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Abstract
Artificial intelligence (AI) and quantum computing will change the course of new drug discovery and approval. By generating
computational data, predicting the efficacy of pharmaceuticals, and assessing their safety, AI and quantum computing can
accelerate and optimize the process of identifying potential drug candidates. In this viewpoint, we demonstrate how computa-
tional models obtained from digital computers, AI, and quantum computing can reduce the number of laboratory and animal
experiments; thus, computer-aided drug development can help to provide safe and effective combinations while minimizing
the costs and time in drug development. To support this argument, 83 academic publications were reviewed, pharmaceutical
manufacturers were interviewed, and AI was used to run computational data for determining the toxicity of collagen as a case
example. The research evidence to date has mainly focused on the ability to create computational in silico data for comparison
to actual laboratory data and the use of these data to discover or approve newly discovered drugs. In this context, “in
silico” describes scientific studies performed using computer algorithms, simulations, or digital models to analyze biological,
chemical, or physical processes without the need for laboratory (in vitro) or live (in vivo) experiments. Digital computers, AI,
and quantum computing offer unique capabilities to tackle complex problems in drug discovery, which is a critical challenge
in pharmaceutical research. Regulatory agents will need to adapt to these new technologies. Regulatory processes may become
more streamlined, using adaptive clinical trials, accelerating pathways, and better integrating digital data to reduce the time
and cost of bringing new drugs to market. Computational data methods could be used to reduce the cost and time involved in
experimental drug discovery, allowing researchers to simulate biological interactions and screen large compound libraries more
efficiently. Creating in silico data for drug discovery involves several stages, each using specific methods such as simulations,
synthetic data generation, data augmentation, and tools to generate, collect, and affect human interaction to identify and
develop new drugs.
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Introduction
The drug discovery and approval process is characterized
by significant financial investment, with costs ranging from
US $1-US $3 billion and a typical timeline of 10 years

alongside a 10% success rate. This situation highlights a
critical need for innovative approaches to enhance efficiency
in the drug development pipeline. Computational methods
have the potential to influence the US Food and Drug
Administration (FDA) approval process by providing reliable
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data that could lead to faster review cycles and more efficient
safety evaluation [1].

Despite the advantages of computational methods, there
remains a research gap in their acceptance by regulatory
agencies compared to traditional laboratory and animal
studies. International Organization for Standardization (ISO)
10993‐5 serves as the standard for assessing the cytotoxicity
of materials and the necessity for a robust foundation to
validate computational models within a regulatory frame-
work.

Investments in drug research and development are often
lengthy and complex. Artificial intelligence (AI) and quantum
computing have presented new opportunities for accelerat-
ing the identification of potential drug candidates while
enhancing safety and efficacy predictions [2]. Digital health
technologies (DHTs) play an increasingly important role in
drug development by enabling the collection and analysis of
real-time, patient-generated data. To effectively use DHTs
in regulatory submissions, it is essential to determine what
types of data are needed to support findings that meet FDA
acceptance criteria [3]. These data may include genomic
information, side effect profiles, and timelines associated with
drug development, all of which can accelerate and refine the
evaluation of new therapeutics [4].

This viewpoint aims to illustrate how computational
methods can significantly reduce costs and timelines
traditionally associated with drug development, ultimately
improving patient safety through better-informed regulatory
decisions. Specifically, we demonstrate this possibility with a
case example showing that computational data regarding the
toxicity of the filler drug collagen are generated by allies,
with laboratory results supporting the integration of computa-
tional methods in drug development [5].

Use Cases of Drug Discovery With AI
and Quantum Computing
Role of AI in the Discovery of New Drugs
Investments in new drug development are a long and complex
process of drug research and development; however, with the
advancement of AI, technology has emerged as a leading tool
in analyzing potential new drugs. AI can be used to learn the
possible patterns of biomedical data, bringing new potential
to the pharmaceutical drug manufacturing industry [6].

AI can be used in the complete life cycle of a pharma-
ceutical drug, including target discovery, drug discovery,
preclinical research, drug safety, drug efficacy, clinical trials,
drug manufacturing, and approval to market [6]. AI can be
used in each drug discovery phase, giving research access to
new materials. New data are constantly being added to the
drug repositories. Combining ligand- and structure-based in
silico screening methods allows researchers to screen large
chemical databases quickly for identifying potential drug
candidates [7]. Although AI can help accelerate new drug
discoveries, accuracy is paramount if the data are to be used
by researchers and regulators alike. AI, machine learning,

in silico drug compound libraries, and quantum computing
technologies are crucial to drug discovery and development.
Use of AI for Target Identification of New
Drugs
AI systems can analyze diverse data types such as genetic,
proteomic, and clinical data to identify potential therapeu-
tic targets. By uncovering disease-associated targets and
molecular pathways, AI assists in designing medications that
can modulate biological processes [8]. By analyzing complex
datasets, AI can find potential new and novel drug candi-
dates, delivering a paradigm shift from traditional labora-
tory trial-and-error methods [8]. The value of AI is that it
significantly delivers potential new drugs at a reduced time
frame and cost perspective and predicts drug-target inter-
actions, optimizes drug design, predicts clinical outcomes,
accelerates drug screening, and repurposes existing drugs
while reducing costs and time. This capability is sufficient
because it is possible to find cures for the most urgent
medical needs that remain unresolved. Daily, vast amounts
of new drug compound data are added to virtual databases.
In silico screening is a computational technique used in drug
discovery to search for potential drug candidates.
Virtual Screening of New Drugs
AI enables the efficient screening of vast chemical libra-
ries to identify drug candidates with a high likelihood of
binding to a specific target. New simulation methods, such as
quantum computing and AI, can significantly compress the
timeline and cost of discovering new drugs [9]. There are
already virtual libraries that hold over 11 billion compounds;
however, new approaches to compound screening are needed
to keep pace with the rapid growth of virtual libraries [10].
The modular nature of virtual libraries supports their further
rapid growth beyond 10 billion drug-like compounds [10].
By simulating chemical interactions and predicting binding
affinities, AI helps researchers prioritize and select com-
pounds for experimental testing, saving time and resour-
ces. Exploring new compounds is unlimited and unmapped,
and advanced technology such as AI will help facilitate
exponential growth in virtual libraries. Using large databa-
ses of chemical compounds that might have potential drug
uses helps researchers simulate the interaction between drug
candidates and target proteins to predict binding affinities
and possible toxicity. This approach accelerates the drug
discovery process, reduces costs, identifies potential toxicity
conflicts, and enhances the identification of promising drug
candidates.
Molecular Docking for New Drugs
For in silico screening to be cost-effective and efficient,
compound libraries that include known drug-like mole-
cules must be built. Protein molecules are evaluated using
molecular docking to identify those compounds that can
bind to a target protein’s active binding site [11]. Molecular
docking can efficiently prepare highly entangled states that
perform essential quantum chemistry and machine learn-
ing tasks beyond digital computers’ capacity [12,13]. The
predictive capabilities of molecular docking can be used to
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study how a drug will bind to forecast pharmacological and
potential side effects. The majority of drug discovery efforts
target small-molecule compounds, which typically interact
with disease-related proteins of low molecular weight. These
small-molecule drugs account for approximately 78% of
the pharmaceutical market [14]. Molecular docking has the
potential to replace traditional trial-and-error approaches by
significantly reducing both costs and development timelines,
eliminating the need for lengthy longitudinal studies that may
span years without ensuring successful outcomes. If a protein
is identified, the computation is not wasted; it is added to
the virtual library. Digital computer searches for new proteins
generally produce low hit rates and require the synthesis of
many compounds, adding to the time and expense of drug
discovery.

Molecular Modeling
Traditional computing methods struggled to accurately
simulate quantum effects in huge molecules. Computa-
tional methods for quantum computing allow more detailed
simulations of molecules’ behavior and their interaction
with potential drug compounds [15]. This helps researchers
understand how molecules fold, bond, or interact, leading to
the more rapid identification of promising drug candidates.

Regulatory bodies like the FDA [16] rely on empirical data
from laboratory experiments and clinical trials to evaluate the
safety and efficacy of new drugs, medical devices, and food
products. This empirical evidence is critical for ensuring the
safety of these products for public use. Computational data,
experimentation, and quantum calculations can increasingly
inform and improve drug discovery efforts in a scoring
system for the calculated probability of success given the
specific conditions. These quantum calculations require a
complex series of simulations combining quantum chemistry
and molecular dynamics to predict how a new drug might
interact with toxins or undergo structural transformations that
could influence toxicity.
ISO 10993 Computational Data for
Prebiocompatibility
ISO 10993‐5 is the corresponding test for determining the
cytotoxicity of materials. Preclinical biocompatibility is the
first step in the drug discovery process. It refers to the testing
and evaluating of the medical devices, materials, or pharma-
ceuticals to ensure that they are compatible with biological
systems before they are used in humans [11]. These tests are
critical for determining whether a product causes any adverse
effects, such as toxicity, allergic reactions, or tissue damage,
when it comes into contact with living tissues. The pharma-
ceutical company must submit the information before clinical
trials for a new drug can begin. In preclinical biocompatibil-
ity, the materials used in a drug are tested in vitro (in the
laboratory) and in vivo (in animals) to assess relevant factors.

Contribution of the Paper
The process of drug discovery and development has
traditionally been time-consuming, resource-intensive, and

reliant on extensive laboratory and animal testing. Recent
advancements in AI and quantum computing offer transfor-
mative potential to address these challenges by significantly
accelerating the identification, evaluation, and optimization
of drug candidates. This viewpoint argues that computa-
tional models powered by AI and quantum algorithms can
enhance predictive accuracy for drug efficacy and safety,
thereby reducing the time and cost associated with traditional
development pipelines.

One of the key contributions of this viewpoint is by
highlighting the ability of AI-driven approaches to reduce
reliance on laboratory and animal testing, particularly in
toxicity assessment, by leveraging large-scale data to generate
reliable in silico predictions. Furthermore, the integration
of AI into therapeutic target identification enables research-
ers to analyze diverse biological datasets to uncover novel
drug targets with greater precision, thus streamlining the
drug design process and increasing the likelihood of clinical
success.

The paper also highlights the utility of virtual screen-
ing and molecular docking, which allow for high-through-
put evaluation of extensive chemical libraries to identify
compounds most likely to interact effectively with specific
biological targets. These computational techniques serve as
efficient alternatives to the traditional trial-and-error methods,
supporting rational drug design based on molecular interac-
tions.

Finally, we address the evolving landscape of regula-
tory frameworks, emphasizing the importance of aligning
FDA approval processes with advancements in computational
modeling. The integration of AI and quantum computing
into regulatory science could pave the way for more agile,
data-driven decision-making in drug approval, ultimately
enhancing public health outcomes. The main contributions are
as follows:

1. Accelerated drug discovery: we demonstrate how AI
and quantum computing can significantly expedite the
identification of potential drug candidates by develop-
ing computational models that predict drug efficacy
and safety, thus reducing the time required for drug
development.

2. Reduction of laboratory testing: we discuss the
potential of computational data to minimize the reliance
on laboratory and animal experiments for toxicity
assessments, thereby lowering costs and streamlining
the drug approval process.

3. Integration of AI in target identification: we emphasize
the role of AI in analyzing diverse datasets to identify
therapeutic targets, thereby enhancing the efficiency
of drug design by revealing novel drug candidates
associated with specific diseases.

4. Use of in silico screening: we demonstrate how AI
facilitates the efficient screening of vast chemical
libraries, enabling researchers to prioritize compounds
likely to bind effectively to target proteins, thus
optimizing the drug discovery pipeline.

5. Molecular docking and modeling: we present molecu-
lar docking techniques as essential tools for evaluating
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potential drug interactions with target proteins,
highlighting their ability to replace traditional trial-and-
error methods with more systematic approaches.

6. Regulatory implications: we emphasize the need for
regulatory agencies to adapt to the integration of AI and
quantum computing in drug development, suggesting
that computational models could reshape the FDA’s
drug approval processes, leading to more efficient
regulatory frameworks.

Theoretical Framework and Related
Work
The potential of using a detailed structural model of proteins
will accelerate the drug discovery process by providing
researchers with the atomic configuration that drives the
design or selection of compounds at a molecular level.
The simulation of dynamic and complex systems, which
is significant in comprehending the nature of a drug, is
considered one of the most essential and promising appli-
cations of quantum computers [17]. Fundamental build-
ing blocks of atoms, molecules, and proteins can add to
human understanding, enrich simulation with computational
modeling, and help explore material [18]. Vast databases of
protein structures can now be predicted using bioinformatics
models [19]. Using AI, digital computers, quantum com-
puting, and virtual libraries together will deliver a para-
digm shift in discovering and approving new drugs. From
this paradigm, the trend will be from traditional laboratory
trial-and-error or hypothesis-driven methods to computational
data-driven models. This paradigm will expand the potential
for predicting and understanding potential new drugs at a
molecular level to understand drug interactions, toxicity, and
efficacy.

Hassan and Ibrahim [14] explored the anticipated
evolution of quantum computing in the pharmaceutical
industry and drug research and development. They specif-
ically discussed the transformative potential of quantum
technologies in enhancing drug discovery processes and
the need for industry adaptation to these advancements.
Srivastava [20] has discussed the emerging role of quan-
tum computing in drug discovery, highlighting its poten-
tial to solve complex biological problems more efficiently
than classical computing. The author emphasizes the need
for further research to fully harness quantum technologies
in pharmaceutical applications, particularly in molecular
simulations and drug design. Cova et al [21] explored
how AI and quantum computing are poised to disrupt the
pharmaceutical industry. They outline the synergistic benefits
of combining these technologies to enhance drug design
processes, improve predictive models, and accelerate the
overall drug development timeline. Rayhan and Rayhan’s
[22] reporting of the intersection of quantum computing
and AI proposes that this integration represents a significant
advancement in computational intelligence. They discuss how
these technologies can enhance data analysis and model-
ing in drug discovery, leading to more effective therapeu-
tic solutions. Pyrkov et al [23] reviewed the near-term

applications of quantum computing in generative chemistry
and drug discovery. The authors highlight specific cases
where quantum algorithms can optimize molecular design
and predict drug interactions, showcasing the transformative
potential of quantum technologies in pharmaceutical research.

Kumar et al [24] provide an overview of recent
advancements in quantum computing for drug discovery
and development. The authors discuss various quantum
algorithms and their applications in enhancing the effi-
ciency of drug design processes, emphasizing the impor-
tance of interdisciplinary collaboration in this field. Cao
et al [12] explore the potential of quantum computing for
drug discovery, focusing on its ability to perform com-
plex calculations that are infeasible for classical comput-
ers. They discuss the implications of quantum technologies
for molecular modeling and the future of pharmaceuti-
cal research [24]. Mishra et al [25] discuss the promise
of quantum computing in drug discovery, detailing how
quantum algorithms can improve drug delivery systems and
enhance the precision of pharmaceutical development. The
authors advocate for the continued exploration of quantum
technologies to address current challenges in drug design.

Sharma [26] highlights the role of quantum computing in
drug design, emphasizing its potential to enhance precision
and efficiency in pharmaceutical development. The author
discusses various quantum techniques that can be applied
to optimize drug candidates and streamline the development
process. Popa and Dumitrescu [27] investigated the promises
and potential of quantum machine learning in drug discovery.
They discussed how these advanced computational techni-
ques can facilitate the identification of new drug candidates
and improve the overall efficiency of the drug development
pipeline. Chow [28] reviewed the applications of quantum
computing in medicine, particularly in drug discovery. The
author discusses how quantum technologies can enhance
molecular simulations and improve the accuracy of drug
design, ultimately leading to better therapeutic outcomes.

Case Example: Using AI to
Determine the Drug Toxicity of
Collagen
Understanding the toxicity of drugs is crucial to ensure
their safety and effectiveness. Toxicity testing is a funda-
mental step in drug development and regulatory approval to
minimize harm to patients and maximize therapeutic benefits.
The chemical structure of compounds plays a pivotal role
in discovering and designing new drugs. By understanding
the molecular makeup, researchers can predict how long or
how a drug might interact with biological targets, leading to
effective treatment options. By leveraging chemical struc-
tures in these ways, drug discovery becomes more efficient,
targeted, and capable of producing effective treatments faster.
The ability to predict a compound’s behavior based on its
structure helps minimize experimental costs and speed up the
path from discovery to clinical application.
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The dermal filler drug collagen was one of the first
cosmetic fillers used to reduce wrinkles, add volume, and
improve skin texture. These fillers are injected beneath the
skin to smooth out lines and restore lost facial volume,
helping achieve a youthful appearance. Newer materials
such as hyaluronic acid–based fillers, which are used to
treat HIV-associated facial lipoatrophy, have mainly replaced

collagen and cosmetic procedures. However, collagen fillers
still offer benefits in specific cases. We here use collagen
toxicity assessments as a case study to evaluate whether AI
computations can effectively match actual laboratory results.

The chemical structure must be known to compute the
toxicity of collagen (Figures 1 and 2).

Figure 1. Crystal structure of type IV collagen from bovine.

Figure 2. Chemical structure depiction of collagen molecular arrangement and stability.

Collagen is a large and complex protein. Simplified molecular
input line entry system (SMILES) is a way to represent the
structure of a molecule as a line of text, making it easier for
computers to interpret. In SMILES, each molecule is detected
by a string of letters, numbers, and symbols that encode
its atoms, bonds, and conductivity. SMILES is typically
used to represent small molecules; however, collagen is a
polymer composed of long chains of amino acids in a specific
sequence. SMILES requires the representation of each amino

acid in the chain, making it difficult to study or represent
collagen structurally.

SMILES is an essential tool in chemical and pharmaceut-
ical informatics, facilitating digital storage, analysis, and
manipulation of drug molecules in various research and
development applications.

Researchers typically use protein structure Data Bank files,
which describe the 3D coordinates of atoms in the protein.
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(3H)C(CC(C@@H)(C(=O)NCC(=O)N(C@@H)
(CC1C=NC=N1)C(=O)N(C@@H)
(CCCN=C(N)N)C(=O)NCC(=O)N(C@@H)
(CC2=CC=CC=C2)C(=O)N(C@@H)
(CO)C(=O)NCC(=O)OC(=O)(C@H)
(CC(C)C)NC(=O)CN)NC(=O)(C@H)
(CCCC)NC(=O)CNC(=O)(C@@H)3C(C@H)
(CN3)O)C([3H))N

The molecular formula of collagen is C57H91N19O16 [29].
Using Quantum Computations to
Determine the Drug Toxicity of Collagen
Traditional computing methods struggle to simulate quan-
tum effects in molecules, especially huge ones, accurately.

Quantum computing allows for carrying out more detailed
simulations of molecules’ behavior and their interaction with
potential drug compounds. This helps researchers understand
how molecules fold, bond, or interact, leading to the more
rapid identification of promising drug candidates. Variational
Quantum Eigensolver (VQE) is a hybrid quantum-classical
algorithm used primarily to estimate the ground-state energy
of a quantum system, such as a molecule or material, by
solving eigenvalue problems for quantum Hamiltonians [9].

Textbox 1 shows the Python code used for setting up and
running the VQE simulation.

Textbox 1 Python code for Variational Quantum Eigensolver simulation.
• Define a glycine-proline-hydroxyproline fragment as a molecule.

   For simplicity, we use approximate coordinates for the atoms.
   molecule =Molecule (
   geometry= ([
   ("N", (0.0, 0.0, 0.0)),
   ("C", (1.0, 0.0, 0.0)),
   ("C", (2.0, 1.0, 0.0),
   ("O", (2.0, 2.0, 0.0),),
   ("H", (-0.5, -0.5, 0.5),
   #Additional atoms for the fragment would follow similarly), charge =0, multiplicity =1)

• Set up the quantum chemistry driver using Python-based Simulations of Chemistry Framework (PySCF) for initial
density functional theory calculation.
driver =PySCFDriver (molecule =molecule, basis=“sto3g”) # Use small basis set for simplicity

• Set up the electronic structure problemes_problem =ElectronicStructureProblem(driver)
• Map the problem to qubits using a qubit converter and Jordan-Wigner transformation

Qubit_converter = QubitConverter[mapper =JordanWignerMapper()
The optional process is to apply a core orbital freezing transformation to reduce the number of qubits
transformer =FreezeCoreTransformer() es_problem =transformer.transform(es_problem)

• Set up the ansatz and optimizer for VQE (Variational Quantum Eigensolver)
# EfficientSU2 is a standard hardware-efficient ansatz with two-qubit entanglement
ansatz =EfficientSU2(qubit_converter.num_qubis, entanglement=“full”, reps =2)
optimizer =COBYLA (maxiter =500)

• Define the quantum instance (statevector simulator) to simulate the VQE quantum_instance = QuantumInstance[back-
end =Aer.get_backend[“sttevector_simulator”]]

• Set up the VQE solver with the ansatz, optimizer, and quantum instance.
vqe_solver =VQE [ansatz =ansatz, optimizer =optimizer, quantum_instance =quantum_instance] calc =GroundSta-
teEigensolver[qubit_converter, vqe_solver]

• Compute the ground-state energy of the collagen fragment
result =calc.solve[es_problem]
Display the computed ground-state energy print[“Computed ground state energy for glycine-proline-hydroxyproline
fragment:", result.total_energ

The step-by-step explanation of the code is provided in
Textbox 2.

Textbox 2. Detailed explanation of each step of the Python code.
• Step 1: Molecule Definition

The molecular structures of glycine, proline, and hydroxyproline are simplified here using approximate coordinates.
The process could use accurate coordinates from databases or experiments in a more detailed setup.

• Step 2: Driver Setup (PySCF)
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The PySCF driver performs a classical density functional theory calculation on the molecule, generating an initial
electronic structure. Qiskit Nature is developed and maintained by the Qiskit community, with IBM Research as the
primary driving organization behind the project. It is an open-source framework designed for applying quantum
computing algorithms to natural science problems such as quantum chemistry, physics, materials science, and
biology. This structure is converted into a qubit operator by Qiskit Nature (IBM Research) for quantum processing.

• Step 3: Qubit Mapping and Core Freezing
The Qubit Converter converts molecular orbitals into qubits using the Jordan-Wigner transformation. Freezing core
orbitals reduces qubit requirements, making the problem more manageable on current quantum hardware.

• Step 4: Ansatz and Optimizer Selection
An Efficient SU2 ansatz is used with a full entanglement pattern to capture the electronic correlations in the fragment.
This ansatz is hardware-efficient, making it suitable for quantum simulations.

• Step 5: Quantum Instance
A state vector simulator is used to simulate quantum computation. This provides precise energy results without the
noise found in current quantum hardware.

• Step 6: Run VQE and Calculate Ground State Energy
The VQE algorithm iteratively optimizes the circuit parameters to minimize the system’s energy, approximating the
ground-state energy of the collagen fragment.

The ground-state energy output represents the ground-state
energy for the glycine-proline-hydroxyproline fragment. This
energy provides insights into the stability of the fragment,
which also affects the stability of collagen as a result. The
potential extensions and next steps are as follows:

1. Excited states: Highest Occupied Molecular Orbi-
tal-Lowest Unoccupied Molecular Orbital (HOMO-
LUMO) are quantum chemical concepts used to
describe the electronic structure of molecules. Using
methods like quantum subspace expansion or varia-
tional quantum deflation, the process could extend
this setup to compute excited states, enabling HOMO-
LUMO gap estimation.

2. Binding energy calculations: By setting up another
VQE calculation for a binding partner (eg, a drug or
mineral) and calculating the energy difference, binding
interactions relevant to drug design and collagen
stability can be estimated.

3. Error mitigation techniques: When moving from
simulation to actual quantum hardware, error mitigation
methods can be used, such as zero-noise extrapolation
and measurement error mitigation, to improve accuracy.

Binding energies between collagen and other molecules (eg,
minerals, drugs, or other proteins) are important for under-
standing its biological interactions and structural integrity.
Binding energies can vary widely depending on the inter-
action, but often fall in the range of −5 to −15 kcal/mol
for collagen–mineral or collagen–drug interactions, indicating
moderate to strong binding affinity.

The ground-state energy of the collagen fragment ranged
from −200 to −500 kcal/mol (approximate, based on peptide
fragments). The HOMO-LUMO gap was calculated to be
5–8 eV, suggesting stability. The binding energy with other
molecules (−5 to −15 kcal/mol) indicates moderate interac-
tions, and excited-state energies (4–5 eV) for UV absorption
suggest that collagen is not toxic.

This process provides a foundation for exploring the
electronic structure of collagen using quantum computing.

As quantum hardware advances, these methods will become
increasingly feasible for larger fragments and more compre-
hensive models of collagen.

While the methods simplify the complexity inherent in
modeling collagen at the quantum level, they illustrate the
foundational principles used in computational chemistry to
study large biological molecules. Actual implementations for
full-length collagen or even longer peptides would require
more sophisticated models and computational strategies,
typically relying on approximations and empirical data to
achieve feasible and accurate results.
Using Laboratory Methods to Determine
the Drug Toxicity of Collagen
An increasing number of soft tissue filler substances are
introduced to the beauty market outside the United States,
which often needs more experimental and clinical data to
support their claim. Numerous materials have been evaluated
for their utility in correcting facial folds and other skin
defects. Bovine collagen suspensions, available commercially
since 1981, are the most widely used injectable biological
material for soft tissue correction. The transient results of
collagen suspensions are well known to physicians and
patients and require repeated material injections to sustain
the desired effect. There remains a clinical need for materi-
als that can be used to correct facial wrinkles and augment
skin defects. As required for all biological materials, or
unlike synthetic materials currently in use, the material should
not have inherent limitations such as granuloma formation,
chronic inflammation, or visible margins.

The collagen used in dermal fillers is typically atelocol-
lagen, which consists of 3 separate helix-shaped α-chains
(polypeptide chains) that wrap around each other and form
a 3-stranded helix. Amino acid analysis shows that this is
collagen type 1. Each polypeptide chain contains about 1000
cross-linked amino acids. The collagen molecule consists
of 2 identical polypeptides, α-1(1), and a third polypeptide
chain that has a different amino acid sequence, a-2(1). The
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individual polypeptide chains can be separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis.

A dermal filler is indicated for correcting contour
deficiencies of soft tissue. Wrinkles develop because the
thickness of the skin’s dermal layer significantly diminishes
during aging. As a case example, we consider a dermal
filler composed of absolutely round and smooth polymethyl
methacrylate (PMMA), a synthetic polymer widely used
in medical, industrial, and cosmetic applications. The filler
comprises PMMA microspheres, 30–42 microns in size,
suspended in a water-based carrier gel containing 3.5%
bovine collagen, 96.5% buffered isotonic water for injection,
and 0.3% lidocaine [30].

The PMMA microspheres are suspended in a solution of
partly denatured 3.5% bovine collagen. Following injection
of the filler, the collagen vehicle is absorbed by the body
within 1–3 months, during which the nondegradable PMMA
microspheres stimulate the body to encapsulate each sphere
with the patient’s collagen. This results in a long-lasting
correction of wrinkles and other soft tissue defects [30].
Bovine collagen is converted to atelocollagen by treatment
with pepsin to remove the peptide ends, thus reducing its
antigenic potential [31].

From the Artes Laboratory report [30], the toxic metal
content in the syringe of the semi-permanent dermal filler
product Artecoll was determined as follows (Table 1): lead
(Pb)=0.03 μg, chromium (Cr)=0.14 μg, cadmium (Cd)=0.017
μg, and mercury (Hg)<0.006 μg per 0.5 g Artecoll. The
concentrations of lead, chromium, cadmium, and mercury
were reported to be 0.057 ppm, 0.259 ppm, 0.030 ppm, and
0.010 ppm, respectively. This indicates that not only are the
individual concentrations of each heavy metal in Artecoll well
below 1 ppm, but the combined total of all heavy metals is
also less than 0.4 ppm. As a result, the risk of releasing toxic
levels of heavy metals from Artecoll is considered negligible
[30]. The current permissible exposure limit for chromium
was found to be 1 mg/m3 TWA. The LD50 (median lethal
dose) of chromium trioxide subcutaneously injected into a
dog was 330 mg/kg body weight [1]. Approximately 1 g of
potassium dichromate is considered a lethal dose preceded
by gastrointestinal bleeding and massive fluid loss [5]. The
revised Immediately Dangerous to Life or Health (IDLH)
level for chromium was set to 250 mg Cr/m3 air [30].

Table 1. Component specifications for 3.5% atelocollagen.
Parameter Specification Method
Collagen (calculated from hydroxyproline) 3.0‐4.0% Spectrophotometry
Hydroxyproline 0.41‐0.55% Spectrophotometry
Lidocaine HCIa 0.27‐0.33% HPLCb

Heavy metals <20 ppm DAB 10c

pH 6.8‐7.8 DAB 10
Pyrogenicity <36.25 EU/ml DAB 10
Sterility Sterile DAB 10

aHCI: hydrochloric acid; a strong, corrosive acid commonly used in chemical reactions, laboratory testing, and pH control.
bHPLC: high-performance liquid chromatography; an analytical technique used to separate, identify, and quantify components in a mixture, widely
applied in pharmaceuticals, environmental analysis, and biochemistry.
cDAB-10: 10-deacetyl baccatin.

The results of the toxicological laboratory data show
no evidence that acute exposure to a high chromium

concentration would cause irreversible health effects within
30 minutes (Table 2) [32].

Table 2. Polymethyl methacrylate heavy metals specifications list the daily requirement of chromium.
Item Specification
Cd <0.1 ppm
Hg <0.1 ppm
Pb <0.2 ppm

The duration of a collagen toxicity test can vary depending on
the type and scope of the study:

1. Acute toxicity tests: These are short-term studies,
typically lasting a few days to a couple of weeks [33].

2. Subchronic toxicity tests: These studies usually span
around 90 days [33,34].

3. Chronic toxicity tests: These long-term studies can last
several months to a year or more [33]

Using AI to Determine the Drug Toxicity
of Collagen
AI algorithms can be used to predict toxicity based on the
chemical and biological properties of the compounds. AI uses
neural networks to analyze molecular graphs or sequences to
detect toxicity-related patterns.

The evaluation of pharmacokinetics and toxicity is crucial
for designing new therapeutic candidates with in silico virtual

JMIR BIOINFORMATICS AND BIOTECHNOLOGY Braga & Rawal

https://bioinform.jmir.org/2025/1/e69800 JMIR Bioinform Biotech 2025 | vol. 6 | e69800 | p. 8
(page number not for citation purposes)

https://bioinform.jmir.org/2025/1/e69800


screens, and generative AI outputs a vast number of mol-
ecules that must be filtered into a tractable number for
synthesis and experimental validation. For this case exam-
ple, the absorption, distribution, metabolism, excretion, and
toxicity (ADMET) AI program was used to determine the
toxicity of collagen. ADMET is an effective primary filter
that evaluates candidate compounds based on their ADMET
properties. ADMET-AI is a simple, fast, and accurate digital

computer web interface for predicting the ADMET properties
of molecules using machine learning models.

The virtual calculation of the blood-brain barrier is
shown in Figure 3 [30], which effectively protects the brain
tissue from circulating pathogens and other potentially toxic
substances. This calculation shows the toxicity of collagen to
be low. Collagen itself was shown to be safe and nontoxic.

Figure 3. Virtual calculation of the blood-brain barrier. hERG: human Ether-à-go-go–related gene.

Challenges With the Uses of AI for
Drug Discovery
Despite promising advancements, several challenges remain
for the integration of AI and quantum computing in drug
discovery. The ethical implications of using AI in drug
discovery must be addressed. Ensuring transparency in AI
algorithms and maintaining accountability in decision-making
processes are critical to gaining public trust and regulatory
approval, which can be achieved by using an explainable AI
approach. Furthermore, the potential for bias in AI models
necessitates ongoing scrutiny to ensure equitable access to
new therapies.
Data Privacy and Ethics
The use of AI and AI algorithms comes with concern
for the privacy and security of user data. Data poising
and alterations underlying models put AI users at risk.
Implementing federated learning allows for the training of
AI models on decentralized data sources without sharing
sensitive data. The fully homomorphic encryption technique
is used in most federated searching techniques. This is
crucial in drug discovery, where patient data and propriet-
ary research information must remain confidential. Feder-
ated learning enables collaborative learning across different
research institutions or pharmaceutical companies, allowing
them to leverage each other’s data without compromising
privacy. Since raw data are not centralized, the risk of data
breaches is minimized, making it a secure choice for handling
sensitive information in drug discovery. Fedrated learning can
be integrated with the AI and quantum computing techniques
discussed in this paper, enhancing the predictive capabilities
while maintaining data integrity and privacy.

Validation and Accuracy
Computational models must be rigorously validated against
experimental data to ensure that their predictions are reliable.
This includes demonstrating that computational methods are
accurate and can reliably substitute for laboratory-generated
data. Multiple stakeholders (eg, academia, industry, and
regulatory bodies) would need to validate and reproduce
computational data for different types of products.

AI models rely on large, high-quality datasets, whereas
pharmaceutical data are often limited, biased, or propriet-
ary, affecting the model’s performance. In addition, AI-gener-
ated predictions can lack transparency, making it difficult to
understand how a model arrived at a particular conclusion,
which is critical in drug development. Although AI predic-
tions can be highly accurate, inconsistencies may still lead
to failures in identifying effective drugs or result in overlook-
ing promising candidates. To ensure reliability, AI-driven
drug discovery must meet stringent FDA regulatory stand-
ards and address ethical concerns, including potential bias
in drug development and risks to patient safety. AI models
often struggle with the complexity of biological systems, such
as multitarget interactions, immune response, and genetic
variations. Despite these challenges, AI will continue to
improve and is expected to play a significant role in the future
of drug discovery. The findings of the present case study were
intended to demonstrate that the computational assessment of
drug toxicity closely aligns with actual laboratory data. This
approach not only replicates laboratory results but does so at a
significantly reduced cost.
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Strengths of the Proposed Approach
Computational models can lower the costs of bringing new
drugs to market by reducing the need for extensive animal
studies or large human trials. Quantum computing, AI, and
machine learning have improved with respect to accuracy
and generalizability, and there is growing potential for their
application in areas traditionally requiring laboratory data (eg,
toxicology and pharmacodynamics). Advances in quantum
computing, molecular dynamics, and systems biology would
help computational models closely mimic biological systems
and make predictions more reliable.

AI and quantum computing facilitate the drug discovery
process from the following aspects:

1. Data analysis and pattern recognition: AI algorithms
can analyze vast datasets, including genetic Protonix
and clinical data to identify potential therapeutic targets
and predict drug interactions. This capability allows
researchers to uncover disease-associated targets and
molecular pathways more efficiently than traditional
methods, which often rely on trial and error [35-37].

2. Molecular simulation: Quantum computing enables
more accurate simulations of molecular interactions
than classical computers [38]. This allows researchers
to explore a broader range of potential drug candi-
dates and significantly predict their efficacy and safety,
speeding up the drug discovery process [37].

3. Integration of computational models: The combina-
tion of AI and quantum computing allows for the
development of sophisticated computational models to
simulate complex biological systems. This integration
can lead to better-informed decisions in drug develop-
ment and regulatory processes, ultimately enhancing
patient safety [35].

4. Reduction of laboratory testing: By using computa-
tional data, the need for extensive laboratory and animal
testing can be decreased. This not only reduces cost but
also shortens the time required to bring new drugs to
market [37].

5. Quantifying development costs: The costs are quanti-
fied by evaluating the total expenses incurred during
the drug development process, including research and
development, clinical trials, and regulatory approvals.
Traditional methods can take up to 15 years and cost
around US $1 billion, whereas quantum computing can
potentially reduce this timeline and cost significantly
[37].

Researchers may also review case studies where quantum
computing has been implemented in drug discovery to assess
the financial and temporal savings achieved compared to
conventional methods [37].

The burgeoning field of computational data, propelled
by AI and quantum computing advancements, stands to
revolutionize new drug discovery and approval processes.
Computational methods can significantly accelerate the
identification of potential drug candidates, predict their
efficacy, and assess safety, thereby reducing the traditional

time and cost burdens associated with pharmaceutical
development. By integrating AI and quantum computing
with extensive chemical databases, researchers can efficiently
simulate biological interactions, streamline virtual screening,
and predict drug toxicity—ultimately enhancing the like-
lihood of successful drug development. Furthermore, the
implications for the FDA regulatory framework are exam-
ined, highlighting how computational data can inform and
expedite the approval process, leading to faster review cycles
and improved postmarket surveillance. This situation calls
for a paradigm shift from traditional laboratory methods to
data-driven approaches, emphasizing the need for rigorous
validation and collaboration among stakeholders to establish
robust regulatory standards for computational models in drug
discovery.

AI is far cheaper per compound than laboratory-based
testing, especially for initial screenings. For example,
screening 1000 compounds via AI might cost US $10,000–
US $50,000, depending on the computational setup [20].
The same screening using in vitro methods could cost US
$1–US $10 million or US $50–US $500 million using in
vivo methods once augmented reality AI models are deemed
significant. Once developed and validated, these models
significantly reduce long-term expenses, making them more
cost-effective than laboratory methods for large-scale or
preliminary screenings.

As demonstrated with our case study, AI is often used as
a first-pass filter to predict drug toxicity, reducing the number
of compounds that need to be tested in the laboratory. By
prioritizing only those promising candidates for laboratory
testing, researchers can combine the speed and cost-effective-
ness of AI with the rigor and accuracy of laboratory results,
achieving a balance of cost and reliability.

Summary and Future Prospects
AI and quantum computing offer unique capabilities to tackle
complex problems in drug discovery, which is a critical
challenge in pharmaceutical research. Regulatory agents will
need to adapt to these new technologies. Regulatory processes
may become more streamlined, using adaptive clinical trials,
accelerating pathways, and better integrating digital data to
reduce the time and cost of bringing new drugs to market.
Computational data methods could reduce the cost and time
involved in experimental drug discovery, allowing research-
ers to simulate biological interactions and screen large
compound libraries more efficiently. Creating virtual data for
drug discovery involves several stages, each using specific
methods such as simulations, synthetic data generation, data
augmentation, and tools to generate, collect, and affect human
interaction to identify and develop new drugs. Here, we have
emphasized that knowing the molecular structure of a drug
is a critical factor in determining its toxicity and for other
aspects of the drug discovery and approval process. Using
computational data in drug discovery has transformed the
pharmaceutical and biotechnology industries by accelerating
research, reducing costs and timeliness, and improving the
likelihood of success. Overall, the integration of AI and
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quantum computing represents a transformative shift in drug
discovery, offering the potential for faster, more efficient, and
more effective therapeutic development. As these technolo-
gies continue to evolve, they will likely play a pivotal role in
shaping the future of pharmaceuticals. Nevertheless, several
research questions remain to be explored to realize this shift,
including:

(1) Can AI reliably predict drug toxicity compared to
traditional laboratory results? Hypothesis: The incorporation
of quantum computing into molecular modeling improves the
predictive capabilities of AI, leading to more accurate toxicity
assessments.

(2) Does the integration of quantum computing enhance
the accuracy of molecular modeling and drug discovery?

Hypothesis: The incorporation of quantum computing into
molecular modeling improves the predictive capabilities of
AI, leading to more accurate toxicity assessments.

(3) How do AI-driven toxicity predictions compare to
laboratory outcomes in terms of cost and time efficiency?
Hypothesis: Using AI and quantum computing for toxic-
ity prediction significantly reduces the need for laboratory
experiments, thereby decreasing both costs and development
time in the drug discovery process.

The convergence of AI and quantum computing holds
great potential for revolutionizing drug discovery and
approval processes. Continued research is needed to refine
quantum algorithms and integrate them with AI systems
effectively.
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