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Abstract
Background: The systemic treatment of cancer typically requires the use of multiple anticancer agents in combination or
sequentially. Clinical narrative texts often contain extensive descriptions of the temporal sequencing of systemic anticancer
therapy (SACT), setting up an important task that may be amenable to automated extraction of SACT timelines.
Objective: We aimed to explore automatic methods for extracting patient-level SACT timelines from clinical narratives in the
electronic medical records (EMRs).
Methods: We used two datasets from two institutions: (1) a colorectal cancer (CRC) dataset including the entire EMR of
the 199 patients in the THYME (Temporal Histories of Your Medical Event) dataset and (2) the 2024 ChemoTimelines
shared task dataset including 149 patients with ovarian cancer, breast cancer, and melanoma. We explored finetuning smaller
language models trained to attend to events and time expressions, and few-shot prompting of large language models (LLMs).
Evaluation used the 2024 ChemoTimelines shared task configuration—Subtask1 involving the construction of SACT timelines
from manually annotated SACT event and time expression mentions provided as input in addition to the patient’s notes and
Subtask2 requiring extraction of SACT timelines directly from the patient’s notes.
Results: Our task-specific finetuned EntityBERT model achieved 93% F1-score, outperforming the best results in Subtask1
of the 2024 ChemoTimelines shared task (90%). It ranked second in Subtask2. LLM (LLaMA2, LLaMA3.1, and Mixtral)
performance lagged the task-specific finetuned model performance for both the THYME and shared task datasets. On the
shared task datasets, the best LLM performance was 77% macro F1-score, 16% points lower than the task-specific finetuned
system (Subtask1).
Conclusions: In this paper, we explored approaches for patient-level timeline extraction through the SACT timeline extraction
task. Our results and analysis add to the knowledge of extracting treatment timelines from EMR clinical narratives using
language modeling methods.
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Introduction
The systemic treatment of cancer typically requires the
use of multiple anticancer agents in combination or sequen-
tially. Systemic anticancer therapy (SACT), which includes
traditional cytotoxic chemotherapy, endocrine therapy,
targeted therapy, and immunotherapy, has both a low
therapeutic index as well as synergistic potential when agents
are given in combination. Due to cumulative toxicities, the
order in which SACT components are received is much
more important than only whether individual drug expo-
sures happened or not, whether in the curative or noncura-
tive setting. Furthermore, patients may receive an extended
sequence of treatments across multiple health care settings,
systems, and insurance arrangements, making an accurate
tally of the totality of treatment using standard structured
data resources extremely challenging if not impossible.
Meanwhile, clinical narrative texts often contain extensive
descriptions of the temporal sequencing of SACT, setting
up an important task that may be amenable to automated
extraction approaches.

Clinical natural language processing (NLP) is a field that
builds computational methods to enable machines to process
clinical narratives. Temporality has been a key research
area within clinical NLP as it has a wide range of applica-
tions including temporal sequencing of SACT [1]. The focus
of temporality extraction in clinical NLP has been mainly
on instance-level pairwise temporal relation extraction from
electronic medical records (EMRs). Instance-level pairwise
temporal relations (TLINKs) are the links between an event
(EVENT) mention and a temporal expression (TIMEX3)
mention or between two event mentions, constituting a triple
of the TLINK and the other two components. The set
of TLINKs values, that is, type of temporal relations, is
CONTAINS, BEFORE, OVERLAP, BEGINS-ON, ENDS-
ON, and NOTED-ON [1]. The event that CONTAINS
another event is referred to as a narrative container (CON-
TAINS-1 is the reverse of CONTAINS, meaning an EVENT
is contained by the narrative container). In addition, each
EVENT has a temporal relation with the document creation
time (DocTimeRel), one of BEFORE, BEFORE-OVERLAP,
OVERLAP, or AFTER.

The construction of benchmarks, such as THYME
(Temporal Histories of Your Medical Event) and i2b2 [1,2],
along with the SemEval shared tasks [3-6] on temporality
advanced the methodologies and established the state-of-the-
art (SOTA) for the task [7-12]. The sophisticated SOTA
methods for temporal relation extraction open the door for
exploring automatic patient-level timeline construction.

The 2024 ChemoTimelines shared task [13] formulated
SACT timeline construction as an information extraction task

and provided the deidentified free text documents (except
for dates) from the EMRs of 57,520 (breast and ovarian
cancer) and 15,946 (melanoma) patients from University
of Pittsburgh Medical Center. The documents represented
a wide variety of notes, for example, pathology reports,
clinical notes, radiology reports, emergency department visits,
discharge summaries, etc. A subset of 149 patients was
expert-annotated for EVENT mentions, TIMEX3 mentions,
and instance-level pairwise temporal relations following
the THYME2 schema [1,14] and patient-level timelines of
SACT events. The shared task offered 2 subtasks. “Sub-
task1” involved creating timelines from gold EVENTS and
TIMEX3 mentions. “Subtask2” challenged the participants to
build end-to-end systems that extracted patient-level SACT
timelines directly from the free texts. In this work, “end-
to-end” means all text processing is done automatically.
Figure 1 summarizes the 2 subtasks. Various approaches were
explored by the shared task participants—from supervised
finetuning [15,16] to LLM prompting [17,18]. The impres-
sive results (F1-score=90 for Subtask1 and F1-score=70 for
Subtask2) achieved by the systems from top participants
[15] demonstrated the usability and effectiveness of NLP
models for this task. The top systems implemented task-
specific finetuning of smaller pretrained language models
(LMs). Specifically, the LAILab system [15] cast the task
as a sequence-to-sequence task, and finetuned Flan-T5-XXL
[19] and BART-large [20]. It achieved the best results in
the shared task for both subtasks. The Wonder system [16]
generated synthetic data using GPT-4 for data augmentation,
then finetuned BioLM [21]. The baseline system offered
by the organizers [13] also took the supervised finetuning
approach with PubMedBERT [22] and secured the second
place in both subtasks. In the rest of the paper, for simplicity,
we refer to the 2024 ChemoTimelines shared task as the
shared task.

In this paper, we further researched SACT timeline
extraction using the shared task dataset and adding the
dataset of another frequent type of cancer (such as CRC)
from another academic medical center. We explored task-
specific finetuning approaches and LLM prompting [23-29]
to extract SACT timelines. We compared our results on the
breast, ovarian, and melanoma datasets from the shared task
to the results of the shared task participants. We achieved
a new SOTA in Subtask1. We established the SOTA for
the CRC dataset as this is a new dataset. Our LLM-based
system investigations add to the research of using LLMs for
end-to-end SACT treatment timeline extraction from clinical
narratives, as only one team explored end-to-end timeline
extraction using LLMs in the shared task.

JMIR BIOINFORMATICS AND BIOTECHNOLOGY Yao et al

https://bioinform.jmir.org/2025/1/e67801 JMIR Bioinform Biotech 2025 | vol. 6 | e67801 | p. 2
(page number not for citation purposes)

https://doi.org/10.2196/67801
https://bioinform.jmir.org/2025/1/e67801


Figure 1. Summary of the 2024 ChemoTimelines shared task. TIMEX3: time expressions; CONTAINS-1: reverse of CONTAINS, meaning
“chemotherapy” is contained by “last Thursday”; DocTime: document creation time.

The contributions of this paper are as follows.
First, the approaches for patient-level timeline extraction

through the task of SACT timeline extraction. We perform
experiments on the 2024 ChemoTimelines shared task as well
as on the THYME CRC patients. Our results and analysis
on this task add to the knowledge of extracting treatment
timelines from EMRs using LLM-based methods.

Second, the SOTA performance of our finetuned LM-
based system for Subtask1 of the 2024 ChemoTimelines
shared task.

Third, SOTA performance with LLM prompting
approaches for Subtask1 and Subtask2 of the 2024 ChemoTi-
melines shared task outperformed the shared task participant
systems that took the approach of prompting LLMs.

Methods
Ethical Considerations
All electronic health record (EHR) data used in this study
are deidentified in accordance with the datasets’ relevant
privacy regulations [1,13,14]. We strictly adhered to the
terms outlined in the data use agreement, ensuring that no
data were transmitted to any external or public APIs. Ethics
approval was not required because the study used secondary
data that was aggregated and anonymized before analysis.
All experiments were conducted on a secure local machine

operating behind a firewall, maintaining full data confiden-
tiality and integrity throughout the study.
Tasks and Datasets
The first dataset we used was from the shared task [13].
The EMR notes of 149 patients with breast, ovarian, and
melanoma cancers from the University of Pittsburgh Medical
Center were expert-annotated by the shared task organizers
for instance-level pairwise temporal relations following the
THYME2 schema [1,14] and SACT patient-level timelines.

The second dataset we used included the THYME patients
—199 CRC patients from Mayo Clinic. This dataset was
NOT part of the 2024 ChemoTimelines shared task. Note that
the original THYME corpus consisted of one radiology, one
pathology, and one oncology note for each of the 199 CRC
patients—not sufficient to extract SACT timelines. There-
fore, for the work described in this paper, we obtained the
entire EMR documentation for these 199 CRC patients (all
manually deidentified except for dates). As with the shared
task patients, the CRC patient EMRs were represented by a
wide variety of document types. Following the shared task
protocol, the CRC notes were expert-annotated for instance-
level pairwise temporal relations following the THYME2
schema and SACT patient-level timelines. Table 1 shows
the dataset distributions. Table S1 in Multimedia Appendix
1 provides the pairwise label distributions. The label set for
the pairwise relations is CONTAINS, BEGINS-ON, ENDS-
ON, OVERLAP, and BEFORE. In the final SACT time-
line, we converted CONTAINS to CONTAINS-1 so that
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all triples are structured as <EVENT, TLINK, TIMEX3>,
where CONTAINS-1 semantically indicates that the drug was
administered on the date specified by the temporal expression
(TIMEX3). Note that we did not use i2b2 2012 because we
focused on cancer treatment timeline extraction only in this
work. Textbox 1 presents a concrete example of patient-level
SACT timelines.

As is the established convention, in this paper, we refer
to the labels in the shared task and THYME datasets as

“gold.” All datasets come with predefined training (train),
development (dev), and test splits that we used accordingly.
Note that the gold labels of the shared task test set were
not publicly available; however, participants could submit
their system predictions to the shared task organizers to get
evaluation results, thus providing independent evaluation over
a held-out, eyes-off dataset.

Table 1. Dataset summary.
Splits Patients Notes Wordsa EVENT mentions TIMEX3b mentions TLINKsc

Ovarian cancer (from 2024 ChemoTimelines shared task)
  Train 26 1675 1,183,632 1168 597 494
  Devd 8 562 308,814 790 312 226
  Test 8 559 257,116 664 381 Not releasede

Breast cancer (from 2024 ChemoTimelines shared task)
  Train 33 1002 465,644 1023 576 455
  Dev 16 499 225,588 279 146 113
  Test 35 1333 786,896 2560 1118 Not released
Melanoma (from 2024 ChemoTimelines shared task)
  Train 10 233 124,924 147 78 48
  Dev 3 211 178,308 789 261 201
  Test 10 229 156,083 398 193 Not released
Colorectal cancer (CRC)
  Train 98 12,990 6,038,431 11,161 6155 5897
  Dev 50 6810 3,105,675 3964 2194 1924
  Test 51 7357 3,587,387 7552 3612 4403

a“Words” denotes tokens delimited by white spaces.
bTIMEX3: time expressions.
cTLINKs: pairwise temporal relations.
dDev: development set.
eNote that the number of test set TLINKs for the 2024 ChemoTimelines shared task was not released publicly.

Textbox 1. An example of a summarized patient-level SACT timeline extracted from the entire patient’s EMR chart.
• ['chemotherapy', 'contains-1', '2013-06-20']
• ['carboplatin', 'contains-1', '2013-10-24']
• ['carboplatin', 'contains-1', '2013-09-19']
• ['carboplatin', 'contains-1', '2013-07-18']
• ['carboplatin', 'contains-1', '2013-08-08']
• ['carboplatin', 'contains-1', '2013-08-29']
• ['taxol', 'contains-1', '2013-10-24']
• ['taxol', 'contains-1', '2013-09-19']
• ['taxol', 'contains-1', '2013-07-18']
• ['taxol', 'contains-1', '2013-08-08']
• ['taxol', 'contains-1', '2013-08-29']

Approaches
We explored 2 approaches for the task of SACT timelines
extraction: (1) finetuning smaller LMs and (2) prompting

LLMs. Figure 2 shows the complete pipeline of both
approaches. We describe each approach in detail in this
section.
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Figure 2. Methods summary. On the left-hand side, temporal relations are classified via a small finetuned language model (FT LM). On the
right-hand side, temporal relation triplets are extracted by prompting large language models (LLMs). In both approaches, EVENTS are extracted
using a Begin-Inside-Outside (BIO) tagger. Output for both systems is the same, see Textbox 1. cTAKES: Apache Clinical Text Analysis and
Knowledge Extraction System; TIMEX3: time expressions; TLINK: pairwise temporal relation.

Approach 1: Finetuning LMs for Temporal
Relation Extraction
Overview
In this approach, we cast the task of SACT timeline extraction
as a pairwise temporal relation extraction task followed by a
temporal relation summarization step. Given input texts, we
designed a pipeline with the following steps: (1) extracting
SACT EVENT mentions, (2) extracting TIMEX3 mentions,
(3) classifying pairwise EVENT-TIMEX3 temporal relations,
(4) normalizing TIMEX3 mentions, and (5) summarizing and
refining patient-level timelines.
Extracting SACT EVENT Mentions
We trained a sequence labeling tagger that marks the
beginning, inside, and outside (BIO) of a SACT treatment
EVENT mention in the text. The tagger was trained on the
train split of the gold labeled data by finetuning a pretrained
LM [22,30]. The “Experimental Settings” section shows more
details.

Extracting TIMEX3 Mentions
TIMEX3 mentions were extracted by the temporal module of
the Apache Clinical Text Analysis and Knowledge Extraction
System (cTAKES) [31], a publicly available text processing
system. The precision, recall, and F1-scores of cTAKES

for TIMEX3 mention extraction are 57.17%, 83.95%, and
67.25%, respectively; evaluated on the original THYME
dataset described in the “Tasks and Datasets” subsection.
Different methodologies were used for SACT EVENT
mention extraction and TIMEX3 mention extraction because
there was no publicly available SACT EVENT extractor with
solid performance at the time of the experiments.

Classifying Pairwise EVENT-TIMEX3 Temporal
Relations
Given an EVENT-TIMEX3 pair, the task is to determine the
temporal relation between them according to a predefined
label set of TLINKs (described in the “Introduction” and
“Tasks and Datasets” sections). For example, if the patient
started a regimen of Taxol on August 1, 2012, the relation
between “Taxol” and “August 1, 2012” is BEGINS-ON.
Inspired by previous works [11], we finetuned EntityBERT
for this step to create an LM specifically trained to attend
to EVENT and TIMEX3 mentions. The input to the model
was the EVENT and TIMEX3 mentions within a context
window with the EVENT and TIMEX3 mentions highlighted
by special tokens, possibly crossing sentence boundaries. We
followed the same data preprocessing format as described
in [7,9,11]. Concretely, EVENT and TIMEX mentions are
highlighted by XML tags “<e>,” “</e>,” “<t>,” and “</t>.”
The context window that defines the token distances between
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an EVENT and TIMEX3 in an EVENT-TIMEX3 pair is set
to 60 tokens, empirically derived to cover over 95% of the
EVENT-TIMEX3 pair instances. The model was trained on
the train split of the gold-labeled data for multiclass classifi-
cation.

Normalizing TIMEX3 Mentions
The goal of this step is to map TIMEX3 mentions to a
computable format. We used TimeNorm [32,33] to normal-
ize the TIMEX3 mentions and the document creation time
(DocTime) to ISO-TimeML standard [34] (eg, “yesterday” in
a note with a DocTime of “2022-04-29” would be normalized
to “2022-04-28”).

Summarizing and Refining Patient-Level
Timelines
A patient’s SACT history can be mentioned in multiple notes
in different contexts. For example, the physician may discuss
the termination of one treatment due to side effects; despite
that, in another note, they may say that the therapy will be
given to the patient for 3 more cycles. Therefore, after the
instance-level temporal relation extraction, deduplication and

conflict resolution are necessary to get the final patient-level
SACT timelines. For this step, we followed the heuristics
from the shared task [13].

Approach 2: Prompting LLMs for SACT
Timeline Extraction
Overview
We developed an end-to-end timeline extraction pipeline via
LLM prompting. This pipeline involved two steps: Step 1
focused on extracting <EVENT, TLINK, TIMEX3> triplets
from clinical texts, and Step 2 was designed for TIMEX3
normalization. We took the approach of in-context learning,
which refers to the method of adding exemplars of gold
examples with answers to the prompt [25], a common practice
in prompt engineering. Textbox 2 provides the prompt
templates we used in both steps. For Step 1, we provide 4
exemplars for each TLINK label. For Step 2, we provide
5 exemplars in total. The exemplars are selected from the
training split of the data. We explored the discrete prompting
strategy where the prompts are created manually, ultimately
settling on the prompts with the best performance.

Textbox 2. Prompt templates used in our large language model (LLM) experiments. For Step 1, we provide 4 exemplars for
each label. For Step 2, we provide 5 exemplars in total.

• Step 1 prompt: You are a helpful assistant for oncologists. You will read the given PATIENT EHR and summarize
the patient's chemotherapy treatment TIMELINES. Please only output TIMELINES in the requested format. Please
do not include any other text or reasoning, do not include timelines for any other treatments besides chemotherapy.
Please do not use any labels other than the ones given in the examples, i.e., BEGINS-ON, ENDS-ON, CONTAINS.
Here are some examples.

• Step 2 prompt: You are asked to decide the date of a time expression. If today was 2013-05-02, what would the date
of yesterday be? Please only output the date in the format of “YYYY-MM-DD”. Answer “Unknown” if you don't
know. Here are some examples.

Step 1: Extracting < EVENT, TLINK, TIMEX3>
Triplets
The construction of patient-level treatment timelines requires
the system to process all notes of a patient, thus the input
can exceed the LLM context window. Current open LLMs
have a limited number of tokens they can process per time,
for example, LLaMA1 [35] supports up to 2048 tokens and
LLaMA2 [23] supports up to 4096 tokens; however, even if
the LLM could ingest all the notes of one patient as input
per time, which would not be an efficient way of processing
texts as transformers’ self-attention scales quadratically with
input length. Therefore, sending all the notes of a patient to
LLMs at one time is not practical. To make this task more
feasible for LLMs, we prompted the LLM with only relevant
snippets of notes and assembled the timelines afterwards.
Specifically, we extracted SACT EVENT mentions using the
BIO tagger trained in Approach 1, then fed the LLM the
sentences containing the SACT EVENT mentions to extract
the triplets. Note, the input to the LLM was a sentence, unlike
the context window instances fed to the pairwise classifier
in Approach 1. In our initial experiments, we used context
window instances with the LLMs as well; however, the partial
sentences confused them as tokens outside of the window

are discarded. To give LLMs a self-contained input with a
reasonable sequence length, we decided to give a complete
sentence as input for LLMs instead of a context window as
we did in Approach 1.

Step 2: TIMEX3 Normalization With LLMs
We applied in-context learning to normalize the TIMEX3
mentions. For each output triplet from Step 1, we
prompted the model to normalize the date of the TIMEX3
mention given the DocTime of the note. We then
assembled the final timelines, using the same heuristics as
in Approach 1.
Experimental Settings
We explored two approaches for the task of SACT timelines
extraction: (1) finetuning smaller LMs and (2) prompting
LLMs. For the first approach, we finetuned PubMedBERT
base model [22] to train the SACT event tagger. For the
temporal relation classification task, we finetuned Entity-
BERT based on the results reported by Lin et al [11], where
they finetuned BioBERT, PubMedBERT, and EntityBERT
for clinical temporal relation classification and found that
EntityBERT outperformed the other two models. For the
experiments with LLMs, we chose LLaMA2-70B [23],
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LLaMA3.1-70B [36], and Mixtral-8×7B-Instruct-v1 [24],
which are current SOTA open LLMs. We did not use
proprietary LLMs such as GPT4 [26] because we did
not have access to their Health Insurance Portability and
Accountability Act (HIPAA)-compliant versions. The open
models we experimented with are reported to have yielded
results competitive with those of the proprietary models [24].
Furthermore, we compare our results with those systems in
the shared task for the types of cancers included in the shared
task. For the CRC dataset (not included in the shared task),
we establish the first result that will serve as the baseline for
the community. See Table S2 in Multimedia Appendix 1 for
details on the computational settings.

We experimented with prompting LLMs for both Subtask1
and Subtask2. In Subtask1, we provided explicit gold SACT
events and time expressions in the text, then prompted the
LLM to predict the temporal relation between them. The
prompt template for this subtask is shown in Table S3 in
Multimedia Appendix 1. In Subtask2, we passed to the LLM
only plain text as input, then asked the LLM to extract
the SACT events, time expressions, and temporal relation
between them in 1 step. Textbox 2 lists the prompt template
for Subtask2.
Evaluation and Baseline
We used the evaluation metric provided by the shared task,
which computed the average F1-scores across all patients.
There were 4 settings with different temporal granularities:
strict, relaxed-to-day, relaxed-to-month, and relaxed-to-year.
For example, the relaxed-to-month setting required the model
to correctly predict the year and month when the therapy was
given, while the strict setting required the model to capture
the exact date when the patient received the therapy. The
official metric for the 2024 shared task was relaxed-to-month
scores, which we used as our metric to report the main results
in this paper. Results using other metrics are given in Table
S4 in Multimedia Appendix 1.

As a baseline, we used the baseline system used in the
shared task, which implemented a predefined dictionary as a
lookup table for SACT EVENT extraction and a finetuned
LM for temporal relation classification. We also compared
our results on the 3 types of cancer (breast cancer, ovarian
cancer, and melanoma) to the shared task leaderboard results.

Results
In Table 2, we present our results on the development (Dev)
and test sets. As the CRC dataset was not available for the
shared task, we also present the results of our model finetuned
only on the shared task data (under EntityBERT 3 Cr) for
a direct comparison with other participating systems. That
is, using Approach 1 described above, we trained 2 versions
of the model. “EntityBERT” was trained on the shared task
data and CRC data. “EntityBERT 3 Cr” was trained only
on the shared task data (we combined the training datasets
of multiple cancer types into 1 training dataset to train the
EntityBERT 3 Cr model and EntityBERT model). Subtask1
in Table 2 shows the results with gold SACT EVENT
and TIMEX3 mentions as input. In general, the finetuned
EntityBERT and EntityBERT (3 Cr) outperformed LLaMA2,
LLaMA3.1, and Mixtral LLMs by a large margin. Among
the LLMs, LLaMA achieved higher scores than Mixtral. In
Table 2, Subtask2 shows the end-to-end evaluation results.
The SACT event extraction evaluation results using the BIO
tagger can be found in Table S5 in Multimedia Appendix
1. We note a wide gap between the performance with gold
mention input (Subtask1) and the performance with automati-
cally extracted mentions (Subtask2), suggesting that the errors
in the mention extraction stage propagate to the relation
extraction stage and dramatically affect the overall accuracy
of the system. We also notice that the smaller finetuned
models outperform LLMs in most cases except for melanoma,
the reasons for which we discuss in the Discussion section.

Table 2. Evaluation results of our systems across 4 types of cancers from 2 academic centers. Scores are macro F1-score, relaxed-to-month.
Cancer type and models Subtask1a, % Subtask2b, %

Development
set Test set Development set Test set

Ovarian cancer
EntityBERTc 93e 95e 64 61
EntityBERT (3 Cr)c,d 93e 94 67e 69e

LLaMA2f 70 70 29 42
LLaMA3.1g 75 74 31 56
Mixtralh 60 67 7 27

Breast cancer
EntityBERTc 97e 97 88e 63
EntityBERT (3 Cr)c 97e 98e 87 66e

LLaMA2 81 83 61 50
LLaMA3.1 79 70 66 48
Mixtral 66 63 37 25
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Cancer type and models Subtask1a, % Subtask2b, %

Development
set Test set Development set Test set

Melanoma
EntityBERTc 86e 91e 43 39
EntityBERT (3 Cr)c 86e 88 46 40
LLaMA2 80 79 47e 47e

LLaMA3.1 67 71 26 38
Mixtral 65 65 4 25

Colorectal cancer (CRC)
EntityBERTc 90e 83e 58e 56e

LLaMA2 66 77 40 32
LLaMA3.1 66 68 45 38
Mixtral 58 66 19 15

aSubtask1: input is gold entities (systemic anticancer therapy [SACT] events and time expressions).
bSubtask2: entities are automatically generated by the system.
cThese are systems using small finetuned models.
dEntityBERT (3 Cr): EntityBERT model trained only on the shared task data.
eThese are the best results.
fLLaMA2-70B.
gLLaMA3.1-70B.
hMixtral-8×7B-Instruct-v1.

Furthermore, unlike the LLM prompting approaches, both
our systems based on the smaller finetuned models can be
deployed for inference on a laptop without a GPU. Our
Subtask1 system is able to process approximately 14 notes/
minute. Our Subtask2 system is able to process approximately
10 notes/minute. Assuming a typical patient with 200 notes,
our Subtask1 system takes on average 14.5 minutes to process
all of the patient’s notes, and our Subtask2 system takes
on average 20 minutes to process all of the patient’s notes.
On the other hand, the LLM prompting experiments were
conducted on NVIDIA A100 GPUs. It took the LLaMA3.1
70B model approximately 28 minutes for Subtask1 and 13
minutes for Subtask2 to process 200 notes. It took LLMs less
time to complete Subtask2 because only sentences containing
TIMEX3 mentions needed to be processed in Subtask2.

We position our systems within the broader context of
the 2024 ChemoTimelines shared task by comparing them
with the shared task participants’ systems. If 1 shared task
participant has multiple submissions, we take their best result
for comparison. Note the official metric for the leader board
is relaxed-to-month scores on the Test set. We first compare
the result of our EntityBERT (3 Cr) model with the results
of the participating systems using similar approaches, that
is, finetuning smaller LMs [13,15,16,18,37]. In Figure 3-Part
A, we can see that in Subtask1 our model achieved the
best results overall and on the individual cancer types. Our
Subtask1 result was 3 points higher than the best shared task
score achieved by LAILab [15] (93% vs 90%). In Subtask2
(Figure 3-Part B), our system had the second-best overall
scores. However, it is worth noting that LAILab finetuned
Flan-T5-XXL [19], a model with 11B parameters, which was
much bigger than the EntityBERT model we used that had
about 100 million parameters.

Finally, we observe in Table 2 that the model trained only
on the breast, ovarian, and melanoma data from the train
split of the shared task (ie, EntityBERT 3 Cr) performed
slightly better than its counterpart trained on the full train split
containing all 4 types of cancer (ie, EntityBERT) in Subtask2.
We conjecture that since there was more data for CRC than
the other types of cancer within our dataset, the representa-
tion of the signal from the CRC data overwhelmed that of
the other three cancer types inside the model. The addition
of the second dataset (CRC) in this work aims to create a
larger pool of datapoints adding a new type of cancer and a
different institution as the data source. It also helps answer
the questions of whether (1) a model built off data across
different EMR sources might be feasible and (2) the quantity
of the data matters. Our experiments on these two datasets
show that (1) it is likely that institution-specific models
capture treatment patterns better but not by a large margin
and (2) patterns of the data-rich source likely dominate.

In Figure 4 we compare our LLM-based approaches with
the shared task systems that prompted LLMs. With gold
mentions as input (Subtask1), our system based on prompting
LLaMA2 achieved the highest overall score compared to the
shared task systems. When using Mixtral as the starting point,
our system and the NLPeers [18] system achieved similar
overall scores (65% vs 64%), which are significantly lower
than the overall score of LLaMA2 and LLaMA3.1, suggesting
that LLaMA family models are more suitable for this subtask
than Mixtral. Only 1 team from the shared task explored
end-to-end timeline construction using an LLM. In Figure
4-Part B, Subtask2 we can see that the overall performance
of the two Mixtral-based systems is similar. Again, we see
a performance discrepancy between LLaMA and Mixtral.
Jiang et al [24] show that Mixtral performed better than or
comparable to LLaMA2 across multiple benchmarks. Our
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results suggest that the decision of choosing the right LLM
should be made empirically. Note that the two LLaMA
models we used have the same number of parameters, 70B.
Compared to LLaMA2, LLaMA3.1 improved the results
on the ovarian dataset, but fell short on the breast and
melanoma datasets. Across 64 evaluation settings (4 cancer

types, 4 metrics, 2 subtasks, both development and test sets),
LLaMA3.1 achieved higher or same F1-scores as LLaMA2
in 39 cases (61%; see Table S4 in Multimedia Appendix 1).
Overall, we observe similar trends across strict, relaxed-to-
day, relaxed-to-year evaluation settings as relaxed-to-month
setting.

Figure 3. Comparison to finetuning-based models in the shared task [13,15,16,18,37]. Scores are relaxed-to-month macro F1-score on the test set.
“Our EntityBERT, 3 cr” refers to the EntityBERT model trained only on the shared task data. The best-performing team in the shared task was
LAILab [15].
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Figure 4. Comparison to LLM prompting systems in the shared task [13,17]. Scores are relaxed-to-month macro F1-scores on test set. “Our
LLaMA2” and “Our LLaMA3.1” are LLaMA2-70B and LLaMA3.1-70B, respectively. “Our Mixtral” is the Mixtral-8 × 7B-Instruct-v1 model. FS
and ZS refer to few-shot and zero-shot settings.

We performed error analysis on the relaxed-to-month output
for each cancer type cohort. An incorrect prediction within
a predicted patient timeline against a gold patient timeline
is either a false positive, that is, a predicted triplet that is
not present in the gold timeline, or a false negative, that is,
a triplet in the gold timeline, which is not in the predicted
timeline. There is also the possibility of an apparent false
positive or false negative being actually correct due to an
annotation error, for which we also review. We analyze which

of the components in the system pipeline or the annotation
process is the root cause of an error in the predicted or gold
timelines. For the predicted timeline, this can consist of any
combination of one of the extraction components for SACT
EVENT mentions (SACT Detection Error) and temporal
expression mention (TIMEX3 Detection Error), the TLINK
classifier (TLINK Error), and summarization error (Total
incorrect summarized predictions). For the gold timeline, this
can only consist of an annotation error.
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We present the breakdown per error type from the test
set in Table S6 in Multimedia Appendix 1. We randomly
sampled each type of false positive errors to collect a sample
size using a 95% CI, a margin of error of 5%, and a pop-
ulation proportion of 50%. We analyzed the instance-level
false positives since each was associated with a specific
TLINK classification instance. The incorrect unsummarized
predictions are inputs to the summarization algorithm which
result in the incorrect summarized predictions. We found that
most of the errors came from incorrect TLINK classification,
followed by annotation errors, and finally detection of SACT
EVENT and TIMEX3 mentions. We identified the annotation

errors for the most part as resulting from likely missed
screening of some notes by the expert annotators, as this is
a highly cognitively demanding task for a human to perform
(see Table 3 for examples). The false negatives tended to
be the result of formatting issues, complex reasoning, and
some level of hedging around the event. We found that in
many notes, there are subsections that start with dates, which
are used as the headings for these subsections (see examples
in “False negative: formatting” in Table 3); then all events
described in that subsection are related to these dates. This
is especially challenging as the subsections could consist of
multiple sentences.

Table 3. Types of errors and examples. Note that the dates have been intentionally altered for the purpose of this paper.
Type of error Text Explanation
Annotation error • Anastrozole (Arimidex) 1 mg once a day by mouth

[Order Comment : can take am].
• Last dose : 10/18/2033.

• No gold TLINKa for “anastrozole (Arimidex)” and
“10/18/2033”.

Annotation error • Dr Person17, later today, to discuss management from
the standpoint of chemotherapy or hormonal.

• No gold TLINK for “later today” and
“chemotherapy”.

Annotation error • Chemo and radiation in 2055. • No gold link for “chemo” and “2055”.
False negative: formatting • July through December 2055: Completed his 12 cycles

of FOLFOX. The first 8 cycles included oxaliplatin
and the last 4 cycles were 5-FU/leucovorin.

• No prediction TLINK for “December 2055” and
“5-FU/leucovorin”.

• The dates are used as subsection headings with all
events related to them.

False negative:
complex reasoning

• November 2055, CEA begins to increase. There is
abnormal uptake on a PET scan near the rectosigmoid
junction. Patient is then initiated on XELIRI/Avastin in
February 2055. [more text..].

• May 2055 through August 2055, managed with
observation alone off of all chemotherapeutic
administration.

• No prediction TLINK to indicate that XELIRI/
Avistin was discontinued May 2055 through
August 2055.

False negative:
hedging

• We had attempted to treat him with ipilimumab last
week; however, when he got the bathroom in the
office, he tripped over a wheel of one of the beds and
had a fall.

• Gold TLINK is (last week, CONTAINS,
ipilimumab). No predicted TLINK due to the
expressed uncertainty of whether the event
happened.

False positive:
complex reasoning

• …cycles of Cytoxan, fludarabine, and Rituxan
chemotherapy through July 2055.

• Predicted TLINKs are correct. However, the
treatment is associated with the patient’s leukemia,
not the melanoma which was the targeted
extraction.

aTLINK: pairwise temporal relations.

Discussion
Principal Findings
The implications of the automatic and faithful extraction of
treatment timelines from patients’ EMRs affect the spectrum
of patient-physician interactions, decision-making processes,
and advances in cancer research. At the point of care,
a clinician presented with the patient’s treatment timeline
would be able to quickly gain insights into the complex
disease and treatment process for that patient, especially
helpful in oncology where patients come to specialized
centers with hundreds of notes. For research, the automatic
generation of timelines opens the door to creating large-
scale cohorts to answer important research questions. One
such question is related to the treatment regimens as key
details in understanding the effects of genetic, epigenetic,

and other factors on tumor behavior and responsiveness. As
precision oncology progresses, insights into the fine interplay
of treatment with tumor molecular characteristics and patient
phenotypes become even more critical not only as a source
of research data, but as a means of translating findings
into patient-tailored therapies similar to those that have been
applied to breast cancer and melanoma [38].

Although there is a lot of excitement around LLMs and
prompt engineering, there is a major constraint that needs to
be factored into engineering decisions—that of the length of
the input text. This is especially pronounced for tasks where
the entire patient EMR narrative needs to be considered, for
example, treatment timeline extraction. When considering the
input prompt for LLMs, we first considered sending 1 note
at a time to LLMs, or concatenating all the sentences that
contain SACT EVENT mentions in a note and sending them
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to LLMs. However, our experiments showed that extracting
timelines from long sequences (even just one patient note)
was too challenging for the LLMs we evaluated (although
these were the SOTA open LLMs). For example, on the
ovarian cancer development set, we saw a 10-point drop
in relaxed-to-month scores when we sent multiple sentences
from the same document to LLaMA2.

As the error analysis pointed out, the main source of
the error is TLINK classification, that is the assignment
of the correct temporal relation between an EVENT and
TIMEX. The technology we experimented with is LM-based
—finetuning smaller LMs and LLM prompting. A path of
research to improve TLINK extraction lies in combining
the outputs of various technologies into an ensemble with a
voting mechanism, for example, majority vote or a classifica-
tion layer. The ensemble could potentially include the output
of LLM-based and non–LLM-based methods such as classic
support vector machines [39]. Another potential solution
might lie in exploring a 2-stage LLM finetuning strategy,
which is a refined ensemble method [40]. The first stage
decreases bias and variance iteratively, while in the second
stage, a selected fixed-bias model is used to further reduce
variance due to optimization in ensembling. Soft prompting
[41] might be another viable path to explore, especially given
the availability of labeled data.

Our experiments show that LLMs struggle with end-to-end
timeline extraction from clinical narratives (see Figure 4B).

In Table 4, an examination of label distribution across the
development set highlights a strong tendency of the system
to overproduce BEGINS-ON and ENDS-ON relations while
underrepresenting CONTAINS-1. For example, in colorec-
tal cancer, the system predicted 381 BEGINS-ON and 281
ENDS-ON events, vastly exceeding the gold counts of 82 and
73, respectively. A notable source of error in the system’s
predictions stems from confusion in relation directionality,
particularly with the CONTAINS-1 relation. By design,
all triples are structured as <EVENT, TLINK, TIMEX3>,
where CONTAINS-1 semantically indicates that the drug
was administered on the date specified by the TIMEX3 (see
the Tasks and Datasets subsection in the Methods section).
However, the system frequently reversed this logic, produc-
ing incorrect <EVENT, CONTAINS, TIMEX3> triples. Such
mispredictions not only result in spurious labels (captured
under the CONTAINS category in the label distribution)
but also reflect a deeper modeling issue: the model’s
difficulty in internalizing fine-grained relational semantics.
To mitigate this, future work could incorporate explicit
prompt instruction or soft constraints to enforce the expected
directionality of relations during inference in the spirit of
constrained decoding [42]. In addition, postprocessing steps
could validate predicted relations by checking for allowable
type-direction combinations, correcting or filtering those that
violate domain-specific rules.

Table 4. Label distribution across the gold timelines and large language model (LLM) predicted timelines (LLAMA2 70B model, end-to-end setting)
on the development set.
Cancer type Gold timelines, n System timelines, n

CONTAINS-1 BEGINS-ON ENDS-ON CONTAINS CONTAINS-1 BEGINS-ON ENDS-ON
Breast cancer 16 11 12 1 2 49 21
Ovarian cancer 65 8 12 7 11 104 38
Melanoma 39 5 1 2 8 47 22
Colorectal cancer 97 82 73 87 0 381 281

The error analysis also revealed incorrect annotations in the
gold labels. We identified 30 annotation errors in the sample
of the shared task dataset (~3.5 million words). The number
of annotation errors in the CRC dataset sample is higher,
but this is also the largest dataset (12 million+ words). Thus,
as a proportion, the estimated annotation error rates across
the independent datasets are similar. Annotation error is a
standard hazard of the annotation process, especially for a
highly cognitively demanding task as the timeline extraction
from the entire patient’s chart. One has to review every
single document from the patient’s chart, which for oncology
patients translates into hundreds, if not thousands, of notes.
Human errors are bound to happen. This further underscores
the importance of developing methods for automatic and
faithful timeline extraction.

A curious result emerges on the melanoma dataset. As
shown in Table 2, the performance on the melanoma dataset
is lower than the performance on other types of cancer using
task-specific finetuned model. We believe this is caused

by the data scarcity in the melanoma dataset because (1)
SACT is not the main treatment modality for most melanoma
presentations; therefore, there are fewer instances of SACT
in the melanoma data and (2) the melanoma test set is the
smallest of the 4 datasets. As the evaluation script compu-
ted the average F1-scores across all patients, the overall
performance on the melanoma test set fluctuated greatly with
the score of individual patients.

In this work, we focus on cancer treatment timeline
extraction. However, the methodology described in this work
can be applied to treatment timelines extraction of other
diseases. For instance, if gold standard datasets are available
for an out-of-domain disease type, one can finetune a small
LM for temporal relation extraction. If gold annotations are
not available for a type of disease, prompting LLMs with a
few domain-specific examples would be a viable solution.
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Limitations
In this work, we did not use powerful, but proprietary
LLMs such as GPT-4 [26] or Gemini [43], as we do not
have access to nonretaining versions of these models for
large scale processing. Despite the fact that our dataset was
deidentified per HIPAA requirements, we did not feel that
it was ethically appropriate to submit patient-derived data
to a retaining LLM. However, experimenting with open
models presents a realistic scenario for the average academic
center as experimenting with proprietary LLMs comes at a
significant cost. The LLMs we selected in our study were
those reported to have competitive performance to propriet-
ary models [24,36]. During paper revision, the DeepSeek-
R1 [44] open model was released which outperformed the
proprietary models on several general benchmarks. We leave
experimentation with it as a future study. We did not use
prompting techniques such as chain-of-thought [45] because
it is not clear how to directly convert a complex task such
as timeline extraction from the entire EMR clinical narrative
into a series of reasoning steps. We leave the exploration
of using HIPAA-compliant versions of proprietary LLMs
(access-dependent) and other prompting methods such as
prompt-tuning [46-48] for future research. Another limitation
is that the datasets represent 2 medical centers and thus may
introduce institutional or regional biases. However, to the best
of our knowledge, these datasets are the only ones on cancer
treatment timelines available to the community. In addition,
this study focuses on colorectal cancer, breast cancer, ovarian
cancer, and melanoma. While these common cancer types are
broadly representative, future work should extend the SACT
timeline extraction task to other cancer types. We should
note that such pan-cancer extensions necessitate significant
resources for the creation of the gold annotations. We also

acknowledge that some cancer journeys are complex, with
lines of therapy containing SACT interspersed with other
therapeutic modalities such as radiation; these complexities
are out of scope for the current approach but should be a
focus of future work. Finally, this work uses an established
set of predefined temporal relations (CONTAINS, BEGINS-
ON, ENDS-ON, OVERLAP, and BEFORE) and preexisting
annotations. We acknowledge that modeling more complex
and nuanced temporal scenarios might potentially provide
additional insights; however, this is the core set the clinical
temporal information extraction community has converged on
with some minor nuances [1,2,14].
Conclusions
In this paper, we explored approaches for patient-level
timeline extraction through the task of SACT timeline
extraction. We performed experiments on the 2024 ChemoTi-
melines shared task as well as on the THYME dataset, thus
the data represented 4 types of cancer across two institutions.
We finetuned an LM that was specifically trained to attend
to EVENT and TIMEX3 mentions. In that, we achieved
higher scores than all shared task participants in Subtask1.
We also explored LLM-based systems via prompting. In both
subtasks, our LLM-based systems outperformed the shared
task participant systems that took the approach of prompt-
ing LLMs. Our results contribute to the body of work that
shows that task-specific finetuning based on rich, disease-spe-
cific datasets outperforms prompting the current generalist
LLMs. We believe our results and analysis on this task add
to the knowledge of extracting treatment timelines in EMRs
using NLP methods. Our code will be released publicly upon
acceptance.
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