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Abstract

Background: Sensitivity —expressed as percent positive agreement (PPA) with a reference assay—is a primary metric for
evaluating lateral-flow antigen tests (ATs), typically benchmarked against a quantitative reverse transcription polymerase
chain reaction (QRT-PCR). In SARS-CoV-2 diagnostics, ATs detect nucleocapsid protein, whereas qRT-PCR detects viral
RNA copy numbers. Since observed PPA depends on the underlying viral load distribution (proxied by the number of
cycle thresholds [Cts], which is inversely related to load), study-specific sampling can bias sensitivity estimates. Cohort
differences —such as enrichment for high- or low-Ct specimens— therefore complicate cross-test comparisons, and real-world
datasets often deviate from regulatory guidance to sample across the full concentration range. Although logistic models
relating test positivity to Ct are well described, they are seldom used to reweight results to a standardized reference viral
load distribution. As a result, reported sensitivities remain difficult to compare across studies, limiting both accuracy and
generalizability.

Objective: The aim of this study was to develop and validate a statistical methodology that estimates the sensitivity of ATs by
recalibrating clinical performance data—originally obtained from uncontrolled viral load distributions—against a standardized
reference distribution of target concentrations, thereby enabling more accurate and comparable assessments of diagnostic test
performance.

Methods: AT sensitivity is estimated by modeling the PPA as a function of qRT-PCR Ct values (PPA function) using logistic
regression on paired test results. Raw sensitivity is the proportion of AT positives among PCR-positive samples. Adjusted
sensitivity is calculated by applying the PPA function to a reference Ct distribution, correcting for viral load variability. This
enables standardized comparisons across tests. The method was validated using clinical data from a community study in
Chelsea, Massachusetts, demonstrating its effectiveness in reducing sampling bias.

Results: Over a 2-year period, paired ATs and qRT-PCR—positive samples were collected from 4 suppliers: A (n=211), B
(n=156), C (n=85), and D (n=43). Ct value distributions varied substantially, with suppliers A and D showing lower Ct (high
viral load) values in the samples, and supplier C skewed toward higher Ct values (low viral load). These differences led to
inconsistent raw sensitivity estimates. To correct for this, we used logistic regression to model the PPA as a function of Cts
and applied these models to a standardized reference Ct distribution. This adjustment reduced bias and enabled more accurate
comparisons of test performance across suppliers.

Conclusions: We present a distribution-aware framework that models PPA as a logistic function of Ct and reweights results
to a standardized reference Ct distribution to produce bias-corrected sensitivity estimates. This yields fairer, more consistent
comparisons across AT suppliers and studies, strengthens quality control, and supports regulatory review. Collectively, our
results provide a robust basis for recalibrating reported sensitivities and underscore the importance of distribution-aware
evaluation in diagnostic test assessment.
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Introduction

Antigen tests (ATs) have been a common tool utilized to
provide evidence for diagnosis and health care decisions and
have been used as such for several decades [1-4]. During the
COVID-19 pandemic, the worldwide use of ATs demonstra-
ted relevance for disease monitoring and diagnosis of new
cases [5,6]. ATs are rapid, economical, and portable; can be
self-administered; are quick to develop; and provide direct
evidence for the presence of the pathogen in the tested
sample —this combination is not equaled by more sophistica-
ted laboratory tests. Due to its increasing use, it is important
to accurately evaluate the AT performance for quality and
regulatory control.

The common statistic used to evaluate the positive
agreement performance of ATs has been sensitivity,
calculated over a set of samples known to be positive by a
gold standard reference. However, the sensitivity of ATs is
known to be strongly dependent on the sample viral load
[7-9]. Hence, the sensitivity per se is not an appropriate
measure of the AT positive agreement performance because
it is largely dependent on the distribution of the viral load
of statistical support (ie, the set of samples used to calculate
the statistic). Instead, a description of the percent positive
agreement (PPA) as a function of viral load is a more
accurate measure of positive agreement performance. The
PPA function (PPAf) is commonly calculated with a logistic
regression of the binary test result on positive agreement
(1=agreement, O=disagreement) against a variable related to
the viral load. In the case of COVID-19, the viral load is
commonly measured with the quantitative reverse transcrip-
tion polymerase chain reaction (QRT-PCR) cycle threshold
(Ct) result [10,11]; hence, the PPA is a function of the Cts.

Once the PPAf of a given AT supplier’s product has
been estimated from collected data in real-world application
conditions, it is straightforward to estimate the expected
sensitivity for any given Ct distribution or Ct sample set. This
is particularly useful for equalizing the expected sensitivity
to a common standard or reference distribution of Cts for a
comparison of the performance across suppliers for product
quality or regulatory purposes. This process removes the
bias introduced into sensitivity by the circumstantial uneven
representation of viral load in the statistical support (ie, the
data used to calculate the statistic).

Common methods used to calculate the sensitivity of an
AT product, whether for regulatory compliance or clini-
cal diagnostic research purposes, typically involve collect-
ing real-world test results paired with the qRT-PCR gold
standard. However, in the case of lateral-flow ATs, sensitivity
uncertainty does not adhere to a straightforward Bernoulli
process, as the underlying positive agreement probability is
not constant and is instead conditioned by viral load. To
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accurately calculate sensitivity, it would be necessary to
segment the collected samples based on the most influential
variable affecting underlying probability, using a standard
reference histogram. In our case, the influential variable is the
viral load, measured as Cts. Yet, implementing such a process
in the field with real-world data would be cumbersome and
would require a much larger dataset. The proposed balanc-
ing method overcomes this challenge by adjusting the raw
sensitivity calculation to any desired standardized reference
distribution of the viral load, without the need for extended
data collection and segmentation.

Methods
Study Description

We conducted a study of AT use in real-world conditions
in the city of Chelsea, Massachusetts, during the years
2022-2023. The objectives of the study were multifold:
(1) performing frequent COVID-19 testing at 2 vulnera-
ble population sites (elderly housing), (2) evaluating the
performance of ATs from different suppliers in the labora-
tory and in the real-world context, (3) collecting longitudinal
(time series) AT data for qRT-PCR positive samples, and (4)
implementing a digital AT data collection platform.

The participants of the study were enrolled after consent.
The participant was provided with a single self-testing AT
of any of the available 4 participating suppliers. The tests
were home tests, and data were self-logged by the participants
into an internet-based informatics platform. The participants
registered the AT results (their own assessment) and uploaded
a photograph of the test after completion (15 min). The
fraction of positive AT tests was followed daily with paired
qRT-PCR testing. A random number of negative ATs were
also analyzed by PCR.

Support personnel were available on scheduled days
throughout the week within the community to provide
devices, training, and participant follow-up. This minimized
potential confounding factors related to test interpretation
and self-reporting via the app. In addition to textual reports,
participants uploaded an image of their test result, allowing
our team to perform retrospective verification. Discrepancies
between self-reported results and staff-reviewed interpreta-
tions were found to be negligible, occurring in 5 eye
assessments of 500 positive tests.

The data analyzed come from ATs provided by 4
different suppliers, labeled A through D, and the correspond-
ing qRT-PCR test results, all of which were processed at
a Clinical Laboratory Improvement Amendments—certified
laboratory using the same RNA extraction as well as PCR
protocol. The total negative qRT-PCR tests were 57 for
A, 91 for B, 145 for C, and 114 for D, and positive
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gRT-PCR tests were 211 for A, 156 for B, 84 for C, and
43 for D. Each participant was tested with a single brand
(ie, AT supplier), so the distribution of viral load could
be different between the data collected for each brand.
These data were used to calculate AT performance statistics
and demonstrate the methodology for distribution-balanced
sensitivity according to a reference standard distribution.
Lineage annotations used in this study for laboratory assays
were Delta comparator (B.1.617.2/AY sublineages) using the
US WA 1/1 isolate and Omicron (BA.5). Among Chel-
sea study participants in 2022-2023, we detected BA.l.1,
BA2, BA2.12.1, BA5, BAS.1, BA52, BA52.1, BQ.1.1,
BQ.1.14, BQ.1.1.5, BQ.1.14, and XBB.1.5. Clinical sample
sequences were generated at the Broad Institute.

Ethical Considerations

This study was reviewed and approved by the Advarra
Institutional Review Board (IRB) for protocol “Center of
Complex Interventions — IDx20-001, Community frequent
antigen testing to monitor COVID-19 in senior public
housing setup” (Pro00059157). The most recent continuing
review approval was granted on November 13, 2023, with
approval through November 13, 2024. Advarra is registered
with the Office for Human Research Protections/Food and
Drug Administration (IRB #00000971) and conducts reviews
in accordance with US HHS 45 CFR 46 and FDA 21
CFR 50/56. All procedures adhered to institutional and
national ethical standards and the World Medical Association
Declaration of Helsinki. In accordance with JMIR Publica-
tions requirements, the IRB review outcome is explicitly
reported here.

Before any study procedures, participants were informed
of the study purpose, procedures, potential risks and benefits,
data uses, and their right to withdraw without penalty. Written
informed consent was obtained from each participant using
IRB-approved consent materials. No monetary compensa-
tion was given to participants. All study personnel comple-
ted human-subjects protection training prior to participant
interaction.

Data were collected and stored under IRB-approved
procedures to protect privacy and confidentiality. Only
deidentified or aggregated data are presented in this study;
no identifiable personal information is reported.

Any protocol amendments, consent-form changes, or
reportable events (eg, unanticipated problems; adverse device
effects; or protocol deviations that could affect participant
rights, safety, or data integrity) were submitted to Advarra in
accordance with IRB requirements before implementation.

PPA Function

As commonly used, AT operative reading involves steps of
device reaction to the nasal swab sample, a waiting time
after the sample is deposited, an observation using the naked
eye, and interpretation of the results by the user. For all
kits utilized (eg, cassettes), the user observed the presence
or absence of a colored line in a test area (test band) on
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a nitrocellulose strip of the lateral-flow test. The result is
considered positive when the test band visualized (a color
band) and can be distinguished from the no color or white
background even if the color signal is faint, while a negative
result is when the test band cannot be visualized by the user.
For performance statistics, the result of the AT provided to
the user is compared to the gold standard reference test [12],
a COVID-19 gRT-PCR test conducted in a state-approved
clinical laboratory.

For the positive agreement analysis of each AT supplier
dataset, we compare only the AT results that have a paired
positive qRT-PCR result (ie, having a positive qRT-PCR
result in a parallel swab sample taken the same day and
time as the AT swab sample). For the logistic regression
analysis, we identified the AT results with a binary variable:
1 for a positive result (agreement with the standard test)
and O for a negative result (disagreement with the standard
test). The outcome of the user assessment can be described
by a binary random variable. We modeled the PPAf with
a logistic function, having the qRT-PCR Ct as the function
domain (ie, the independent variable). Logistic regression is a
well-known analysis to estimate the probability as a function
of a dependent variable [13]. It has been used to describe the
probability of positive agreement in ATs [14].

In addition to estimating the PPAf that characterized each
AT supplier, the regression also accounts for the uncertainties
of the probability function and parameters. We implement
the logistic regression with a Bayesian approach, combining
the objectives of (1) fitting the binary observed data and (2)
honoring the Clopper-Pearson binomial confidence limits at
the raw Ct data sensitivity prediction. Hence, the posterior
model uncertainty description ensures compliance with the
Clopper-Pearson confidence limits for the sensitivity at the
raw Ct data. The numerical calculations are performed by
Markov chain Monte Carlo methods.

The logistic model is a well-established method for
modeling binary outcomes in which the probability, p (x),
varies with a predictor variable, x, particularly when the
probability increases monotonically with x. It assumes that
the log-odds of the outcome (ie, the logit transformation
of the probability) is a linear function of the predictor.
Compared to the traditional approach to raw sensitivity
estimation—which treats test outcomes as the result of
a Bernoulli process with constant (homogeneous) probabil-
ity—the logistic model offers a first-order improvement
by accounting for the dependence of the outcome probabil-
ity on the target concentration. Although alternative para-
metric models could be used to describe the relationship
between probability and the predictor (eg, probit, splines),
the logistic model provides a widely accepted and practi-
cal framework for improving sensitivity estimation accu-
racy. Logistic and probit models both yield nearly identical
monotone dose-response curves; we selected the logistic
model for its interpretability in terms of log-odds, its ability
to directly estimate the concentration at which PPA=0.5, and
its widespread use in diagnostics. Spline approaches are not
appropriate in this context, as they do not satisfy the boundary
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conditions of approaching O at the lower end and 1 at the
upper end of the concentration axis.

Distribution-Balanced Sensitivity Method

The sensitivity, s, is the fraction of the positive agreement
cases divided by the total positive cases in the experimental
gold standard results (eg, collected real-world AT binary data
on positive qRT-PCR cases). Based on the PPAf character-
ized for each AT supplier data, we can estimate the sensitivity
for any set of Ct cases. Let us consider that the experimen-
tal data for a given AT supplier involves N cases with

gRT-PCR cycle counts, X = {xl,xz, X, ...,xN}. The
expected value of the sensitivity is the average of the PPAf,
p (x) , over the cases:

1 N
EORSOWEN M

Likewise, the expected sensitivity over a data support with
any Ct probability density function (PDF), g(x), is given by
the probability product integration:

xf

!
E(s) = xf—xO[C0

Equations 1 and 2 use the PPAf to calculate the expected
sensitivity over a specific Ct data or distribution. Ade-
quate comparison of sensitivity across different AT datasets

p(x)g(x)dx )

Table 1. Glossary of relevant terms and corresponding meanings.
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requires a transformation of raw sensitivity (ie, calculated
from the observed data) to the expected sensitivity over
a common reference of Ct data values, or a Ct support
distribution (ie, histogram or PDF). Considering observed
binary data for several AT suppliers, our proposed process
to equalize the sensitivity support involves (1) estimating the
PPAfs by logistic regression of the observed AT binary data
for each one of the supplier’s datasets; (2) defining a common
reference Ct distribution by a PDF, g (x) ; and (3) calculating
for each AT supplier dataset the estimated sensitivity over the
common reference Ct support by equation (2).

Equation 2 can be evaluated by discretizing the Ct domain.
Alternatively, it can be computed by Monte Carlo integra-
tion, drawing Ct realizations from the target distribution and
applying equation 1 to each draw. To balance viral load
distributions across assays, we select a reference Ct sample
set as the empirical Ct distribution from supplier A and
evaluate all other suppliers over this common range. The
procedure is as follows: (1) for each nonreference supplier,
fit a logistic regression for PPA as a function of Ct using
the observed binary AT outcomes and (2) compute expected
sensitivity by averaging the fitted PPA over supplier A’s Ct
values via equation 1.

The described viral load balance processes removed the
effect of the Ct distribution on sensitivity, providing a
common base for comparison and evaluation of the test
performance.

Table 1 presents a glossary of terms and their correspond-
ing meanings.

Term Definition

Antigen test (AT) Lateral flow antigen test

Target Specific analyte that the test is designed to detect (protein present in a biological matrix sample)
Cycle threshold (Ct) gRT-PCR? cycle at which the fluorescence signal crosses a set threshold above background

Target concentration

It is the concentration of the target protein, expressed by cycle thresholds or ng mL™!, or by

plaque forming units of virus mL~!

Target concentration distribution

The distribution of target concentrations among the tested population; when grouped into

concentration ranges, it can be represented as a histogram.

Sensitivity

Proportion of positive cases detected by the antigen tests according to the reference qRT-PCR

gold standard. It represents the percent positive agreement.

Percent positive agreement (PPA)

In a Bernoulli process, it is the probability that the test outcome is positive; in the context of

antigen tests, this probability varies with the target concentration.

Percent positive agreement function (PPAf)
concentration.

Distribution-balanced sensitivity

It is a function assigning the value of the probability of positive agreement for a given target

The modeled value of the sensitivity at a selected (balanced) cycle distribution distribution

different from that of the real-world dataset.

Reference distribution

A distribution of the target concentration that is adopted as reference to model the sensitivity.

3gRT-PCR: quantitative reverse transcription polymerase chain reaction.

Results

Raw Positive Agreement Statistics

This section describes the basic performance statistics of the
ATs of the 4 suppliers analyzed, and the estimated PPAfs,
based on the binary data collected from the Chelsea study
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[15]. The agreement matrix was determined for each supplier
AT, and the common performance agreement fractions
were calculated: sensitivity, specificity, positive prediction,
negative prediction, and total prediction. Table 2 displays the
basic performance statistics for each one of the test suppliers,
including the Clopper-Pearson 95% confidence limits [16].
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Table 2. Basic performance statistics for COVID-19 in vitro diagnostics suppliers A, B, C, and D.
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Upper 95% confidence

Supplier Positive agreement cases,n Total cases,n  Value  Lower 95% confidence limit limit
A
Sensitivity 177 211 0.84 0.78 0.89
Specificity 55 57 0.96 0.88 1.00
Positive prediction 177 179 0.99 0.96 1.00
Negative prediction 55 89 0.62 0.51 0.71
Total agreement 232 268 0.87 0.82 0.90
B
Sensitivity 117 156 0.75 0.67 0.82
Specificity 90 91 0.99 0.94 1.00
Positive prediction 177 118 0.99 0.95 1.00
Negative prediction 90 129 0.70 0.61 0.77
Total agreement 207 247 0.84 0.79 0.88
C
Sensitivity 55 85 0.65 0.54 0.75
Specificity 144 144 1.00 0.97 1.00
Positive prediction 55 55 1.00 0.94 1.00
Negative prediction 144 174 0.83 0.76 0.88
Total agreement 199 229 0.87 0.82 091
D
Sensitivity 35 43 0.81 0.67 0.92
Specificity 107 114 0.94 0.88 0.97
Positive prediction 35 42 0.83 0.69 093
Negative prediction 107 115 0.93 0.85 0.97
Total agreement 142 157 0.90 0.88 0.95

Sensitivities show large differences across the suppliers A,
B, C, and D, with values 0.84, 0.75, 0.65, and 0.81, respec-
tively. A comparison plot of the raw AT sensitivities for
each supplier and confidence limits is shown (Figure 1).
Differences are significant with a large departure of 19%
(percentage points of the sensitivity) between suppliers A

and C. However, the histograms of qRT-PCR Cts supporting
the sensitivity calculations have marked differences across
the suppliers (Figure 2). Note that suppliers A and D have
a larger proportion of low Cts (large viral sample concentra-
tion). On the other hand, supplier C has a larger representa-
tion of large Cts (low viral sample concentration).

Figure 1. Raw sensitivities resulting from the real-world Chelsea study for lateral flow in vitro diagnostics suppliers A, B, C, and D. The boxes
and whiskers indicate the median and 50% and 95% confidence limits calculated using the Clopper-Pearson statistical method. The horizontal dotted
line across all histograms indicates the 0.8 sensitivity value, which is acceptable for in vitro diagnostics clinical performance according to regulatory

standards at 0.8 sensitivity for COVID-19 antigen tests.
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Figure 2. Histogram distributions of cycle thresholds (Cts) for antigen test suppliers A-D using quantitative reverse transcription polymerase
chain reaction (QRT-PCR) Cts for each antigen test supplier’s dataset. Cts are the average of N and ORFab gene segments of SARS-CoV-2 and
reported from Clinical Laboratory Improvement Amendments—certified laboratory using a PerkinElmer SARS-CoV-2 Food and Drug Administra-

tion—approved kit.
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Raw sensitivities (Figure 1) superpose the effects of the viral
concentration support to the true performance of the ATs.
Following our method, a first step to decouple the 2 effects
is estimating the PPAf from the raw data of each AT supplier
by logistic regression, as explained in the previous section.
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Figure 3 shows the binary data collected for each AT supplier
plotted against the Cts and the estimated PPAf for each test
supplier. The estimation of the PPAf by fitting the observed
binary AT data also provides the description of the uncertain-
ties in the PPAf. With the 95% confidence intervals of the
PPAf, our formulation estimates the full distribution of the
PPA conditioned to the Ct value.

Figure 3. Positive percent agreement (PPA) as a function of the quantitative reverse transcription polymerase chain reaction (QRT-PCR) cycle
thresholds (Cts) for naked-eye assessments of the Chelsea project participants after self-application of the antigen tests. Naked-eye assessments of the
antigen test result are plotted in the vertical axis with value 1 for positive and 0 for negative. The PPA function is obtained by logistic regression of
the binary naked-eye results and shows the strong dependency of the agreement probability with the qRT-PCR Cts.
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The PPAfs for suppliers A and B are similar (Figure 3).
Note that the Ct of median probability (ie, limit of detection
at probability P=.50) and the slope of the line function are
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similar to one another. The PPAf for supplier C shows a
slightly larger Ct at median probability and lower slope of
the function. The PPAf for supplier D is also close to the A
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and B functions but shows a wider range of uncertainties, also
expected from the smaller dataset supporting supplier D.

Several factors influence the estimation of the PPAf:
the representation of the Ct range, the balance between
positive and negative samples, and the overall sample size.
Smaller sample sizes increase the uncertainty of the PPAf,
as illustrated in the case of supplier D. However, in this
case, the estimation remained reliable because the Ct range
and the positive-negative representation were sufficiently well
balanced. The Ct values in supplier D’s dataset are compara-
ble to those observed in other supplier datasets. Similarly,
the distribution of positive and negative samples is appro-
priate, with a higher frequency of negatives at lower viral
loads (ie, higher Ct values), as expected. In contrast, datasets
with limited coverage of the Ct range, underrepresentation of
positives or negatives, or a distribution that fails to reflect the
expected polarization, with negatives concentrated at higher
Ct values and positives at lower Ct values, would not support
a reliable estimation.

Bosch et al

Reference Distributions of Viral Load

Due to the specific Ct value distributions, the comparison
of raw sensitivities is biased by the uneven distribution of
the Ct support. This is shown by the corresponding histo-
grams (Figure 2). Utilizing the balance methodology, we
computed the sensitivities of the ATs from the 4 suppli-
ers across 4 distinct reference distributions of the Cts. The
sample statistics of the PPA exhibit particular sensitivity to
low positive samples, that is, those with low viral concen-
tration. Consequently, we opt for a uniform distribution of
gRT-PCR cycles spanning 10-35 Cts, with variable propor-
tions within the 35-40 range, to underscore the significance
of representing low-positive cases in the overall sample PPA
(Figure 4A-C). Additionally, we employed the combined Ct
distribution of all 4 tests as a reference, that is, the joint
positive qRT-PCR Ct counts of the 4 suppliers’ data (Figure
4D).

Figure 4. Comparison of selected reference distributions of the raw data. Histograms A, B, and C correspond to 200 dataset points with a range of
low virus load (from 5% to 15% of sample at 35-40 quantitative reverse transcription polymerase chain reaction [QRT-PCR] cycle threshold [Ct]
range) and uniform distribution in the range of high-to-moderate virus load (10-35 qRT-PCR Ct range). Histogram D corresponds to the overlap of

the 4 antigen test in vitro diagnostics suppliers’ real-world data.
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We present 4 different Ct distributions to illustrate how
Ct values, and therefore virus load, influence the adjus-
ted sensitivity. The purpose of the distribution-balancing
process is 2-fold: (1) to enable accurate comparison of AT
sensitivities across studies and (2) to improve real-world
sensitivity estimation. First, comparing sensitivities across
studies becomes more reliable when distribution-balanced is
referenced to a common distribution. Second, clinical studies
often have limited numbers of cases and may not ade-
quately reflect the real-world distribution of target concen-
trations observed in broader populations (eg, regional or
national data). In this context, distribution-balanced sensitiv-
ity provides a closer approximation of real-world perform-
ance. For our clinical dataset, the distribution that best
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represents the broader population is the overall Ct dataset
(Figure 4D), as it includes all cases pooled from the 4
devices.

Sensitivities for the Reference
Distributions

According to the described viral load balance method, we
estimated the sensitivities of the ATs of the 4 suppliers
(Figure 5) over each one of the reference distributions (Figure
4) utilizing the PPAf. It is interesting to compare the results
shown (Figure 4) to the raw sensitivities previously calcula-
ted (Figure 1). Although the order of performance of the
4 suppliers has been preserved, in order of best to worst
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performances, the order was supplier A, B, D, and C. The
sensitivity differences are smaller among suppliers once the
effect of the source distribution is removed. The difference
between suppliers A and C is only at 5% instead of the 19%
for the raw sensitivity calculation. A large proportion of the

Bosch et al

raw sensitivity difference between these 2 suppliers origina-
ted from the overrepresentation of high viral concentration
samples for supplier A and the overrepresentation of low viral
concentration samples for supplier C.

Figure 5. Sensitivities of antigen test brands calculated from reference distributions of cycle thresholds as shown in Figure 4. The boxes and whiskers
indicate median and 50% and 95% confidence limits. Horizontal dotted line across each panel shows the threshold of 0.8 sensitivity acceptable for in
vitro diagnostics clinical performance according to regulatory standards for COVID-19 antigen tests. RW: real world.
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Figure 5 shows the impact of the reference distributions of Ct
values on the resulting sensitivity. The absolute value of the
sensitivity shows a variation of over 8% difference across the
different distributions—larger than the difference across the
supplier sensitivities. In particular, the fraction of low virus
concentration positives plays an important role, as expected:
the PPAfs (Figure 3) show that the probability of positive
agreement is very low for low positives (35-40 Cts) in all
suppliers. The indicated line at 0.8 sensitivity in Figure 5
helps to illustrate this point. With the reference distribution
including 5% of low positives, the 4 suppliers have sensitiv-
ities over the 0.8 threshold. With the reference distribution
including 15% of low positives, suppliers B and C are below
the threshold, whereas suppliers A and D are borderline at the
0.8 threshold value. With the distribution that combines the
4 suppliers’ observed samples, all the suppliers are below the
0.8 threshold.

Discussion

Accurate estimation of AT performance in real-world studies
is often confounded by heterogeneous viral load distributions,
sample collection conditions, and demographic factors [17].
In particular, the Ct values derived from qRT-PCR, which
serve as a surrogate for viral concentration, exhibit considera-
ble variability across study populations. This variability can
bias sensitivity —or PPA —estimates when derived directly
from unbalanced datasets.

To address the limitation, we introduce a mathemati-
cally grounded approach that estimates a PPAf via logistic
regression and then recalculates sensitivity over a stand-
ardized reference Ct distribution. This method transforms

https://bioinform.jmir.org/2025/1/e68476
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raw sensitivity estimates into a harmonized metric that
is independent of the original data’s viral load distribu-
tion, enhancing comparability across studies and diagnos-
tic platforms. By modeling the entire range of Ct values,
rather than focusing solely on predefined low-positive bins,
our approach enables more comprehensive and statistically
balanced evaluations. A reference distribution of gqRT-PCR
Ct values serves as a standardized representation of viral
load across a target population, enabling consistent evalua-
tion of diagnostic test sensitivity. Unlike raw distributions
derived from individual clinical studies—which are subject
to variability in recruitment timing, population demograph-
ics, testing strategies, and local epidemiology—a reference
distribution is designed to reflect a controlled or representa-
tive viral load profile against which diagnostic performance
can be compared. The reference Ct distribution may be
empirically derived from large, well-characterized datasets
collected during peak transmission periods or constructed
synthetically based on known viral kinetics in the popula-
tion. For example, an ideal reference might be a unimodal
distribution centered around the Ct range associated with
peak transmissibility and highest clinical relevance (eg, Ct
20-30), or it might reflect the full spectrum of observed viral
loads (eg, Ct 10-40), weighted to mirror realistic clinical
case presentations across settings. The purpose of applying
such a reference is to enable adjusted sensitivity calculations
that are independent of the viral load biases inherent in the
original data. This is particularly important when comparing
AT performance across different suppliers or studies, where
raw sensitivities may differ simply due to the proportion of
high- or low-Ct samples in each dataset. In the diagnostic
settings, a broader distribution capturing both early and late
stages of infection may be more appropriate. Ultimately, the
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choice of reference distribution must be consistent, allowing
for harmonized sensitivity comparisons that reflect diagnostic
utility across diverse real-world scenarios.

While regulatory frameworks have moved toward
including “lower viral load specimens” in performance
assessments to mitigate overestimation, these approaches
often lack generalizability and do not account for the full
spectrum of observed Ct values. Our methodology advan-
ces this paradigm by providing a distribution-based recali-
bration mechanism, capturing the full continuum of viral
concentrations, and generating sensitivity estimates that
are both internally consistent and externally comparable.
Critically, FDA Emergency Use Authorization evaluation
criteria anchored to gRT-PCR (including use of highly
sensitive PCR comparators and mandated proportions of
“low-positive” samples) shaped apparent clinical sensitivity
and reinforced PCR-first policies for confirmation, which—
despite PCR’s analytical advantages—dampened uptake of
antigen testing for rapid, frequent screening where time-to-
result drives transmission control.

Furthermore, genetic strain diversity, specific amino acid
mutations in the SARS-CoV-2 nucleoprotein, and host
disease-related comorbidities and immunological factors
[18,19] may influence AT performance. These factors
that could alter antigen detection are also limitations that
apply to molecular diagnostics, where ongoing monitoring
of performance and vigilance for unexpected results are
required. To date, both the original SARS-CoV-2 Delta strain
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and its descendant Omicron lineages have been detected with
comparable efficiency across ATs. From the list of virus
lineages we reported, we did not detect differences in AT
performance. Kinetics of binding or other more sensitive
analysis was outside the scope of this paper. Under the
assumption of a relatively genetically uniform circulating
viral strain, PCR Ct-based adjustments provided a pragmatic
and scientifically valid strategy to reduce bias in estimat-
ing AT performance. In contexts where variant heterogene-
ity becomes relevant, the proposed distribution balancing
approach could be extended by calculating variant-specific
PPAfs and integrating them into proportionally weighted
models. While Ct values serve as quantitative proxies with
platform-dependent variability, internal laboratory calibra-
tions (ie, processing of all nasal swabs within the same
laboratory and RNA extraction and PCR protocol) mitigate
this source of error. In the study, a single RNA extrac-
tion and PCR protocol of the Clinical Laboratory Improve-
ment Amendment generated Ct values, thereby minimizing
variability and controlling for recalibration effects.

In summary, we propose a robust statistical framework
that corrects for real-world sampling biases through distribu-
tional modeling. This approach yields adjusted sensitivity
estimates that more accurately reflect intrinsic test perform-
ance, thereby supporting improved diagnostic evaluation,
regulatory decision-making, and public health comparisons
across populations and settings.
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