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Abstract
Background: Patient-derived cancer models (PDCMs) have become essential tools in cancer research and preclinical studies.
Consequently, the number of publications on PDCMs has increased significantly over the past decade. Advances in artificial
intelligence, particularly in large language models (LLMs), offer promising solutions for extracting knowledge from scientific
literature at scale.
Objective: This study aims to investigate LLM-based systems, focusing specifically on prompting techniques for the
automated extraction of PDCM-related entities from scientific texts.
Methods: We explore 2 LLM-prompting approaches. The classic method, direct prompting, involves manually designing a
prompt. Our direct prompt consists of an instruction, entity-type definitions, gold examples, and a query. In addition, we
experiment with a novel and underexplored prompting strategy—soft prompting. Unlike direct prompting, soft prompts are
trainable continuous vectors that learn from provided data. We evaluate both prompting approaches across state-of-the-art
proprietary and open LLMs.
Results: We manually annotated 100 abstracts of PDCM-relevant papers, focusing on PDCM papers with data deposited in
the CancerModels.Org platform. The resulting gold annotations span 15 entity types for a total 3313 entity mentions, which
we split across training (2089 entities), development (542 entities) and held-out, eye-off test (682 entities) sets. Evaluation
includes the standard metrics of precision or positive predictive value, recall or sensitivity, and F1-score (harmonic mean of
precision and recall) in 2 settings: an exact match setting, where spans of gold and predicted annotations have to match exactly,
and an overlapping match setting, where the spans of gold and predicted annotations have to overlap. GPT4-o with direct
prompting achieved F1-scores of 50.48 and 71.36 for exact and overlapping match settings, respectively. In both evaluation
settings, LLaMA3 soft prompting improved performance over direct prompting (F1-score from 7.06 to 46.68 in the exact
match setting; and 12.0 to 71.80 in the overlapping evaluation setting). Results with LLaMA3 soft prompting are slightly
higher than GPT4-o direct prompting in the overlapping match evaluation setting.
Conclusions: We investigated LLM-prompting techniques for the automatic extraction of PDCM-relevant entities from
scientific texts, comparing the traditional direct prompting approach with the emerging soft prompting method. In our
experiments, GPT4-o demonstrated strong performance with direct prompting, maintaining competitive results. Meanwhile,
soft prompting significantly enhanced the performance of smaller open LLMs. Our findings suggest that training soft prompts
on smaller open models can achieve performance levels comparable to those of proprietary very large language models.
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Introduction
Patient-derived cancer models (PDCMs) are created from
a patient’s own tumor sample and capture the complexity
of human tumors to enable more accurate, personalized
drug development and treatment selection. These models,
including patient-derived xenografts (PDXs), organoids, and
cell lines, allow researchers to test treatments and identify the
most effective therapies, and have emerged as indispensable
tools in both cancer research and precision medicine. The
US National Institutes of Health (NIH) have made significant
investments in the generation and characterization of these
models, with more than US $3 billion dedicated to active
grants referencing PDCMs with a component of their research
based on data extracted from the NIH RePORTER [1] for
fiscal year 2024 alone. The number of publications using
PDCMs continues to increase generating substantial and
rich metadata and data that require standardization, harmo-
nization, and integration to maximize the impact of these
models and their associated data within the research and
clinical communities. CancerModels.Org platform [2] serves
as a unified gateway to the largest collection of PDCMs
and related data. It empowers researchers and clinicians
to discover suitable models for testing research hypothe-
ses, conducting large-scale drug screenings, and advancing
precision medicine initiatives. Extraction of PDCM-relevant
knowledge and its harmonization within CancerModels.Org
is essential to ensure that basic and translational researchers,
bioinformaticians, and tool developers have access to PDCM
knowledge. While manual curation of publications ensures
high accuracy when performed by domain experts, it is
time-consuming and labor-intensive. Thus, a more stream-
lined and efficient knowledge acquisition method is needed to
address the growing demand within the scientific community
for the timely availability of the PDCM metadata and its
associated data.

In parallel, large language models (LLMs) [3-5] often
referred to as generative artificial intelligence (AI) systems
are trained on vast amounts of data and have demonstra-
ted impressive capabilities in the health care domain [6-8].
Researchers have studied the use of LLMs in addressing
various tasks related to health care such as diagnosing
conditions [9,10], clinical decision support [11], answering
patient questions [12], and medical education [13,14]. It has
been shown that LLMs can extract meaningful information
from texts [15-17].

In this work, we explore LLM-prompting techniques
with the goal of extracting knowledge from PDCM-rele-
vant scholarly publications. We focus on the classic direct
prompting [4] and the underexplored soft prompting [18]
with state-of-the-art (SOTA) proprietary and open LLMs.
Our experimental results provide insights into selecting the
optimal prompting methods for specific tasks. The contribu-
tions of this paper are:

1. Studying the feasibility of SOTA LLMs as oncology
knowledge extractors for PDCM-relevant information
from scholarly scientific literature.

2. Creating a manually curated gold dataset spanning 15
entity types for a total 3313 entity mentions from 100
abstracts of PDCM-relevant papers.

3. Researching and comparing, to our knowledge for the
first time, direct versus soft prompting techniques for
oncology knowledge extraction, specifically PDCM-rel-
evant information from scholarly scientific literature.

Methods
Concepts
We define “knowledge” as entities of interest to research-
ers working with PDCMs in the cancer research field. For
example, the patient’s diagnosis provides a reference point to
confirm that a PDCM faithfully recapitulates the biology of
the original tumor and is essential for ensuring the mod-
el’s relevance and reliability in studies of cancer progres-
sion or treatment response. Thus, “diagnosis” is important
to understand the model’s characteristics in the context of
patient’s disease. The patient’s age can significantly affect
the molecular and genetic characteristics of the tumor.
For example, pediatric cancers often have distinct genetic
drivers and tumor microenvironments compared to cancers
in older adults. In addition, age-related biological factors,
such as immune system, metabolism, and hormone levels,
influence how a tumor responds to treatments. Thus, knowing
the patient’s age is imperative for predictive accuracy of
the model in preclinical testing and relevance of research
findings. Therefore, we selected 15 most commonly used
CancerModels.Org data model attributes (Table 1), which
include the attributes defined in the minimal information
standard for patient-derived xenograft models [19] and the
draft minimal information standard for in vitro models [20].
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Table 1. Entity definitions based on the CancerModels.Org data model with examples and interannotator agreement F1-scores in the exact match
setting that requires the spans of the annotators to match exactly.
Entity type Definition Example IAAa

diagnosis Diagnosis at the time of collection of the patient tumor
used in the cancer model

TNBCb 61.67

age_category Age category of the patient at the time of tissue sampling Adult, pediatric
60

genetic_effect Any form of chromosomal rearrangement or gene-level
changes

Missense, amplification 57.67

model_type Type of patient-derived model PDXc, organoid 53.33
molecular_char Data or assay generated from or performed on the model

in this study
RNA sequencing, whole-exome sequencing 54.33

biomarker Gene, protein or biological molecule identified in or
associated with patient’s/model’s tumor

BRCA1d, IDHe, epidermal growth factor receptor
2

61.33

treatment Treatment received by the patient or tested on the model Surgery, chemotherapy, PARP-inhibitor 55.67
response_to_treatment Effect of the treatment on the patient’s tumor or model Progression-free survival, reduced tumor growth 55
sample_type The type of material used to generate the model or how

this material was obtained
Tissue fragment, autopsy 49

tumor_type Collected tumor type used for generating the model Primary, recurrent 49.67
cancer_grade Quantitative or qualitative grade reflecting how quickly

the cancer is likely to grow
Grade 1, low-grade 42

cancer_stage Information about the cancer’s extent in the body
according to specific type of cancer staging system

TNMf system, T0, stage I 59.33

clinical_trial The type of clinical trial or Clinicaltrials.org identifier Phase II, prospective randomized clinical trials 60.67
host_strain The name of the mouse host strain where the tissue

sample was engrafted for generating the PDX model
NOD-SCIDg 61.67

model_id ID of the patient-derived cancer model generated in this
study

PHLC402 100

aIAA: interannotator agreement.
bTNBC: triple-negative breast cancer.
cPDX: patient-derived xenograft.
dBRCA1: breast cancer gene 1.
eIDH: isocitrate dehydrogenase.
fTNM: tumor node metastasis.
gNOD-SCID: nonobese diabetic severe combined immunodeficiency.

Corpus
We used 100 abstracts to develop the gold-standard corpus
annotated for the 15 entities (Table 1). The abstracts were
chosen from publications linked to the PDCMs submitted to
CancerModels.Org platform. They were selected to cover all
3 types of models in the resource-PDXs, organoids, and cell
lines. The final corpus is available on GitHub (see Data and
Code Availability section).

Three annotators (ZP, TM, and EL) independently labeled
entities in all 100 abstracts for a total of 40 hours.
The annotation quality was tracked through interannotator
agreement (IAA), a measure of agreement between each
annotation produced by different annotators working on the
same dataset. The IAA is an indication of how difficult the
task is for humans and it becomes the target for system
development. We used pairwise F1-score as the IAA metric
[21] in the exact match setting that requires the spans of the
annotators to match exactly. We computed the agreement

between each pair of annotators and averaged across the
3 sets of scores. The final IAA for each entity type is
reported in Table 1. The IAA range is 42‐100 indicating
moderate agreement. Note that the lowest agreement is for
low occurrence entity types, for example, cancer_grade has
only 8 instances with 42 IAA. These low-frequency entity
types are more likely to be overlooked by the human experts
as annotation is a cognitively demanding task. Thus, to
ensure a high-quality gold-standard dataset, we overlayed
the single annotations with an adjudication step, where the
annotators discussed annotation disagreements and potential
missed annotations to come to final joint decisions. The
resulting gold dataset spans 15 entity types for a total 3313
entity mentions (refer Table 2 for distributions) was split into
training, development, and test sets in the standard 60:20:20
ratio. The train set was used for creating entity extraction
algorithms, the development set for refining the algorithms,
and the test set for the final evaluation.
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Table 2. Distribution of entity type annotations across training, development, and test sets.
Entity type Training, n Development, n Test, n Total, n
diagnosis 362 122 114 598
age_category 19 0 0 19
genetic_effect 69 20 33 122
model_type 326 114 110 550
molecular_char 128 37 46 211
biomarker 503 118 163 784
treatment 426 77 130 633
response_to _treatment 99 21 28 148
sample_type 22 8 7 37
tumor_type 61 19 28 108
cancer_grade 6 1 1 8
cancer_stage 7 1 4 12
clinical_trial 35 2 4 41
host_strain 9 0 7 16
model_id 17 2 7 26
Total 2089 542 682 3313

Prompting Methods
Various prompting techniques have been proposed since the
emergence of LLMs [22-25]. At a high level, these prompting
techniques can be divided into 2 categories, direct prompt-
ing [4] and soft prompting [18,24,26] . The main difference
between the two methods is the prompt representation, that
is whether the prompt consists of human language words or
vectors (Figure 1). Direct prompting (or discrete prompting)
is the most intuitive and now classic prompting method where
users directly interact with LLMs using natural language. For
example, a user may ask ChatGPT to “Write a thank you note
to an old friend of my parents”; in this case, the text within
the quotation marks is a discrete prompt. Soft prompting (or
continuous prompting) uses a machine learning approach to

train a sequence of continuous vectors, which are the “virtual
tokens” of the prompt. It is worth noting that soft prompt-
ing differs from fine tuning. With soft prompting, the LLM
parameters are not updated, only the soft prompt parameters
are adjusted. In contrast, finetuning requires to update the
parameters of the entire LLM, and therefore needs more
computation resources. Both prompting techniques have their
advantages and disadvantages. Compared to direct prompt-
ing, soft prompting does not require the tedious process of
manually creating prompts; however, it requires some labeled
data to train the prompt. In this work, we explore both direct
and soft prompting as we aim to explore the latest develop-
ments in LLMs and prompting techniques for the task of
extracting PDCM entities from abstracts of academic papers.

Figure 1. Illustration of the 2 prompting methods. In direct prompting, a prompt contains a sequence of words. In soft prompting, a prompt consists
of a list of vectors. LLM: large language model.

Direct Prompting
When asking LLMs to extract entities such as diagnoses
or biomarkers, the most intuitive way is to ask LLMs to
output the entities directly. In example 1 below, “ALK” is
a biomarker entity. One may expect the model to output
{“biomarker” [ALK]}. However, we note that the string
“ALK” is mentioned multiple times in this example text,
therefore it is not clear which “ALK” the model refers to. To
get the most precise extraction to facilitate a more fine-
grained analysis, we instruct the model to output the offsets of

the specific mentions in the text (ie, the spans). For instance,
if the model gives us [(48, 51, “ALK,” biomarker), (323, 326,
“ALK,” biomarker), …], we know that from character 48 to
character 51, there is a biomarker entity, “ALK.” Similarly,
we can find another biomarker entity “ALK” at position
323‐326.

Example 1:
Oncogenic fusion of anaplastic lymphoma kinase (ALK)
with echinoderm microtubule associated protein like
4 protein or other partner genes occurs in 3 to 6%
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of lung adenocarcinomas. Although fluorescence in
situ hybridization (FISH) is the accepted standard for
detecting anaplastic lymphoma receptor tyrosine kinase
gene (ALK) gene rearrangement that gives rise to
new fusion genes, not all ALK FISH-positive patients
respond to ALK inhibitor therapies.

We started our exploration by designing prompts with
an explicit instruction to specify the character offsets of
each entity along with the entity text and type (eg, 48, 51,
“ALK”, biomarker). However, our experiments show that it
was challenging for the LLM to output the correct charac-
ter offsets, a seemingly straightforward task (all the model
needs to do is to count the number of characters); however,
the complexity of this seemingly straightforward task is
likely due to the LLM’s way of breaking words outside its
vocabulary into so-called word pieces, for example, “orga-
noid” is broken down into 2 word pieces “organ” and “-oid.”
Considering that LLMs were trained as generative models
[3,4], we subsequently cast the entity extraction task as a
generation task, where we instructed the model to mark the
entities with XML tags. For instance, if the model outputs
“Oncogenic fusion of anaplastic lymphoma kinase (<bio-
marker>ALK</biomarker>) with echinoderm microtubule
…,” then postprocessing the output with regular expressions
would find the exact position of “ALK” in the text. Specif-
ically, we asked the LLMs to mark the start and end of
an entity with <entity_type> and </entity_type> tags, where
entity_type is a placeholder for the specific entity type, such
as biomarker or treatment (refer Table 1 for the full list).
Soft Prompting
Designing the direct prompts manually could be time-con-
suming and minor changes in the prompt language could lead
to drastic changes in the model performance [24,27]. On the
other hand, soft prompting requires some amount of gold data
for its training and annotating gold data by domain experts
could also be time-consuming. Fortunately, only a small set
of labeled data are needed to train soft prompts. As described
above, we created a gold dataset, which we used for training
and evaluating our soft prompting approach.

There are a few soft prompting methods, the difference
usually lies in how the prompt vectors are initialized and
learned. Prompt-tuning [18] is a technique that learns the
prompt by adding a list of virtual tokens (ie, vectors) in
front of the input, where the virtual tokens can be randomly
initialized, or drawn from a pretrained word embedding [28]
set. Another method is P-tuning [24], which uses small
neural networks such as feedforward neural networks [29]
(multilayer perceptron) or recurrent neural networks [30] (eg,
long-short term memory) as the prompt encoder to learn
the prompt. Only the parameters in the prompt encoder are
updated during training, while the weights in the LLMs
remain frozen. In our experiments, we found P-tuning did not
always converge to an optimal solution for our task perhaps
due to the random initialization of the vectors rather than
using carefully pretrained word embeddings. Therefore, we
focused on prompt-tuning in this work. Following Lester et
al [18], we initialized the vectors in the prompt with the
embeddings of the label words in the entity type set (Table 1).

The standard approach for entity extraction in natural
language processing is via token classification [31]. Con-
cretely, a classifier is trained to predict the label for each
token in a sentence according to a predefined label set.
Additionally, each label is prepended with a B or I prefix to
indicate the entity’s Beginning or Inside mention, respec-
tively. An example is provided in Figure 2. “Ewing sarcoma”
is an entity mention of the diagnosis type. Thus “Ewing”
and “sarcoma” are labeled as “Diagnosis,” while all other
tokens are labeled as “O,” meaning they are Outside of an
entity. To be more precise, “Ewing” is at the beginning of the
diagnosis entity, and “sarcoma” is inside of the entity, so they
are labeled as “B-Diagnosis” and “I-Diagnosis,” respectively.

To summarize, we trained a multiclass classifier for the
soft-prompting training step. There are 15 entity types in
our dataset, therefore there are 15×2+1=31 labels for token
classification, with one extra label for “O.”

Figure 2. An example of entity extraction as token classification.
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Experimental Set-Up
For efficiency purposes, we used Apache cTAKES [32] to
split an abstract into sentences which were then passed to
the LLMs to extract entities one sentence at a time. Our
direct prompt included the instruction, the definition of each
entity type, 5 examples (few-shot in-context learning) and

the query (the sentence). The in-context learning [4] is a
common practice in LLM prompting and has consistently
shown improved results as the examples guide the LLM
onto an optimal path [33,34]. Figure 3 presents our prompt
template, and examples are in Multimedia Appendix 1.

Figure 3. Prompt template used in direct prompting.

When choosing the LLMs, we used GPT-4o [35], one of
the most powerful proprietary LLMs at the time of this
study, and SOTA open LLMs from the LLaMA3 family [36],
including LLaMA3.1 70B, LLaMA3.1 8B, LLaMA3.2 1B,
and LLaMA3.2 3B. We did not use GPT-4o or LLaMA3.1
70B to train the soft prompts due to computational resource
limitations; thus, our work here is representative of the
computational environment in the vast majority of academic
medical centers and research labs. We set the soft prompt
length to 30. We trained the soft prompt on the training set
for 50 epochs with a learning rate of 0.001. Hyperparameters
were tuned on the development set using the LLaMA3.1 8B
model.

We report the evaluation results on the test set in the
next section. In addition, we apply 5-fold cross-validation and
report the average scores with SDs. For the 5-fold cross-vali-
dation, we excluded the 3 abstracts used to sample the gold
examples for direct prompting and split the remaining 97
abstracts into 5 folds with a 20:20:20:20:17 ratio. For direct
prompting, we ran the model on each fold and reported the
average scores. For soft prompting, we set aside one fold as
the test set and trained the soft prompts on the remaining 4
folds.

Results
We used the standard evaluation metrics of precision or
positive predictive value, recall or sensitivity, and F1-score

(the harmonic mean of precision and recall) with 2 evalua-
tion settings: “exact match” setting requires the span output
from the model to exactly match the span of the gold
annotation, and “overlapping match” setting allows the model
to get partial credit if its extraction overlaps the spans in
the gold annotation. For example, the model may extract
“patient-derived tumor xenograft (PDX)” as a model_type
entity, while the gold annotation is “patient-derived tumor
xenograft (PDX) models.” Under the “exact match” setting,
“patient-derived tumor xenograft (PDX)” is NOT a match
to “patient-derived tumor xenograft (PDX) models;” while
under the “overlapping match” setting, it is a match since the
spans overlap.

Tables 3 and 4 show the evaluation results on the test set.
In Table 3, we can see that under the “exact match” setting,
GPT-4o direct prompting achieves the highest F1-score of
50.48. The performances of the LLaMA3 family models drop
as the model size decreases, with F1-score from 38.40 for the
70B model to 6.78 for the 1B model. However, there is a
consistent improvement in F1-scores with soft prompting over
direct prompting. For the LLaMA3.2 models, the perform-
ance of the 3B model improves significantly, with F1-score
rising from 7.06 to 46.68 F1-score—more than 8 points
higher than the LLaMA3.1-70B model with direct prompting
(F1-score=38.40), despite the substantial difference in model
size.
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Table 3. Evaluation results on the test set (exact match) as precision or positive predictive value, recall or sensitivity, and F1-score (harmonic mean
of precision and recall).
Exact match Precision Recall F1-score
Direct prompting
  GPT-4o 56.09 45.89a 50.48a

  LLaMA3.1-70B 57.27a 28.89 38.40
  LLaMA3.1-8B 35.80 18.48 24.37
  LLaMA3.2-3B 25.23 4.10 7.06
  LLaMA3.2-1B 23.48 3.96 6.78
Soft prompting
  LLaMA3.1-8B 47.17 45.75 46.44
  LLaMA3.2-3B 47.30a 46.09a 46.68a

  LLaMA3.2-1B 46.19 45.01 45.59
aThese are the best results.

Table 4. Evaluation results on the test set (overlapping match) as precision or positive predictive value, recall or sensitivity, and F1-score (harmonic
mean of precision and recall).
Overlapping match Precision Recall F1-score
Direct prompting
  GPT-4o 76.96 66.52a 71.36a

  LLaMA3.1-70B 77.95a 43.99 56.24
  LLaMA3.1-8B 50.54 27.49 35.61
  LLaMA3.2-3B 41.03 7.03 12.00
  LLaMA3.2-1B 35.34 6.01 10.28
Soft prompting
  LLaMA3.1-8B 71.19 70.53 70.86
  LLaMA3.2-3B 72.05a 71.55a 71.80a

  LLaMA3.2-1B 70.38 70.48 70.42
aThese are the best results.

Similar trends are observed in Table 4 under the “overlapping
match” evaluation. GPT4-o shows an F1-score performance
of 71.36, maintaining its position as the top performer for
direct prompting. The 3 smaller LLaMA3 models continue to
benefit from soft prompting, with the LLaMA3.2 3B model
achieving slightly higher score than GPT4-o with direct
prompting (F1-scores of 71.80 vs 71.36 ).

Tables 5 and 6 present the results with 5-fold cross-valida-
tion under “exact match” and “overlapping” match respec-
tively. Once again, our observations indicate that with soft
prompting, the smaller LLaMA models attain performance
levels comparable to GPT-4o.

Table 5. Five-fold cross-validation results (exact match) as precision or positive predictive value, recall or sensitivity, and F1-score (harmonic mean
of precision and recall).
Exact match Precision Recall F1-score
Direct prompting, mean (SD)
  GPT-4o 60.73 (2.69) 49.92 (3.46) 54.75 (2.84)
  LLaMA3.1-70B 57.56 (1.53) 31.70 (1.24) 40.87 (1.25)
  LLaMA3.1-8B 38.29 (3.29) 20.57 (2.18) 26.75 (2.61)
  LLaMA3.2-3B 27.01 (3.20) 5.25 (0.80) 8.80 (1.29)
  LLaMA3.2-1B 9.84 (5.98) 0.74 (0.47) 1.38 (0.87)
Soft prompting, mean (SD)
  LLaMA3.1-8B 51.76 (3.09) 50.21 (2.24) 50.94 (2.55)
  LLaMA3.2-3B 50.99 (2.43) 49.54 (2.98) 50.24 (2.53)
  LLaMA3.2-1B 49.34 (3.47) 49.98 (3.19) 49.13 (3.10)
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Table 6. Five-fold cross-validation results (overlapping match) as precision or positive predictive value, recall or sensitivity, and F1-score (harmonic
mean of precision and recall).
Overlapping match Precision Recall F1-score
Direct prompting, mean (SD)
  GPT-4o 77.82 (2.54) 67.52 (2.17) 72.28 (1.88)
  LLaMA3.1-70B 78.01 (1.14) 47.77 (0.71) 59.25 (0.81)
  LLaMA3.1-8B 52.75 (3.02) 29.78 (2.60) 38.04 (2.84)
  LLaMA3.2-3B 42.42 (2.89) 8.64 (1.09) 14.34 (1.64)
  LLaMA3.2-1B 22.09 (5.74) 1.67 (0.54) 3.10 (0.99)
Soft prompting, mean (SD)
  LLaMA3.1-8B 73.78 (3.09) 73.77 (1.25) 73.75 (2.06)
  LLaMA3.2-3B 73.48 (1.97) 73.51 (1.11) 73.48 (1.31)
  LLaMA3.2-1B 71.51 (3.43) 73.25 (2.46) 72.34 (2.63)

Discussion
Principal Findings
Our experiments demonstrate that soft prompting, a relatively
underexplored aspect of LLM prompting, can significantly
enhance the performance of smaller LLMs. The 3 LLaMA
models exhibit comparable performance under soft prompting
(an F1-score of 46 in the exact match setting, and 70 in
the overlapping match setting). These results are particularly
promising results given the limited training data, consisting of
60 abstracts with 2089 entity mentions. Please note that all
F1-scores mentioned in this section refer to the F1-scores on
the test set.

How much data is needed to train the soft prompt? To
answer this question, we trained LLaMA3.2 1B model, the
smallest model used in this work, with different amounts
of training data. Figure 4 shows the relation between the

proportion of training data and the F1-scores on the test
set (overlapping match). Solid performance was achieved
with only 5% of the training data (26 sentences from 3
abstracts). With 25% of the training data (129 sentences from
15 abstracts), the model achieved an F1-score of 68.21, only
2 points lower than using the entire training set, and only
3 points lower than GPT4-o with direct prompting. Despite
the impressive performance of GPT4-o direct prompting,
one potential issue is that not all data used in biomedical
research can be sent to proprietary models such as GPT or the
Gemini family models [8] via public application program-
ming interfaces. That is, for applications using real patient
data that require Health Insurance Portability and Account-
ability Act–compliant platforms, our findings demonstrate
that achieving performance comparable to proprietary LLMs
such as GPT4-o remains feasible through soft prompting.
However, this approach necessitates a tradeoff, requiring a
small set of labeled data for optimal effectiveness.

Figure 4. Performance curve of the LLaMA3.2 1B model as the size of training data increases.

Some entities appear more frequently than other entities in
our dataset. For example, diagnosis and treatment mentions
are more frequent than mentions of cancer_grade. In Table

7, we present the number of instances of each entity type in
our dataset and the corresponding performance of GPT4-o
direct prompting. We can see that GPT4-o performs the best
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for the entity types that have the most instances—diagno-
sis, model type, and treatment entities. Of these frequent
entity types, biomarker is the one with the lowest per-
formance. Our error analysis points to several factors that
could have contributed to these results, including ambigu-
ous and inconsistent mentions and contextual dependencies.
In this task, we defined a biomarker as “gene, protein or
biological molecule identified in or associated with patient’s/
model’s tumor.” Thus, biomarker entities can be mentioned
using their full names (eg, epidermal growth factor recep-
tor, lnc-RP11-536 K7.3, echinoderm microtubule-associated
protein-like 4), standardized gene or protein symbols (NPM1,
KRAS, PTEN) or abbreviations of metabolites (NADPH,

D2HG). Moreover, a biomarker entity (eg, “MEK”) often
overlaps with a treatment entity (eg, “MEK inhibitor”).
The ambiguity in biomarker entity mentions might interfere
with the model’s ability to recognize them consistently.
In addition, biomarker entities are often mentioned as lists
(see Example 2) resulting in a different frequency within
and across the abstracts and patterns of entity mentions, in
comparison with other entities. Overall, ambiguity emerges
as the primary source of error. More precise definitions,
accompanied by examples illustrating the distinct meanings,
might present a solution. Table S2 in Multimedia Appendix 1
provides the breakdown of errors per entity type along with
examples.

Table 7. Evaluation results of GPT4-o with direct prompts for each entity type as precision or positive predictive value, recall or sensitivity, and
F1-score (harmonic mean of precision and recall). Results are overlapping match setting on the test set.
Entity type Training instances, n Development instances, n Test instances, n Precision Recall F1-score IAAa

diagnosis 362 122 114 92.47 75.44 83.09b 61.67
age_category 19 0 0 0.0 0.0 0.0 60
genetic_effect 69 20 33 45.71 47.06 46.38 57.67
model_type 326 114 110 88.07 84.21 86.10b 53.33
molecular_char 128 37 46 65.22 63.83 64.52b 54.33
biomarker 503 118 163 85.05 55.49 67.16b 61.33
treatment 426 77 130 81.74 70.15 75.50b 55.67
response_to _treatment 99 21 28 38.64 60.71 47.22 55
sample_type 22 8 7 45.45 71.43 55.56b 49
tumor_type 61 19 28 66.67 57.14 61.54b 49.67
cancer_grade 6 1 1 50.0 100 66.67b 42
cancer_stage 7 1 4 33.33 25.0 28.57 59.33
clinical_trial 35 2 4 80.0 100 88.89b 60.67
host_strain 9 0 7 100 28.57 44.44 61.67
model_id 17 2 7 66.67 28.57 40.0 100

aIAA: interannotator agreement.
bF1-scores exceeding interannotator agreement.

Example 2:
Genomic alterations involved RB1 (55%), TP53 (46%),
PTEN (29%), BRCA2 (29%), and AR (27%), and there
was a range of androgen receptor signaling and NEPC
marker expression.

The moderate performance of entity types such as
genetic_effect, molecular_char, and response_to_treatment,
and tumour_type is due to the number of training instances
ranging from 61 to 128 as well as the IAA ranging from
49.67 to 57.67. The moderate IAA scores of those entity
types underscore the need for refined annotation protocols
and modeling strategies that better capture domain-specific
knowledge. Furthermore, the lower performance observed
for entity types with smaller sample sizes (eg, model_id)
highlights the need for enhancing model performance on
low-frequency labels. Future research could explore strategies
such as data augmentation to improve the model’s generaliza-
bility for underrepresented entities.

The extraction of PDCM-relevant knowledge is not an
easy task for the domain experts as indicated by the IAA
(F1-score below 65 for all entity types except for model_id).
In 9 out of 15 entity types, the system performance in an
overlapping match setting exceeds the IAA (last two columns
of Table 7). This is the case for categories with plentiful
training instances (eg, diagnosis, model_type) as well as for
categories with fewer training instances (eg, sample_type,
cancer_grade). For the exact match setting, in 6 out of 15
entity types, the system performance exceeds the IAA (last
two columns in Table 8). Therefore, the LLM could be a
viable assistant, with its outputs reviewed by a domain expert
to ensure the accuracy of the finalextraction. We believe such
human-in-the-loop approaches present a promising direction
for future research and application.
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Table 8. Evaluation results of GPT4-o with direct prompts for each entity type as precision or positive predictive value, recall or sensitivity, and
F1-score (harmonic mean of precision and recall). Results are exact match setting on the test set.
Entity type Training instances, n Development instances, n Test instances, n Precision Recall F1-score IAAa

diagnosis 362 122 114 77.17 62.28 68.93b 61.67
age_category 19 0 0 0.0 0.0 0.0 60.0
genetic_effect 69 20 33 25.71 27.27 26.47 57.67
model_type 326 114 110 56.88 56.36 56.62b 53.33
molecular_char 128 37 46 54.35 54.35 54.35b 54.33
biomarker 503 118 163 46.74 26.38 33.73 61.33
treatment 426 77 130 72.34 52.31 60.71b 55.67
response_to _treatment 99 21 28 27.91 42.86 33.80 55
sample_type 22 8 7 45.45 71.43 55.56b 49
tumor_type 61 19 28 50.0 39.29 44.0 49.67
cancer_grade 6 1 1 50.0 100 66.67b 42
cancer_stage 7 1 4 33.33 25.0 28.57 59.33
clinical_trial 35 2 4 40.0 50.0 44.44 60.67
host_strain 9 0 7 100 14.29 25.0 61.67
model_id 17 2 7 66.67 28.27 40.0 100

aIAA: interannotator agreement.
bF1-scores exceeding the interannotator agreement.

We would like to note that the work presented in the paper
was done in a computational environment representative of
the vast majority of academic medical centers and nonindus-
try research labs. Although we have access to SOTA Graphics
Processing Units, we still found ourselves constrained as to
the extent to which we could use very large language models.
The larger community needs to address the growing gap in
computational resources between big tech and the rest of the
research community.
Limitations
As this is a feasibility study, we limited ourselves to the
extraction of entity mentions of 15 entity types chosen from
attributes in the descriptive standards for PDCMs. While
these are recognized by the PDCM and oncology community,
they do not cover all knowledge in the PDCM-relevant texts.
Some refinement of the entity types will be beneficial to
improve prompting results.

We limited our corpus to 100 abstracts from papers
associated with PDCMs deposited in CancerModels.Org.
We did not assess the abstracts for the presence and equal
distribution of all the entities. Thus, there were very few
mentions of some entities in the corpus (eg, cancer_stage),
negatively affecting our overall F1-score. We decided not to
exclude those entities as these results could guide refinements
of future studies. The computational methods discussed here
are applicable to other studies requiring the extraction of
textual information from scientific papers. Future work could
involve extending this method to extract knowledge from the
main body of the papers.

Conclusions
This study investigates the potential of LLMs as power-
ful tools for extracting PDCM-relevant knowledge from
scientific literature—an essential task for advancing cancer
research and precision medicine. By comparing direct and
soft prompting across both proprietary and open LLMs, we
provide valuable insights into the most effective strategies for
PDCM-relevant knowledge extraction. Our findings indicate
that GPT-4o, when used with direct prompting, maintains
competitive performance, while soft prompting significantly
enhances the effectiveness of smaller LLMs. In conclusion,
our results demonstrate that training soft prompts on smaller
open models can achieve performance levels comparable to
those of proprietary LLMs.

To our knowledge, this is the first study to implement
SOTA LLMs prompting for knowledge extraction in the
PDCM domain and the first to explore the emerging topic of
soft prompting in this context. Our findings demonstrate that
LLMs can effectively streamline the extraction of complex
cancer model metadata, potentially reducing the burden of
manual curation and accelerating the integration of PDCMs
into research and clinical workflows. Additionally, this study
lays the foundation for future research aimed at optimizing
LLMs for large-scale knowledge extraction tasks. Efficiently
extracting and harmonizing PDCM-relevant knowledge will
ultimately drive progress in cancer research and precision
oncology, equipping researchers and clinicians with better
tools to improve patient outcomes. More broadly, our study
contributes to the ongoing discourse on the applicability of
LLMs, acknowledging that while they offer transformative
potential, they are not a universal solution for all tasks.
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