient’s electronic health record
(EHR) medical record number to ensure reliable linking of
patients with relevant clinical data. Necessary EHR data
elements (eg, chemotherapy administration records, clinical
notes, and laboratory values) were identified via joint clinical
and data science team meetings and were then imported from
the data warehouse into the digital environment (“Data
Warehouse” in Figure 1).

Figure 1. Research project progression and data flow from clinical encounters to the data warehouse, and manipulation within the digital laboratory
environment. NLP: natural language processing.

Although careful planning to meet aims is necessary for all
research projects, big data and AI-based research involves the
additional step of evaluating the accessibility and reliability of
data. A key challenge in building a digital lab is the extensive
refinement of data that is required because digital storage of
medical data differs from digital data display (the way data
appears to the clinician in the EHR). Within the data warehouse,
clinical notes are sorted and stored based on their version status
as templated, signed, addended, or modified – with each note
potentially possessing multiple versions. But in the clinical
setting, the only note displayed for staff is the most recent
version. Therefore, to ensure data matched the clinical
documentation, the data science team wrote complex code that
selected the most recent version, irrespective of its assigned
status. This was essential because there are millions of source
notes for this work and importing multiple versions of each is
not feasible due to time, data storage, and computational
processing limitations.

Chemotherapy agents were identified using medication
classification codes created for the purpose of this work and
then integrated with patient medication administration records
to identify the specific administration time and dose. This vital
step underscores the need for a skilled data scientist or analyst
to be an integral member of the research team. Laboratory

values, easily extracted from the source EHR data warehouse,
also were imported to assist clinical researchers with
interpretation of data, as needed.

After 14 months of collaborative effort, all data were imported
to the laboratory (“Digital laboratory environment” in Figure
1) which included data on 18,408 patients, encompassing 4.8
million clinical notes and over 450 million medication dose
administrations. From this point forward, all research activities
were performed in the digital laboratory environment. It should
be noted that due to the massive size of EHR data files and the
sheer number of individual variables, discrete data elements are
imported to the digital laboratory in the form of tables in a
relational database. For example, the medication administration
table comprised dozens of datapoints for each of the hundreds
of millions of doses administered within our patient cohort.
Similarly, the demographic information table contained dozens
of variables and associated metadata for each patient. The
clinical notes table not only included the full note text, but also
other metadata that provided information about the notes
themselves (eg, timestamps, subtype, and author type).

Identifying the relevant and necessary data elements from these
tables and joining them in relational databases required the
expertise of a PhD-level data scientist with fluency in
programming and querying in SQL and R languages. The
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clinician scientists provided direction for selecting elements but
did not have the skill to perform the tasks. Once relational tables
and databases were created, the team could jointly verify data
integrity through face validity of items (eg, chemotherapy agents
matched oncologic diagnoses for patients). The team also
reviewed randomly selected medical records of patients in the
database to ensure correct elements and values were identified
and joined appropriately in the newly created data tables.

During the process of building the digital laboratory, unexpected
challenges arose from the complexity of the structures of EHR
data and the differences between digital data storage and display
that complicated data pulling and importing approaches. The
complexity of identifying and pulling these data was also
underestimated by the data science team, and the process took
much longer than expected, by a scale of about a year. Clinician
researchers taking initial steps to AI-based methods should
account for time required to learn new skills and take additional
time to clean and validate data. However, the accessibility to
data scientist and technology expert knowledge, skills, and time
coupled with the infrastructure provided by institutional
investments and external grant funding made the project both
feasible and possible.

Identifying Notes of Interest

Training and evaluation of the NLP model is an iterative process
requiring labeled data. For this project, the labeled data are
annotations of text, wherein a clinician reads through clinical
notes and tags sections that indicate the absence, presence, and
severity of the adverse event of interest. A typical allocation of

80% of annotated notes for model training and 20% for
validation was used. The necessary number of labeled notes
varies considerably depending on the complexity of the task
(ie, difficulty of being able to identify the adverse event of
interest) and the selected NLP methodology. For these reasons,
it is not possible to a priori estimate the minimum number of
notes required to adequately train and validate the model. Thus,
we used an incremental annotation process starting with a
minimum sample size for a limited population similar to
previous work [26]. For clinician researchers accustomed to a
priori–determined sample sizes, this was difficult to
conceptualize and resulted in downstream challenges in time
management and resource allocation for the project. Adopting
a qualitative research mindset – where recruitment is ongoing
until data saturation is achieved – is helpful when
conceptualizing sample size for a project like this, despite being
a technique not used frequently in quantitative methodologies.

The process of identifying notes for annotation required several
months and the expertise of a PhD-prepared data scientist skilled
in coding and data analysis. Our goal was to identify notes with
a high likelihood of containing documentation related to the
adverse events of interest to facilitate faster model training. As
such, clinical researchers identified key scenarios and exposures
associated with nausea, vomiting, constipation, neuropathy, and
mucositis. This process involved specifying chemotherapy
agents, dosages, and the typical time frames within which these
toxicities manifest following administration. The schema used
for identifying notes meeting these criteria is outlined in Figure
2.

Figure 2. Schema for identifying clinical notes to annotate for natural language processing training. BSA: body surface area; ICD-10: International
Classification of Diseases, Tenth Revision.
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To identify clinical notes most likely to document constipation
or neuropathy, we identified instances of vincristine
administration. For nausea and vomiting, highly emetogenic
chemotherapy agents were identified [27]. Given that
emetogenicity depends on dosage, body surface area was
calculated using the most recent height and weight
measurements, and doses below the emetogenic threshold were
excluded. Patients undergoing conditioning chemotherapy for
stem cell transplantation, which is universally highly
emetogenic, were included based on an institutional transplant
registry. To identify documentation of mucositis, we focused
on intravenous methotrexate administrations as well as stem
cell transplantation.

Chemotherapy doses were identified from the medication table,
and a frequency table of administration events, including action
and date and time, was reviewed to ensure proper documentation
(eg, marked as “given” in the medical records). Determination
of how administered medications are recorded in the data
warehouse required consultation with an informaticist, since
multiple actions (eg “missed,” “late,” “withheld,”
“administered,” and “given”) are assigned to medications in the
dataset with ambiguous meanings. Cross-referencing with data
visible in the EHR was required to ensure that the devised
algorithm and decisions were made. As before, the clinical
researchers learned that data stored in the data warehouse is far
more complex than that which is displayed in the EHR.
Identifying administered medications within the medication
administration record in the “visible” EHR, for example, is far
more straightforward, but incredibly labor-intensive.

Patient identifiers were cross-referenced with demographic and
diagnosis tables, followed by the generation of a frequency table
of oncologic diagnoses and associated ICD-9 and ICD-10 codes
for each target symptom. Clinical researchers reviewed these
tables for errors or incongruences to establish face validity,
ensuring that chemotherapy agents matched the diagnoses. After
validating these data, we cross-referenced the clinical notes
table using patient identifiers to extract notes written within 14
days of chemotherapy administration for neuropathy,
constipation, and mucositis; and 7 days for nausea or vomiting,
in accordance with expected clinical timelines.

Initial review suggested that certain note types—such as history
and physicals, progress notes, nursing notes, and discharge
summaries—were most likely to contain relevant data. However,
inconsistencies in data labeling posed challenges; for instance,
“progress notes” were used for documentation by multiple
specialties, adding noise to the dataset. After careful review,
notes authored by clinical nutritionists, pharmacists, social
workers, case managers, speech and language pathologists,
occupational therapists, and physical therapists were excluded.
Only the most recent version of each note (signed, addended,
or modified) as determined by date of note initiation and note
status was retained.

Key challenges to identifying relevant note types, versions, and
authors arose from the time-intensive nature of extensive data
extraction and manual review required. Clinical staff
encountered challenges in understanding how medical record
data were stored within the data warehouse, particularly

regarding labeling of note versions and determining when
patients received medications. Overcoming this challenge
highlights the importance of properly understanding the
metadata that accompanies variables of interest, and the parallel
importance of including all metadata in the digital laboratory.
As before, the team learned that the vocabulary typically used
in the clinical environment does not match that used in
informatics. For example, in clinical practice, “administered”
or “given” are used synonymously to indicate that a patient has
received a medication. However, these had different meanings
in the data warehouse, so understanding how data are labeled
and not making assumptions is vital. Validating the data by
reviewing constructed tables and comparing them to patient
medical records is necessary to ensure the integrity of the data.
These are both nuanced and time-consuming steps that should
be considered as expected components of all big data or
AI-based research projects.

Real-time collaboration with a dedicated data scientist enabled
efficient extraction and validation of large datasets. The
integration of this expertise allowed for immediate adjustments
based on clinical input, ensuring that the final dataset was both
comprehensive and focused and underscored the importance of
interdisciplinary collaboration and iterative problem-solving.

Annotation and Validation

An annotation guide was created by the clinician researchers to
standardize the annotation process and ensure consistency in
identifying and grading adverse events. The guide aimed to
provide clear instructions for clinical abstractors and facilitate
uniform application of the National Cancer Institute’s Common
Terminology Criteria for Adverse Events (CTCAE) [28] to
patient records.

The guide was created iteratively, beginning with an initial draft
used by clinician researchers during joint annotation sessions.
Common challenges encountered during annotation were
documented, and adjudication decisions were included to ensure
consistency. Common data extraction elements that required
discussion among clinicians were included in the guide to define
consensus between researchers and to provide consistency to
annotators. The guide accounts for nuances of clinical
documentation such as shorthand abbreviations, terminology
variations, and physical exam findings. To initiate the annotation
process, 100 notes, representing an intersection of chemotherapy
exposures associated with all the target adverse events, were
uploaded to the annotation tool. Clinicians independently
annotated 30 notes, comparing results to assess alignment that
facilitated refinement of the annotation guide before
independently completing the remaining 70 notes. Annotation
overlap and agreement were systematically evaluated, with areas
of disagreement manually adjudicated and further revisions
made to the guide.

A second and third batch of 100 notes was then annotated
independently and annotator agreement calculated after each
round. Annotator agreement was evaluated by interrater
reliability calculated by tag agreement at the symptom level
(constipation, mucositis, nausea, neuropathy, and vomiting) and
at the symptom degree level (eg, CTCAE severity level).
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Weighted Cohen kappa quantified the level of agreement to
provide a measure of agreement accounting for the likelihood
of agreement occurring by chance. Manual adjudication after
each round was then undertaken, followed by revision of the
annotation guide. Discrepancies were explored to identify
opportunities for improvement and additional nuances in clinical
documentation.

Unexpectedly, initial low agreement between abstractors
highlighted challenges in applying CTCAE criteria to
retrospective medical records. This partially stemmed from the
format of notes in the annotator tool. Because they were
removed from the EMR system, there was an inability to
incorporate contextual data typically used by clinicians to make
severity assessments. Administration of as-needed medication,
for example, was not always apparent in free-text clinical notes.
Such ambiguities are inherent to retrospective reviews and
reflect broader limitations in applying clinical grading systems
to medical record data, but the iterative approach facilitated the
creation of a detailed annotation guide and established a reliable
methodology for future annotation efforts. The complexity of
these clinical scenarios underscores the need for expert clinicians
to remain closely involved with annotations when training AI
models.

This study used a modified version of an open-source NLP
pipeline, clinical text analysis and knowledge extraction system
(cTAKES) [29], as a baseline for comparison against clinician
annotations and our novel AI-based model in phenotyping
constipation, mucositis, nausea, neuropathy, and vomiting.
While cTAKES offers a valuable NLP solution for clinical text,
its default configuration is computationally intensive and
unsuitable for large-scale datasets. Our existing pipeline

addressed this limitation by implementing a distributed
processing pipeline capable of handling millions of clinical
notes. It also further enhanced cTAKES by incorporating the
human phenotype ontology to improve entity recognition and
improving the negation annotator to refine accuracy in
identifying negated findings [30,31]. This modified cTAKES
pipeline served as a baseline for evaluating the performance of
our novel transformer models.

With the revised annotation guide and further adjudication
between annotators, F1-scores could be assessed between our
baseline NLP model and the clinician annotators. The F1-score
accounts for both sensitivity and recall of an NLP model. The
existing off-the-shelf NLP model (cTAKES) was unable to
reliably identify symptomatic adverse events of interest for
pediatric oncology patients based on interrater reliability, Cohen
kappa, and F1-score analyses. This is clinically problematic, as
reliable identification would be necessary for clinical work and
to use this model for research purposes. Furthermore, the model
is unable to identify symptom severity, further highlighting a
need for the development of a fit-for-purpose novel NLP model
which is proposed as stage 2 of this study.

Barriers and Lessons Learned

The first phase of this work provides valuable findings that
justify continued research in this area. Our experiences as a
newly developed transdisciplinary research team offer insights
relevant to other teams that are beginning to integrate AI
technologies into clinical research. Table 1 provides a review
of our key challenges and the associated implications specific
to this work.
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Table . Key challenges, impact specific to this project, and facilitators for success in overcoming challenges.

FacilitatorKey challenge and implications

Require substantial data and computer science support

In-house Data Science and Biostatistical Unit with PhD- and master-level
biostatisticians and data scientists

    Clinician scientists and researchers with limited knowledge in computer
science and big data methodology

Free data science consultation for clinical investigators and internal pilot
funding that allowed securement of external grants

    Cost associated with collaborative efforts and time of external experts

Enterprise-level strategic initiative developed a suite of tools and services
for large-scale data analyses

    Platform to manage very large data files and analyze millions of data-
points in analyses

Complexity of data structures between electronic health records and data warehouse

Collaborative effort between PhD-prepared data scientist who coded and
executed the tasks and clinicians who validated the output

    Multiple versions of millions of clinical notes needed to be reviewed
to select the correct version

Senior data integration analysts created bespoke labeling system to identify
all chemotherapy agents

    Chemotherapy agents need to be identified and incorporated to patient
selection as part of inclusion criteria

PhD-level data scientists with skills in variable identification, database
management, and creation of relational databases

    Clinical data and associated metadata are stored in massive, discrete
data tables

Flexible timelines and expectations, mutual goals and understanding, and
a data model that supports ongoing addition of new data elements

    Extensive time for database creation and importing of large files to
create a workable data model

Inconsistent or misunderstood data labeling in the warehouse

Data extraction from the data warehouse and then validated against medical
records by clinician staff

    Validate research data to ensure consistency with clinical entry formats

Real-time collaboration between data scientists and clinician team members
to refine and validate data filtering

    Extensive filtering of data elements to ensure integrity of data used for
research purposes

Subjective nature of clinical interpretation of patient scenarios

Expert clinicians are required to annotate text for model training    Lack of contextual data available for clinical symptom evaluation

Creation of an annotation guide and consistent ontology    Consistent method is needed to identify outcomes of interest to train

AIa models

Annotation tools and software as standard components of the digital lab
environment

    Multiple targets for annotation, creating a complicated validation process

Annotation review by expert clinicians to assess performance before
model training and evaluation

    Transparent assessment of agreement for decision making between
clinicians

Bridging distinct scientific domains to enable unified project execution

Open, clear, and respectful communication; time to understand terminol-
ogy and needs; flexible timelines and ongoing dedication from all research
team members

    Mutual understanding of priorities, feasibility, and methodology between
data science and clinical research team members

aAI: artificial intelligence.

Barriers that slowed progress were primarily related to the
inevitable learning curves encountered when embarking on a
novel line of inquiry or acquiring a new skill set. The clinical
researchers underestimated the time required to develop
proficiency in these new methods and the time-intensive nature
of interdisciplinary communication. Considerable effort was
needed to understand how raw data are stored, transformed, and
imported into a digital laboratory. This is noteworthy, not just
for planning purposes for other teams, but also in understanding
that data labeling and storage is unique to both the individual
EMR platforms and the health institutions that use them. This
makes the algorithm we have developed for identifying clinical
notes specific to our institution and not likely directly
transferrable to other sites. However, our methodology and
approach can be replicated using institution-specific data
elements and metadata, but this will require ongoing time
investment.

Key challenges relating to the building of the digital laboratory
related to the need for complex coding to identify appropriate
clinical notes, the development of novel codes to identify
chemotherapy agents, extensive data cleaning and refinement,
and time-intensive data validation activities. Variations between
how data are presented in the live, front-end version of EMR
systems and how they are transformed and stored in the data
warehouse created difficulty in translating between these views
and ensuring the data accessed were accurate and correct.
Logistic challenges related to data acquisition and organization
arose from the size of datasets and tables because they included
vast amounts of metadata in their raw form and extensive time
for the data team to identify appropriate sources for importing.
These challenges were overcome by continual partnership
between clinical and data science team members and ensuring
mutual understanding of needs before each phase of work.
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Unfortunately, these unanticipated difficulties extended the
project’s timeline beyond what was initially anticipated.

Similarly, substantial time was dedicated to ensuring that the
data science team comprehended the clinical scenarios
underpinning this work. This reflexive exchange was critical
for troubleshooting, planning data extraction, and conducting
validation activities for model training. As a result, establishing
the digital laboratory took significantly longer than anticipated,
requiring adjustments to project timelines. Working meetings
often focused on aligning terminology and achieving a mutual
understanding of project milestones, underscoring the
importance of interdisciplinary fluency. Finally, as with many
research projects, cost considerations posed challenges.
Incentives for clinicians to annotate notes could facilitate a
larger group of trained annotators or dedicated research
assistants, accelerating the process of achieving an adequate
sample size for model training.

As AI becomes increasingly embedded in clinical practice, these
models may become core components of clinical and research
training programs, underscoring the need for ongoing
interdisciplinary collaboration between data scientists and
clinicians. These advancements signal an exciting future for
AI-driven methodologies in improving patient care and
advancing clinical research.

Facilitators and Necessary Infrastructure

Key facilitators to successfully completing the initial phase of
our pilot work are also summarized in Table 1, matched to the
implications of this project. They mainly included robust data
science infrastructure and support in addition to flexibility of
time and working toward mutual understandings. The DSBU
and Arcus teams supplied critical expertise, technology, and
financial resources, which were leveraged to scaffold this
research project and are noted essential components of this type
of collaborative work [25]. The clinical researchers defined a
research question amenable to AI solutions, fostering a
synergistic collaboration between the teams. A balance of
funding and accessible resources is needed such that a researcher
can either have access to the data science personnel or be able
to contract with them for research purposes. These resources
enabled our team to establish relationships, evaluate feasibility,
and begin data harvesting to generate preliminary data that
ultimately secured external funding. Once established, ongoing
collaboration, shared priorities, and mutual commitment among
team members facilitated a unified direction forward and
long-term engagement in the project.

Clinician investigators who desire to engage with AI research
need to have affiliation with an organization that has embraced
and built an environment to support this work. Doing so requires
the organization to make significant financial and personnel
investments and overcome several hurdles and barriers to build
a team that can orchestrate a large AI platform. Organizations
must first determine that the clinical or financial benefits from
an AI platform outweigh the upfront costs and long-term risks,
requiring a long-term investment mindset [32]. Typical
approaches involve identifying AI as a potential useful tool for
improving the execution of daily operations and, once instituted,

can be used as a research platform. It is therefore primarily
integrated to an organization as part of reengineering business
processes [33], although there are cases of initiating AI
platforms for research purposes as a primary objective. In either
case, primary concerns and challenges are typically related to
cost, confidentiality and security, data integration and system
compatibility, and trustworthiness.

Upfront costs for AI infrastructure are high. Computational
resources and power for initial training of algorithms are much
higher than later simple execution of the models [34]. Lengthy
time to production or to see benefit can deincentivize companies
from investments [32], especially when considering that benefits
and success are subject to time and other costly factors like
computational power [35]. Computational resources, staff,
personnel, training, and ongoing maintenance – including data
audits, revised learning algorithms, ongoing data management,
and updates – further add cost to AI adoption across a multitude
of industries [32,34,35]. For these reasons, some smaller
pharmaceutical companies, for example, have declined
integration because the upfront costs are too high, unlike their
larger counterparts, who see significant financial gain from even
a small amount of process improvement [33]. However, taking
strategic recommendations from end users, ensuring that there
are well-defined problems amenable to AI-based solutions, and
ensuring clear objectives for its use ensure valued return on
investment [32,36].

Beyond cost, confidentiality and data security are of paramount
concern, especially in health systems that are subject to stringent
privacy laws and ethical considerations [6,34-36]. Safeguarding
patient information requires legal counsel, information security
personnel, and computer scientists. Similarly, these resources
assist with concerns of data integration and system compatibility,
ensuring that the AI platform can accept, synthesize, and
augment existent data and work synergistically with programs
already in use. For health care, this includes the EHR system,
radiology software, mobile apps, pharmacy programs, billing
systems, and scheduling programs.

Finally, uptake and integration of AI are halted if there is
concern about the trustworthiness of the programs or if users –
inclusive of clinicians, staff, and patients – have unfavorable
views [33]. Known trust issues, algorithmic biases, lack of
transparency, and unfairness have deincentivized health systems
from adopting AI because it is viewed as an unreliable
technology [32,33,37]. Further, health care providers often feel
threatened by AI, worried that it will replace their positions.
Concern for having AI handle the large, complex tasks of care,
they will only perform simple tasks and lose skill over time or
have to continuously learn about emerging technologies. Past
successes of using AI in health care, however, indicate that it
can augment, not replace, care practices. By reconsidering AI
as an enabler, health care practices have seen improvements in
diagnostics, radiology, analyzing data from wearable
technologies, EHR monitoring, use of digital assistants, decision
support systems, and breakthroughs in drug discovery, care
models, streamlining workflow, and minimizing administrative
burdens [32].
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Conclusion

Despite these barriers and unexpected challenges, the results of
this pilot study emphasize the transformative potential of AI in
clinical research. The successful incorporation of AI into clinical
workflows can replace the labor-intensive, time-consuming,
and often imprecise process of manual data extraction. The
model is being trained on clinical notes from a single institution,
and since institutions use individualized note templates with
templated free text, the NLP model may not be transferrable to
other sites. However, future phases of this project can include
data imported from diverse clinical sites to refine the model and
expand its capability.

NLP, in particular, holds significant promise as a methodological
innovation to address the limitations of extracting symptomatic
adverse events from medical records. Future use of more
lightweight models or integration of a large language model
into the health system may further improve research efficiency.
The development of a custom workflow that allowed for parallel
processing of thousands of clinical notes simultaneously by a
relatively small and inexpensive model. By improving research

efficiency across health system networks, AI enables the rapid
and consistent identification of symptomatic adverse events
among patients treated for cancer. Leveraging these large patient
cohorts, researchers can better explore the etiology,
management, and mitigation of therapy-related toxicities.

Progress in harnessing the potential of AI in clinical research
hinges on successful partnerships between clinical and data
science researchers. This transparent account of our journey as
a newly formed interdisciplinary team integrating AI into
oncology research provides a framework, key lessons, and
actionable recommendations for clinicians aiming to explore
AI applications. Success is contingent on institutional
support—both financial and logistical—and the assembly of a
team of data and computer scientists with aligned priorities.
Regardless of previous research experience, sufficient time must
also be allocated to achieve mutual understanding, acquire new
skills, build trust, and foster effective working relationships.
By sharing our experience, we are hopeful that readers are
empowered to take their first steps with greater confidence,
mitigate delays we encountered, and chart a more efficient path
toward advancing their own AI-driven research endeavors.
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Abstract

Background: Patient-derived cancer models (PDCMs) have become essential tools in cancer research and preclinical studies.
Consequently, the number of publications on PDCMs has increased significantly over the past decade. Advances in artificial
intelligence, particularly in large language models (LLMs), offer promising solutions for extracting knowledge from scientific
literature at scale.

Objective: This study aims to investigate LLM-based systems, focusing specifically on prompting techniques for the automated
extraction of PDCM-related entities from scientific texts.

Methods: We explore 2 LLM-prompting approaches. The classic method, direct prompting, involves manually designing a
prompt. Our direct prompt consists of an instruction, entity-type definitions, gold examples, and a query. In addition, we experiment
with a novel and underexplored prompting strategy—soft prompting. Unlike direct prompting, soft prompts are trainable continuous
vectors that learn from provided data. We evaluate both prompting approaches across state-of-the-art proprietary and open LLMs.

Results: We manually annotated 100 abstracts of PDCM-relevant papers, focusing on PDCM papers with data deposited in the
CancerModels.Org platform. The resulting gold annotations span 15 entity types for a total 3313 entity mentions, which we split
across training (2089 entities), development (542 entities) and held-out, eye-off test (682 entities) sets. Evaluation includes the
standard metrics of precision or positive predictive value, recall or sensitivity, and F1-score (harmonic mean of precision and
recall) in 2 settings: an exact match setting, where spans of gold and predicted annotations have to match exactly, and an overlapping
match setting, where the spans of gold and predicted annotations have to overlap. GPT4-o with direct prompting achieved F1-scores
of 50.48 and 71.36 for exact and overlapping match settings, respectively. In both evaluation settings, LLaMA3 soft prompting
improved performance over direct prompting (F1-score from 7.06 to 46.68 in the exact match setting; and 12.0 to 71.80 in the
overlapping evaluation setting). Results with LLaMA3 soft prompting are slightly higher than GPT4-o direct prompting in the
overlapping match evaluation setting.

Conclusions: We investigated LLM-prompting techniques for the automatic extraction of PDCM-relevant entities from scientific
texts, comparing the traditional direct prompting approach with the emerging soft prompting method. In our experiments, GPT4-o
demonstrated strong performance with direct prompting, maintaining competitive results. Meanwhile, soft prompting significantly
enhanced the performance of smaller open LLMs. Our findings suggest that training soft prompts on smaller open models can
achieve performance levels comparable to those of proprietary very large language models.

(JMIR Bioinform Biotech 2025;6:e70706)   doi:10.2196/70706

KEYWORDS

patient-derived cancer models; large language models; knowledge extraction; in-context learning; soft prompting; prompt tuning;
information extraction
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Introduction

Patient-derived cancer models (PDCMs) are created from a
patient’s own tumor sample and capture the complexity of
human tumors to enable more accurate, personalized drug
development and treatment selection. These models, including
patient-derived xenografts (PDXs), organoids, and cell lines,
allow researchers to test treatments and identify the most
effective therapies, and have emerged as indispensable tools in
both cancer research and precision medicine. The US National
Institutes of Health (NIH) have made significant investments
in the generation and characterization of these models, with
more than US $3 billion dedicated to active grants referencing
PDCMs with a component of their research based on data
extracted from the NIH RePORTER [1] for fiscal year 2024
alone. The number of publications using PDCMs continues to
increase generating substantial and rich metadata and data that
require standardization, harmonization, and integration to
maximize the impact of these models and their associated data
within the research and clinical communities. CancerModels.Org
platform [2] serves as a unified gateway to the largest collection
of PDCMs and related data. It empowers researchers and
clinicians to discover suitable models for testing research
hypotheses, conducting large-scale drug screenings, and
advancing precision medicine initiatives. Extraction of
PDCM-relevant knowledge and its harmonization within
CancerModels.Org is essential to ensure that basic and
translational researchers, bioinformaticians, and tool developers
have access to PDCM knowledge. While manual curation of
publications ensures high accuracy when performed by domain
experts, it is time-consuming and labor-intensive. Thus, a more
streamlined and efficient knowledge acquisition method is
needed to address the growing demand within the scientific
community for the timely availability of the PDCM metadata
and its associated data.

In parallel, large language models (LLMs) [3-5] often referred
to as generative artificial intelligence (AI) systems are trained
on vast amounts of data and have demonstrated impressive
capabilities in the health care domain [6-8]. Researchers have
studied the use of LLMs in addressing various tasks related to
health care such as diagnosing conditions [9,10], clinical
decision support [11], answering patient questions [12], and
medical education [13,14]. It has been shown that LLMs can
extract meaningful information from texts [15-17].

In this work, we explore LLM-prompting techniques with the
goal of extracting knowledge from PDCM-relevant scholarly
publications. We focus on the classic direct prompting [4] and
the underexplored soft prompting [18] with state-of-the-art
(SOTA) proprietary and open LLMs. Our experimental results
provide insights into selecting the optimal prompting methods
for specific tasks. The contributions of this paper are:

1. Studying the feasibility of SOTA LLMs as oncology
knowledge extractors for PDCM-relevant information from
scholarly scientific literature.

2. Creating a manually curated gold dataset spanning 15 entity
types for a total 3313 entity mentions from 100 abstracts
of PDCM-relevant papers.

3. Researching and comparing, to our knowledge for the first
time, direct versus soft prompting techniques for oncology
knowledge extraction, specifically PDCM-relevant
information from scholarly scientific literature.

Methods

Concepts
We define “knowledge” as entities of interest to researchers
working with PDCMs in the cancer research field. For example,
the patient’s diagnosis provides a reference point to confirm
that a PDCM faithfully recapitulates the biology of the original
tumor and is essential for ensuring the model’s relevance and
reliability in studies of cancer progression or treatment response.
Thus, “diagnosis” is important to understand the model’s
characteristics in the context of patient’s disease. The patient’s
age can significantly affect the molecular and genetic
characteristics of the tumor. For example, pediatric cancers
often have distinct genetic drivers and tumor microenvironments
compared to cancers in older adults. In addition, age-related
biological factors, such as immune system, metabolism, and
hormone levels, influence how a tumor responds to treatments.
Thus, knowing the patient’s age is imperative for predictive
accuracy of the model in preclinical testing and relevance of
research findings. Therefore, we selected 15 most commonly
used CancerModels.Org data model attributes (Table 1), which
include the attributes defined in the minimal information
standard for patient-derived xenograft models [19] and the draft
minimal information standard for in vitro models [20].
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Table . Entity definitions based on the CancerModels.Org data model with examples and interannotator agreement F1-scores in the exact match setting
that requires the spans of the annotators to match exactly.

IAAaExampleDefinitionEntity type

61.67TNBCbDiagnosis at the time of collection
of the patient tumor used in the
cancer model

diagnosis

60Adult, pediatricAge category of the patient at the
time of tissue sampling

age_category

57.67Missense, amplificationAny form of chromosomal rearrange-
ment or gene-level changes

genetic_effect

53.33PDXc, organoidType of patient-derived modelmodel_type

54.33RNA sequencing, whole-exome se-
quencing

Data or assay generated from or
performed on the model in this
study

molecular_char

61.33BRCA1d, IDHe, epidermal growth
factor receptor 2

Gene, protein or biological molecule
identified in or associated with pa-
tient’s/model’s tumor

biomarker

55.67Surgery, chemotherapy, PARP-in-
hibitor

Treatment received by the patient
or tested on the model

treatment

55Progression-free survival, reduced
tumor growth

Effect of the treatment on the pa-
tient’s tumor or model

response_to_treatment

49Tissue fragment, autopsyThe type of material used to gener-
ate the model or how this material
was obtained

sample_type

49.67Primary, recurrentCollected tumor type used for gener-
ating the model

tumor_type

42Grade 1, low-gradeQuantitative or qualitative grade re-
flecting how quickly the cancer is
likely to grow

cancer_grade

59.33TNMf system, T0, stage IInformation about the cancer’s ex-
tent in the body according to specif-
ic type of cancer staging system

cancer_stage

60.67Phase II, prospective randomized
clinical trials

The type of clinical trial or Clinical-
trials.org identifier

clinical_trial

61.67NOD-SCIDgThe name of the mouse host strain
where the tissue sample was engraft-
ed for generating the PDX model

host_strain

100PHLC402ID of the patient-derived cancer
model generated in this study

model_id

aIAA: interannotator agreement.
bTNBC: triple-negative breast cancer.
cPDX: patient-derived xenograft.
dBRCA1: breast cancer gene 1.
eIDH: isocitrate dehydrogenase.
fTNM: tumor node metastasis.
gNOD-SCID: nonobese diabetic severe combined immunodeficiency.

Corpus
We used 100 abstracts to develop the gold-standard corpus
annotated for the 15 entities (Table 1). The abstracts were chosen
from publications linked to the PDCMs submitted to
CancerModels.Org platform. They were selected to cover all 3
types of models in the resource-PDXs, organoids, and cell lines.
The final corpus is available on GitHub (see Data and Code
Availability section).

Three annotators (ZP, TM, and EL) independently labeled
entities in all 100 abstracts for a total of 40 hours. The annotation
quality was tracked through interannotator agreement (IAA), a
measure of agreement between each annotation produced by
different annotators working on the same dataset. The IAA is
an indication of how difficult the task is for humans and it
becomes the target for system development. We used pairwise
F1-score as the IAA metric [21] in the exact match setting that
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requires the spans of the annotators to match exactly. We
computed the agreement between each pair of annotators and
averaged across the 3 sets of scores. The final IAA for each
entity type is reported in Table 1. The IAA range is 42‐100
indicating moderate agreement. Note that the lowest agreement
is for low occurrence entity types, for example, cancer_grade
has only 8 instances with 42 IAA. These low-frequency entity
types are more likely to be overlooked by the human experts as
annotation is a cognitively demanding task. Thus, to ensure a
high-quality gold-standard dataset, we overlayed the single

annotations with an adjudication step, where the annotators
discussed annotation disagreements and potential missed
annotations to come to final joint decisions. The resulting gold
dataset spans 15 entity types for a total 3313 entity mentions
(refer Table 2 for distributions) was split into training,
development, and test sets in the standard 60:20:20 ratio. The
train set was used for creating entity extraction algorithms, the
development set for refining the algorithms, and the test set for
the final evaluation.

Table . Distribution of entity type annotations across training, development, and test sets.

Total, nTest, nDevelopment, nTraining, nEntity type

598114122362diagnosis

190019age_category

122332069genetic_effect

550110114326model_type

2114637128molecular_char

784163118503biomarker

63313077426treatment

148282199response_to _treatment

377822sample_type

108281961tumor_type

8116cancer_grade

12417cancer_stage

414235clinical_trial

16709host_strain

267217model_id

33136825422089Total

Prompting Methods
Various prompting techniques have been proposed since the
emergence of LLMs [22-25]. At a high level, these prompting
techniques can be divided into 2 categories, direct prompting
[4] and soft prompting [18,24,26] . The main difference between
the two methods is the prompt representation, that is whether
the prompt consists of human language words or vectors (Figure
1). Direct prompting (or discrete prompting) is the most intuitive
and now classic prompting method where users directly interact
with LLMs using natural language. For example, a user may
ask ChatGPT to “Write a thank you note to an old friend of my
parents”; in this case, the text within the quotation marks is a
discrete prompt. Soft prompting (or continuous prompting) uses

a machine learning approach to train a sequence of continuous
vectors, which are the “virtual tokens” of the prompt. It is worth
noting that soft prompting differs from fine tuning. With soft
prompting, the LLM parameters are not updated, only the soft
prompt parameters are adjusted. In contrast, finetuning requires
to update the parameters of the entire LLM, and therefore needs
more computation resources. Both prompting techniques have
their advantages and disadvantages. Compared to direct
prompting, soft prompting does not require the tedious process
of manually creating prompts; however, it requires some labeled
data to train the prompt. In this work, we explore both direct
and soft prompting as we aim to explore the latest developments
in LLMs and prompting techniques for the task of extracting
PDCM entities from abstracts of academic papers.
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Figure 1. Illustration of the 2 prompting methods. In direct prompting, a prompt contains a sequence of words. In soft prompting, a prompt consists
of a list of vectors. LLM: large language model.

Direct Prompting
When asking LLMs to extract entities such as diagnoses or
biomarkers, the most intuitive way is to ask LLMs to output the
entities directly. In example 1 below, “ALK” is a biomarker
entity. One may expect the model to output {“biomarker”
[ALK]}. However, we note that the string “ALK” is mentioned
multiple times in this example text, therefore it is not clear which
“ALK” the model refers to. To get the most precise extraction
to facilitate a more fine-grained analysis, we instruct the model
to output the offsets of the specific mentions in the text (ie, the
spans). For instance, if the model gives us [(48, 51, “ALK,”
biomarker), (323, 326, “ALK,” biomarker), …], we know that
from character 48 to character 51, there is a biomarker entity,
“ALK.” Similarly, we can find another biomarker entity “ALK”
at position 323‐326.

Example 1:

Oncogenic fusion of anaplastic lymphoma kinase
(ALK) with echinoderm microtubule associated
protein like 4 protein or other partner genes occurs
in 3 to 6% of lung adenocarcinomas. Although
fluorescence in situ hybridization (FISH) is the
accepted standard for detecting anaplastic lymphoma
receptor tyrosine kinase gene (ALK) gene
rearrangement that gives rise to new fusion genes,
not all ALK FISH-positive patients respond to ALK
inhibitor therapies.

We started our exploration by designing prompts with an explicit
instruction to specify the character offsets of each entity along
with the entity text and type (eg, 48, 51, “ALK”, biomarker).
However, our experiments show that it was challenging for the
LLM to output the correct character offsets, a seemingly
straightforward task (all the model needs to do is to count the
number of characters); however, the complexity of this
seemingly straightforward task is likely due to the LLM’s way
of breaking words outside its vocabulary into so-called word
pieces, for example, “organoid” is broken down into 2 word
pieces “organ” and “-oid.” Considering that LLMs were trained
as generative models [3,4], we subsequently cast the entity
extraction task as a generation task, where we instructed the
model to mark the entities with XML tags. For instance, if the
model outputs “Oncogenic fusion of anaplastic lymphoma kinase
(<biomarker>ALK</biomarker>) with echinoderm microtubule
…,” then postprocessing the output with regular expressions
would find the exact position of “ALK” in the text. Specifically,

we asked the LLMs to mark the start and end of an entity with
<entity_type> and </entity_type> tags, where entity_type is a
placeholder for the specific entity type, such as biomarker or
treatment (refer Table 1 for the full list).

Soft Prompting
Designing the direct prompts manually could be time-consuming
and minor changes in the prompt language could lead to drastic
changes in the model performance [24,27]. On the other hand,
soft prompting requires some amount of gold data for its training
and annotating gold data by domain experts could also be
time-consuming. Fortunately, only a small set of labeled data
are needed to train soft prompts. As described above, we created
a gold dataset, which we used for training and evaluating our
soft prompting approach.

There are a few soft prompting methods, the difference usually
lies in how the prompt vectors are initialized and learned.
Prompt-tuning [18] is a technique that learns the prompt by
adding a list of virtual tokens (ie, vectors) in front of the input,
where the virtual tokens can be randomly initialized, or drawn
from a pretrained word embedding [28] set. Another method is
P-tuning [24], which uses small neural networks such as
feedforward neural networks [29] (multilayer perceptron) or
recurrent neural networks [30] (eg, long-short term memory)
as the prompt encoder to learn the prompt. Only the parameters
in the prompt encoder are updated during training, while the
weights in the LLMs remain frozen. In our experiments, we
found P-tuning did not always converge to an optimal solution
for our task perhaps due to the random initialization of the
vectors rather than using carefully pretrained word embeddings.
Therefore, we focused on prompt-tuning in this work. Following
Lester et al [18], we initialized the vectors in the prompt with
the embeddings of the label words in the entity type set (Table
1).

The standard approach for entity extraction in natural language
processing is via token classification [31]. Concretely, a
classifier is trained to predict the label for each token in a
sentence according to a predefined label set. Additionally, each
label is prepended with a B or I prefix to indicate the entity’s
Beginning or Inside mention, respectively. An example is
provided in Figure 2. “Ewing sarcoma” is an entity mention of
the diagnosis type. Thus “Ewing” and “sarcoma” are labeled as
“Diagnosis,” while all other tokens are labeled as “O,” meaning
they are Outside of an entity. To be more precise, “Ewing” is
at the beginning of the diagnosis entity, and “sarcoma” is inside
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of the entity, so they are labeled as “B-Diagnosis” and
“I-Diagnosis,” respectively.

To summarize, we trained a multiclass classifier for the
soft-prompting training step. There are 15 entity types in our
dataset, therefore there are 15×2+1=31 labels for token
classification, with one extra label for “O.”

Figure 2. An example of entity extraction as token classification.

Experimental Set-Up
For efficiency purposes, we used Apache cTAKES [32] to split
an abstract into sentences which were then passed to the LLMs
to extract entities one sentence at a time. Our direct prompt
included the instruction, the definition of each entity type, 5

examples (few-shot in-context learning) and the query (the
sentence). The in-context learning [4] is a common practice in
LLM prompting and has consistently shown improved results
as the examples guide the LLM onto an optimal path [33,34].
Figure 3 presents our prompt template, and examples are in
Multimedia Appendix 1.

Figure 3. Prompt template used in direct prompting.

When choosing the LLMs, we used GPT-4o [35], one of the
most powerful proprietary LLMs at the time of this study, and
SOTA open LLMs from the LLaMA3 family [36], including
LLaMA3.1 70B, LLaMA3.1 8B, LLaMA3.2 1B, and LLaMA3.2

3B. We did not use GPT-4o or LLaMA3.1 70B to train the soft
prompts due to computational resource limitations; thus, our
work here is representative of the computational environment
in the vast majority of academic medical centers and research
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labs. We set the soft prompt length to 30. We trained the soft
prompt on the training set for 50 epochs with a learning rate of
0.001. Hyperparameters were tuned on the development set
using the LLaMA3.1 8B model.

We report the evaluation results on the test set in the next
section. In addition, we apply 5-fold cross-validation and report
the average scores with SDs. For the 5-fold cross-validation,
we excluded the 3 abstracts used to sample the gold examples
for direct prompting and split the remaining 97 abstracts into 5
folds with a 20:20:20:20:17 ratio. For direct prompting, we ran
the model on each fold and reported the average scores. For soft
prompting, we set aside one fold as the test set and trained the
soft prompts on the remaining 4 folds.

Results

We used the standard evaluation metrics of precision or positive
predictive value, recall or sensitivity, and F1-score (the harmonic
mean of precision and recall) with 2 evaluation settings: “exact
match” setting requires the span output from the model to
exactly match the span of the gold annotation, and “overlapping

match” setting allows the model to get partial credit if its
extraction overlaps the spans in the gold annotation. For
example, the model may extract “patient-derived tumor
xenograft (PDX)” as a model_type entity, while the gold
annotation is “patient-derived tumor xenograft (PDX) models.”
Under the “exact match” setting, “patient-derived tumor
xenograft (PDX)” is NOT a match to “patient-derived tumor
xenograft (PDX) models;” while under the “overlapping match”
setting, it is a match since the spans overlap.

Tables 3 and 4 show the evaluation results on the test set. In
Table 3, we can see that under the “exact match” setting,
GPT-4o direct prompting achieves the highest F1-score of 50.48.
The performances of the LLaMA3 family models drop as the
model size decreases, with F1-score from 38.40 for the 70B
model to 6.78 for the 1B model. However, there is a consistent
improvement in F1-scores with soft prompting over direct
prompting. For the LLaMA3.2 models, the performance of the
3B model improves significantly, with F1-score rising from
7.06 to 46.68 F1-score—more than 8 points higher than the
LLaMA3.1-70B model with direct prompting (F1-score=38.40),
despite the substantial difference in model size.

Table . Evaluation results on the test set (exact match) as precision or positive predictive value, recall or sensitivity, and F1-score (harmonic mean of
precision and recall).

F1-scoreRecallPrecisionExact match

Direct prompting

50.48a45.89a56.09    GPT-4o

38.4028.8957.27a    LLaMA3.1-70B

24.3718.4835.80    LLaMA3.1-8B

7.064.1025.23    LLaMA3.2-3B

6.783.9623.48    LLaMA3.2-1B

Soft prompting

46.4445.7547.17    LLaMA3.1-8B

46.68a46.09a47.30a    LLaMA3.2-3B

45.5945.0146.19    LLaMA3.2-1B

aThese are the best results.
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Table . Evaluation results on the test set (overlapping match) as precision or positive predictive value, recall or sensitivity, and F1-score (harmonic
mean of precision and recall).

F1-scoreRecallPrecisionOverlapping match

Direct prompting

71.36a66.52a76.96    GPT-4o

56.2443.9977.95a    LLaMA3.1-70B

35.6127.4950.54    LLaMA3.1-8B

12.007.0341.03    LLaMA3.2-3B

10.286.0135.34    LLaMA3.2-1B

Soft prompting

70.8670.5371.19    LLaMA3.1-8B

71.80a71.55a72.05a    LLaMA3.2-3B

70.4270.4870.38    LLaMA3.2-1B

aThese are the best results.

Similar trends are observed in Table 4 under the “overlapping
match” evaluation. GPT4-o shows an F1-score performance of
71.36, maintaining its position as the top performer for direct
prompting. The 3 smaller LLaMA3 models continue to benefit
from soft prompting, with the LLaMA3.2 3B model achieving
slightly higher score than GPT4-o with direct prompting
(F1-scores of 71.80 vs 71.36 ).

Tables 5 and 6 present the results with 5-fold cross-validation
under “exact match” and “overlapping” match respectively.
Once again, our observations indicate that with soft prompting,
the smaller LLaMA models attain performance levels
comparable to GPT-4o.

Table . Five-fold cross-validation results (exact match) as precision or positive predictive value, recall or sensitivity, and F1-score (harmonic mean of
precision and recall).

F1-scoreRecallPrecisionExact match

Direct prompting, mean (SD)

54.75 (2.84)49.92 (3.46)60.73 (2.69)    GPT-4o

40.87 (1.25)31.70 (1.24)57.56 (1.53)    LLaMA3.1-70B

26.75 (2.61)20.57 (2.18)38.29 (3.29)    LLaMA3.1-8B

8.80 (1.29)5.25 (0.80)27.01 (3.20)    LLaMA3.2-3B

1.38 (0.87)0.74 (0.47)9.84 (5.98)    LLaMA3.2-1B

Soft prompting, mean (SD)

50.94 (2.55)50.21 (2.24)51.76 (3.09)    LLaMA3.1-8B

50.24 (2.53)49.54 (2.98)50.99 (2.43)    LLaMA3.2-3B

49.13 (3.10)49.98 (3.19)49.34 (3.47)    LLaMA3.2-1B

JMIR Bioinform Biotech 2025 | vol. 6 | e70706 | p.304https://bioinform.jmir.org/2025/1/e70706
(page number not for citation purposes)

Yao et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table . Five-fold cross-validation results (overlapping match) as precision or positive predictive value, recall or sensitivity, and F1-score (harmonic
mean of precision and recall).

F1-scoreRecallPrecisionOverlapping match

Direct prompting, mean (SD)

72.28 (1.88)67.52 (2.17)77.82 (2.54)    GPT-4o

59.25 (0.81)47.77 (0.71)78.01 (1.14)    LLaMA3.1-70B

38.04 (2.84)29.78 (2.60)52.75 (3.02)    LLaMA3.1-8B

14.34 (1.64)8.64 (1.09)42.42 (2.89)    LLaMA3.2-3B

3.10 (0.99)1.67 (0.54)22.09 (5.74)    LLaMA3.2-1B

Soft prompting, mean (SD)

73.75 (2.06)73.77 (1.25)73.78 (3.09)    LLaMA3.1-8B

73.48 (1.31)73.51 (1.11)73.48 (1.97)    LLaMA3.2-3B

72.34 (2.63)73.25 (2.46)71.51 (3.43)    LLaMA3.2-1B

Discussion

Principal Findings
Our experiments demonstrate that soft prompting, a relatively
underexplored aspect of LLM prompting, can significantly
enhance the performance of smaller LLMs. The 3 LLaMA
models exhibit comparable performance under soft prompting
(an F1-score of 46 in the exact match setting, and 70 in the
overlapping match setting). These results are particularly
promising results given the limited training data, consisting of
60 abstracts with 2089 entity mentions. Please note that all
F1-scores mentioned in this section refer to the F1-scores on the
test set.

How much data is needed to train the soft prompt? To answer
this question, we trained LLaMA3.2 1B model, the smallest
model used in this work, with different amounts of training data.

Figure 4 shows the relation between the proportion of training
data and the F1-scores on the test set (overlapping match). Solid
performance was achieved with only 5% of the training data
(26 sentences from 3 abstracts). With 25% of the training data
(129 sentences from 15 abstracts), the model achieved an
F1-score of 68.21, only 2 points lower than using the entire
training set, and only 3 points lower than GPT4-o with direct
prompting. Despite the impressive performance of GPT4-o
direct prompting, one potential issue is that not all data used in
biomedical research can be sent to proprietary models such as
GPT or the Gemini family models [8] via public application
programming interfaces. That is, for applications using real
patient data that require Health Insurance Portability and
Accountability Act–compliant platforms, our findings
demonstrate that achieving performance comparable to
proprietary LLMs such as GPT4-o remains feasible through
soft prompting. However, this approach necessitates a tradeoff,
requiring a small set of labeled data for optimal effectiveness.
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Figure 4. Performance curve of the LLaMA3.2 1B model as the size of training data increases.

Some entities appear more frequently than other entities in our
dataset. For example, diagnosis and treatment mentions are
more frequent than mentions of cancer_grade. In Table 7, we
present the number of instances of each entity type in our dataset
and the corresponding performance of GPT4-o direct prompting.
We can see that GPT4-o performs the best for the entity types
that have the most instances—diagnosis, model type, and
treatment entities. Of these frequent entity types, biomarker is
the one with the lowest performance. Our error analysis points
to several factors that could have contributed to these results,
including ambiguous and inconsistent mentions and contextual
dependencies. In this task, we defined a biomarker as “gene,
protein or biological molecule identified in or associated with
patient’s/model’s tumor.” Thus, biomarker entities can be
mentioned using their full names (eg, epidermal growth factor

receptor, lnc-RP11-536 K7.3, echinoderm
microtubule-associated protein-like 4), standardized gene or
protein symbols (NPM1, KRAS, PTEN) or abbreviations of
metabolites (NADPH, D2HG). Moreover, a biomarker entity
(eg, “MEK”) often overlaps with a treatment entity (eg, “MEK
inhibitor”). The ambiguity in biomarker entity mentions might
interfere with the model’s ability to recognize them consistently.
In addition, biomarker entities are often mentioned as lists (see
Example 2) resulting in a different frequency within and across
the abstracts and patterns of entity mentions, in comparison
with other entities. Overall, ambiguity emerges as the primary
source of error. More precise definitions, accompanied by
examples illustrating the distinct meanings, might present a
solution. Table S2 in Multimedia Appendix 1 provides the
breakdown of errors per entity type along with examples.
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Table . Evaluation results of GPT4-o with direct prompts for each entity type as precision or positive predictive value, recall or sensitivity, and F1-score
(harmonic mean of precision and recall). Results are overlapping match setting on the test set.

IAAaF1-scoreRecallPrecisionTest instances, nDevelopment in-
stances, n

Training in-
stances, n

Entity type

61.6783.09b75.4492.47114122362diagnosis

600.00.00.00019age_category

57.6746.3847.0645.71332069genetic_effect

53.3386.10b84.2188.07110114326model_type

54.3364.52b63.8365.224637128molecular_char

61.3367.16b55.4985.05163118503biomarker

55.6775.50b70.1581.7413077426treatment

5547.2260.7138.64282199response_to
_treatment

4955.56b71.4345.457822sample_type

49.6761.54b57.1466.67281961tumor_type

4266.67b10050.0116cancer_grade

59.3328.5725.033.33417cancer_stage

60.6788.89b10080.04235clinical_trial

61.6744.4428.57100709host_strain

10040.028.5766.677217model_id

aIAA: interannotator agreement.
bF1-scores exceeding interannotator agreement.

Example 2:

Genomic alterations involved RB1 (55%), TP53
(46%), PTEN (29%), BRCA2 (29%), and AR (27%),
and there was a range of androgen receptor signaling
and NEPC marker expression.

The moderate performance of entity types such as genetic_effect,
molecular_char, and response_to_treatment, and tumour_type
is due to the number of training instances ranging from 61 to
128 as well as the IAA ranging from 49.67 to 57.67. The
moderate IAA scores of those entity types underscore the need
for refined annotation protocols and modeling strategies that
better capture domain-specific knowledge. Furthermore, the
lower performance observed for entity types with smaller sample
sizes (eg, model_id) highlights the need for enhancing model
performance on low-frequency labels. Future research could

explore strategies such as data augmentation to improve the
model’s generalizability for underrepresented entities.

The extraction of PDCM-relevant knowledge is not an easy task
for the domain experts as indicated by the IAA (F1-score below
65 for all entity types except for model_id). In 9 out of 15 entity
types, the system performance in an overlapping match setting
exceeds the IAA (last two columns of Table 7). This is the case
for categories with plentiful training instances (eg, diagnosis,
model_type) as well as for categories with fewer training
instances (eg, sample_type, cancer_grade). For the exact match
setting, in 6 out of 15 entity types, the system performance
exceeds the IAA (last two columns in Table 8). Therefore, the
LLM could be a viable assistant, with its outputs reviewed by
a domain expert to ensure the accuracy of the finalextraction.
We believe such human-in-the-loop approaches present a
promising direction for future research and application.
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Table . Evaluation results of GPT4-o with direct prompts for each entity type as precision or positive predictive value, recall or sensitivity, and F1-score
(harmonic mean of precision and recall). Results are exact match setting on the test set.

IAAaF1-scoreRecallPrecisionTest instances, nDevelopment in-
stances, n

Training in-
stances, n

Entity type

61.6768.93b62.2877.17114122362diagnosis

60.00.00.00.00019age_category

57.6726.4727.2725.71332069genetic_effect

53.3356.62b56.3656.88110114326model_type

54.3354.35b54.3554.354637128molecular_char

61.3333.7326.3846.74163118503biomarker

55.6760.71b52.3172.3413077426treatment

5533.8042.8627.91282199response_to
_treatment

4955.56b71.4345.457822sample_type

49.6744.039.2950.0281961tumor_type

4266.67b10050.0116cancer_grade

59.3328.5725.033.33417cancer_stage

60.6744.4450.040.04235clinical_trial

61.6725.014.29100709host_strain

10040.028.2766.677217model_id

aIAA: interannotator agreement.
bF1-scores exceeding the interannotator agreement.

We would like to note that the work presented in the paper was
done in a computational environment representative of the vast
majority of academic medical centers and nonindustry research
labs. Although we have access to SOTA Graphics Processing
Units, we still found ourselves constrained as to the extent to
which we could use very large language models. The larger
community needs to address the growing gap in computational
resources between big tech and the rest of the research
community.

Limitations
As this is a feasibility study, we limited ourselves to the
extraction of entity mentions of 15 entity types chosen from
attributes in the descriptive standards for PDCMs. While these
are recognized by the PDCM and oncology community, they
do not cover all knowledge in the PDCM-relevant texts. Some
refinement of the entity types will be beneficial to improve
prompting results.

We limited our corpus to 100 abstracts from papers associated
with PDCMs deposited in CancerModels.Org. We did not assess
the abstracts for the presence and equal distribution of all the
entities. Thus, there were very few mentions of some entities
in the corpus (eg, cancer_stage), negatively affecting our overall
F1-score. We decided not to exclude those entities as these
results could guide refinements of future studies. The
computational methods discussed here are applicable to other
studies requiring the extraction of textual information from

scientific papers. Future work could involve extending this
method to extract knowledge from the main body of the papers.

Conclusions
This study investigates the potential of LLMs as powerful tools
for extracting PDCM-relevant knowledge from scientific
literature—an essential task for advancing cancer research and
precision medicine. By comparing direct and soft prompting
across both proprietary and open LLMs, we provide valuable
insights into the most effective strategies for PDCM-relevant
knowledge extraction. Our findings indicate that GPT-4o, when
used with direct prompting, maintains competitive performance,
while soft prompting significantly enhances the effectiveness
of smaller LLMs. In conclusion, our results demonstrate that
training soft prompts on smaller open models can achieve
performance levels comparable to those of proprietary LLMs.

To our knowledge, this is the first study to implement SOTA
LLMs prompting for knowledge extraction in the PDCM domain
and the first to explore the emerging topic of soft prompting in
this context. Our findings demonstrate that LLMs can effectively
streamline the extraction of complex cancer model metadata,
potentially reducing the burden of manual curation and
accelerating the integration of PDCMs into research and clinical
workflows. Additionally, this study lays the foundation for
future research aimed at optimizing LLMs for large-scale
knowledge extraction tasks. Efficiently extracting and
harmonizing PDCM-relevant knowledge will ultimately drive
progress in cancer research and precision oncology, equipping
researchers and clinicians with better tools to improve patient
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outcomes. More broadly, our study contributes to the ongoing
discourse on the applicability of LLMs, acknowledging that

while they offer transformative potential, they are not a universal
solution for all tasks.
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Abstract

Background: The number of survivors of cancer is growing, and they often experience negative long-term behavioral outcomes
due to cancer treatments. There is a need for better computational methods to handle and predict these outcomes so that physicians
and health care providers can implement preventive treatments.

Objective: This study aimed to create a new feature selection algorithm to improve the performance of machine learning
classifiers to predict negative long-term behavioral outcomes in survivors of cancer.

Methods: We devised a hybrid deep learning–based feature selection approach to support early detection of negative long-term
behavioral outcomes in survivors of cancer. Within a data-driven, clinical domain–guided framework to select the best set of
features among cancer treatments, chronic health conditions, and socioenvironmental factors, we developed a 2-stage feature
selection algorithm, that is, a multimetric, majority-voting filter and a deep dropout neural network, to dynamically and automatically
select the best set of features for each behavioral outcome. We also conducted an experimental case study on existing study data
with 102 survivors of acute lymphoblastic leukemia (aged 15-39 years at evaluation and >5 years postcancer diagnosis) who
were treated in a public hospital in Hong Kong. Finally, we designed and implemented radial charts to illustrate the significance
of the selected features on each behavioral outcome to support clinical professionals’ future treatment and diagnoses.

Results: In this pilot study, we demonstrated that our approach outperforms the traditional statistical and computation methods,
including linear and nonlinear feature selectors, for the addressed top-priority behavioral outcomes. Our approach holistically
has higher F1, precision, and recall scores compared to existing feature selection methods. The models in this study select several
significant clinical and socioenvironmental variables as risk factors associated with the development of behavioral problems in
young survivors of acute lymphoblastic leukemia.

Conclusions: Our novel feature selection algorithm has the potential to improve machine learning classifiers’ capability to
predict adverse long-term behavioral outcomes in survivors of cancer.

(JMIR Bioinform Biotech 2025;6:e65001)   doi:10.2196/65001

KEYWORDS

machine learning; data driven; clinical domain–guided framework; survivors of cancer; cancer; oncology; behavioral outcome
predictions; behavioral study; behavioral outcomes; feature selection; deep learning; neural network; hybrid; prediction; predictive
modeling; patients with cancer; deep learning models; leukemia; computational study; computational biology
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Introduction

Background
The number of survivors of cancer is increasing globally. The
American Cancer Society recently reported that in 2023, a total
of 1,958,310 new cancer cases were projected to occur in the
United States [1]. Treatment advances have resulted in a
dramatic improvement in the survival rates of most cancers,
especially in resource-limited countries and regions. However,
this growing population of survivors of cancer may develop a
myriad of treatment-related adverse effects that lead to a
compromised health status. Studies have also shown that
survivors of cancer are more likely than the general population
to experience negative long-term behavioral outcomes, such as
anxiety, depression, attention problems, and sluggish cognitive
tempo, after cancer treatments [2]. Contemporary treatment
strategies have led to improved life expectancy after treatment
for pediatric cancer, especially in survivors of acute lymphocytic
leukemia (ALL) [3]. Given that studies have shown that the
promotion of a healthy lifestyle and interventions that reduce
physical and mental health burdens can lead to reduction in
all-cause and cause-specific mortality, addressing the risk factors
of adverse functional outcomes early on is critical [4-6]. Thus,
developing an effective approach to identify crucial factors and
then detect these negative outcomes in advance is needed so
that medical therapists can intervene early and take the
appropriate actions and treatments promptly to mitigate adverse
effects in survivors of cancer.

Current Approaches for Detecting Adverse Behavioral
Outcomes in Survivors of Cancer
Currently, to support the identification of relevant factors and
the early detection of adverse behavioral outcomes for survivors
of cancer, clinical scientists use various statistical analyses to
understand the relationship among those behavioral outcomes,
cancer treatments, chronic health conditions, and
socioenvironmental factors [7-9]. Specifically, traditional
statistical methods (ie, linear regression analysis) are used to
extract predictor variables and then model the relationship
between the extracted predictor variables and the behavioral
outcomes. This analysis assumes that the behavioral outcomes
are, for the most part, linearly correlated with those predictor
variables. However, this assumption may not always hold in
this complex and dynamic problem. Furthermore, the predictors
for those behavioral outcomes extracted by statistical methods
may have weak prediction accuracy, as modeling human
behavioral outcomes is challenging due to its multifactorial
nature (ie, many predictors as well as interactions among the
predictors affecting the outcome), heterogeneity (ie, differences
across individuals), nonlinearity of data, multicollinearity (ie,
highly correlated variables), class imbalance (ie, few
observations of the outcome of interest), and missing data
[10,11]. As a result, this class of linear regressors can only
account for a small proportion of variance, with limited usability
in a clinical setting. Thus, developing an effective computational
methodology that can maximize the use of those data for
prognostic and predictive behavioral outcomes is highly
desirable.

To address the abovementioned problems, feature selection
techniques in machine learning (ML) play an important role.
Feature selection techniques can be broadly divided into 4
categories: filter, wrapper, embedded, and hybrid. Filter methods
select features based on their statistical significance to the
outcome of interest. Unlike other feature selection methods,
such as wrapper and embedded methods, filter methods function
independent of any ML classifiers. However, filter methods are
less accurate than other methods of feature selection, such as
wrapper methods. In addition, there is a risk of selecting
redundant features when using filter methods that do not
consider the correlation between features. Wrapper methods
use a greedy search algorithm (ie, an iterative algorithm that
makes the locally optimal choice at each step) with a classifier
to sequentially add and remove features from the classifier to
maximize the specified scoring metrics, that is, precision, recall,
and F1-score. The output is the best subset of features that the
algorithm found. While wrapper methods are proficient in
achieving high classification accuracy, they are not efficient in
computation time or complexity. In addition, there is also a risk
of overfitting with wrapper methods, where the classifier is
highly trained to generate accurate predictions for the training
data only and cannot correctly create generalized predictions
for testing data or any novel datasets. Embedded methods use
qualities from both filter and wrapper methods to perform
feature selection during the construction of the ML classifiers.
The baseline embedded methods that are commonly used are
least absolute shrinkage and selection operator (Lasso), Ridge,
and ElasticNet. However, to effectively use embedded methods,
prior knowledge of the feature sets is required. In addition,
embedded methods could pose problems when identifying small
feature sets. Hybrid methods combine filter and wrapper
methods to take advantage of the benefits each method provides,
while minimizing their limitations [12]. A filter method first
selects a subset of features, which are then input into a wrapper
method to further select the best subset of features. As hybrid
methods are a combination of filter and wrapper methods, they
inherit problems from both—filter methods may exclude
important features and wrapper methods are inefficient in
computation time.

Goal of This Study
To bridge the abovementioned gaps, we propose a hybrid deep
learning–based feature selection approach to support early
detection of long-term adverse behavioral outcomes in survivors
of cancer. Specifically, our goals are four-fold: (1) devise a
data-driven, clinical domain–guided framework to select the
best set of features among cancer treatments, chronic health
conditions, socioenvironmental factors, and others; (2) develop
a 2-stage feature selection algorithm, that is, a multimetric,
majority-voting filter and a deep dropout neural network (DDN),
to dynamically and automatically select the best set of features
for each behavioral outcome; (3) conduct an experimental case
study on our existing study data with 102 survivors of ALL
(aged 15-39 years at evaluation and >5 years postcancer
diagnosis) who were treated in a public hospital in Hong Kong;
and (4) design and implement radial charts to illustrate the
significance of the selected features on each behavioral outcome
to support clinical professionals’ future treatment and diagnoses.
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In this pilot study, we demonstrate that our approach
outperforms the traditional statistical and computation methods,
including linear and nonlinear feature selectors, for the addressed
top-priority behavioral outcomes.

Methods

Review of Baseline Feature Selection Methods

Overview
Four baseline feature selection methods were used in the
experimental studies as a comparison for our novel feature
selection algorithm (Textbox 1).

Textbox 1. Summary of the baseline feature selection methods.

Filter

• Correlation-based feature selection (CFS)

• Information gain (IG)

• Maximum relevance minimum redundancy (MRMR)

Wrapper

• Sequential forward selection (SFS)

• Sequential backwards selection (SBS)

• Stepwise selection (SS)

Embedded

• Least absolute shrinkage and selection operator (Lasso)

• Ridge

• ElasticNet

Hybrid

• CFS→SFS

• IG→SFS

• MRMR→SFS

• CFS→SFS

• IG→SFS

• MRMR→SFS

• CFS→SBS

• IG→SBS

• MRMR→SBS

• CFS→SS

• IG→SS

• MRMR→SS

Filter Methods
Filter methods select features based on their statistical
significance to the outcome of interest, independent of any ML
classifiers. To evaluate the performance of existing filter
methods, we use information gain (IG), maximum relevance
minimum redundancy (MRMR), and correlation-based feature
selection (CFS) [13]. IG is calculated by comparing the entropy
of the dataset before and after a transformation. When IG is
used for feature selection, it is called mutual information and
works by evaluating the IG of each variable in the context of
the target. The MRMR algorithm selects the best K features at

each iteration that have maximum relevance with respect to the
target variable and minimum redundancy with respect to the
other features. The CFS algorithm involves splitting the features
into subsets based on whether their values are continuous or
discrete and can be used to measure the correlation between
features and the target outcomes. For continuous data, Pearson
correlation can be used, and for discrete data, symmetrical
uncertainty can be used. Symmetrical uncertainty is a measure
of relevance between features and targets that uses mutual
information [14]. When evaluating the performance of the
existing filter methods, we selected the top 15 features that had
the highest scores for each of the 3 approaches.
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Wrapper Methods
For binary classification, wrapper methods use a greedy search
algorithm with a classifier to sequentially add and remove
features from the classifier to maximize the specified scoring
metric, that is, precision, recall, and F1-score. The output is the
best subset of features that the algorithm found. To evaluate
existing wrapper methods’ performances, we selected 3
commonly implemented wrapper methods: sequential forward
selection (SFS), sequential backward selection (SBS), and
stepwise selection (SS). SFS starts with an empty subset of
features and iteratively adds features if adding them improves
the specified score, according to the ML classifier. The selection
terminates when a feature subset of the desired size k, where k
refers to the number of features expected by the domain experts,
is reached. In contrast, SBS starts with a full subset of all the
features and iteratively removes features if removing them
increases the specified score, according to the classifier. The
selection also terminates when a feature subset of the desired
size k is reached. SS, also known as bidirectional selection,
alternates between forward and backward selection to select the
best subset of features. To implement the wrapper selection
approaches, we used the support vector machine classifier and
used accuracy as the default scoring metric [15]. We also
specified that the selection process should terminate when a
feature subset of size 15 is reached. For the purpose of the study,
we decided a priori that the feature subset should be limited to
15 because if there are too many exploratory factors in the
model, the contribution of each factor to the variance may be
too small and its clinical significance may be questionable.

Embedded Methods
Embedded methods use qualities from both filter and wrapper
methods to perform feature selection during the construction
of the ML classifier. The embedded classifiers we used were
Lasso, Ridge, and ElasticNet. Lasso regression is a form of

linear regression that imposes an L1 regularization penalty to
identify the features that minimize the prediction error [16].
Similar to Lasso, Ridge regression is another form of linear
regression that uses an L2 penalty instead [17]. ElasticNet
regression merges Lasso and Ridge regression using the L1 and
L2 regularization penalties [18]. ElasticNet regression can shrink
some features to zero, similar to Lasso, while reducing the
magnitude of other features, like Ridge. For each evaluated
embedded method, we selected the top 15 most relevant features
for each behavioral outcome.

Hybrid Methods
Hybrid methods combine filter and wrapper methods to take
advantage of the benefits each method provides, while
minimizing their limitations [12]. We implemented 9 different
hybrid methods using the top 30 features selected from the 3
filter methods (ie, CFS, IG, and MRMR) and inputting them
each into the 3 wrapper methods, including SFS, SBS, and SS,
to subsequently select the top 15 features.

Data-Driven, Clinical Domain–Guided Framework
In this section, we describe and explain our framework that
consisted of 6 main modules (Figure 1). The cancer survivor
medical records, including the features, such as biomarkers,
chronic health conditions, and socioeconomic factors, were first
passed into the data cleaner that “sanitizes” the records with the
clinical domain knowledge from our investigators. Note that
throughout the framework, our clinical domain experts assisted
us with certain processes. In this case study, for example, it
consisted of replacing missing values in a patient’s record by
averaging the existing values of the corresponding feature
among all the other patients’ records grouped by a specific
cancer type, age range, and biological sex. Clinical domain
experts also helped us interpret and explain what different
variable values mean for us to properly transform them into the
correct variables.

Figure 1. Data-driven, clinical domain–guided framework.

Afterward, the records were passed into the feature transformer,
where the one-hot encoding technique was used to transform
categorical variables into binary ones [19]. For instance, we
transformed the “gender” variable from categorical to binary
by replacing “M” and “F” with 1 and 0.

Following feature transformation, the records were normalized
by the feature normalizer. The Shapiro-Wilk test, the
Kolmogorov-Smirnov test, and the D’Agostino-Pearson test

were used to check whether features follow a normal
distribution. If 2 out of the 3 tests conclude that a feature follows
a normal distribution, it is standardized by removing the mean
and scaling to unit variance [20-22]. Otherwise, features are
normalized using the minimum-maximum normalization
technique so that all features have values between “0” and “1.”
This eliminates any feature bias, where features with high values
are given more importance than features with low values [23].
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Once the records are cleaned, transformed, and normalized,
they are then passed into the data balancer. At this point, the
results differ depending on the behavioral outcome being
predicted. The synthetic minority oversampling technique for
nominal and continuous (SMOTE-NC) is used to artificially
balance the instances where the number of patients having a
behavioral outcome of “1” is the minority, which is most often
the case as cancer survivor datasets are often imbalanced. The
SMOTE-NC technique oversamples the minority class in
unbalanced datasets by creating synthetic examples instead of
oversampling using replacement. The algorithm involves
computing the median of the SD of continuous variables for the
minority class and using the median to penalize nominal features
that differ between the considered feature vector and its potential
nearest neighbors, conducting nearest neighbors computation,
and populating the synthetic class [24]. The SMOTE-NC
technique is also used to artificially oversample the minority
gender so the final datasets can have equal instances of “0” and
“1” for the behavioral outcome. We specifically chose the
SMOTE-NC technique over the regular synthetic minority
oversampling technique because our dataset had a mixture of
nominal and continuous features. synthetic minority
oversampling technique can only handle datasets with
continuous features. The data were then split into 69.6%
(71/102) training and 30.4% (31/102) testing data.

Once the survivors of cancer’ clinical records passed through
all the steps of data preprocessing, they were passed into our

hybrid deep learning–based feature selection that was a 2-stage
feature selection algorithm, that is, a multimetric,
majority-voting filter and a DDN, to dynamically and
automatically select the best set of features for each behavioral
outcome. Specifically, the first stage was a novel filter method
that uses 4 metrics to select the most relevant features for a
behavioral outcome and removes any redundant features. The
second stage was a DDN that replaces a wrapper method, where
it further selects features from the ones selected by the
multimetric, majority-voting filter to maximize prediction
performance in ML classifiers. Note that our clinical domain
experts used their clinical expertise to recommend certain
features that should be kept in all the final feature lists due to
their clinical importance (ie, gender, current age, and age at
diagnosis in our case), if they were not already selected to be
in the final feature list by our feature selection approach. Finally,
the training data with the final feature list selected from the
feature selector with the clinical domain expertise were passed
into 3 ML classifiers, including logistic regression, naive Bayes,
and k-nearest neighbors, to calculate the precision, recall, and
F1-score for the performance evaluation on the testing data.

2-Stage Feature Selection Algorithm
Our proposed 2-stage feature selection algorithm consisted of
2 sequential stages, including a multimetric, majority-voting
filter, and a DDN (Figure 2).

Figure 2. Two-stage feature selection algorithm.

Stage 1: A Multimetric, Majority-Voting Filter

Overview

Our hybrid deep learning–based feature selection methodology
specifically addressed the limitations of existing feature selection
methods. In the first stage, it removed redundant features, which
some existing filter methods do not consider. Specifically, our
3 majority-voting (MV) filter had 2 processing steps in stage
1.

In stage 1A, we used 4 different metrics to select the features
that are the most relevant to predict a behavioral outcome. Those
metrics include maximal information coefficient (MIC), Gini

index (GI), IG, and correlation score (CS) that we calculated
between each candidate feature in our preprocessed dataset and
the corresponding behavioral outcome of interest. The MIC is
a measure of the strength of the linear or nonlinear association
between 2 variables X and Y, where X Є R is the input feature
and Y Є R is the corresponding behavioral outcome.

The GI represents the amount of probability of a specific feature
that is classified incorrectly when selected randomly. Unlike
the other 3 metrics, a higher GI score represents lower
associations with the behavioral outcome of interest. To make
the scale of the correlation strength between X and Y consistent
among all the metrics, the metric that we used was 1–GI instead.
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That is, for all the 4 metrics, a higher value indicated a higher
association with the behavioral outcome of interest.

The IG is a measure of the expected reduction in entropy caused
by partitioning the samples according to a specific attribute X.

The CS between X and Y is calculated using the Pearson
correlation coefficient, point-biserial correlation, and the φ
coefficient, based upon the data type of X and Y [25]. When
both X and Y are the continuous variables, the Pearson
correlation coefficient should be used. When comparing 1
continuous and 1 binary variable, the point-biserial correlation
is used [26]. Finally, when comparing 2 binary variables, the φ
is used. All these measures are values between −1 and 1, with
−1 being a perfect negative correlation and 1 being a perfect
positive correlation, while 0 represents no correlation. We take
the absolute value of each measure so that the CS is always
between 0 and 1.

After we calculated the values of all 4 abovementioned metrics
between each candidate feature and the behavioral outcome of
interest, we ranked the top N features (ie, the number of features
expected by the domain experts) for each of the metrics in
descending order and stored them in a master list, without
repetition. From this master list, we constructed 3 feature lists.
The first list contained the features selected by at least 3 metrics,
as they are highly likely relevant to predict the behavioral
outcome and are then included in the final feature list. The
second one contained the features selected by exactly 2 metrics,
as they might have been relevant to predict the behavioral
outcome and were then needed for further analysis in stage 1B.
The third one combined all the features from the previous 2 lists
so that we could evaluate the redundancy between any 2 features
from this list.

In stage 1B, we removed any redundant features from the third
combined list generated from stage 1A. We used the MIC and
the CS and then calculated these 2 values for all the
feature-to-feature combinations in the combined feature list
output from stage 1A. We subtracted the MIC and the CS values
from 1 and then used the 1–MIC and 1–CS values to determine
if any feature was redundant by other features. The threshold

we set was 0.05, based upon our preliminary experimental
analysis, so that any combination of 2 features that resulted in
both scores being <0.05 was determined to be redundant. Once
it was determined that 2 features were redundant, we looked at
the number of metrics that selected the features. If one of the
features was selected by fewer metrics, that feature was removed
from the third combined list. If both features were selected by
the same number of metrics and they were redundant, we then
looked at the average rank of each feature across the 4 ranked
lists by MIC, GI, IG, and CS. The feature with the lower rank
was removed from the third combined list. The pseudocode
algorithm is detailed for the multimetric, majority-voting filter
in Multimedia Appendix 1.

For illustration, we used our dataset as an example to explain
our multimetric, majority-voting filter.

Stage 1A: Select the Top N Features Per Metric

Overview

Suppose we want to select the best features for predicting the
behavioral outcome, thought problems. This is our B_Outcome.
F is the set of all input candidate features Fi in the preprocessed
clinical records. We then calculate the MIC, 1–GI, IG, and CS
scores for all the candidate features in the preprocessed clinical
records and our B_Outcome, thought problems. We store these
results in 4 sets, MIC,1–GI, IG, and CS. In this example, our
domain experts expected 15 nonredundant input candidate
features to be selected; thus, N was set to 15.

Step 1

We first sorted the input features (ie, Fis) according to their
MIC, 1–GI, CS, and IG scores. Since N was 15, we then took
the top 15 features with the highest values from the MIC set
and placed them into a separate set, that is, FMIC. We repeated
this with (1–GI), IG, and CS scores and placed the top 15
features into the corresponding sets, that is, F1-GI, FCS, and FIG.
At this point, we had the following features in these sets:
FMIC,F1-GI, FCS, and FIG. As there were 15 features in each set,
we had 60 features across all the 4 sets (Textbox 2).
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Textbox 2. Total input features sorted by maximal information coefficient (MIC), 1- Gini index (GI), correlation score (CS), and information gain (IG)
scores in descending order.

FMIC

Physical fatigue>overall fatigue>cognitive fatigue>family communication>family concern>IV high-dose methotrexate (MTX)>sleep fatigue>physical
activity>family conflict>parental control>family mutuality>age at cancer diagnosis>intrathecal MTX dose>noncranial radiation>cranial radiation
therapy

F1–GI

Years of education>intrathecal chemotherapy>leukemia risk group>intrathecal MTX dose>living space>physical activity>cognitive fatigue>family
communication>physical fatigue>family mutuality>IV high-dose MTX>sleep fatigue>family conflict>age at cancer diagnosis>age at evaluation

FCS

Physical fatigue>overall fatigue>cognitive fatigue>family communication>IV high-dose MTX>family concern>sleep fatigue>family conflict>parental
control>physical activity>cranial radiation therapy>noncranial radiation>intrathecal MTX dose>years of education>family mutuality

FIG

Impulsivity (on continuous performance test [CPT; Conner continuous performance test to measure a person’s performance in attention, particularly
in areas of inattentiveness, impulsivity, variation in response speed, sustained attention, and information processing efficiency] attention
test)>inattentiveness (on CPT Attention test)>information processing efficiency (on CPT attention test)>hematopoietic stem cell transplant>response
speed variability (on CPT Attention Test)>surgery>sustained attention (on CPT attention test)>physical fatigue>overall fatigue>neurological
complications>leukemia risk group >living space>inattentiveness (on CPT attention test)>inflammatory interleukin-7

Step 2

We then created a new set FUNION, the union of sets FMIC, F1–GI,
FCS, and FIG in step 1, allowing duplicate values. This set FUNION

represents all the features that have the top 15 MIC, 1–GI, IG,
and CS scores. At this point, the set FUNION contained 60 total
features.

Step 3

From the set FUNION, we created the subset 3Metrics+ from the
features that were stored in at least 3 of these 4 sets, FMIC, F1−GI,
FCS, and FIG. These features were then selected as 1 of the top
15 by at least 3 out of the 4 metrics, so these are likely to be
highly relevant to predict our B_Outcome, thought problems,
and were included in the final feature list. By applying this
concept, the subset 3Metrics+ contained 10 features.

Step 4

From the set FUNION, we also created a subset 2Metrics from
features that were stored in exactly 2 out of these 4 sets, FMIC,
F1–GI, FCS, and FIG. These features were selected as the top 15
by 2 out of the 4 metrics only. Thus, they may be relevant to
predict the B_Outcome, thought problems, but needed to be
further analyzed in stage 2 to determine if they should be kept
in the final feature list. By applying this concept, the subset
2Metrics contained 8 features only.

Step 5

We created another set 3+2Metrics, that is, the union of the sets
3Metrics+ and 2Metrics, without the duplicate values. At this
point, the set 3+2Metrics contained 18 features, including 10
in the 3Metrics+ set and 8 in the 2Metrics set (Textbox 3).
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Textbox 3. Features in the 3Metrics+ and 2Metrics sets.

3Metrics+

• Physical fatigue

• Overall fatigue

• Cognitive fatigue

• Family communication

• Sleep fatigue

• Family conflict

• Family mutuality

• Physical activity

• IV high-dose methotrexate (MTX)

• Intrathecal MTX dose

2Metrics

• Leukemia risk group

• Living space

• Family concern

• Cranial radiation therapy

• Years of education

• Family control

• Age at cancer diagnosis

• Noncranial radiation

Step 6

We also created a 1D matrix, Rank, which stored the average
rank position of each feature in 3+2Metrics from the sets FMIC,
F1–GI, FCS, and FIG. For instance, if we consider the feature
“physical fatigue,” as its position was 1, 9, 1, and 9 in the sets
FMIC, F1-GI, FCS, and FIG, respectively, its average position value
in Rank was equal to 5.

Step 7

Finally, we evaluated whether there were too many or too few
features at this stage. We first evaluated the number of features
in 3Metrics+. As 3Metrics+ had 10 features, which was less
than N, there was no need to remove any extra features. We
then evaluated the number of features in 3+2Metrics. As there
were 18 features in 3+2Metrics, which was greater than N, there
was no need to go back to step 1 to find at least 15 features. We
now had 3 sets as the outputs: 3Metrics+ with 10 features that
were selected by at least 3 metrics; 2Metrics with 8 features
that were selected by exactly 2 metrics; and 3+2Metrics, with
18 features that included the features from both 3Metrics+ and
2Metrics.

Stage 1B: Remove Redundant Input Features

At this step, we wanted to remove any redundant features from
the features that we selected in stage 1A.

Step 1

We computed 1–MIC(fi, fj) values and 1–CS(fi, fj) values by
the developed compute_MIC and compute_CS functions between
any pair of 2 features f1 and f2 in 3+2Metrics. We stored the
1–MIC(fi, fj) values and 1–CS(fi, fj) values in the sets
MIC_Feature_Score and CS_Feature_Score, respectively.

Step 2

We iterated each value in MIC_Feature_Score and
CS_Feature_Score between any pair of 2 features f1 and f2 in
3+2Metrics and checked if any values were <0.05. We then
checked if there was any feature pair that had values <0.05 in
both MIC_Feature_Score and CS_Feature_Score. Suppose we
found that the values in MIC_Feature_Score and
CS_Feature_Score that corresponded to the feature pair, “cranial
radiation therapy” and “noncranial radiation,” were indeed both
<0.05, then we select those 2 features as the feature pair that
we need to further analyze, as they were categorized as the
redundant features at this step. Suppose that “cranial radiation
therapy” and “noncranial radiation” were both in the set
2Metrics, meaning that they were both selected by 2 metrics,
then according to the algorithm, they were selected by an equal
number of metrics and we must compare their rankings in Rank
to decide which one must be removed. Suppose that “noncranial
radiation” had a lower rank, or a higher score, compared to
“cranial radiation therapy,” then we remove “noncranial
radiation” from the set 3+2Metrics.
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Step 3

After we removed the redundant features from the set
3+2Metrics, we then split the set 3+2Metrics into 2 new sets:
F3M+, such that its nonredundant features were selected by at
least 3 metrics in the set FUNION, and F2M,, such that its

nonredundant features were selected by exactly 2 metrics in the
set FUNION. 

Step 4

We now had 2 sets: F3M+ and F2M. The set F3M+ had 10 features
and the set F2M had 7 features after we removed “noncranial
radiation” (Textbox 4).

Textbox 4. Nonredundant features in the set F3M+ and set F2M.

F3M+

• Physical fatigue

• Overall fatigue

• Cognitive fatigue

• Family communication

• Sleep fatigue

• Family conflict

• Family mutuality

• Physical activity

• IV high-dose methotrexate (MTX)

• Intrathecal MTX dose

F2M

• Leukemia risk group

• Living space

• Family concern

• Cranial radiation therapy

• Years of education

• Parental control

• Age at cancer diagnosis

At this step, we checked if the sum of features from F3M+ and
F2M was<25. After removing redundant features, we still had
17 features, which was greater than N=15; thus, we do not need
to go back to step 1 in stage 1A to find at least 15 features. We
can then proceed to stage 2.

Stage 2: A DDN

Overview

In the second stage, the deep neural network had a dropout
parameter, where neurons are randomly ignored during
construction of the neural network, to avoid model overfitting,
which is a problem that the existing wrapper methods have.
Thus, our methodology is better suited for finding the best
features from the high-dimension, low-sample size dataset.
More specifically, after the features were processed by our
multimetric majority-voting filter, we passed all the
nonredundant features to the deep dropout neural (DDN)
network that was designed to determine whether adding any of
those features selected by the only 2 metrics to the list of the
features selected by at least 3 metrics resulted in a higher
F1-score. Note that this step was not conducted if the number

of the nonredundant features, that is, those features that were
already selected by at least 3 metrics in stage 1, had met the
domain experts’ expectation. Our designed DDN network was
a 2-hidden– and 1-output–layer architecture. Due to the limited
number of patients’ medical records with many input features,
our DDN network was likely to quickly overfit a training dataset.
To address this issue, we used the grid search algorithm with
the K-fold cross-validation (CV) to find the best dropout rate
for our network. We also dynamically set the network’s hidden

layer size using the formula , where I is the number of
selected input subset features and O is the number of labels per
behavioral outcome [27]. For the remaining network’s
initialization parameters, default values were used [28]. The
goal was to perform the hyperparameter tuning using the grid
search algorithm with the K-fold CV to obtain the optimal
parameters’values, including the dropout rate, all the network’s
parameters, and the size of each hidden layer [29].

Specifically, the subset of features selected by ≥3 metrics in
stage 1 was used in building the initial network architecture to
produce the baseline F1-score. This baseline F1-score tells us
how well the network predicts that a cancer survivor will
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develop the behavioral outcome of interest, using only the
features selected by at least 3 metrics. Afterward, we wanted
to see whether adding any subset of features selected by 2
metrics would improve the baseline F1-score. To achieve this,
we tried different combinations among the features selected by
2 metrics; added them on top of the features selected by at least
3 metrics; used all those features to build, train, and optimize
our network using the grid search algorithm with the K-fold CV
to obtain the optimal parameters’ values; and then recorded
each new F1-score. This allowed us to compare F1-scores
between the baseline and the baseline plus additional subsets
of features. If any of the new F1-scores were higher than the
baseline, then our final feature list was the one that produced
the highest F1-score. If none of the new F1-scores were higher
than the baseline, then our final feature list was simply the
baseline features, that is, the features selected by at least 3
metrics. A step-by-step pseudocode algorithm for our DDN
network is detailed in Multimedia Appendix 2).

Let us use our dataset as an example to explain our DDN
network. At this stage, we wanted to determine whether any
features selected by 2 metrics should be kept in the final feature
list on top of the features selected by at least 3 metrics. Our
input included the following:

1. F3M+ and F2M, which were our outputs from stage 1B.
2. Drop_Out_Rate, a set of fine-tuning dropout rates for

building a DDN network.
3. D_Train, which was the training dataset that only included

features in F3M+

4. Z, the set that included all possible subsets from F2M,
excluding the null set, where the size of subsets was less
than or equal to N minus the size of F3M+ so that the total
number of features does not exceed N. In our example, the
set Z only included all the possible subsets of size ≤5
because we already had 10 features in
non_redundant_three_more and N minus 10 was 5. Given
that there were 7 features in non_redundant_two, there were
128 possible subsets. However, because we only needed
the subsets with size ≤5 and we also excluded the null set,
we ended up with a total of 119 different subsets in the set
Z.

5. M, a set of lists that add all the possible subsets in the set
Z to the set F3M+; thus, there were 119 different lists.

6. E_Train, which is the set of training datasets that includes
features in each list in M.

7. K, the number of training partitions on D_Train and
E_Train for performing CV.

Step 1

We wanted to find the best dropout rate for the neural network,
using the grid-search technique, F1-score, and K-fold CV, on
D_Train, F3M+, B_Outcome, and Drop_Out_Rate of a DDN
network. K was set to 5. We thus first constructed a neural
network using the create_DDN function to perform the
grid-search technique. The neural network was initialized to
have a learning rate of 0.001, 500 epochs, used the “Adam”
optimizer, used the “Binary Cross Entropy” loss function, had

2 hidden layers with number of neurons and the “Relu”
activation function, and 1 output layer with 1 neuron and the
activation function “Sigmoid.” Suppose using the grid-search
technique with the D_Train training dataset, the F3M+ feature
set, the B_Outcome thought problems, the set of fine-tuning
dropout rates Drop_Out_Rate, and using 5-fold CV, we found
that the best dropout rate was 0.1 (bestDropOutRate was set to
0.1).

Step 2

We constructed a deep neural network with the initialized
attributes in the create_DDN function, bestDropOutRate,
D_Train, F3M+, and B_Outcome, and then performed 5-fold CV
to obtain the baseline F1-score, F1Baseline.

Step 3

We then iterated through each feature set (ie, F3M++Zr) in M
and constructed a deep neural network with the same initialized
attributes in the create_DDN function, bestDropOutRate,
E_Train, F3M++Zr, and B_Outcome, and then performed 5-fold
CV to obtain the F1-score, F1, for each training dataset in
E_Train. The hidden layer size of each neural network was
calculated using the number of features in M+1, divided by 2.
If any F1-score was greater than F1Baseline, the final feature list
(ie, Final_Features) was set to the feature set (ie, F3M++Zr) in
M in which the F1-score was obtained.

Step 4

We had the feature list with the best F1-score (ie,
Final_Features), which was passed into 3 ML classifiers:
logistic regression, naive Bayes, and k-nearest neighbors.

Pilot Experimental Study
In our experimental study, we used a 2018 to 2020 dataset that
contained 102 ALL survivors’ clinical records collected from
a public hospital in Hong Kong. The survivors were aged
between 15 and 39 years, had completed treatment, and were
>5 years postcancer diagnosis at the time of recruitment. In each
patient record, there were >50 features, including demographic
factors (eg, age, gender, and education level), cancer treatments
received (eg, radiation, chemoradiotherapy, and surgery),
inflammatory biomarkers (eg, interleukin-7, monocyte
chemoattractant protein-1, and tumor necrosis factor alpha-α),
physical health conditions (eg, BMI, sleep fatigue, and cognitive
fatigue), family life and socioeconomic descriptors (eg, family
conflict, family communication and living space),
attention-related outcomes (eg, measures of inattentiveness,
impulsivity, and sustained attention), and lifestyle habits (eg,
drinking, smoking, and physical activity). The features were
obtained from a behavioral assessment that included the
traditional Chinese version of the Achenbach System of
Empirically Based Assessment youth self-report checklist. It
consisted of syndrome scales measuring attention problems,
thought problems, internalizing problems (eg, somatic
complaints, anxiety and depressive symptoms, and withdrawn
behavior), externalizing problems (eg, aggressive behavior,
intrusive behavior, and rule-breaking behavior), and sluggish
cognitive tempo. The Achenbach System of Empirically Based
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Assessment measures were previously validated and used in
the local young adult cancer population [9,30]. The inclusion
of these features specifically in patient records was based on
existing evidence in the literature and data from the local study
cohort. The features predicting behavioral outcomes included
clinical factors (eg, leukemia risk group, age at cancer diagnosis,
and neurological complications), treatment factors (eg, cranial
radiation therapy, intrathecal methotrexate dose, intravenous
high-dose methotrexate, and hematopoietic stem cell transplant),
socioenvironmental factors (eg, living space and family
functioning), and lifestyle factors (eg, physical activity and
sleep fatigue) [9,30-34].

After preprocessing the data and using our 2-stage feature
selection algorithm, we selected 15 input features, expected by
our medical investigators, to train and test our 3 ML classifiers,
that is, logistic regression, naive Bayes, and k-nearest neighbors,
to predict 6 behavioral outcomes (ie, anxiety and depression,
thought problems, attention problems, internalizing problems,
externalizing problems, and sluggish cognitive tempo) that our
medical investigators would like to focus on. Due to their

clinical importance recommended by our medical investigators,
we also added 3 more clinically relevant features (ie, gender,
current age, and age at diagnosis) to the final feature list if those
features had not been already selected by our 2-stage feature
selection approach.

Ethical Considerations
Approval of this study was obtained from the Joint Chinese
University of Hong Kong – New Territories East Cluster Clinical
Research Ethics Committee (2017.701). Written informed
consent was obtained from all participants.

Results

Overview
The experimental results included the F1-score, precision, and
recall on the testing data (Table 1). Note that for each feature
selection method category, those scores are the average values
of prediction performance among all the 3 ML classifiers for
every behavioral outcome.

Table 1. Average F1-scores.

Percentage change (our method vs highest baseline)Our methodHybridEmbeddedWrapperFilterBehavioral outcome

Anxiety and depression

+18.270.738 a0.4490.5850.4370.624F1-score

+25.750.7080.4240.5630.4070.562Precision score

–4.310.7780.5800.6300.5190.813Recall score

Thought problems

+4.290.5110.3940.4770.4380.490F1-score

–24.070.4480.4960.5900.3850.522Precision score

+9.890.6110.3830.4630.5560.537Recall score

Attention problems

+29.100.5680.3500.4400.4170.348F1-score

+43.100.5150.3290.3500.3600.290Precision score

+5.870.6670.4240.6300.5190.463Recall score

Internalizing problems

–0.850.7000.6370.6190.7060.533F1-score

–7.490.6180.6680.6650.6650.583Precision score

+12.470.8570.6510.6510.7620.587Recall score

Externalizing problems

–39.430.2780.2650.2670.4590.219F1-score

+6.470.4440.2970.2780.4170.230Precision score

–60.070.2220.2590.2590.5560.222Recall score

Sluggish cognitive tempo

+9.790.6390.4890.5820.4630.560F1-score

–1.210.5700.4940.5770.4090.542Precision score

+13.300.7410.5680.6170.5680.654Recall score

aItalicized values indicate that our score was higher than the other 4 methods.
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Our 2-stage feature selection approach outperformed or leveled
the existing feature selection methods to support the prediction
of 5 out of 6 behavioral outcomes (ie, anxiety and depression,
thought problems, attention problems, internalizing problems,
and sluggish cognitive tempo) in terms of the average F1-scores
(Table 1). Although the wrapper method outperformed our
feature selection approach to support the prediction of
externalizing problems, our approach’s performance was more
stable, as the F1-score variance was smaller. Thus, our feature
selection approach still outperforms the other 3 existing feature
selection methods.

In addition, our feature selection approach outperformed or
leveled the existing feature selection methods to support the
prediction of 5 out of 6 behavioral outcomes (ie, anxiety and
depression, attention problems, internalizing problems,
externalizing problems, and sluggish cognitive tempo) in terms
of precision scores (Table 1). Although the embedded method
outperformed our feature selection approach to support the
prediction of thought problems, our approach’s performance
variance was much smaller, which implies our approach was
more stable.

Finally, our feature selection approach outperformed the existing
feature selection methods to support the prediction of 4 out of
6 behavioral outcomes (ie, thought problems, attention problems,
internalizing problems, and sluggish cognitive tempo) in terms
of recall scores (Table 1). Although the filter and wrapper
method outperformed our feature selection approach to support
the prediction of anxiety and depression and externalizing
problems, our approach’s performance variance was much
smaller as well.

As the F1-scores were calculated from both precision and recall
scores, we can infer that our feature selection approach improves
the F1-scores largely because it increases the recall scores as
opposed to the precision scores (Table 1). Overall, the
experimental results show promising evidence that our method
improves the ML classifiers’prediction performance to support
better early detection of long-term behavioral outcomes in
survivors of cancer.

Radial Feature Charts
Radial feature charts were generated for each of the 6 behavioral
outcomes analyzed, including anxiety and depression, thought
problems, attention problems, internalizing problems,
externalizing problems, and sluggish cognitive tempo (Figure
3). Each chart includes the top 15-plus features selected by our
proposed methodology. The size and the color of each red slice
is measured by the unified metric value of each feature, which
is calculated by averaging the scores of the metrics that select
each feature during stage 1A of our proposed method.

The variables represent the documented risk factors associated
with the development of behavioral problems in the literature.
They include (1) sociodemographic variables (ie, age at
evaluation and gender), (2) clinical variables (ie, age at cancer
diagnosis, intrathecal chemotherapy, intrathecal methotrexate
dose, IV high-dose methotrexate, and inflammatory interleukin-8
levels), and (3) socioenvironmental and lifestyle variables (ie,
sleep, fatigue, physical activity, and family functioning).
Physicians can interpret the charts by seeing which features
have the darkest color and largest size, indicating higher unified
metric values and thus greater associations with the behavioral
problem of interest. Those features can then be further used to
devise customized prevention plans and advice.
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Figure 3. Radial feature charts.

Discussion

Principal Findings
In this work, we sought to develop a prognostic ML framework
and feature selection approach to predict the trajectory of
functional outcomes in a specific population: survivors of ALL.
Our hybrid deep learning–based feature selection approach
outperforms or equals the existing feature selection methods

assessed (ie, filter, wrapper, embedded, and hybrid) for 5 out
of 6 long-term behavioral outcomes. Even in cases where our
feature selection method did not outperform existing methods,
our approach’s performance variance was much smaller and
thus more stable. We observed that the performance of the model
was significantly weaker in predicting externalizing problems
than internalizing problems. This may be attributed to the
complex phenotypic nature of externalizing behaviors, such as
antisocial or aggressive behaviors and conduct problems. In
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addition, there are other factors that may predict externalizing
problems that were not considered in this study. For example,
our previous work showed that increased screen time during
the COVID-19 pandemic was associated with inattentiveness
and impulsivity in pediatric survivors of cancer in China, but
screen time was not included in the data [35]. Social support
and rehabilitation, which are important interventions addressing
behavioral functioning and mental health in young Chinese
survivors of cancer, were also not assessed in this study [36].
From the data, we infer that our feature selection approach
improves F1-scores from ML classifiers compared to existing
feature selection methods largely because it increases the recall
scores as opposed to the precision scores. We also developed
radial feature charts that can quickly and effectively help
clinicians understand which predictor variables were most
important in predicting long-term behavioral outcomes. Overall,
the experimental results show promising evidence that our
method improves ML classifiers’ prediction performance on
high-dimension low-sample size data, which can support better
early detection of long-term behavioral outcomes in survivors
of cancer.

Limitations
Our study was limited to a pilot study with young Chinese
survivors of leukemia. As one’s neurodevelopment and social
skills are often dependent on cultural norms, our findings may
not be extrapolated or applicable to other populations. However,
the contemporary treatment for childhood ALL is similar in
most countries or regions, consisting of high-dose methotrexate,
intrathecal chemotherapy, and a standard set of intravenous and
oral chemotherapy drugs as the backbone. Therefore, we
reasoned that our findings may still be generalizable to the
existing population of individuals in the health care system of
Hong Kong who have survived leukemia over the past decade.
In addition, although clinical domain experts assisted with
additional input for the features that were kept in ML classifiers,
there remains room for human error, and domain experts’
opinions may occasionally differ from what features would
optimize ML classifiers’ performance. Furthermore, as this is
a cross-sectional study, it was not possible to delineate the causal
relationship between the risk factors and behavioral outcomes.
The model developed through this study should be validated in
a larger cohort with prospective collection of outcome data to
better reflect the trajectories of functional outcomes in these
young survivors as they advance from young to middle
adulthood. Finally, additional biases may have influenced the
data, such as those related to patients who had access to hospital
care and were willing to share their data with our clinical
investigators.

Comparison With Prior Work
Our findings reinforce existing evidence that adverse behavioral
outcomes in survivors of cancer are a complex and multifactorial
phenotype. Most preexisting research is focused on either
disease- or treatment-related factors as predictors of cognitive
dysfunction. However, socioenvironmental factors play an
important role in the neurodevelopment of these young
survivors. Our findings showed the interaction and unique
contribution of the socioenvironmental factors, such as family

dynamics and lifestyle factors, on anxiety, depression, and
sluggish cognitive symptoms in survivors. Studies have found
associations of parents’ psychological distress on the child’s
cognitive and behavioral outcomes [8,37]. Environmental events
can elicit a biological stress response that results in neurological
reactions to that stress. This is especially relevant in the context
of Hong Kong and Mainland China, where much emphasis is
now placed on ameliorating the adverse health effects of the
urban environment in children and adolescents. The findings
provide directions for the development of multidisciplinary
services and interventions. For example, social workers can pay
more attention to the occupational or employment challenges
of young survivors who experience fatigue symptoms from
treatment and manifest adverse behavioral outcomes. The study
findings can help us identify high-risk subgroups from
dysfunctional families or households struggling with financial
problems and conflicts. Interventions that promote
self-confidence and positive peer interaction can be implemented
during the early survivorship phase when young survivors transit
back to their full-time school or work.

Our results also build upon existing computational methods and
feature selection approaches for predicting behavioral outcomes
in survivors of cancer. Traditional computational methods in
the clinical and social sciences typically use regression analysis
to model the relationship between ≥2 variables for prediction.
However, modeling human behavioral data is challenging due
to its multifactorial nature, heterogeneity, nonlinearity of data,
and class imbalance [10,11]. As a result, the model can only
account for a small proportion of variance, with limited utility
in clinical settings. For example, we have reported that cranial
radiation, chronic health conditions, and poor physical activity
are associated with worse cognitive and behavioral outcomes
in Chinese survivors of childhood leukemia [9]. However, these
factors only accounted for 22.9% to 35.8% of the variance in
the traditional regression models. Identifying an effective
computational method that minimizes algorithmic bias, such as
the 2-stage feature selection algorithm within the clinical
domain–guided framework outlined in this study, can maximize
the use of clinical and behavioral data for predictive purposes.
Such prognostic models will aid in informing strategies aimed
at changing behavior and designing social and clinical
interventions.

Conclusions
Future studies can validate our prediction model in other Chinese
populations of survivors of cancer sharing similar cultural norms
in mainland China and Taiwan, as well as validate the model
in larger samples with a longitudinal prospective cohort study
design. In addition, studies can further investigate the real-world
feasibility of incorporating such algorithms into health care
systems as risk stratification tools to assist clinicians and
psychologists in identifying patients at risk of adverse behavioral
outcomes. Incorporation of diverse populations, larger sample
sizes, and similar prediction models in future studies may
provide deeper insights into the interaction among clinical,
treatment, socioeconomic, and lifestyle factors and their impact
on functional outcomes, ultimately enabling the incorporation
of such multifactorial insights to improve strategies for the
personalized care of patients with cancer.
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Given that we are working with such small cancer survivor
datasets, even a slight improvement in prediction performance
from ML classifiers can make a substantial difference in helping
survivors of cancer. Our data-driven, clinical domain–guided
approach can potentially address the problem of “high dimension
low sample size.” The pilot analysis shows that this approach
has allowed us to identify a set of interacting clinical and
socioenvironmental characteristics that predicted behavioral
outcomes in survivors.

In late 2019, the American Cancer Society had a special call
for attention to financial, social, and emotional concerns that
uniquely affect young survivors of cancer [38]. Currently, in
Hong Kong, there are no centralized cancer programs for
adolescent and young adult patients. From a clinical perspective,
identifying the unique factors associated with interindividual

differences in functional outcomes will help clinicians to identify
individualized modifiable risk factors. This will contribute to
the development of a personalized, patient-centered cancer care
program for local patients with cancer. From a research
perspective, this project serves as a pilot study to apply
ML-based prognostic technology, guided by clinical knowledge,
on a combination of objective data (ie, clinical and
demographics variables) and subjective data (ie, behavioral and
patient-reported variables). The framework and algorithms
developed through this analysis can be applied to address
clinically relevant research questions in patients with other
chronic diseases. The aim of this application is in line with the
recent call by the government of the Hong Kong Special
Administrative Region to harness data-driven analytics to
formulate health care policies [39].
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