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Abstract
Background: Multiple correspondence analysis (MCA) is an unsupervised data science methodology that aims to identify
and represent associations between categorical variables. Gliomas are an aggressive type of cancer characterized by diverse
molecular and clinical features that serve as key prognostic factors. Thus, advanced computational approaches are essential to
enhance the analysis and interpretation of the associations between clinical and molecular features in gliomas.
Objective: This study aims to apply MCA to identify associations between glioma prognostic factors and also explore their
associations with stemness phenotype.
Methods: Clinical and molecular data from 448 patients with brain tumors were obtained from the Cancer Genome Atlas.
The DNA methylation stemness index, derived from DNA methylation patterns, was built using a one-class logistic regression.
Associations between variables were evaluated using the χ² test with k degrees of freedom, followed by analysis of the
adjusted standardized residuals (ASRs >1.96 indicate a significant association between variables). MCA was used to uncover
associations between glioma prognostic factors and stemness.
Results: Our analysis revealed significant associations among molecular and clinical characteristics in gliomas. Additionally,
we demonstrated the capability of MCA to identify associations between stemness and these prognostic factors. Our results
exhibited a strong association between higher DNA methylation stemness index and features related to poorer prognosis such
as glioblastoma cancer type (ASR: 8.507), grade 4 (ASR: 8.507), isocitrate dehydrogenase wild type (ASR:15.904), unme-
thylated MGMT (methylguanine methyltransferase) Promoter (ASR: 9.983), and telomerase reverse transcriptase expression
(ASR: 3.351), demonstrating the utility of MCA as an analytical tool for elucidating potential prognostic factors.
Conclusions: MCA is a valuable tool for understanding the complex interdependence of prognostic markers in gliomas. MCA
facilitates the exploration of large-scale datasets and enhances the identification of significant associations.
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Introduction
Cancer is a dynamic and heterogeneous disease charac-
terized by several hallmarks controlling and contributing
to its development and progression [1]. Cancer research

continually generates large scales of data encompassing
clinical information, genomic and transcriptomic profiles,
prognostic and diagnostic markers, and therapeutic targets
[2]. Different approaches have been used to study and
associate all these variables to manage this complexity,
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aiming to reduce the dimensionality and enhance data
interpretation and decision-making process. Several features
used to study and classify the different types of cancer are
based on categorical variables. For instance, the most widely
used cancer staging system, TNM, is based on categori-
cal variables, where “T” refers to the size of the primary
tumor, “N” refers to the number of lymph nodes affected
by cancer, and “M” refers to absence or presence of metasta-
sis [3]. Thus, these biological and clinical variables interact,
and their associations can be measured and diagnosticated
using statistical tests such as Fisher exact tests and χ² tests.
However, these approaches could not provide a global and
comprehensive picture of the associations between these
variables, particularly in datasets with a large number of
categorical variables. Therefore, using multivariate and visual
analysis methods can significantly improve the analysis and
interpretation of associations between clinical and molecular
cancer phenotypes.

Brain tumors are a particularly aggressive type of cancer,
mostly due to local tissue damage and highly invasive
growth. Gliomas, which originate from neuroglial stem cells
or progenitor cells, account for 30% of primary brain tumors
and 80% of malignant brain tumors [4]. This heterogeneous
disease is histologically classified based on anaplasia criteria
and predominant cell types such as oligodendroglioma,
astrocytoma, and glioblastoma (GBM) [5]. Nevertheless, as
further investigation aimed to elucidate the neuropathological
mechanisms of gliomas, new variables are considered for
characterizing this cancer tumor, leading to reclassifications
based on mutational profiles, clinical data, and epigenetic
factors [6]. This scenario resulted in different prognosis
predictions, diagnosis determination, and treatment respon-
ses, contributing to an increasingly complex and stratified
understanding of gliomas.

Stemness is a key phenotype of cancer stem cells (CSCs),
related to tumor initiation and progression, therapy resistance,
and metastasis [7]. CSCs are referred to as a subpopulation of
tumor cells able to self-renew and differentiate into dis-
tinct cell lineages, enabling those cells to adapt to differ-
ent environmental situations [8]. Moreover, recent studies
have demonstrated associations between stemness features
and different histologic classifications or prognostic factors
of gliomas [9-11]. Therefore, providing a comprehensive
visualization of the associations between clinical features and
stemness in brain tumors could be valuable for identifying
and determining potential prognostic and therapeutic markers.

Multiple correspondence analysis (MCA) is an unsu-
pervised data science methodology that aims to observe
and represent associations between variables disposed in
contingency tables, visualizing these associations in a 2D
perceptual map. This approach allows for the simultaneous
visualization of the relationship between 2 or more charac-
teristics [12]. MCA shares general characteristics, and it
is an extension of principal component analysis which is
effective in reducing data dimensionality. Thus, MCA can
significantly reduce the workload and simplify statistical
analysis in healthy research [13]. The results of MCA are
typically interpreted in a 2D map, where the relative positions

of categories of each variable and their distribution along
the dimensions are analyzed. Categories that cluster together
and are closer are more likely to be associated, providing
key insights into the relationship [14]. Despite its applicabil-
ity, rigor, and success in other disciplines such as Geogra-
phy, Epidemiology, and Human Physiology, MCA remains
underused in Oncology research and few studies are applying
[12,14-16].

By using MCA, we aimed to gain a deeper understand-
ing of the interdependence between stemness and prognostic
factors. Our findings revealed associations among molecu-
lar and clinical characteristics and prognostic factors, as
previously described by the literature [17]. Additionally, we
demonstrated the capability of MCA to identify associations
between stemness and these prognostic factors. Our results
exhibited a strong association between higher stemness index
and features related to poorer prognosis, demonstrating the
utility of MCA as an analytical tool for elucidating oncologi-
cal heterogeneity and may also offer a valuable strategy for
therapeutic decision-making. This study highlights MCA as a
powerful tool for overcoming the barrier of representing the
heterogeneity and complexity of cancer variables, particularly
in glioma.

Methods
Dataset of the Tumor Samples
Clinical and molecular information of a total of 448
patients with brain tumors was obtained from the Cancer
Genome Atlas (TCGA). We tailored the dataset to con-
tain only qualitative information, with 12 variables: cancer
type, histology, grade, patient’s vital status, IDH (isoci-
trate dehydrogenase) status, codeletion of chromosomes 1p
and 19q arms, MGMT (methylguanine methyltransferase)
gene methylation, telomerase reverse transcriptase (TERT)
expression, gain of chromosome 19 and 20, chromosome
7 gain and chromosome 10 loss, ATRX (alpha thalas-
semia/mental retardation syndrome, X-linked) status, and
GBM transcriptome subtypes. All categorical variables were
selected based on their established role as prognostic factors
for brain tumors.
DNA Methylation Stemness Index
The DNA methylation stemness index (mDNAsi) based
on DNA methylation was built using a one-class logistic
regression [18] on the pluripotent stem cell samples (embry-
onic stem cell and induced pluripotent stem cell) from
the Progenitor Cell Biology Consortium dataset [19,20].
The algorithm was built and validated as described in the
original paper [21]. The mDNAsi was applied in 381 samples
from the TCGA database. Malta’s model presented a high
correlation among other CSC signatures, providing significant
insights into the biological and clinical features of pan-cancer.
The workflow to generate the mDNAsi is available in the
original paper [21].
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Multiple Correspondence Analysis
MCAs were conducted in the RStudio (version 4.3.1;
Posit, PBC) environment using the packages FactoMineR
(version 2.11; Institut Agro) [22] and cabootcrs (version
2.1.0; Cranfield University), for creating matrices for
MCAs. Contingency tables for the categorical variables were
generated, and associations between variables were assessed
using a χ² test with k degrees of freedom. This was fol-
lowed by the analysis of the adjusted standardized resid-
uals (ASRs). The χ² test evaluates whether the observed
associations between categorical variables are nonrandomly
associated (P value <.05). ASRs higher than 1.96 indicate
a significant association between variables in the matrix.
To perform MCA, the categorical variables should not be
randomly associated. To create the perceptual map, inertia
was determined as the total χ² divided by the number of
samples, resulting in the number of associations in the
dataset. MCA was performed based on the binary matrices
and row and column profiles were determined to demon-
strate the influence of each category of variables on the
others. Matrices were defined based on the row and column
profiles. Eigenvalues were then extracted to represent the
number of dimensions that could be captured in the analysis.
Finally, the x- and y-axis coordinates of the perceptual map
were determined, allowing the category of the variables to
be represented and established. In MCA, the spatial dis-
tance between categories of different variables reflects their
associations. Categories with high coordinates that are close
in space are directly associated, while categories present-
ing high coordinates but opposing coordinates are inversely
associated.
Statistical Analysis
Fisher exact tests and χ² tests were performed using RStu-
dio 4.3.1 environment and GraphPad Prism (version 10.3.0;
Dotmatics, USA).
Ethical Considerations
The results published in this paper are in whole based upon
data generated by the TCGA Research Network [23]. TCGA
Ethics and Policies was originally published by the National
Cancer Institute [24].

Results
MCA Can Identify Associations Between
Different Variables of Gliomas and
Patient Vital Status
To determine the suitability of glioma variables for MCA,
we first evaluated whether categorical glioma variables

were randomly or nonrandomly associated. This involved
creating individual contingency tables for each pair of glioma
variables (Multimedia Appendices 1-13). Then, we applied
χ² tests for each contingency table to confirm nonrandom
associations (P value <.05). We also confirmed the associa-
tions between categorical variables and patients’ vital status
using the Fisher exact test (P value <.05) (Multimedia
Appendix 14). Based on the χ² test, the results indicated that
only 2 categorical variables, gender and DAXX expres-
sion, were randomly associated, suggesting no significant
association patterns between these variables and the others.
Consequently, gender and DAXX expression were excluded
from further analysis.

In the subsequent analysis, we observed and measured
the strength of associations between the patient vital status
(0-alive; 1-dead) and different factors including cancer type,
histology, grade, IDH status, 1p19q codeletion, MGMT
promoter methylation, gain of chromosome (Chr) 7 and loss
of Chr10 (7+/10–), co-gain of Chr19 and Chr20 (19+/20+),
TERT expression, ATRX status, and transcriptome subtype,
aiming to determine whether MCA could identify associa-
tions between prognostic factors for this disease. We used
ASRs to assess these associations, considering a category of
each variable to be associated with either alive or dead vital
status when the ASR values were higher than 1.96. Patients’
vital status classified as dead were associated with poorer
prognostics factors such as GBMs, grade 4, IDH wild type,
non-codeleted 1p19q, unmethylated MGMT promoter, gain of
Chr7 and loss of Chr10, expression of TERT, ATRX wild
type, and classical (CL) and mesenchymal (ME) transcrip-
tome subtypes (Table 1). In contrast, patients classified as
alive were linked to favorable prognostic variables, includ-
ing oligoastrocytomas and oligodendrogliomas, grade 2,
IDH mutant, codeleted 1p19q, methylated MGMT promoter,
absence of combined Chr7+/Chr10– (chromosome 7 gain
and 10 loss), lack of TERT expression, ATRX mutant, and
the proneural (PN) and neural (NE) transcriptome subtypes
(Table 1). Histological classification, grade, IDH status, and
Chr7+/Chr10– were the most strongly associated features
with patient vital status. These associations were further
illustrated in a heatmap (Figure 1A-D).
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Table 1. Table exhibiting the values of the adjusted standardized residuals. Categories of variables with values higher than 1.96 are considered
associated. We could observe a strong association between poorer prognostic factors and dead vital status. In contrast, better prognostic factors were
associated with alive vital status.
Glioma variables Patient vital status Categories associated with

Alive Dead
Glioblastoma —a 8.127 Dead
Oligoastrocytoma 2.64 — Alive
Oligodendroglioma 3.309 — Alive
Astrocytoma 1.756 — Not associated
Grade 2 6.809 — Alive
Grade 3 0.155 — Not associated
Grade 4 — 8.127 Dead
IDHb wild type — 8.804 Dead
IDH mutant 8.804 — Alive
1p/19q codeletion 5.265 — Alive
1p/19q non-codeletion — 5.265 Dead
Methylated MGMTc promoter 5.26 — Alive
Unmethylated MGMT promoter — 5.26 Dead
No combined Chr7+/Chr10–d 5.756 — Alive
Chr7+/Chr10– — 5.756 Dead
Not expressed TERTe 3.078 — Alive
Expressed TERT — 3.078 Dead
ATRXf mutant 2.311 — Alive
ATRX wild type — 2.311 Dead
Proneural subtype 4.122 — Alive
Neural subtype 3.593 — Alive
Mesenchymal subtype — 4.635 Dead
Classical subtype — 4.852 Dead

aNot applicable.
bIDH: isocitrate dehydrogenase.
cMGMT: methylguanine methyltransferase.
dChr7+/Chr10–: chromosome 7 gain and 10 loss.
eTERT: telomerase reverse transcriptase.
fATRX: alpha thalassemia/mental retardation syndrome, X-linked.
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Figure 1. Heatmap exhibiting the values of the adjusted standardized residuals. Categories of variables with values higher than 1.96 are associated.
We could observe a strong association of (A) glioblastoma (8.127), (B) grade 4 (8.127), (C) IDH wild type (8.804), and (D) Chr7+/Chr10– (5.756)
with dead vital status. Favorable prognostic factors including (A) oligoastrocytoma and oligodendroglioma, (B) grade 2, (C) IDH mutant, and
(D) no combined copy number alterations were associated with alive vital status. Chr7+/Chr10–: chromosome 7 gain and 10 loss; IDH: isocitrate
dehydrogenase.

Using MCA, we observed that dimension 1 (x-axis) accoun-
ted for 33.71% of the variance, while dimension 2 (y-axis)
accounted for 14.08%. The inertia (sum of the variances) for
these 2 dimensions was 47.79%. The variance of the overall
dimensions (17 dimensions) for the combinations of the
variables is illustrated in Multimedia Appendix 15. The main
idea was to present the percentage of explained variance for
each dimension and not the influence of individual variables.
The total inertia (sum of the variances) was 1.41.

The results obtained from the MCA were visualized in a
2D perceptual map (Figure 2), highlighting the associations
between the categories of each variable. The coordinates of
each category are detailed in Table 2. The perceptual map
reveals that categories such as GBM, unmethylated MGMT
promoter, IDH wild type, Chr7 gain and Chr10 loss, grade 4,
GBM ATRX wild type, TERT expression, non-codel 1p.19q,

and CL and ME transcriptome subtypes are closely associated
with dead vital status, appearing along the positive x-axis
(dimension 1). Conversely, categories like oligoastrocytomas
and oligodendrogliomas, grade 2, IDH mutant, codel 1p19q,
methylated MGMT promoter, no combined copy number
alterations, no expression of TERT, ATRX mutant, and
PN and NE transcriptome subtypes are closely associated
with alive vital status, appearing along the negative x-axis
(dimension 1) (Figure 2).

These findings highlight the utility and capacity of MCA
in reducing data dimensionality and demonstrate that, in
gliomas, variables interact cohesively. MCA allows us to
further visualize these interactions on a global perceptual
map, organizing the characteristics into distinct clusters that
correspond to different prognostic profiles.
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Figure 2. Multiple correspondence analysis (MCA) 2D perceptual map demonstrating the association between the categories of each categorical
variable. Categories that are closely clustered are strongly associated with each other. Categories such as glioblastoma, unmethylated MGMT
promoter, IDH wild type, chromosome 7 gain and 10 loss (Chr7+/Chr10–), grade 4, glioblastoma ATRX wild type, TERT expression, non-codel
1p.19q, CL and ME transcriptome subtypes are closely associated with dead vital status (1), appearing along the positive x-axis (dimension
1). ATRX: alpha thalassemia/mental retardation syndrome, X-linked; CL: classical; GBM: glioblastoma; IDH: isocitrate dehydrogenase; ME:
mesenchymal; MGMT: methylguanine methyltransferase; NE: neural; PN: proneural; TERT: telomerase reverse transcriptase.

Table 2. Coordinates of each category compounding the perceptual map.
Category Dimension 1 (x-axis) Dimension 2 (y-axis)
GBMa 1.6650830 −0.0896760
Low-grade glioma −0.4723301 0.0254382
Astrocytoma −0.2672355 0.9527631
Glioblastoma 1.6650830 −0.0896760
Oligoastrocytoma −0.5334711 0.3276318
Oligodendroglioma −0.6011671 −0.9346433
Grade 2 −0.6611308 −0.1971919
Grade 3 −0.2970898 0.2320783
Grade 4 1.6650830 −0.0896760
0-Alive −0.3185609 −0.0551369
1-Dead 0.7544862 0.1305874
IDHb mutant −0.6734117 −0.0548104
IDH wild type 1.1888626 0.0967641
1p/19q codel −0.6877365 −13.034.766
1p/19q non-codel 0.2750946 0.5213906
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Category Dimension 1 (x-axis) Dimension 2 (y-axis)
Methylated −0.3429710 −0.1087842
Unmethylated 1.0048449 0.3187185
Chr7+/Chr10−c 1.4087248 −0.0210234
No combined Chr7+/Chr10− −0.4205758 0.0062766
Chr 19/20 co-gain 1.4900007 −0.1295089
No Chr 19/20 co-gain −0.0843397 0.0073307
Expressed TERTd 0.3715020 −0.6845760
Not expressed TERT −0.4690682 0.8643636
ATRXe mutant −0.6448249 1.0773395
ATRX wild type 0.2693572 −0.4500279
Classical 1.2675815 −0.0217510
Mesenchymal 1.0920361 0.2687642
Neural −0.5475482 −0.0650952
Proneural −0.5971662 −0.0604168

aGBM: glioblastoma.
bIDH: isocitrate dehydrogenase.
cChr7+/Chr10–: chromosome 7 gain and 10 loss.
dTERT: telomerase reverse transcriptase.
eATRX: Alpha Thalassemia/Mental Retardation Syndrome X-linked.

MCA Can Associate an Epigenetic
Stemness Index (mDNAsi) as a
Prognostic Factor in Gliomas
After demonstrating that MCA effectively reduces dimension-
ality and identifies associations between prognostic factors
and clinical data in the glioma database, we proceeded to
explore whether MCA could also associate these variables
with stemness phenotype. For this analysis, we updated our
database by including mDNAsi as a new variable, categorized
into low, intermediate, and high levels of stemness. These
categories were based on the DNA methylation index related
to tumor pathology and clinical outcomes, as previously
studied by [21].

First, we evaluated whether the categorical glioma
variables were randomly or nonrandomly associated with
mDNAsi by creating individual contingency tables for each
pair of glioma variables and applying χ² tests (Multimedia
Appendix 16). We also confirmed the associations between

categorical variables using the Fisher exact test (P value
<.05) ( Multimedia Appendix 17). All the variables were
found to be suitable for MCA. Then, using ASR values
to evaluate the strength of these associations, our results
indicated strong associations between high mDNAsi levels
and poor prognostic and clinical factors. Higher mDNAsi
levels were associated with GBM, IDH wild-type, absence
of 1p19q co-deletion, unmethylated MGMT promoter, TERT
expression, grade 3 and 4, patient’s vital status as dead,
Chr7+/Chr10–, chromosomes 19/20 co-gain, ATRX wildtype
and ME and CL transcriptome subtypes (Table 3). Con-
versely, intermediate and lower levels of mDNAsi were
associated with characteristics related to favorable prognosis,
including oligodendroglioma, IDH mutant, 1p19q co-deletion,
methylation of MGMT promoter, absence of TERT expres-
sion, grade 2, patient’s vital status as alive, no combined copy
number alteration, absence of chromosomes 19/20 co-gain,
ATRX mutant, and PN and NE transcriptome subtypes (Table
3).

Table 3. Table exhibiting the values of the adjusted standardized residuals. Categories of variables with values higher than 1.96 are considered
associated. We could observe a strong association between poorer prognostic factors and a higher stemness index (DNA methylation stemness index
[mDNAsi]). In contrast, better prognostic factors were associated with lower stemness index.
Glioma Variables mDNAsi Categories associated with

Low Intermediate High
Glioblastoma —a — 8.507 High
Oligoastrocytoma — — — Not associated
Oligodendroglioma 3.949 — — Low
Astrocytoma — — 2.832 High
G2 3.279 4.057 — Low and intermediate
G3 — — 2.392 High
G4 — — 8.507 High
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Glioma Variables mDNAsi Categories associated with

Low Intermediate High
IDHb wild type — — 15.904 High
IDH mutant 8.743 7.057 — Low and intermediate
1p/19q codeletion 5.772 2.102 — Low and intermediate
1p/19q non-codeletion — — 7.964 High
Methylated MGMTc promoter 5.944 3.961 — Low and intermediate
Unmethylated MGMT promoter — — 9.983 High
No combined Chr7+/Chr10−d 6.436 5.927 — Low and intermediate
Chr7+/Chr10− — — 12.433 High
Not expressed TERTe — 3.216 — Intermediate
Expressed TERT — — 3.351 High
ATRXf mutant — 3.505 — Intermediate
ATRX wild type — — 4.949 High
Proneural subtype 8.476 — — Low
Neural subtype — 4.218 — Intermediate
Mesenchymal subtype — — 4.771 High
Classical subtype — — 10.981 High

aNot applicable.
bIDH: isocitrate dehydrogenase.
cMGMT: methylguanine methyltransferase.
dChr7+/Chr10–: chromosome 7 gain and 10 loss.
eTERT: telomerase reverse transcriptase.
fATRX: Alpha Thalassemia/Mental Retardation Syndrome X-linked.

Using MCA, dimension 1 (x-axis) accounted for 28.7% of the
variance, while dimension 2 (y-axis) accounted for 14.39%.
The inertia (sum of the variances) for these 2 dimensions
was 43.09%. The variance of the overall dimensions (18
dimensions) for the combinations of the variables is illus-
trated in Multimedia Appendix 18. The total inertia (sum
of the variances) was 1.5. The 2D perceptual map exhibi-
ted the associations between the categories of each varia-
ble (Figure 3). The perceptual map reveals categories such
as GBM, unmethylated MGMT promoter, IDH wild type,
Chr7 gain and Chr10 loss, grade 4, GBM ATRX wild

type, TERT expression, non-codel 1p.19q, and CL and
ME transcriptome subtypes are closely associated with high
mDNAsi, appearing along the positive x-axis (dimension 1).
Conversely, categories like oligoastrocytomas and oligoden-
drogliomas, grade 2, IDH mutant, codel 1p19q, methylated
MGMT promoter, no combined copy number alterations,
no expression of TERT, ATRX mutant, and PN and NE
transcriptome subtypes are closely associated with alive vital
status, appearing along the negative x-axis (dimension 1)
(Figure 3).
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Figure 3. Multiple correspondence analysis (MCA) 2D perceptual map demonstrating the association between the categories of each categorical
variable. Categories that are closely clustered are strongly associated with each other. Categories such as glioblastoma, unmethylated MGMT
promoter, IDH wild type, chromosome 7 gain and 10 loss (Chr7+/Chr10–), grade 4, glioblastoma ATRX wild type, TERT expression, non-codel
1p.19q, and CL and ME transcriptome subtypes are closely associated with high mDNAsi, appearing along the positive x-axis (dimension 1). ATRX:
alpha thalassemia/mental retardation syndrome, X-linked; CL: classical; IDH: isocitrate dehydrogenase; mDNAsi: DNA methylation stemness index;
ME: mesenchymal; MGMT: methylguanine methyltransferase; NE: neural; PN: proneural; TERT: telomerase reverse transcriptase.

Discussion
Principal Findings
Multiple efforts have been made to explore the diversity
of oncologic diseases, with significant contributions from
genetics, cell and tissue biology, as well as computational and
experimental technologies, providing a wealth of information
on cancer manifestations. In the field of glioma research,
emerging approaches have sought to clarify tumor pathology
and grading through the introduction of novel types and
subtypes, as well as by identifying molecular markers and
genetic mutations that contribute to predicting diagnosis and
prognosis. However, it also results in an accumulation of
extensive datasets, presenting challenges in interpretation and
visualization regarding the associations between prognostic
factors. In this study, we used MCA, an unsupervised data
science approach, to establish statistical associations between
different qualitative variables of gliomas. This method was

able to reduce data dimensionality and represent it on a
2D perceptual map, revealing associations between various
established glioma prognostic factors, including histologi-
cal classification, IDH status, MGMT promoter methyla-
tion, and transcriptome subtypes. Furthermore, we associated
these clinical and prognostic variables with an epigenetic-
based stemness index (mDNAsi), demonstrating that higher
stemness levels were associated with poorer prognostic
factors, providing a useful tool to associate prognostic
markers in brain tumors.
Comparison to Prior Studies
Several clinical and molecular factors are considered in
predicting the prognosis and survival of brain tumors, more
specifically for gliomas. Beyond histological classification
and tumor grade, genetic and molecular biomarkers have been
incorporated as potential prognostic indicators. Thus, we first
evaluated the ability of MCA to associate these consolida-
ted prognostic variables with the patient’s vital status. Our
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findings demonstrate that MCA effectively clusters poor
prognostic factors with dead vital status. All these prognostic
factors are well consolidated and associated with malig-
nancy of gliomas. IDH mutation represents one of the main
prognostic markers for gliomas [25]. It has been identified
that one of the mechanisms given by this favorable outcome
is the impaired production of nicotinamide adenine dinucleo-
tide phosphate in Krebs cycle caused by IDH1 enzyme
mutation that can sensitize tumor cells to chemotherapy and
explain the favorable prognosis of patients with IDH mutation
[25]. Likewise, co-deletion of 1p19q chromosome arms,
especially when combined with other biomarkers such as IDH
mutation and TERT expression, has been used as a predic-
tive biomarker and recent studies investigated biological
mechanisms to be significantly linked to genes involved in
cell division, angiogenesis, and DNA repair responses [26].
Thus, we demonstrated that MCA was able to capture and
associate key glioma hallmarks with patients’ vital status,
which was applied to different clinical variables.

Subsequently, we applied MCA to explore the association
between high stemness levels (mDNAsi) and characteristics
related to poor prognosis. Stemness has been considered an
important phenotype in glioma malignancy and is poten-
tially associated with CL genetic alterations, such as the
gain of chromosome 7. Chromosome 7 harbors some key
genes related to stemness, including Epidermal Growth Factor
Receptor (EGFR), Mesenchymal-Epithelial Transition Factor
(MET), and Homeobox A gene (HOXA). A study of 86
GBMs reported that EGFR amplification occurs with higher
probability in samples that have a gain of chromosome 7
(82.1%) compared with those without it (66.7%) [27]. In
addition, EGFR amplification is more prevalent in IDH-wild-
type diffuse gliomas (66.0%) and GBM (85.5%) [28], which
are also associated with poorer prognostic factors, consistent
with our findings. High mDNAsi has been previously linked
to EGFR mutations [21]. The HOXA and MET loci, also
located on chromosome 7, have been implicated in stem-
ness-related pathways. Notably, studies have demonstrated
interactions between chromosome 7 gain and the expression
of a stem cell-related HOX signature in GBMs [29]. Analysis
of the MET gene at 7q31.2 revealed that gain occurs in 47%
of primary and 44% of secondary GBMs, suggesting that
this genetic alteration contributes to the pathogenesis of both
GBM subtypes [30].

Overall, relatively few studies have used MCA to explore
associations with cancer phenotypes. Previous studies have
applied MCA to different approaches, such as analyzing
prognosis low rectal cancer surgery [31], investigating the
association between some types of cancer in rural or urban
areas [15], examining the association between Traditional
Chinese Medicine Syndrome and histopathology of colorectal

cancer [32], assessing clinically relevant demographic
variables across multiple gastrointestinal cancers [33], and
the relationship between types of diagnostic classification
in breast cancer [34]. Our study also highlights the utility
of MCA in investigating associations within the context
of brain tumors. MCA enables the investigation of the
pattern among many categorical factors in gliomas, provid-
ing a powerful computational approach to identify and test
prognostic variables. It was possible to visually and quan-
titatively represent the associations, which facilitates the
identification of distinct patient clusters based on shared
prognostic characteristics. Our findings were consistent with
previous literature and emphasized stemness as an important
phenotype for gliomas.
Limitations
Our study has inherent limitations. First, as a retrospective
analysis of TCGA data, it is subject to selection bias.
Second, we associated all the prognostic variables with
patients’ vital status, which may not be the most optimal
variable for determining prognosis. For the future, we intend
to improve our model validating its applicability in other
prospective datasets. Third, the absence of therapy data is
another limitation of this study. Finally, an intrinsic limita-
tion of MCA is that retaining only 2 or 3 dimensions may
not sufficiently capture all the significant features in the
data. In our analysis, the percentage of explained inertia was
approximately 40%. While there is not an accepted thresh-
old for adequately explained inertia, common guidelines
recommend retaining dimensions that represent over 70% of
the inertia [35]. However, explained inertia in the range of
40%‐60% is often considered informative, and the interpret-
ability and relevance of the patterns revealed by the dimen-
sions are frequently more important than the exact percentage
of inertia explained, especially in a complex heterogeneous
disease such as brain tumors [36].
Conclusion and Future Perspectives
In conclusion, our findings suggest that MCA is a val-
uable tool for understanding the interdependence between
prognostic markers in gliomas. MCA facilitates the explora-
tion of a large-scale dataset and enhances the identification
of associations. Considering the advances in computational
oncology and the emergence of new oncological features,
such as stemness phenotype, incorporating MCA into cancer
research as an approach to exploring the complex heteroge-
neity of the oncologic field becomes a powerful tool for
simplifying data management. It contributes to researchers
statistically identifying associations between variables within
extensive databases and improves the visual representation,
leading to a deeper understanding of cancer findings.
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