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Abstract

Background: Deep learning (DL) shows promise for automated lung cancer diagnosis, but limited clinical data can restrict
performance. While data augmentation (DA) helps, existing methods struggle with chest computed tomography (CT) scans
across diverse DL architectures.

Objective: This study proposes Random Pixel Swap (RPS), a novel DA technique, to enhance diagnostic performance in both
convolutional neural networks and transformers for lung cancer diagnosis from CT scan images.

Methods: RPS generates augmented data by randomly swapping pixels within patient CT scan images. We evaluated it on
ResNet, MobileNet, Vision Transformer, and Swin Transformer models, using 2 public CT datasets (Irag-Oncology Teaching
Hospital/National Center for Cancer Diseases [IQ-OTH/NCCD] dataset and chest CT scan images dataset), and measured
accuracy and area under the receiver operating characteristic curve (AUROC). Statistical significance was assessed via paired ¢
tests.

Results: The RPS outperformed state-of-the-art DA methods (Cutout, Random Erasing, MixUp, and CutMix), achieving
97.56% accuracy and 98.61% AUROC on the IQ-OTH/NCCD dataset and 97.78% accuracy and 99.46% AUROC on the chest
CT scan images dataset. While traditional augmentation approaches (flipping and rotation) remained effective, RPS comple-
mented them, surpassing the performance findings in prior studies and demonstrating the potential of artificial intelligence for
early lung cancer detection.

Conclusions: The RPS technique enhances convolutional neural network and transformer models, enabling more accurate
automated lung cancer detection from CT scan images.
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Intr tion proliferate, invade nearby tissues, and metastasize to other
oductio parts of the body [2]. The disease progresses through distinct
Bac kgroun d stages, with advanced stages often proving fatal [3]. Lung

Lung cancer is a lethal disease characterized by uncontrol-
led cell growth in the lungs [1]. These malignant cells can
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cancer comprises multiple histological types and subtypes,
affecting individuals regardless of gender [4]. Globally, lung
cancer remains the leading cause of cancer-related mortality
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[5]. In 2020 alone, it accounted for 1.8 million deaths, ranking
as the 6th leading cause of death worldwide among individu-
als younger than 70 years [2]. A key contributor to this high
mortality is the frequent absence of early symptoms, leading
to late-stage diagnosis and poorer outcomes [6]. The 5-year
survival rate for lung cancer patients remains low, emphasiz-
ing the critical need for early detection [7]. Early diagnosis
significantly improves prognosis, reduces long-term treatment
costs, expands therapeutic options, and alleviates the burden
on caregivers and families [1,8-10]. However, most cases are
still detected at advanced stages, drastically limiting survival
rates [5]. These challenges underscore lung cancer as a major
public health priority.

Computed tomography (CT) is a medical imaging
technique that produces high-resolution cross-sectional
images of the lungs, providing detailed anatomical informa-
tion for clinical evaluation [11]. As a noninvasive diagnos-
tic tool, CT imaging has become indispensable for the
early detection of lung cancer, offering superior sensitivity
compared to conventional radiography [12,13]. However, the
interpretation of CT scans presents significant challenges in
clinical practice. The process demands considerable expertise
from radiologists, as subtle early-stage malignancies may
demonstrate imaging features that escape human detection,
potentially leading to diagnostic oversights [14,15]. The
subjective nature of image interpretation introduces variabil-
ity in diagnostic accuracy among practitioners, which can
result in false-positive identification of pulmonary nodules.
Such errors may prompt unnecessary invasive procedures
for confirmation, exposing patients to avoidable risks and
health care systems to additional costs [13]. Furthermore, the
comprehensive evaluation of CT examinations is particularly
demanding, as each study comprises numerous sequential
slices, requiring both individual assessment and integrated
analysis. This labor-intensive process frequently overwhelms
available radiological resources, contributing to diagnos-
tic delays and extended patient waiting periods [15-17].
To address these limitations, computer-assisted diagnostic
systems have been developed to augment radiologists’
interpretive capabilities [18]. These automated solutions
employ advanced algorithms to analyze CT images, enhanc-
ing diagnostic accuracy while improving workflow efficiency
[19]. By integrating such technological advancements into
clinical practice, health care providers can mitigate the
current challenges associated with manual CT interpretation,
ultimately improving patient outcomes through more timely
and reliable diagnoses.

The application of computer algorithms for the automa-
ted early diagnosis of lung cancer from CT scan images
has evolved considerably. Early approaches used radiomics
and machine learning techniques, but recent advancements
have established deep learning (DL) as the predominant
methodology [20]. Unlike traditional methods that depend
on manually engineered features, a process prone to bias
and time constraints, DL employs artificial neural net-
works to autonomously extract sophisticated features through
training [21]. Among DL architectures, both convolutional
neural networks (CNNs) and Vision Transformers have

https://bioinform.jmir.org/2025/1/e68848

Abe & Nyathi

demonstrated exceptional potential for the early detection of
lung cancer [22]. CNNs gained prominence after 2012, while
Vision Transformers emerged in 2020 [23], with both now
leading innovations in automated CT scan analysis [18,19].

CNNs and transformers offer distinct advantages for
medical image analysis. CNNs, with their inductive bias
for spatial locality and translation invariance, benefit from
a simpler, parameter-efficient architecture rooted in spatial
priors, which is highly effective and easier to train on
smaller datasets [24,25]. They specialize in extracting local
features and understanding spatial relationships between
adjacent pixels. In contrast, transformers excel at capturing
long-range dependencies across the entire image [26]. Vision
Transformers are particularly scalable, maintaining image
resolution better than CNNs during processing [27]. Their
parallel processing capability also enables faster training
times compared to similarly complex CNNs [28], although
they typically require larger training datasets to achieve
comparable performance [29]. Recent developments have
seen the rise of hybrid networks that combine CNN and
transformer architectures, successfully integrating both local
and global feature extraction to overcome the limitations of
standalone approaches [30,31].

Despite their capabilities, DL models face significant
data-related challenges. While these architectures proficiently
automate nodule detection, classification, and segmentation
in CT scans [32], they demand extensive training data
to outperform radiologist interpretations [33]. The scarcity
of annotated medical CT datasets presents a major con-
straint [34], as creating such datasets requires time-consum-
ing, expert-driven image labeling [35]. Data augmentation
(DA) has emerged as a crucial solution to expand data-
set size and diversity [36], enhancing both the quantity
and quality of available training samples [37]. However,
selecting appropriate DA techniques for chest CT analysis
remains challenging due to several factors, including the
variable effectiveness of methods across different datasets
and domains [38], potential label distortions and crucial
information loss caused by certain transformations [39],
and current limitations in improving performance for both
CNN and transformer architectures [37,40]. To address these
challenges, this study proposes the Random Pixel Swap
(RPS) augmentation method, specifically designed to enhance
the generalization capabilities of both architectural paradigms
in lung cancer diagnosis from chest CT scan images.

Related Work

The effectiveness of DA in training large neural networks
was first conclusively demonstrated in 2012 [41], sparking
the development of numerous innovative techniques [37].
These methods primarily fall into 2 categories: data synthe-
sis and data transformation [36]. Data synthesis techniques
generate novel samples that maintain statistical similarity to
the original training data, while data transformation techni-
ques create variations by modifying existing training samples.
Both approaches effectively increase training dataset size,
quality, and diversity, although they differ significantly in
implementation. Data synthesis typically requires parameter
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learning, a process that can prove computationally inten-
sive and often demands substantial training data to ach-
ieve optimal results [42]. In contrast, data transformation
techniques generally avoid parameter learning and conse-
quently require less computational resources. Traditional
data transformation methods include fundamental image
manipulations such as flipping, rotation, cropping, transla-
tion, and photometric adjustments (modifications to bright-
ness, saturation, contrast, and hue) [36]. More sophisticated
approaches like Cutout [43], Random Erasing [44], MixUp
[45], and CutMix [46] have subsequently emerged, achieving
state-of-the-art performance across various domains. These
advanced techniques have been employed in lung cancer
diagnosis from CT scan images [47-49].

The following section provides a comprehensive examina-
tion of the Cutout, Random Erasing, MixUp, and CutMix
techniques, analyzing their limitations in medical imaging
applications and contrasting them with the proposed RPS
method. This comparative analysis establishes the foundation
rationale for developing specialized augmentation approaches
optimized for medical image analysis challenges.

Cutout DA Technique

The Cutout technique randomly selects square regions within
images and masks their pixel values [43]. While effective
for improving model robustness against occlusions in natural
images, this approach presents significant limitations for
medical CT scans. The method’s potential to eliminate
critical diagnostic information (such as cancerous regions)
may degrade performance [38]. Additionally, the masking
process can inadvertently alter image labels, further limiting
effectiveness [39]. Unlike Cutout, our RPS approach avoids
information loss. It preserves diagnostic information by
replacing masked regions with pixel values that are derived
from other areas within the same CT scan while maintaining
original labels.

Random Erasing DA Technique

Random Erasing extends Cutout’s functionality by supporting
both square and rectangular masks of varying sizes [44]. This
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technique randomly selects image regions for erasure and
replaces them with random pixel values. While the variable
mask sizes increase dataset diversity compared to Cutout, the
method still suffers from information loss and label alteration
issues [36,40]. These limitations are particularly problematic
for medical imaging, where preserving anatomical content is
crucial.

MixUp DA Technique

MixUp generates new samples through linear interpolation
of pixel values and labels from 2 distinct images [45].
This approach enhances model generalization by prevent-
ing label memorization and improving adversarial robust-
ness. However, the technique’s potential to blur important
anatomical boundaries and the requirement of careful
hyperparameter tuning can create a bottleneck in medical
contexts [47.48]. Furthermore, its convergence speed is often
suboptimal [47]. RPS addresses these limitations by operating
within single patient scans rather than mixing data across
patients and employs a single hyperparameter for more
efficient training.

CutMix DA Technique

CutMix combines aspects of previous methods by cutting
patches from one image and pasting them onto another while
proportionally blending labels [46]. Although this approach
leverages the benefits from both Cutout and MixUp, the label
blending can introduce noise that degrades model perform-
ance [50]. For medical CT scans, combining patches from
different patients may confuse learning models, particularly
when dealing with subtle pathological features [S51]. RPS
overcomes these challenges by performing pixel swaps
exclusively within individual patient scans and preserving
original labels without blending. Figure 1 visually contrasts
these techniques with the proposed RPS method.
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Figure 1. Computed tomography images for various data augmentation techniques. (A) MixUp; (B) CutMix; (C) Cutout; (D) Random Erasing; (E)
Random Pixel Swap. The original image is in column 1, while the augmented images are in columns 2, 3,4, and 5.

Methods
RPS DA Technique

The RPS technique is a parameter-free DA algorithm that
operates with a predefined transformation probability. This
method partitions input images into 2 distinct regions that
serve as source and target areas for patch selection and
swapping operations. The study proposes 4 specific imple-
mentation approaches, designated as RPSy (vertical), RPSyw
(horizontal), RPSy (upper right diagonal), and RPSp (upper
left diagonal) swap configurations, as illustrated in Figure 2.
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This multidirectional swapping mechanism provides several

advantages: it generates diverse transformations within
individual patient CT scans while maintaining pathological
plausibility, introduces meaningful variability in the training
dataset without requiring parameter learning, and preserves
all critical diagnostic information by operating exclusively
within each scan’s original pixel values. The technique’s
ability to produce multiple distinct transformations from a
single image significantly enhances dataset diversity while
avoiding the label alteration and information loss issues
associated with other augmentation methods.
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Figure 2. Four possible swap approaches for the Random Pixel Swap (RPS) data augmentation technique. I is the original image. Areas Aj and
A, are the swap regions. RPSy (vertical), RPSy (horizontal), RPSy (upper right diagonal), and RPSp (upper left diagonal) are the possible swap

configurations.

RPSy

RPS possesses distinct invariant properties compared to other
techniques. For an image with N pixels and L; intensity
levels, the RPS transformation preserves global intensity,
as shown in Equations (1)-(3). The technique employs a
controlled, systematic, random patch-based pixel swap, rather
than a random point-based pixel swap, ensuring that image
content is preserved. This approach generates meaningful
variations while maintaining pathological truth, thereby
retaining clinical relevance in the context of lung cancer
diagnosis.

X' =T(X) )

where T is permutation transform

y_n _ny
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P
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where P is the probability of a pixel having intensity i;
n(i),n(i) is the number of pixels with intensity level
i € X A X', respectively; N, N’ is the total number of pixels
in X A X', respectively; L is the intensity level; and I is the
average global intensity.

RPS

H RPSw

RPSp

Implementation of RPS

The RPS technique is implemented by first randomly
selecting 2 coordinate points (x;, X,) along the x-axis and
2 points (y4, y») along the y-axis within the input image.
These coordinates define 2 equal subswap regions: region
X bounded by swap area Aj:(Xq, y1) and (Xp, y2), and Ay
bounded by swap area A,:(xy, y1)" and (X, y2)’. The method
incorporates a key hyperparameter called the swap area factor
S s which ranges from 0.1 to 1.0, to control the extent
of augmentation. The actual swap areas S;; and S,, are
derived by scaling the subswap regions using this factor, as
specified in Equations (4) and (5). During the augmentation
process, the contents of swap area S,; are cropped and pasted
into swap area S,; while simultaneously transferring the
contents of swap area S, to swap area S,1. This bidirectional
swapping ensures comprehensive data transformation while
preserving all original image information. The complete RPS
procedure is formally described in Textbox 1.

Sa1 = (Asl * Sf) (4)

Sap = (ASZ * Sf) (5)

Textbox 1. Algorithm 1: Random Pixel Swap data augmentation procedure.

Input: data X; with shape H X W
Output: Augmented data X

LA € %(H*W)
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2: Init: All points P within A;

3: Sf L SfG(D : Sfe [0.1,1.0]

4: for P;, PjeP, do

5: Randomly select P; , Pj ,

P] ,P}:Pl-*z P2

6: Agy = Area (P;, Pj)

7: Agy = Area (P} , Pj)

8: S =Ag * Sf

9: Sqp=Ag * Sy

10: X* +Replace S, with Sy in X and S5 with Sgp in X

11: end for
12: return X*
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Swap Area Factor

The swap area factor Sy is a crucial parameter in the RPS
technique, representing the ratio between the subswap region
and the total swap area as described in Equation (6). This
factor plays a vital role in the augmentation process for
two key reasons: (1) it allows customization for different
DL architectures that may benefit from varying swap region
sizes, and (2) it helps maintain clinical relevance by limit-
ing distortion of diagnostically important anatomical features.
The study proposes two distinct implementations of this
parameter: (1) single-value swap area factor (SVSF), which
applies a fixed value throughout the augmentation process,
and (2) multivalue swap area factor (MVSF), which uses
multiple values to generate more diverse swap areas. In
both implementations, the swap area factor operates within
a defined range of 0.1 to 1.0, providing controlled flexibility
for different medical imaging scenarios.

(6)

Experimental Validation of the RPS
Technique

We conducted comprehensive experiments to validate the
effectiveness of the proposed RPS technique in enhancing
DL model performance across both CNN and transformer
architectures. For our evaluation, we selected 4 established
models: ResNet-34 [52], MobileNetV3 (small variant) [53],
Vision Transformer (base-16) [23], and Swin Transformer
(tiny version) [29], all initialized with preactivated weights.
These architectures were chosen based on three key criteria:
(1) public availability for reproducible benchmarking, (2)
widespread adoption in methodological comparisons [29 48],
and (3) efficient training characteristics due to their relatively
fewer trainable parameters compared to larger variants.

Our experimental design incorporated three key compar-
isons: (1) models trained without any augmentation, (2)
models trained with RPS augmentation, and (3) models

https://bioinform.jmir.org/2025/1/e68848

trained with 4 state-of-the-art DA techniques (Cutout [43],
Random Erasing [44], MixUp [45], and CutMix [46]). These
comparison techniques were selected because they repre-
sent current best practices in parameter-free augmentation
methods that share conceptual similarities with RPS [48]. We
evaluated all models using two key metrics: (1) classification
accuracy and (2) area under the receiver operating character-
istic curve (AUROC), providing a comprehensive assessment
of both overall performance and diagnostic discrimination
capability.

Experimental Setup and Implementation

All experiments were conducted using Python 3.12.2 (Python
Software Foundation) and PyTorch 2.2.2+ cull8 (PyTorch
Foundation) within Jupyter Notebook 7.0.8 (IPython Project),
running on an NVIDIA Quadro RTX 3000 GPU (Nvidia
Corporation). We adopted the AdamW optimizer with a
cross-entropy loss function, using a batch size of 16. The
StepLR scheduler was configured with a step size of 10
and a gamma value of 0.5 [52]. Models were trained for
50 epochs, as additional training resulted in overfitting and
performance degradation. After evaluating various learning
rates, we selected 1x10™ as it yielded optimal results. Image
normalization was applied with mean and SD values of 0.5 to
enhance training stability and accelerate convergence [53].

For RPS implementation, we used a swap area factor
of 1.0 with an augmentation probability of 1.0 for all
experiments. CNN models processed images at 512x512
and 224x224 resolutions, while transformer architectures
used 224x224 resolution due to the Vision Transformer’s
input size limitations. Although the Swin Transformer
supports 512x512 inputs, we maintained a consistent
224x224 resolution across all transformer experiments for fair
comparison. All experiments were conducted with a random
seed of 42 after verifying consistent performance patterns
across 3 different seeds.

Statistical Analysis

To evaluate our hypothesis that an effective DA technique
should perform consistently across both CNN and transformer
architectures, we treated each technique as an independent
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variable and considered model performance as the depend-
ent variable. We used paired sample ¢ tests [54] to assess
significant differences between techniques, considering P
values <.05 as statistically significant.

For comprehensive technique comparison, we implemen-
ted a ranking system based on cumulative scores C (Equa-
tions (7) and (8)), where higher scores received lower rank
numbers R. This approach enabled holistic performance
benchmarking across all models and architectures.

n
C= > model(A+ AUROC)

model =1

(7)

RLRALRY, ..,R™"T1 =C,,C, Cs, ...
V C;>Cy>Cauisy > Criyn

9Cm+1

(8)

where C is cumulative score, R is rank, m is the total number
of data augmentation techniques, 7 is the total number of
selected models, A is accuracy, and AUROC is the area
under the receiver operating characteristic curve.

Iraq-Oncology Teaching Hospital/
National Center for Cancer Diseases
Dataset

The Iraq-Oncology Teaching Hospital/National Center for
Cancer Diseases (IQ-OTH/NCCD) dataset contains 1097
JPEG CT images collected from 110 patients [35]. These
images were obtained using a SOMATOM Siemens scanner
(Siemens Healthineers) and encompass a diverse range of
demographic characteristics. The dataset is organized into 3
categories: normal scans, benign tumor scans, and malignant
tumor scans. Specifically, it includes 15 cases of benign
tumors, totaling 120 images; 40 cases of malignant tumors,
totaling 416 images; and 55 cases of normal findings, totaling
561 images. Each image has a resolution of 512x512 pixels.
We divided the images in a ratio of 7:3 for training and
testing.

Chest CT Scan Images Dataset

The chest CT scan images dataset contains 1000 lung CT
scans from patients diagnosed with 3 different types of lung
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cancers, as well as scans from healthy individuals, all in JPG
format [55]. The lung cancer types included in the dataset
are adenocarcinoma, squamous cell carcinoma, and large cell
carcinoma. The images are organized into training, testing,
and validation sets for each lung cancer category.

Ethical Considerations

Ethics approval was obtained from the Sefako Makgatho
University Research Committee (ethics reference number:
SMUREC/M/12/2022:PG).

Results

Average Training Time Overhead

To evaluate the computational impact of the RPS technique,
we measured training duration for 4 architectures (ResNet-34,
MobileNetV3 [small], Vision Transformer [base-16], and
Swin Transformer [tiny]) with and without RPS implemen-
tation. The training time overhead was calculated as the
difference between augmented and nonaugmented training
times. Experiments were conducted on both the IQ-OTH/
NCCD and chest CT scan datasets using 224x224 image
resolution, with results averaged across 3 independent runs
for reliability.

Our analysis included a comparative assessment of 4
established DA techniques: Cutout, Random Erasing, MixUp,
and CutMix. Results demonstrated that while RPS increased
training times across all models compared to nonaugmen-
ted training, this increase was not statistically significant
(P=.07). Similarly, comparisons between RPS and other DA
techniques revealed no statistically significant differences in
computational overhead (Cutout: P=.06; Random Erasing:
P=.17; MixUp: P=.49; CutMix: P=.16). Among all evaluated
methods, RPS showed the highest training time overhead,
followed sequentially by MixUp, CutMix, Random Erasing,
and Cutout. Complete results are presented in Figure 3.
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Figure 3. Average training time overhead of 5 data augmentation techniques across 4 deep learning models.

Time (s)

ResNet-34

Performance Comparison of RPS With
State-of-the-Art DA Techniques for Lung
Cancer Detection

To evaluate pulmonary nodule detection in chest CT
scan images, the selected CNN and transformer mod-
els (ResNet-34, MobileNetV3 [small], Vision Transformer
[base-16], and Swin Transformer [tiny]) were trained on
the IQ-OTH/NCCD dataset to classify the scan images as
normal or containing benign or malignant pulmonary nodules.
Experimental results demonstrated that RPS significantly
enhanced performance across all 4 architectures (P=.008).
The MobileNetV3 model achieved particular success when
combined with RPS using 512x512 image resolution,
reaching a peak classification accuracy of 94.21%, represent-
ing a 1.22% accuracy improvement and 0.86% AUROC
increase over the baseline model.

i Cutout
F4 wipe Random Erasing
£ ) MixUp
i CutMix
- Random Pixel Swap
MobileNetV3 (small) Vision Transformer (base-16) Swin Transformer (tiny)
At 224x224 image resolution, our comprehensive

comparison of RPS against the 4 established DA methods
(Cutout: P=.03; Random Erasing: P=.008; MixUp: P=.02;
CutMix: P=.02) revealed consistent superiority of the RPS
technique (P<.05). For ResNet-34, RPS exceeded CutMix
(the best alternative) by 2.44% and Random Erasing (the
least effective) by 5.49% in accuracy. MobileNetV3 showed
a 0.3% improvement over Cutout (best alternative) and
1.83% over MixUp (least effective) in accuracy. Transformer
architectures demonstrated even more pronounced benefits:
Vision Transformer with RPS outperformed Random Erasing
by 1.52% and MixUp by 16.77%, while Swin Transformer
showed a 1.53% improvement over MixUp and 4.57% over
Cutout in accuracy. Across all architectures, performance
ranking was as follows: (1) RPS (best technique), (2) Random
Erasing, (3) CutMix, (4) MixUp, and (5) Cutout. The detailed
results are presented in Table 1.

Table 1. Classification results of the IQ-OTH/NCCD? dataset using preactivated deep learning models with various data augmentation techniques

(224x224 image resolution).

Data augmentation Rank®  ResNet-34 MobileNetV3 (small) Vision Transformer Swin Transformer (tiny)
(base-16)
Accuracy, % AUROCS, Accuracy, AUROC, % Accuracy, AUROC, % Accuracy, AUROC, %
% % %o %

Base modeld 6 85.98 83.39 86.59 93.16 57.62 64.88 85.67 89.06
Cutoutd 5 85.67 86.11 89.33 92.95 57.01 63.45 85.37 93.68
Random Erasing? 2 82.62 91.23 88.72 90.10 71.65 75.41°¢ 86.89 9142
MixUpd 4 84.45 91.05 87.80 86.57 56.40 68.55 88.41 9251
CutMixdf 3 85.67 88.34 88.41 93.02 68.90 69.68 88.41 92.05
Random Pixel Swap’ 1 88.11¢ 93.70° 89.63¢ 93.80° 73.17° 74.64 89.94°¢ 94.79¢

41Q-OTH/NCCD: Irag-Oncology Teaching Hospital/National Center for Cancer Diseases.
bRank represents the overall rating for each technique, with “1” indicating the best technique across all models.

CAUROC: area under the receiver operating characteristic curve.

dSigniﬁcant difference between an augmentation technique and the Random Pixel Swap technique across all models.

®Highest value in the column.

fSigniﬁcant difference between training using an augmentation technique and the base model across all models.

At 512x512 image resolution, ResNet-34 exhibited nuanced
performance differences between augmentation techniques:

https://bioinform.jmir.org/2025/1/e68848

while CutMix achieved a marginal 0.31% higher accuracy
than RPS, RPS demonstrated significantly superior diagnostic
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capability with a 5.31% improvement in AUROC. Fur-
thermore, RPS outperformed the least effective technique
(Random Erasing) by 2.13% in accuracy and 3.17% in
AUROC. For MobileNetV3, RPS dominated all compara-
tive techniques in both accuracy and AUROC, except for
a 1.23% AUROC advantage by CutMix. Specifically, RPS

Abe & Nyathi

exceeded Cutout (the best alternative technique) by 0.61%
and surpassed MixUp (the least effective) by 4.58% in
accuracy. Across all evaluated methods, the overall perform-
ance ranking was as follows: (1) RPS (best technique), (2)
Cutout, (3) CutMix, (4) MixUp, and (5) Random Erasing. The
detailed results are presented in Table 2.

Table 2. Classification results of the IQ-OTH/NCCD? dataset using preactivated deep learning models with various data augmentation techniques

(512%512 image resolution).

Data augmentation RankP ResNet-34 MobileNetV3 (small)
Accuracy, % AUROCS, % Accuracy, % AUROC, %

Base modeld 6 88.72 78.51 92.99 94 .81
Cutoutd 2 90.24 93.25 93.60 9542
Random Erasing? 5 89.94 91.85 90.85 92.19
MixUpd 4 89.94 96.13¢ 89.63 95.18
CutMix 3 92.38¢ 89.71 92.68 96.90°¢
Random Pixel Swap 1 92.07 95.02 94.21¢ 95.67

41Q-OTH/NCCD: Irag-Oncology Teaching Hospital/National Center for Cancer Diseases.
PRank represents the overall rating for each technique, with “1” indicating the best technique across all models.

CAUROC: area under the receiver operating characteristic curve.

dSignificant difference between an augmentation technique and the Random Pixel Swap technique across all models.

®Highest value in the column.

Performance Comparison of RPS With
State-of-the-Art DA Techniques for Lung
Cancer Classification From CT Scan
Images Using DL Architectures

We evaluated the effectiveness of the RPS technique for lung
cancer classification using the chest CT scan images dataset
across multiple DL architectures. The experimental results
demonstrated that RPS significantly enhanced classification
performance for all architectures (P=.008). RPS combined
with ResNet-34 at 512x512 image resolution achieved
optimal performance, reaching 97.78% accuracy and 99.46%
AUROC.

At 224x224 image resolution, RPS consistently outper-
formed competing techniques across most models (Cutout:
P=.001; Random Erasing: P=.02; MixUp: P=.047; CutMix:

P=.18). For ResNet-34, RPS exceeded CutMix (the best
alternative) by 0.64% and Random Erasing (the least
effective) by 5.08% in accuracy. MobileNetV3 showed
even greater improvements over other methods, with RPS
surpassing CutMix by 3.49% and MixUp by 9.21% in
accuracy. For the implementation with Vision Transformer,
RPS surpassed Random FErasing (the best alternative) by
191% and MixUp (the least effective) by 18.85% in
accuracy. While CutMix showed a 2.22% accuracy advantage
over RPS for the Swin Transformer, RPS maintained superior
performance against all other techniques, exceeding Cutout
by 7.3% (the least effective). Across all architectures, the
overall performance ranking was as follows: (1) RPS (best
technique), (2) CutMix, (3) Random Erasing, (4) Cutout, and
(5) MixUp. The detailed results are presented in Table 3.

Table 3. Classification results of the chest CT? scan images dataset using preactivated deep learning models with various data augmentation

techniques (224x224 image resolution).

Data augmentation RankP ResNet-34 MobileNetV3 (small) Vision Transformer Swin Transformer (tiny)
(base-16)

Accuracy, AUROCS, Accuracy, Accuracy, Accuracy,

% % % AUROC, % % AUROC, % % AUROC, %
Base modeld 5 93.33 99.00 87.30 97.09 82.86 95.84 84.76 96.92
Cutoutde 4 93.02 98.94 85.71 97.62 80.63 94.35 84.13 96.05
Random Erasingd 3 90.48 98.54 88.89 9745 84.76 96.72f 88.25 97.28
MixUpd 6 9143 98.57 83.49 96.85 67.82 86.97 90.79 97.87
CutMix 2 94.92 98.69 89.21 97.80 76.82 92.60 93.65¢ 98.74f
Random Pixel Swap® 1 9556 99.15f 92.70f 98.02f 86.67° 96.32 9143 98.45

4CT: computed tomography.

bRank represents the overall rating for each technique, with “1” indicating the best technique across all models.

CAUROC: area under the receiver operating characteristic curve.

dSignificant difference between an augmentation technique and the Random Pixel Swap technique across all models.
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CSignificant difference between training using an augmentation technique and the base model across all models.

fHighest value in the column.

At 512x512 image resolution, the RPS technique demon-
strated superior performance compared to all evaluated DA
methods (Cutout: P=.13; Random Erasing: P=.27; MixUp:
P=.13; CutMix: P=.31). For ResNet-34, RPS matched the
accuracy of the top-performing alternative (CutMix) while
achieving a 0.21% improvement in AUROC. Furthermore,
RPS showed significant gains over the least effective
technique (MixUp), with a 7.74% accuracy performance

advantage. The MobileNetV3 architecture exhibited even
more pronounced benefits, where RPS outperformed CutMix
(the best alternative) by 2.23% and surpassed MixUp by
4.45% in accuracy. Across all techniques, the performance
ranking was as follows: (1) RPS (best technique), (2) CutMix,
(3) Cutout, (4) Random Erasing, and (5) MixUp. The detailed
results are presented in Table 4.

Table 4. Classification results of the chest CT?® scan images dataset using preactivated deep learning models with various data augmentation

techniques (512x512 image resolution).

Data augmentation Rank® ResNet-34 MobileNetV3 (small)
Accuracy, % AUROCS, % Accuracy, % AUROC, %

Base model 5 96.83 99.25 93.02 98.27
Cutout 3 96.51 99.35 94.60 98.39
Random Erasing 4 96.83 99.42 93.65 98.824
MixUp 6 92.38 98.64 92.38 98.51
CutMix 2 97784 99.25 94.60 98.61
Random Pixel Swap 1 97.784 99.464 96.834 98.75

4CT: computed tomography.

bRank represents the overall rating for each technique, with “1” indicating the best technique across all models.

CAUROC: area under the receiver operating characteristic curve.
ClHighest value in the column.

Performance Analysis of Swap Area
Factors for Lung Cancer Diagnosis

The swap area factor serves as a critical hyperparameter
in RPS implementation. We systematically evaluated its
influence using both SVSF and MVSF configurations across
the 0.1 to 1.0 range on the IQ-OTH/NCCD dataset. MVSF
provides over 100 possible combinations of lower and upper
bounds (eg, 0.1-0.5 and 0.4-0.8); however, our experimen-
tal configurations maintained a fixed lower bound of 0.1.
Experimental results revealed distinct optimal configurations
for each architecture. For SVSF implementations, ResNet-34,
Vision Transformer, and Swin Transformer achieved peak
performance at 1.0, while MobileNetV3 performed best

at 0.9. For MVSF implementations, ResNet-34 showed
optimal results within 0.1-0.9, MobileNetV3 performed best
at 0.1-0.7, Vision Transformer excelled at 0.1-0.3, and Swin
Transformer achieved peak performance at 0.1-0.5.

Comparative analysis demonstrated that SVSF generally
outperformed MVSF configurations for a fixed 0.1 lower
bound across most architectures, with the notable exception
of ResNet-34. For this model, MVSF (0.1-0.9) surpassed
SVSF (1.0) by 0.61% in accuracy and 1.08% in AUROC. The
most effective overall configuration combined MobileNetV3
with RPS using an SVSF of 0.9, achieving 94.51% accuracy
and 95.77% AUROC. The detailed results are presented in
Table 5.

Table 5. Analysis of the IQ-OTH/NCCD? dataset using different deep learning architectures and Random Pixel Swap data augmentation with

single-value and multivalue swap area factors (224x224 image resolution).

Swap factor ResNet-34

MobileNetV3 (small)

Vision Transformer
(base-16)

Swin Transformer (tiny)

Accuracy, % AUROCb, % Accuracy, % AUROC,%  Accuracy,% AUROC,% Accuracy,% AUROC, %
Single value
0.1 89.02 92.26 93.90 95.10 64.02 74.97¢ 86.28 92.02
0.2 91.16 94.62 92.99 95.04 60.98 63.20 83.23 93.59
03 90.85 93.48 9207 95.38 64.02 67.95 89.02 91.63
0.4 89.63 92.66 92.99 95.24 69.21 72.59 84.76 92.81
0.5 90.55 90.96 92.68 95.01 68.60 72.47 87.80 84.13
0.6 90.55 94.76 92.99 95.24 69.21 72.36 84.76 89.63
0.7 91.46 95.23 92.68 95.12 67.99 66.48 83.54 90.65
0.8 89.63 92.22 93.60 95.60 67.99 69.83 89.94¢ 95.95¢
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Swap factor ResNet-34 MobileNetV3 (small) Vision Transformer Swin Transformer (tiny)
(base-16)
Accuracy, % AUROCb, % Accuracy,% AUROC,%  Accuracy,% AUROC,% Accuracy,% AUROC, %
0.9 90.85 94.42 94.51¢ 95.77¢ 71.65 72.79 83.84 90.99
1.0 92.07¢ 95.02¢ 9421 95.67 73.17¢ 74.64 89.94¢ 94.79
Multivalue
0.1-0.2 90.55 93.80 93.90¢ 94.83 66.16 69.14 85.98 94.29
0.1-0.3 89.33 90.53 9329 95.18 72.56° 77.93¢ 84.76 91.84
0.1-04 89.33 90.18 93.60 95.03 60.98 73.15 87.50 9430
0.1-0.5 91.16 95.93¢ 93.60 94.84 59.15 68.80 88.11¢ 94.94¢
0.1-0.6 90.55 93.26 92.38 94.60 62.20 59.86 87.20 9345
0.1-0.7 89.94 90.99 93.90¢ 95.33 61.28 70.73 88.11¢ 92.53
0.1-0.8 87.80 93.13 93.29 95.00 66.77 76.81 86.28 85.93
0.1-09 92.68¢ 95.29 93.60 95.29 68.29 64.98 86.59 92.69
0.1-1.0 89.02 92.53 93.60 95.71¢ 62.80 69.05 83.54 94.35

41Q-OTH/NCCD: Irag-Oncology Teaching Hospital/National Center for Cancer Diseases.
bAUROC: area under the receiver operating characteristic curve.

“Highest value in the column.

Our evaluation of the chest CT scan images dataset using
different swap area factor configurations revealed architec-
ture-specific optimal settings. SVSF demonstrated superior
performance at 1.0 for both ResNet-34 and MobileNetV3,
while Vision Transformer achieved peak accuracy with an
SVSF of 0.1. For Swin Transformer, MVSF configurations

between 0.1 and 0.6 yielded optimal results. Among all tested
combinations, ResNet-34 paired with RPS using an SVSF of
1.0 delivered the highest classification performance, reaching
97.78% accuracy and 99.46% AUROC. The detailed results
are presented in Table 6.

Table 6. Analysis of the chest CT? scan images dataset using different deep learning architectures and Random Pixel Swap data augmentation with

single-value and multivalue swap area factors (224x224 image resolution).

Swap factor ResNet-34

MobileNetV3 (small)

Vision Transformer
(base-16)

Swin Transformer (tiny)

Accuracy, % AUROCb,% Accuracy, % AUROC, %  Accuracy,% AUROC,% Accuracy,% AUROC, %

Single value

0.1 96.19 99.13 94.60
0.2 97.46 99.27 94.60
03 96.19 99.22 95.24
04 97.46 99.20 95.24
0.5 97.14 9941 94.92
0.6 97.14 99.30 95.56
0.7 97.14 99.19 95.56
0.8 97.14 99.38 95.87
0.9 96.83 99.35 95.87
1.0 97.78¢ 99.46° 96.83¢
Multivalue
0.1-0.2 97.14 99.27 94.92
0.1-0.3 96.51 99.30 9397
0.1-04 96.51 99.00 94.60
0.1-0.5 97.46 99.28 94.29
0.1-0.6 96.51 99.37 95.24
0.1-0.7 97.78¢ 99.39 94.92
0.1-0.8 97.46 99.25 9397
0.1-09 97.48 99.32 94.92

98.55 86.67¢ 96.32 94.29°¢ 98.72
98.60 81.27 9437 92.06 98.78¢
98.61 78.73 93.98 93.65 98.65
98.65 82.54 96.10 92.06 98.46
98.74 85.08 96.31 9143 98.38
98.79¢ 8540 96.86° 91.75 97.85
98.69 83.81 9548 93.65 98.65
98.75 81.59 95.48 9143 97.95
98.62 81.27 94.25 88.89 97.80
98.75 75.56 91.62 9143 98.45
98.59 75.56 92.85 93.65 98.51
98.62 84.13 95.86 9143 98.20
98.55 76.83 92.77 93.65 98.73
98.63 80.32 94.69 92.38 98.64
98.59 82.54 95.63 96.19¢ 98.90°¢
98.65 86.03¢ 96.84°¢ 94.29 98.90°¢
98.62 81.90 94.88 93.02 98.83
98.70 81.90 94.99 93.65 98.86
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Swap factor ResNet-34 MobileNetV3 (small) Vision Transformer Swin Transformer (tiny)
(base-16)
Accuracy, % AUROCb, % Accuracy,% AUROC,%  Accuracy,% AUROC,% Accuracy,% AUROC, %
0.1-1.0 97.46 99.41°¢ 95.87°¢ 98.75¢ 82.22 9521 93.33 98.72

4CT: computed tomography.
bAUROC: area under the receiver operating characteristic curve.
“Highest value in the column.

RPS With Lung Region of Interest
Segmentation

Prior studies have demonstrated that segmenting lung
regions of interest (ROIs) can significantly improve the
diagnostic performance of DL models [33,56]. To evalu-
ate the effectiveness of the RPS technique when applied
to segmented images, we conducted experiments using the
selected models (ResNet-34, MobileNetV3 [small], Vision
Transformer [base-16], and Swin Transformer [tiny]). Our
investigation used both the IQ-OTH/NCCD dataset and chest
CT scan images dataset at 224x224 resolution.

The segmentation process involved multiple steps. We
first applied a threshold algorithm to generate a lung mask,

Thresholded Image
to generate lung mask

Figure 4. Lung segmentation procedure.

Input Image

Cropped lung
region of Interest

Our experiments with the IQ-OTH/NCCD dataset demonstra-
ted that the RPS technique significantly improved perform-
ance across all evaluated models (P=.04) and most techniques
(Cutout: P=.049; Random Erasing: P=.004; MixUp: P=.04;
CutMix: P=.06). The most notable results were achieved by
ResNet-34 with RPS, reaching 97.56% accuracy and 98.61%
AUROC. While RPS outperformed all competing techniques
for MobileNetV3 and Swin Transformer, CutMix showed
superior performance for Vision Transformer, exceeding RPS
by 1.52% in accuracy and 0.67% in AUROC. The overall
performance ranking across techniques was as follows: (1)

https://bioinform.jmir.org/2025/1/e68848

.

followed by dilation and hole-filling operations to ensure
comprehensive coverage of pulmonary structures. The final
lung ROI was extracted by cropping surrounding pixels along
the mask boundaries. The complete procedure is illustra-
ted in Figure 4. For comparative analysis, we evaluated
model performance under three conditions: (1) training
without augmentation, (2) training with RPS, and (3) training
with established augmentation techniques (Cutout, Random
Erasing, MixUp, and CutMix). This comprehensive evalua-
tion framework allowed us to assess the relative benefits of
RPS when applied to segmented lung images.

.

Mask borders
removed

.

Dilated image

Trachea removed
from mask

Input image multiplied
by mask

RPS (best technique), (2) CutMix, (3) Random Erasing, (4)
Cutout, and (5) MixUp.

For the chest CT scan images dataset, the RPS tech-
nique consistently improved performance across models
(P=.06) and most techniques (Cutout: P=.01; Random
Erasing: P=.009; MixUp: P=01; CutMix: P=.38). The
highest performance was again achieved by ResNet-34 with
RPS (95.51% accuracy and 98.86% AUROC). While RPS
showed superior results for MobileNetV3 and Swin Trans-
former, CutMix performed better for Vision Transformer
(321% higher accuracy and 0.6% higher AUROC). The
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CutMix, (3) Cutout, (4) Random Erasing, and (5) MixUp. The
detailed results are presented in Table 7.

Table 7. Classification results of the IQ-OTH/NCCD? and chest CT® scan images datasets using preactivated deep learning models with various data
augmentation techniques and segmentation of the lung region of interest (224x224 image resolution).

Data augmentation Rank® ResNet-34 MobileNetV3 (small) Vision Transformer Swin Transformer (tiny)
(base-16)
Accuracy, AUROCd, Accuracy, Accuracy, Accuracy,
% % % AUROC, % % AUROC, % % AUROC, %
IQ-OTH/NCCD dataset
Base model® 5 96.65 99.13 9543 97.28 89.94 96.51 93.60 98.21
Cutout® 4 96.04 98.86 9543 96.33 92.38 96.20 93.90 97.80
Random Erasing® 3 95.73 9745 96.65¢ 97.29 91.46 96.27 94 82f 98.00
MixUp®¢ 6 95.87 99.19f 91.77 97.11 91.77 96.27 93.29 97.52
CutMix 2 96.65 98.86 9451 96.39 93.90f 97.64f 93.29 97.52
Random Pixel 1 97.56¢ 98.61 96.651 98.00f 92.38 96.97 94.82¢ 98.12f
Swap®
Chest CT scan images dataset
Base model 2 95.19 99.03 87.82 96.83F 82.69 95.48 90.71 98.11
Cutout® 4 94.55 98.85 88.14 97.66 80.77 93.86 88.14 97.32
Random Erasing®? 5 94.55 98.75 86.54 96.52 7981 89.72 86.86 97.16
MixUp®€ 6 9455 98.77 82.05 9533 78.85 93.29 85.90 97.10
CutMix 3 95.19 99.05f 86.54 96.89 86.86 96.43f 87.82 96.73
Random Pixel Swap 1 95.51f 98.86 90.71f 97.51 83.65 95.83 91.35f 98.36f

41Q-OTH/NCCD: Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases.

bCT: computed tomography.

“Rank represents the overall rating for each technique, with “1” indicating the best technique across all models.

dAUROC: area under the receiver operating characteristic curve.

CSignificant difference between an augmentation technique and the Random Pixel Swap technique across all models.

Highest value in the column.

gSignificant difference between training using an augmentation technique and the base model across all models.

Performance Analysis of the
Combination of RPS With Traditional DA
Techniques for Lung Cancer Diagnosis

Traditionally, DA techniques, including image flipping and
rotation, are widely employed in medical image analysis
with DL [44]. To evaluate the potential benefits of combin-
ing these methods with the RPS technique, we conducted
a systematic comparison. First, we trained selected mod-
els (ResNet-34, MobileNetV3 [small], Vision Transformer
[base-16], and Swin Transformer [tiny]) using individual
traditional techniques: horizontal flipping, vertical flipping,
and random rotation (+90°). Subsequently, we trained the

models using combinations of each traditional technique with
RPS.

Our experiments revealed that the combination of
RPS with traditional techniques generally enhanced model
performance compared to using traditional methods alone.
However, when a traditional technique failed to improve
baseline performance, its combination with RPS did not
surpass RPS alone. For the IQ-OTH/NCCD dataset, using

https://bioinform.jmir.org/2025/1/e68848

RPS alone surpassed the individual traditional techniques
(horizontal flipping: P=.63; vertical flipping: P=.22; rotation:
P=93). RPS with rotation achieved peak performance for
ResNet-34 and Vision Transformer (base-16), improving
upon rotation alone by 2.14% and 2.75% in accuracy,
respectively. RPS with vertical flipping performed the best
for MobileNetV3 (small), exceeding vertical flipping alone
by 0.61% in accuracy. However, RPS alone showed superior
results for Swin Transformer (tiny).

Similarly, for the chest CT scan images dataset, using
RPS alone surpassed the individual traditional techniques
(horizontal flipping: P=.01; vertical flipping: P=.03; rotation:
P=.04). RPS with rotation demonstrated the strongest overall
performance, improving upon rotation by 0.95% in accuracy.
RPS with horizontal flipping achieved optimal results for
Vision Transformer (base-16), surpassing horizontal flipping
alone by 5.71% in accuracy. However, RPS alone outper-
formed all combinations for MobileNetV3 (small) and Swin
Transformer (tiny). The detailed results are presented in Table
8.
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Table 8. Classification results of the IQ-OTH/NCCD? and chest CT® scan images datasets using preactivated deep learning models when 3 traditional

data augmentation techniques are combined with the Random Pixel Swap data augmentation technique (224x224 image resolution).

Data augmentation Rank® ResNet-34 MobileNetV3 (small) Vision Transformer Swin Transformer (tiny)
(base-16)
Accuracy, AUROCY, Accuracy, AUROC,  Accuracy, AUROC, Accuracy, AUROC,
% % % % % % % %
1IQ-OTH/NCCD dataset
Base model® 8 85.98 83.39 86.59 93.16 57.62 64.88 85.67 89.06
Horizontal flip 82.01 86.70 88.11 93.36 73.78 86.20 87.50 91.86
Horizontal flip with 2 87.20 90.43 88.41 91.21 78.36 89.31f 88.72 92.12
Random Pixel Swap
Vertical flip® 87.50 89.82 90.55 93.89f 62.50 76.54 89.02 9241
Vertical flip with Random 6 88.11 89.54 91.16f 93.28 68.29 73.94 88.72 93.10
Pixel Swap®8
Rotation® 4 87.80 90.30 89.63 91.53 7591 80.70 88.41 92.67
Rotation with Random 89.94f 90.28 89.02 91.75 78.66f 87.16 89.02 93.10
Pixel Swap®
Random Pixel Swap® 3 88.11 93.70f 89.63 93.80 73.17 74.64 89.94f 94.79*
Chest CT scan images dataset
Base model® 8 93.33 99.00 87.30 97.09 82.86 95.84 84.76 96.92
Horizontal flip® 91.43 98.56 87.62 97.37 82.836 95.83 91.75 98.33
Horizontal flip with 4 93.97 98.96 89.21 9748 88.57 97.63f 92.70 98.09
Random Pixel Swap®
Vertical flip®2 6 93.33 98.86 83.81 96.83 84.72 96.10 92.06 98.58
Vertical flip with Random 93.97 98.81 86.67 97.13 84.76 96.23 91.43 98.04
Pixel Swap®$
Rotation®¢ 3 95.24 99.22 90.16 97.58 84.57 94.95 95.87 99.03
Rotation with Random 1 96.19f 99 24f 91.75 97.73 85.23 95.10 96.19 98.99
Pixel Swap®
Random Pixel Swap$ 2 95.56 99.15 92.70f 98.02f 86.67 96.32 96.19f 98.90f

4IQ-OTH/NCCD: Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases.

PCT: computed tomography.

“Rank represents the overall rating for each technique, with “1” indicating the best technique across all models.

dAUROC: area under the receiver operating characteristic curve.

CSignificant difference between an augmentation technique and the Random Pixel Swap technique across all models.

fHighest value in the column.

gSignificant difference between training using an augmentation technique and the base model across all models.

Validation Results of the Generalization
Capabilities of the RPS Technique

Enhancing the generalization ability of DL models to unseen
data represents a critical objective of DA [46]. To evalu-
ate the RPS technique’s capacity to improve model gen-
eralization, we conducted experiments using the selected
models (ResNet-18, MobileNetV3 [small], Vision Trans-
former [base-16], and Swin Transformer [tiny]). Models were
trained on the IQ-OTH/NCCD dataset and validated on the
chest CT scan images dataset (distinct collections acquired
using different imaging equipment, protocols, time periods,
and geographical locations). All models performed binary
classification (cancerous vs normal) of CT images.

https://bioinform.jmir.org/2025/1/e68848

Our comparative analysis included the base models, RPS
implementation, and selected standard DA techniques. The
results demonstrated RPS’s superior performance across
all architectures (Cutout: P=.05; Random FErasing: P=.054;
MixUp: P=.04; CutMix: P=.03), with an exception for the
Vision Transformer implementation. Random Erasing showed
a marginal 0.8% accuracy advantage over RPS. However,
RPS maintained a significant 9.28% improvement in AUROC
over Random Erasing. Furthermore, the cumulative ranking
was as follows: (1) RPS (best technique), (2) Cutout, (3)
CutMix, (4) Random Erasing, and (5) MixUp. The detailed
results are presented in Table 9.
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Table 9. Validation results of the generalization capabilities of different data augmentation techniques for lung cancer diagnosis using deep learning

(224%224 image resolution).

Data augmentation Rank? ResNet-34 MobileNetV3 (small) Vision Transformer Swin Transformer (tiny)
(base-16)

Accuracy, AUROCb, Accuracy, Accuracy, Accuracy,

% % % AUROC, % % AUROC, % % AUROC, %
Base model® 3 82.53 84.33 91.24 90.03 79.29 63.60 92.22 95224
Cutout® 2 82.65 97.29 92.09 90.70 81.80 63.49 92.22 85.77
Random Erasing® 5 88.71 78.66 9145 89.66 82.654 58.92 91.96 85.96
MixUp® 6 83.80 95.17 91.58 90.36 80.74 52.24 91.58 79.73
CutMix*© 4 84.57 94.36 90.69 80.26 81.12 66.90 92.09 86.09
Random Pixel Swap® 1 90.694 97 484 92354 93304 81.85 68.204 92354 95.04

4Rank represents the overall rating for each technique, with “1” indicating the best technique across all models.

PAUROC: area under the receiver operating characteristic curve.

CSignificant difference between an augmentation technique and the Random Pixel Swap technique across all models.

dHighest value in the column.

CSignificant difference between training using an augmentation technique and the base model across all models.

Comparison With Prior Work

Our experimental results demonstrated improvements over
the results of previous studies using both the IQ-OTH/
NCCD and chest CT scan images datasets. For the IQ-OTH/
NCCD dataset, our approach achieved a 7.67% performance
improvement over a machine learning technique in the study
by Kareem et al [57], a 4.76% improvement over an ensemble
of VGG-16, ResNet-50, InceptionV3, and EfficientNetB7

models in the study by Solyman et al [58], and a 2.13%
enhancement over an ensemble of 3 custom CNNs in the
study by Abe et al [59]. Similarly, for the chest CT scan
images dataset, our method showed a 5.78% improvement
over a 3-layer custom CNN in the study by Mamun et al [60]
and a 2.22% improvement over a 5-layer CNN with a custom
Mavage Pooling layer in the study by Abe et al [47]. The
comparative results are detailed in Table 10.

Table 10. Comparison of our study results with the results of previous studies on the analysis of the IQ-OTH/NCCD? and chest CT® scan images

datasets.

Dataset and study

Accuracy, %

Number of classes

IQ-OTH/NCCD

Kareem et al [57] 89.89
Solyman et al [58] 92.80
Abe et al [59] 9543
Our study 97.56
Chest CT scan images
Mamun et al [60] 92.00
Abe et al [47] 95.56
Our study 97.78

W W W W

41Q-OTH/NCCD: Irag-Oncology Teaching Hospital/National Center for Cancer Diseases.

bCT: computed tomography.

Discussion

Principal Findings

The experimental results of the study demonstrated that the
RPS DA technique significantly enhanced the diagnostic
performance of both CNN and transformer architectures for
lung cancer diagnosis from CT scan images. Our com-
prehensive evaluation demonstrated that RPS consistently
outperformed 4 established augmentation methods (CutMix,
Random FErasing, MixUp, and Cutout) across multiple
performance metrics and diverse experimental conditions.
The superior efficacy of RPS stems from its unique capacity

https://bioinform.jmir.org/2025/1/e68848

to preserve critical anatomical content while generating
clinically meaningful variations through controlled intraimage
pixel swapping. This characteristic makes RPS particularly
valuable for medical imaging applications where maintaining
content integrity is essential for an accurate diagnosis.

For CNN architectures, specifically ResNet-34, RPS
yielded remarkable performance improvements. ResNet-34
achieved peak accuracies of 97.56% for the IQ-OTH/NCCD
dataset and 97.78% for the chest CT scan images dataset,
with corresponding AUROC scores of 98.61% and 99.46%,
respectively, at 512x512 image resolution. The technique’s
effectiveness with MobileNetV3 (96.65% accuracy and
98.0% AUROC for the IQ-OTH/NCCD dataset; 96.83%
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accuracy and 98.75% AUROC for the chest CT scan images
dataset) is particularly notable given this model’s light-
weight architecture, suggesting RPS’s potential for deploy-
ment in resource-constrained clinical settings where efficient
models are often preferred [56]. The study results repre-
sent a substantial advancement over conventional augmenta-
tion approaches, as RPS effectively addresses the inherent
limitation of CNNs in capturing global relationships by
creating localized variations that enhance feature learning
while preserving diagnostically relevant image features.

The transformer-based architectures (Vision Transformer
and Swin Transformer) showed particularly notable improve-
ments when augmented with RPS. While transformer
models conventionally demand large-scale training datasets
to achieve peak performance, RPS effectively compensated
for data limitations by generating variations that preserved
the overall image content for proper attention mechanism
functioning. For the Vision Transformer, RPS augmenta-
tion significantly enhanced performance, reaching 92.38%
accuracy and 96.93% AUROC on the IQ-OTH/NCCD dataset
and 86.67% accuracy and 96.32% AUROC on the chest CT
scan images dataset. The Swin Transformer demonstrated
robust performance gains, achieving 94.82% accuracy and
98.12% AUROC on the IQ-OTH/NCCD dataset and 96.19%
accuracy and 98.90% AUROC on the chest CT scan images
dataset when enhanced with RPS. The study results showed
that RPS enables transformer models to develop more robust
and clinically relevant feature representations, even with
limited training data.

Our comparative analysis revealed RPS’s consistent
dominance across evaluation metrics and experimental
conditions. While CutMix showed marginal advantages in
specific scenarios (notably a 0.31% accuracy improvement
with ResNet-34 at 512x512 image resolution), RPS main-
tained substantially better AUROC scores (5.31% higher
in the same comparison), indicating more reliable diagnos-
tic discrimination capability. This performance pattern held
true across both the IQ-OTH/NCCD and chest CT scan
images datasets, with RPS consistently ranking the highest in
our comprehensive evaluation framework. Importantly, while
conventional augmentation techniques sometimes degraded
model performance in certain scenarios [38,40], RPS
demonstrated universal performance enhancement across all
tested conditions. Three fundamental characteristics explain
RPS’s exceptional effectiveness. The first characteristic is
anatomical content preservation. Unlike methods that erase
or mix image regions, RPS maintains all original diagnos-
tic information while creating realistic variations through
a controlled, systematic, random patch-based pixel swap
within carefully defined ROIs. This approach preserves
the clinical relevance of training samples while providing
valuable data diversity. The second characteristic is archi-
tecture agnostic adaptability. The technique’s parameter-free
implementation and tunable swap area factor enable optimal
performance across diverse model architectures without
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requiring architecture-specific adjustments. This flexibility
makes RPS particularly valuable for medical imaging
research, where multiple architectures may be explored.
The third characteristic is clinical pathological relevance.
By restricting pixel swaps to anatomically plausible regions
within lung tissue (especially when combined with ROI
segmentation), RPS enhances the learning of pathologi-
cal features that may appear anywhere in the pulmonary
anatomy, a crucial capability given the unpredictable spatial
distribution of malignant nodules in many cancer cases [61].

Validation experiments using independently acquired
datasets with different scanning protocols and equip-
ment configurations demonstrated RPS’s superior general-
ization capabilities. The technique achieved these results
while adding minimal computational overhead (statistically
insignificant increases in training time, P>.05), making
it practical for real-world clinical implementation. Further-
more, RPS showed excellent compatibility with conventional
augmentation methods, providing additional performance
gains when combined with rotation and flipping operations,
which suggests easy integration into existing medical image
processing pipelines.

These findings offer significant implications for the
development of computer-aided diagnosis systems. RPS
directly addresses two fundamental challenges in medical Al:
(1) the scarcity of annotated medical imaging data and (2)
the limited generalizability of many models across different
clinical settings [23]. By consistently outperforming current
state-of-the-art techniques while maintaining computational
efficiency, RPS emerges as a versatile solution suitable
for both research investigations and clinical deployment.
Additionally, the technique’s effectiveness suggests promis-
ing applications in educational settings for training radiolog-
ists, where realistic image variations could enhance learning
without requiring additional patient scans.

Conclusions

The findings of this study demonstrate that RPS is a robust
and versatile DA technique that significantly enhances the
performance of both CNN and transformer architectures for
lung cancer diagnosis from CT scan images. By preserving
anatomical content while introducing meaningful variabil-
ity, RPS outperforms existing augmentation methods across
multiple metrics and datasets, achieving improved accuracy
and AUROC scores. Its computational efficiency, adaptability
to diverse architectures, and ability to improve generalization
make it particularly valuable for medical imaging applica-
tions where data scarcity and model reliability are critical
challenges. RPS not only advances the technical frontier
of DA but also holds immediate promise for improving
computer-aided diagnosis systems in clinical practice. Future
work will explore its extension to other medical imag-
ing modalities (magnetic resonance, ultrasound, and x-ray
imaging) and extension to 3D applications.
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