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Abstract
Background: Prediabetes is an intermediate stage between normal glucose metabolism and diabetes and is associated with
increased risk of complications like cardiovascular disease and kidney failure.
Objective: It is crucial to recognize individuals with prediabetes early in order to apply timely intervention strategies
to decelerate or prohibit diabetes development. This study aims to compare the effectiveness of machine learning (ML)
algorithms in predicting prediabetes and identifying its key clinical predictors.
Methods: Multiple ML models are evaluated in this study, including random forest, extreme gradient boosting (XGBoost),
support vector machine (SVM), and k-nearest neighbors (KNNs), on a dataset of 4743 individuals. For improved performance
and interpretability, key clinical features were selected using LASSO (Least Absolute Shrinkage and Selection Operator)
regression and principal component analysis (PCA). To optimize model accuracy and reduce overfitting, we used hyperpara-
meter tuning with RandomizedSearchCV for XGBoost and random forest, and GridSearchCV for SVM and KNN. SHAP
(Shapley Additive Explanations) was used to assess model-agnostic feature importance. To resolve data imbalance, SMOTE
(Synthetic Minority Oversampling Technique) was applied to ensure reliable classifications.
Results: A cross-validated ROC-AUC (receiver operating characteristic area under the curve) score of 0.9117 highlighted the
robustness of random forest in generalizing across datasets among the models tested. XGBoost followed closely, providing
balanced accuracy in distinguishing between normal and prediabetic cases. While SVMs and KNNs performed adequately as
baseline models, they exhibited limitations in sensitivity. The SHAP analysis indicated that BMI, age, high-density lipoprotein
cholesterol, and low-density lipoprotein cholesterol emerged as the key predictors across models. The performance was
significantly enhanced through hyperparameter tuning; for example, the ROC-AUC for SVM increased from 0.813 (default) to
0.863 (tuned). PCA kept 12 components while maintaining 95% of the variance in the dataset.
Conclusions: It is demonstrated in this research that optimized ML models, especially random forest and XGBoost, are
effective tools for assessing early prediabetes risk. Combining SHAP analysis with LASSO and PCA enhances transparency,
supporting their integration in real-time clinical decision support systems. Future directions include validating these models in
diverse clinical settings and integrating additional biomarkers to improve prediction accuracy, offering a promising avenue for
early intervention and personalized treatment strategies in preventive health care.
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Introduction
A prediabetic state is characterized by elevated blood sugar
levels, considered as an intermediate stage between normal
glucose metabolism and type 2 diabetes [1]. In individuals
with a high risk of diabetes, cardiovascular disease, and
kidney complications, early diagnosis and intervention in
prediabetes is important for delaying or preventing progres-
sion to diabetes [2]. In spite of lifestyle interventions,
adherence remains one of the biggest challenges, which
necessitates early and accurate detection.

While biochemical markers like fasting glucose and
glycated hemoglobin are valuable, they may not capture the
full spectrum of prediabetes risk factors, resulting in missed
diagnoses and delayed interventions. To address this, a wide
set of predictors, including clinical and genetic data, needs
to be incorporated. This issue can be overcome by machine
learning (ML), which can analyze complex relationships
between a broad range of biomarkers [3]. By leveraging
ML algorithms, this study aims to enhance the accuracy of
prediabetes risk assessment and early detection.

A feature selection technique such as LASSO (Least
Absolute Shrinkage and Selection Operator) regression and
principal component analysis (PCA) further optimizes these
models by focusing on the most apropos predictors, as a
consequence improving both efficiency and interpretability
[4,5]. Additionally, it reduces model complexity and boosts
prediction accuracy by eliminating irrelevant or unneces-
sary data in ML. Models based on the most impactful
clinical features, such as BMI, age, low-density lipoprotein
cholesterol (LDL-C), and high-density lipoprotein choles-
terol (HDL-C), can capture underlying patterns linked with
prediabetes [6].

This paper assesses and compares the predictive power
of various ML algorithms such as random forest, extreme
gradient boosting (XGBoost), support vector machine (SVM),
and k-nearest neighbors (KNNs), inclusive of feature
selection methods such as LASSO and PCA. We aim to
identify the most effective model and feature selection
technique for the detection of early prediabetes, ultimately
contributing to highly accurate diagnostics and personalized
prevention.

In this study, key predictors such as BMI, age, LDL-C, and
HDL-C were identified, which may refine diagnostic criteria
and help with targeted prevention. The findings emphasize
the capability for ML-based tools to improve prediabetes
management and foster better patient outcomes through early
intervention.

Various ML models have been used in recent studies
to enhance detection accuracy and identify key risk factors
associated with prediabetes progression. These approaches
underscore the potential of ML in developing effective and
clinically applicable prediction models for prediabetes risk.

An important direction is using ensemble and decision
tree–based models to predict prediabetes. A study by Liu et
al [7] evaluated logistic regression, decision trees, random

forests, and XGBoost to predict diabetes progression in
older patients with prediabetes. XGBoost was the most
accurate model (60.66%), but its generalizability was limited
by the dataset’s narrow demographic scope. In spite of a
minor decline in predictive performance over time, XGBoost
showed promise as a model for identifying prediabetes
risk factors among older adults. Similarly, Abbas et al [8]
developed a model of prediabetes risk score for a Middle
Eastern cohort based on random forest, gradient boosting,
XGBoost, and deep learning. This model effectively screens
risk across different groups of individuals by analyzing
demographic and physiological factors, including age, blood
pressure, BMI, waist size, and gender. Primary care settings
could benefit from the study’s focus on noninvasive, easily
measurable variables.

Additionally, tree-based models, logistic regression, and
LASSO have been commonly used to refine prediabetes risk
prediction. Hu et al [9] developed a personalized nomogram
that predicted 5-year prediabetes risk among Chinese adults.
Using stepwise selection, LASSO, and ML models, Hu et al
[9] found that the LASSO model provided the best perform-
ance with variables such as age, BMI, fasting blood glucose,
and serum creatinine. As a result of this approach, LASSO
can generate an accurate yet efficient model even with a
limited number of predictive features. In another logistic
regression–based study, Yu et al [10] validated a prediabe-
tes assessment model on a large Chinese dataset. Based on
C statistics and calibration plots, the model demonstrated
good discrimination, but a cohort study might improve its
performance.

Efforts have also been made to incorporate nonlaboratory
risk factors into predictive models. In a study by Dong et
al [11], lifestyle factors such as sleep duration and recrea-
tional activity were incorporated into a model using logis-
tic regression and interpretable ML techniques, especially
XGBoost. SHAP (Shapley Additive Explanations) was used
to determine variable significance, revealing that lifestyle
variables are crucial to the model’s detection efficiency. By
incorporating clinical and lifestyle predictors, XGBoost can
identify undiagnosed prediabetes and diabetes, offering a
more comprehensive risk assessment.

As a result of these studies, we can observe that ensem-
ble methods (random forest and XGBoost), regression-based
approaches (logistic regression and LASSO), and interpret-
able ML models (eg, SHAP-enhanced XGBoost) all offer
unique strengths in predicting prediabetes risk. According to
the results, while tree-based models and ensemble models
tend to be more accurate, regression techniques such as
LASSO help create interpretable, efficient models, especially
when resources are limited.

Methods
Dataset
This study used a dataset that is publicly accessible,
which includes health records from 4743 individuals who
were examined at the Health Management Center of
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Peking University Shenzhen Hospital from January 2020
to March 2023. The World Health Organization standards
were followed when assessing fasting blood glucose levels,
random blood glucose levels, oral glucose tolerance tests,
and glycated hemoglobins of participants. Prediabetes was
diagnosed if fasting blood glucose was between 6.1 and
6.9 mmol/L or if the blood glucose level was between 7.8
and 11.0 mmol/L after oral glucose tolerance test. Based
on glucose metabolism status, participants were classified
into 2 groups: normal (1593/4743, 33.6%) and prediabe-
tes (3150/4743, 66.4%). The dataset included 22 features,
comprising demographic, clinical, and laboratory variables
such as age, BMI, HDL-C, and fasting blood glucose levels.
The target variable for the study was binary, with partici-
pants categorized as either normal or prediabetic. Since this
dataset is open to the public and anonymized, numeric values
for individual IDs were preserved for traceability in the

preprocessing phase, but they do not contain any personally
identifiable information.
Variable Assignment and Data
Categorization
In this study, the dataset includes both categorical and
numerical variables. The categorical variables, such as status,
gender, urine glucose, and urine protein, were assigned
specific values to facilitate analysis. These values allow for
easy differentiation between groups or conditions. On the
other hand, continuous or numerical variables, such as age,
BMI, and various blood and urine biomarkers, were used
as-is without specific value assignments since they naturally
provide a range of measurements. Table 1 shows the assigned
values for each of the categorical variables.

Table 1. Dataset variables and descriptions for prediabetes risk assessment.
Variable name Meaning of variable Type of variable Assignment description
Status Glucose metabolic status Categorical variable 1=normal, 2=prediabetes
Age Age Numerical variable Is unassigned
Gender Gender Categorical variable 0=female, 1=male
BMI Body mass index Numerical variable Is unassigned
SBP Systolic blood pressure Numerical variable Is unassigned
U-GLU Urine glucose Categorical variable 0=negative, 1=positive
PRO Urine protein Categorical variable 0=negative, 1=positive
TP Total protein Numerical variable Is unassigned
ALB Albumin Numerical variable Is unassigned
GLB Globulin Numerical variable Is unassigned
T-BIL Total bilirubin Numerical variable Is unassigned
DB Direct bilirubin Numerical variable Is unassigned
IB Indirect bilirubin Numerical variable Is unassigned
ALT Alanine aminotransferase Numerical variable Is unassigned
AST Aspartate transaminase Numerical variable Is unassigned
BUN Blood urea nitrogen Numerical variable Is unassigned
SCr Serum creatinine Numerical variable Is unassigned
UA Uric acid Numerical variable Is unassigned
TC Total cholesterol Numerical variable Is unassigned
TG Triglycerides Numerical variable Is unassigned
HDL-C High-density lipoprotein cholesterol Numerical variable Is unassigned
LDL-C Low-density lipoprotein cholesterol Numerical variable Is unassigned

Data Preprocessing

Overview
For improved model performance, data preprocessing
involved handling missing values through mean imputation,
balancing the dataset using SMOTE (Synthetic Minor-
ity Oversampling Technique), and scaling features with
StandardScaler() and MinMaxScaler(). Through these steps,
the dataset was optimized for building reliable ML models for
prediabetes risk prediction.

Handling Missing Data
Missing values were imputed using the mean of the corre-
sponding feature, guaranteeing consistency and completeness
in the dataset.

Balancing the Dataset
The dataset has an imbalanced class distribution, with
33.6% (1593/4743) representing the normal group (sta-
tus=1) and 66.4% (3150/4743) representing the prediabetes
group (status=2). This type of imbalance can influence the
performance of classification models, specifically incorrectly
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predicting the minority class (normal group in this case), so
SMOTE was used to oversample the minority class (normal
group). This step ensured that the ML models were not biased
toward the larger class, improving predictive performance
[12], particularly for prediabetes detection.

Scaling and Normalization
Scaling and normalization are pivotal steps when prepar-
ing continuous variables for models such as KNN, SVM,
and LASSO, which are sensitive to feature scaling. To
address this, the features are standardized using the “Stand-
ardScaler(),” which tunes them to have a mean of 0 and an
SD of 1. This standardization guarantees that all features are
on a similar scale and refines model performance. In addition,
normalization can be applied using the “MinMaxScaler(),”
which transforms the data into a range between 0 and 1 [13].

Exploratory Data Analysis
To obtain an understanding of the relationship across several
features and to pick out any patterns, trends, or correla-
tions that may guide next steps, the dataset was completely
explored before applying predictive models. Heatmaps were
used to visualize the relationship between numerical variables
as shown in Figure 1. The main goal of this step is to gain
a fruitful understanding of the raw data and arrange it for
additional analysis [14]. Among the assessed models, SHAP
analysis was performed solely on the XGBoost classifier due
to its alignment with the TreeExplainer framework. Mod-
els based on trees benefit from SHAP’s precise additive
feature attributions, which are computationally efficient and
theoretically robust. XGBoost’s built-in support for SHAP
made it more interpretable than other models (eg, SVM,
KNN, and random forest).

Figure 1. Heatmap distribution of the dataset features. ALB: albumin; ALT: alanine aminotransferase; AST: aspartate transaminase; BUN: blood
urea nitrogen; DB: direct bilirubin; GLB: globulin; HDL-C: high-density lipoprotein cholesterol; IB: indirect bilirubin; LDL-C: low-density
lipoprotein cholesterol; SBP: systolic blood pressure; SCr: serum creatinine; T-BIL: total bilirubin; TC: total cholesterol; TG: triglyceride; TP:
total protein; UA: uric acid.
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Features Selection

Overview
Two principal features selection techniques were applied after
the data exploration phase to choose the most relevant and
informative variables. A suitable feature selection not only
enhances the performance and interpretability of a model
but also reduces computational complexity and the risk of
overfitting [15].

LASSO Regression
LASSO regression was used as the first method for fea-
ture selection. The LASSO method reduces the number of
variables by shrinking the coefficients of less important
features to zero, which effectively eliminates them from the
model [16]. It is mostly useful for handling multicollinearity
as it automatically picks one feature from a set of highly
correlated features such as LDL-C and total cholesterol based
on the correlation heatmap.

About PCA
The main aim of this technique is to reduce dimensional-
ity in the dataset by transforming the base features into a
smaller set of uncorrelated components while keeping most
of the variance in the data [17]. In models facing overfitting,
such as SVM and XGBoost, PCA reduced multicollinearity
and compressed the retaining 95% of the variance in the
data. Additionally, PCA reduced the number of variables,
simplifying the model and making it more computationally
efficient [18].

Before training the predictive models, these features
selection techniques were applied. Using only relevant
predictors improved model performance and generalizabil-
ity. By using a structured approach to data exploration and
features selection, we lay a strong foundation for building and
evaluating ML models for prediabetes risk prediction in the
next phase.
Model Development

Overview
In this study, different ML models were used to predict the
onset of prediabetes. These algorithms were selected due to
their ability to handle high-dimensional data, interpretability,
and performance in classification tasks. As well as each
model was tuned and evaluated to optimize performance for
prediabetes detection.

XGBoost
XGBoost is a powerful gradient-boosting algorithm that
constructs an ensemble of decision trees to improve classi-
fication accuracy. Each one tree is sequentially trained to
emend the errors of the previous trees, which makes it
more powerful for tasks with complex relationships between
features [19]. XGBoost is known for its performance and
speed in handling big datasets, which makes it appropriate
for medical prediction tasks like prediabetes diagnosis. In
addition, XGBoost applies regularized boosting techniques to

overcome the difficulty of the model and correct overfitting;
as a result, increasing model accuracy [20].

Random Forest
Random forest is an ensemble learning approach that
constructs numerous decision trees during training. Every
tree is built using a random subset of features and data
samples, and the last prediction is made by averaging the
predictions from all trees [21]. Random forest minimizes the
risk of overfitting by using a bagging approach and tends to
accomplish well on classification issues such as prediabetes
detection.

About SVM
SVM is a supervised learning model that separates data points
into distinct classes by finding an optimal hyperplane. For the
complex relationships between predictors, such as BMI and
age, a nonlinear kernel was applied. This method is suited for
medical diagnosis since the decision boundary is not linearly
separable in high-dimensional spaces [22].

About KNNs
KNN is an uncomplicated, nonparametric classifier that
specifies the class label based on the most votes of the KNNs
in the feature space [23]. In this study, KNN was used after
scaling the features, and the optimal number of neighbors
was set through hyperparameter tuning. Despite KNN being
computationally intensive for big datasets, its clarity and
interpretability make it a beneficial model for prediabetes
classification.
Hyperparameter Tuning and Cross-
Validation

Overview
Hyperparameter tuning was used for all models to recognize
the optimal settings for each algorithm. To achieve that,
we used GridSearchCV and RandomizedSearchCV, which
systematically explore a range of hyperparameters and choose
the set that maximizes model performance.

GridSearchCV
All combinations of hyperparameters are assessed exhaus-
tively through a particular parameter grid. It is a systematic
approach to identifying the effective parameter set [17]. With
large datasets and complex models, it can be computationally
expensive, so this study used GridSearchCV for models with
a relatively small hyperparameter search space, which made it
feasible to explore all combinations. The KNN algorithm was
tuned by tuning the number of neighbors (k) and the distance
metric.

RandomizedSearchCV
A randomized search of the hyperparameter space selects
hyperparameter settings from the specified ranges [24]. It is
more efficient than GridSearchCV when the search space is
large because it explores a representative sample of possi-
ble combinations instead of testing them all. We used this
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technique for more complicated models such as random
forest and XGBoost when the number of hyperparameters and
possible values was too large for a wide search. Randomized-
SearchCV assists with identifying optimal hyperparameters
by setting a limit on the number of iterations (eg, 40).

Tuning Process for Each Model

XGBoost
The hyperparameters, such as the maximum tree depth, the
learning rate, and the subsample ratio, were tuned using
RandomizedSearchCV. This approach allowed for a more
efficient search through a vast range of parameter values,
making it fit for models with big parameter spaces. Random
sampling allowed the tuning process to explore a diversity
of hyperparameter combinations while preventing overfitting
and maximizing classification accuracy.

Random Forest
To optimize hyperparameters such as the number of trees,
maximum tree depth, and minimum samples required for
a part, RandomizedSearchCV was used. This approach is
selected for random forest because of the large search space,
as it can easily sample a subset of hyperparameters to explore
near-optimal settings.

About SVM
To fine-tune hyperparameters such as the kernel type and
penalty parameter C, GridSearchCV was used. Due to the
smaller search space for SVM, GridSearchCV is considered
the best choice because this approach performs a wide search
over the specified parameter values, so it guarantees to find
the best possible combinations for the model.

About KNNs
To tune the distance metrics (eg, Euclidean or Manhattan
distance) and number of neighbors (k), the GridSearchCV
method was applied. This approach is useful to pick out the
most effective neighborhood size and similarity measures for
predicting prediabetes.

This tuning strategy guaranteed that every model was
fine-tuned to work optimally for prediabetes prediction.
Cross-Validation Approach
The tuning process for each model included k-fold cross-vali-
dation to ensure reliable performance estimation and reduce
the risk of overfitting. In k-fold cross-validation:

• The dataset is divided into k equal-sized subsets (folds).
• The model is trained on k – 1 folds and tested on the

remaining fold. This process is repeated k times, with
each fold serving as the test set once. The results are
averaged to get a final evaluation metric.

• 5-fold cross-validation was used in this study, which
balances computational cost and model evaluation
reliability.

Through cross-validation, a robust estimate of model
performance across various subsets of data is obtained by

evaluating how well the model generalizes to unseen data
[25]. To choose the best-performing parameter set, this
method was used during hyperparameter tuning.
Model Evaluation Metrics

Overview
To evaluate the performance of ML models, various metrics
were applied.

Accuracy
This is the measure of the percentage of true predictions made
by the model out of all predictions. Nevertheless, accuracy
alone can be misleading, particularly when the classes are
imbalanced, as in the case of prediabetes diagnosis.

Precision
The proportion of true positive predictions to the total number
of positive predictions. High precision indicates that the
model produces few false positive errors, which is important
in minimizing irrelevant treatments.

Recall (Sensitivity)
The ratio of correct positive predictions to the total actual
positives. A higher recall means fewer cases of prediabe-
tes were missed, making it necessary for early prediabetes
diagnosis.

F1-Score
The harmonic means of precision and recall contribute a
balance between both metrics. It is mainly valuable when
false positives and false negatives have serious consequences.

ROC-AUC Score
The ROC-AUC (receiver operating characteristic area under
the curve) assesses the capability of the model to distinguish
between both classes (normal and prediabetes). The ROC-
AUC score provides an aggregate measure of performance
throughout all classification thresholds, where a higher value
refers to superior model performance.

Cross-Validated ROC-AUC
In addition to evaluating ROC-AUC on the test set, cross-
validated ROC-AUC provides a more reliable estimate of
the model’s ability to generalize. This metric was calculated
using k-fold cross-validation, giving a better indication of
how the model will perform on unseen data.

By using these evaluation metrics, the comparative
performance of the ML models was assessed, with a
particular focus on balancing accuracy, precision, recall, and
F1-score to ensure reliable predictions for prediabetes risk
assessment.
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Results
XGBoost, Random Forest, SVM, and
KNN
This section provides a comparative evaluation of the ML
models applied in this study—XGBoost, random forest,

SVM, and KNN—along with the results of feature selec-
tion techniques, such as LASSO regression and PCA.
The performance of each model is assessed using multi-
ple evaluation metrics, including accuracy, precision, recall,
F1-score, and ROC-AUC scores, on both the test set and
cross-validation. Table 2 shows the performance metrics
comparison of the ML models.

Table 2. Performance metrics comparison of machine learning models.
Model Accuracy (%) Precision Recall F1-score ROC-AUCa (test set) Cross-validated ROC-AUC
XGBoostb 74.7 0.8128 0.7889 0.8007 0.7930 0.8600
Random forest 75.9 0.8391 0.7169 0.7732 0.8030 0.9117
SVMc 73.9 0.6260 0.6686 0.6466 0.7791 0.8630
KNNd 70.8 0.6901 0.6881 0.6890 0.7845 0.8397

aROC-AUC: receiver operating characteristic area under the curve.
bXGBoost: extreme gradient boosting.
cSVM: support vector machine.
dKNN: k-nearest neighbor.

Model Performance Comparison

Overview
The following subsections present the comparative results
of XGBoost, random forest, SVM, and KNN models, each
fine-tuned using hyperparameter optimization and evaluated
using key performance metrics.

XGBoost
Based on 5-fold cross-validation, the XGBoost model
showed a cross-validated ROC-AUC score of 0.86, indicat-
ing powerful discrimination between normal and prediabetic
cases. In addition, the model achieved a precision of 0.8128, a
recall of 0.7889, and an F1-score of 0.8007 for the prediabe-
tes class. This balanced performance emphasizes the model’s
strength to effectively minimize both false positives and
false negatives, making it an effective method of prediabetes
detection.

Random Forest
The random forest model achieved an excellent performance
with a cross-validated ROC-AUC score of 0.9117, demon-
strating its capability to generalize well across various subsets
of the data. The model demonstrated a precision of 0.8391, a
recall of 0.7169, and an F1-score of 0.7732 for the predia-
betes class. This indicates that the random forest model
not only lowers the likelihood of false positives but also
keeps a powerful recall rate, guaranteeing that fewer cases
of prediabetes are missed.

About SVM
An SVM model, evaluated through 5-fold cross-validation,
achieved a cross-validated ROC-AUC score of 0.8630,
indicating its ability to distinguish between normal and
prediabetic cases with high accuracy. For the prediabetes
class, the model achieved a precision of 0.6260, a recall
of 0.6686, and an F1-score of 0.6466. Despite the SVM
model providing a moderate balance between precision and

recall, its recall score indicates potential for missing fewer
prediabetic cases, making it a feasible choice for early-stage
diagnosis.

About KNNs
The KNN model, evaluated using 5-fold cross-validation,
demonstrated a cross-validated ROC-AUC score of 0.8397,
reflecting its ability to differentiate between normal and
prediabetic cases with moderate effectiveness. The model
recorded a precision of 0.6901, a recall of 0.6881, and an
F1-score of 0.6890 for the prediabetes class. Although KNN
performed slightly lower in terms of accuracy and precision
compared to other models, it still provides an interpretable
solution for prediabetes.
Performance Enhancement Through
Hyperparameter Tuning
To optimize the performance of SVM and KNN, we used
GridSearchCV for hyperparameter tuning. For more complex
models such as XGBoost and random forest, Randomized-
SearchCV was used to efficiently explore broader hyperpara-
meter spaces.

Tables 3 and 4 highlight the improvement in model
performance after hyperparameter optimization. All 4
models—XGBoost, random forest, SVM, and KNN—showed
notable gains in both ROC-AUC and F1-score metrics. For
instance, XGBoost’s ROC-AUC improved from 0.782 to
0.860, and random forest’s from 0.807 to 0.9117. These
results confirm the effectiveness of using GridSearchCV
and RandomizedSearchCV in tailoring model parameters
to the dataset, ultimately boosting classification accuracy
and robustness. This step is particularly critical for clinical
applications, where small improvements in sensitivity or
specificity can have substantial impacts on patient outcomes.

The parallel processing option n_jobs = –1 was used to
enable parallel processing. Each model required 3-8 minutes
to be tuned on a standard multicore computer.
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Table 3. Hyperparameter tuning summary for all models.
Model and hyperparameter Range or values tested
SVMa

C [0.1, 1, 10]
Kernel ['linear’, 'rbf’]
Gamma (rbf) ['scale’, 'auto’]

KNNb

n_neighbors [3, 5, 7, 9, 11]
Metric ['euclidean’, 'manhattan’]

XGBoostc
n_estimators [50, 100, 200, 300]
learning_rate [0.01, 0.05, 0.1, 0.2]
max_depth [3, 5, 7, 9]
Gamma [0, 0.1, 0.3, 0.5]
Subsample [0.6, 0.8, 1.0]
colsample_bytree [0.6, 0.8, 1.0]

Random forest
n_estimators [50, 100, 200]
max_depth [None, 3, 5]
min_samples_split [2, 5]
min_samples_leaf [1, 2]
max_features ['sqrt’, 'log2']
Bootstrap [True]

aSVM: support vector machine.
bKNN: k-nearest neighbor.
cXGBoost: extreme gradient boosting.

Table 4. Effect of hyperparameter tuning on model performance.
Model and metric Default Tuned (GridSearchCV/RandomizedSearchCV)
XGBoosta

ROC-AUCb 0.782 0.860
F1-score 0.731 0.801

Random forest
ROC-AUC 0.807 0.9117
F1-score 0.742 0.773

SVMc

ROC-AUC 0.813 0.863
F1-score 0.591 0.646

KNNd

ROC-AUC 0.805 0.839
F1-score 0.652 0.689

aXGBoost: extreme gradient boosting.
bROC-AUC: receiver operating characteristic area under the curve.
cSVM: support vector machine.
dKNN: k-nearest neighbor.

Descriptive Patterns From Exploratory
Data Analysis Findings

Overview
Figure 1 shows several important patterns that emerged. The
following features are highly correlated.

Strong Positive Correlation
Total cholesterol and LDL-C exhibited a strong positive
correlation. As a result, the model may be redundant due
to those variables sharing similar information. One of these
features could potentially be excluded in the feature selection
phase if it has a high correlation. It was found that total
protein and albumin exhibit a high correlation, suggesting that
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combining them may not provide more insight than using
either separately.

Weak or No Correlations
Correlations between variables such as age, BMI, and uric
acid were weak or negligible. This is a significant finding
because these variables may provide unique independent
information that makes model-building more effective.

Negative Correlation
A mild negative correlation was found between LDL-C and
HDL-C, which is consistent with their known inverse roles
in cardiovascular health. Age and HDL-C also exhibited
a slight negative correlation, suggesting that lipid profiles
might change with aging. Multicollinearity issues happen
when highly correlated variables distort the model’s ability

to differentiate between them due to this exploration in
sights. It is crucial to recognize such relationships early in
the process so that multicollinearity can be handled, and
redundant features can be dropped in the next step, features
selection.

A summary plot of SHAP data derived from the XGBoost
model is shown in Figure 2. The most significant predictors
are age, BMI, HDL-C, and LDL-C. As these variables are
well-established risk factors for prediabetes, these findings
support clinical intuition. Additionally, SHAP provided
valuable visual confirmation that agreed with both the
correlation analysis and the LASSO feature selection. Using
these exploratory data analysis findings, LASSO regres-
sion and PCA were applied for feature selection, ensuring
that informative predictors were retained while reducing
redundancy and improving interpretability.

Figure 2. SHAP summary plot of XGBoost model. ALB: albumin; ALT: alanine aminotransferase; DB: direct bilirubin; HDL-C: high-density
lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; PRO: urine protein; SBP: systolic blood pressure; SCr: serum creatinine; SHAP:
Shapley Additive Explanations; TG: triglyceride; U-GLU: urine glucose; UA: uric acid; XGBoost: extreme gradient boosting.

Feature Importance and Selection
Feature selection over LASSO regression guaranteed that
every model was trained on the most relevant predictors.
During LASSO, features like BMI, age, and HDL-C were
consistently identified as significant predictors of prediabetes
as shown in Figure 3. These features were retrained in the
final model because of their significant predictive power
across different iterations. The models differed in which
features they emphasized:

• XGBoost identified BMI as the most significant
predictor, aligning with established research that links
higher BMI with increased prediabetes risk.

• SVM prioritized age as the first predictor, indicating
that age may play an additional critical role when
nonlinear relationships between variables are consid-
ered.

• Random forest and KNN provide insights into other
key features such as LDL-C and HDL-C, demonstrating
the various aspects of the data that every algorithm
emphasizes.
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This variance in feature significance underscores the utility of
designing diverse models and selection techniques to better
understand the predictors of prediabetes risk.

Figure 3. Features importance plots for XGBoost and SVM. ALB: albumin; ALT: alanine aminotransferase; DB: direct bilirubin; HDL-C: high-
density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; PRO: urine protein; SBP: systolic blood pressure; SCr: serum creatinine;
SR: ; SVM: support vector machine; TG: triglyceride; UA: uric acid; XGBoost: extreme gradient boosting.

PCA Component Retention
PCA retained 12 principal components, accounting for 95%
of the variance in the dataset.
Confusion Matrices

Overview
As shown in Figure 4, the confusion matrix demonstrates that
every model’s classification performance is detailed in terms

of distinguishing normal cases from prediabetic cases. These
results reflect the trade-offs each model faces in terms of true
positives, false positives, true negatives, and false negatives.
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Figure 4. Confusion matrix for XGBoost, SVM, random forest, and KNN models. KNN: k-nearest neighbor; SVM: support vector machine;
XGBoost: extreme gradient boosting.

XGBoost
A comparatively balanced classification was accomplished
with the XGBoost model, with 482 true positives and 227 true
negatives, referring to good sensitivity. However, it recorded
129 false negatives and 111 false positives, proposing some
limitations in minimizing misclassification errors, especially
false negatives, which are pivotal in clinical settings.

Random Forest
The random forest model (default threshold of 0.5) correctly
identified 513 true positives and 208 true negatives, which
are better results compared to XGBoost. The model demon-
strated a higher sensitivity than other models, as it reduced
the number of false negatives to 98. Despite this, 130 false
positives were observed, which indicates a slightly higher
trade-off in specificity.

A threshold adjustment of 0.2627 substantially improved
the random forest’s ability to detect prediabetic cases,
resulting in 589 true positives and 22 false negatives. A
notable rise in false positives (230) and a reduction in true
negatives (108) resulted from this adjustment, indicating a
move toward maximizing sensitivity over specificity. There
may be some advantages to this configuration in scenarios
where minimizing missed prediabetic cases is prioritized over
averting false positives.

About SVM
For the overall distribution of true positives and true
negatives, the SVM model obtained 476 true positives and
226 true negatives, which is like XGBoost’s. A total of 135
false negatives and 112 false positives have been recor-
ded, indicating that while SVM has a strong classification

capability, it is more susceptible to false negatives, which
limits its effectiveness for early detection cases.

About KNNs
This model performed moderately, generating 421 true
positives and 251 true negatives. Even though KNN can
effectively detect normal cases, it is less reliable when it
comes to identifying prediabetic cases. It showed 190 false
negatives and 87 false positives, indicating a higher rate of
misclassification.

To summarize, the confusion matrices demonstrate that
the random forest model minimizes false negatives better
than other models, especially when thresholds are adjusted.
Random forest has a significant advantage over XGBoost and
SVM when it comes to sensitivity, which makes it partic-
ularly suitable for prediabetes detection, where minimizing
missed cases is crucial. While KNN is the most effective at
identifying normal cases, it lacks the discriminative power
necessary to accurately classify prediabetes, illustrating that it
may be more fit as a baseline or for smaller datasets.
ROC Curves

Overview
Figure 5 shows the ROC (receiver operating characteris-
tic) curves for every model, further clarifies the trade-offs
between sensitivity and specificity, and shows the perform-
ance of each model in terms of how well it separates between
normal and prediabetic cases. The random forest model
showed the most convenient ROC curve, while XGBoost and
SVM also displayed powerful curves, suggesting effective
categorization performance.
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Figure 5. ROC curve comparison across models. KNN: k-nearest neighbor; SVM: support vector machine; XGBoost: extreme gradient boosting.

XGBoost
This classifier showed an AUC (area under the curve) of
0.79. The XGBoost ROC curve reflects a relatively good
trade-off between the true positive rate (sensitivity) and false
positive rate (1 – specificity), indicating that it is an effective
classification model, but has some room for improvement in
distinguishing classes.

About SVM
The SVM classifier produced a slightly lower AUC of
0.78. However, the SVM struggles slightly more with false
positives, as indicated by its ROC curve, which does not
consistently approach the top-left corner. Despite this, it
performs reasonably well when it comes to classification.

Random Forest
Across the 4 models tested, the random forest model
achieved the elevated AUC at 0.80. With a more pronounced
upward curve, its ROC curve reflects better differentiation
between positive and negative classes, showcasing outstand-
ing classification abilities.

About KNNs
The KNN classifier achieved a score of 0.78, suggesting
a fair rank of accuracy in the diagnosis of positive and
negative cases. According to the ROC curve for the KNN
model, there is a moderate trade-off between the true positive
rate (sensitivity) and the false positive rate (1 – specificity).
As well, there is some evidence to suggest that the KNN
model has some ability to separate the 2 classes, but its
shape suggests that it has room for improvement, as it does
not consistently approach the top-left corner, which would
indicate an ideal performance.

In a nutshell, all 4 models exhibit durable performance,
with AUC values ranging from 0.78 to 0.80. The random
forest model manifests as the best-performing classifier,
followed closely by XGBoost, SVM, and KNN.

Discussion
Principal Findings
Through systematically integrating model comparison,
advanced hyperparameter tuning, and interpretable feature
selection techniques, we present a robust, interpretable
framework for early prediabetes prediction. By combin-
ing SHAP analysis and LASSO regression, this research
provides both high performance and transparency, compared
to previous studies that focused solely on accuracy.
Comparative Strengths and Limitations
of Each Model

Overview
For prediabetes prediction, XGBoost, random forest, SVM,
and KNN each show distinct strengths and weaknesses.

Random Forest
In terms of overall discriminative ability, the random forest
model accomplished a superior cross-validated ROC-AUC
score (0.9117). According to this result, random forest is a
robust choice for early detection scenarios as it can general-
ize to different datasets well. Due to its ability to prioritize
recall through threshold adjustments, 22 false negatives were
reduced, but false positives increased (230). In view of this
trade-off, random forest may be highly powerful when the
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cost of missing a prediabetic case outweighs the risk of
overdiagnosis.

XGBoost
In evaluation, the XGBoost classifier showcased robust
performance, as it attained a high precision score of 0.8128
and a balanced recall score. According to these metrics,
it seems that XGBoost is particularly adept at minimizing
false positives and false negatives, which is highly critical in
clinical settings where diagnostic accuracy directly influences
patient outcomes. The ROC-AUC score of XGBoost did not
surpass that of random forest, despite its ability to balance
sensitivity and specificity, making it a viable choice for
routine clinical applications.

About SVM
With an AUC of 0.78, the SVM model ranked behind both
XGBoost and random forest. Despite their superior perform-
ance in high-dimensional spaces and in datasets with clear
class separation, SVM models have limited linear separabil-
ity in the prediabetes dataset, impacting their discriminative
power. The model has a good ROC-AUC and F1-score,
with reasonable precision and recall, but when it comes
to complex relationships, it lags behind the others. Opti-
mizing feature engineering may upgrade its performance
by searching alternative SVM kernels, combining nonlinear
interactions, or incorporating alternative kernels.

About KNNs
It performed rationally well in terms of classification
performance but ranked lowest in terms of accuracy among
the evaluated models, with an accuracy of 70.8% and
ROC-AUC of 0.78. Because of its simplicity and reliance on
distance metrics, KNN is expected to have lower discrimina-
tive power than more complex models such as random forest
and XGBoost. This model may be valuable as a baseline
model or may be convenient for small datasets with a focus
on computational efficiency. The reasonable performance of
KNN is a result of its sensitivity to distance metrics and
the number of neighbors (k), which may prevent it from
catching subtle differences in detecting normal and predia-
betic cases. Thus, while KNN may be beneficial in straight-
forward scenarios, it does not have the same level of precision
and recall as more sophisticated models.
Impact of Feature Selection
Feature selection played a crucial role in optimizing the
models’ performance by focusing on the main relevant
predictors. LASSO regression was used to characterize the
prime features across models, with BMI, age, LDL-C, and
HDL-C consistently emerging as important risk factors for
prediabetes. In addition to improving the interpretability
of the models, this approach also improved the predictive
accuracy by reducing overfitting. The strict feature selection
process warranted that the models stayed efficient while
maintaining high classification power.

Confusion Matrix and Threshold Analysis
The performance metrics were significantly influenced by
adjusting decision thresholds, especially for random forest
and XGBoost. A threshold adjustment in random forest
minimized the risk of missed diagnoses by reducing false
negatives (22 cases). Even so, this came at the expense of
a boosted number of false positives (230 cases), suggesting
a trade-off between recall and precision. XGBoost, while
less sensitive to threshold changes, maintained a balanced
approach, limiting both false positives and false negatives
effectively. As a result of these outcomes, threshold tuning
plays an important role in optimizing model performance
for specific clinical applications, such as prioritizing recall
in high-risk populations to avoid disease progression.
Clinical Implications
The results suggest that XGBoost and random forest are the
most promising models for enhancing prediabetes diagnosis,
given their ability to generalize across different datasets
and include reliable classification performance. The higher
ROC-AUC score achieved over random forest (91.17%)
reflects its potential for widespread use in clinical settings,
especially where minimizing the risk of missed cases is
crucial. The powerful performance of XGBoost among
diverse metrics also highlights its practicality for routine
screening, where both false positives and false negatives need
to be minimized. By adjusting model thresholds, clinicians
can customize diagnostic strategies to meet individual patient
needs, such as increasing sensitivity for at-risk patients.
Even though SVMs and KNNs do not outperform the best
models, they still provide useful insights, especially when
data dimensionality or simplicity are important factors.
Conclusions
ML models, specifically random forest and XGBoost, have
been found to be most sensitive to prediabetes risk assess-
ment, and their performance has powerful discriminative
power and high ROC-AUC scores. Combined with feature
selection techniques such as LASSO regression, these models
offer worthy insights into essential prediabetes predictors,
such as BMI, age, and HDL-C. Based on the ROC and AUC
analyses, all models—XGBoost, SVM, random forest, and
KNN—are viable options for predicting prediabetes. Random
forests are robust classifiers because of their ensemble
nature, which reduces overfitting and enhances generalizabil-
ity. SVM and XGBoost also produce competitive results,
suggesting their classification abilities can be improved with
further parameter tuning. With systematic exploratory data
analysis and feature selection, these models can become
reliable tools for detecting early prediabetes and offering
pathways for optimizing them.

To confirm the generalizability of these models, future
research should include validating them in diverse popula-
tions, adding biomarkers and genetics to improve prediction
accuracy, and integrating these models into clinical decision
support systems to assess risk in real time. These models
contribute to more accurate and timely diagnosis of prediabe-
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tes, promoting timely intervention and ultimately improving
health outcomes.
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