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Abstract

Background: Cancer is one of the leading causes of disease burden globally, and early and accurate diagnosis is crucial for
effective treatment. This study presents a deep learning—based model designed to classify 5 common types of cancer in Saudi
Arabia: breast, colorectal, thyroid, non-Hodgkin lymphoma, and corpus uteri.

Objective: This study aimed to evaluate whether integrating RNA sequencing, somatic mutation, and DNA methylation
profiles within a stacking deep learning ensemble improves cancer type classification accuracy relative to the current state-of-
the-art multiomics models.

Methods: Using a stacking ensemble learning approach, our model integrates 5 well-established methods: support vector
machine, k-nearest neighbors, artificial neural network, convolutional neural network, and random forest. The methodology
involves 2 main stages: data preprocessing (including normalization and feature extraction) and ensemble stacking classifica-
tion. We prepared the data before applying the stacking model.

Results: The stacking ensemble model achieved 98% accuracy with multiomics versus 96% using RNA sequencing and
methylation individually, 81% using somatic mutation data, suggesting that multiomics data can be used for diagnosis in
primary care settings. The models used in ensemble learning are among the most widely used in cancer classification
research. Their prevalent use in previous studies underscores their effectiveness and flexibility, enhancing the performance of
multiomics data integration.

Conclusions: This study highlights the importance of advanced machine learning techniques in improving cancer detection
and prognosis, contributing valuable insights by applying ensemble learning to integrate multiomics data for more effective
cancer classification.
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Introduction Omics data provide a thorough understanding of biolog-
ical systems, facilitating research into disease pathways,
molecular causes, and ecological dynamics. Omics comprises
the following fields: metagenomics (eg, microbial genomes),
proteomics (eg, protein abundances), metabolomics (eg, small
molecule concentrations), epigenomics (eg, DNA methylation
patterns), and genomics (eg, DNA sequences and mutations)
[2]. RNA sequencing is one type of omics data and is a
powerful sequencing-based method that enables researchers

Cancer is a complex worldwide health problem associated
with high mortality [1]. Recent years have seen the use of
a variety of machine learning techniques applied to high-
throughput sequencing technology, which has advanced the
classification of cancers based on omics data and offered a
promising future for precise treatment choices.
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to discover, characterize, and quantify RNA transcripts across
the entire transcriptome [3]. RNA sequencing can tell us
which genes are turned on in the cell, their expression
levels, and at what time they are turned on or off [4].
This allows scientists to better understand cell biology and
evaluate changes that might indicate disease. These data are
characterized as high-throughput and high-dimensional [5].
Methylation, an epigenetic process involving the addition of
methyl groups to DNA, plays a vital role in gene expression
regulation [6]. Aberrant methylation patterns are pervasive in
human cancers, impacting carcinogenesis stages and serving
as potential biomarkers for cancer diagnosis and progno-
sis [7,8]. A somatic mutation is a permanent change that
can arise naturally or be brought about by environmental
influences in the DNA sequence of a gene or chromosome. It
may have an impact on the structure or function of proteins.
In cancer research, they are essential markers that shed
light on the genetic causes of carcinogenesis and inform the
creation of patient-specific targeted therapy [9].

Studies have shown that while single-genome research
has yielded significant results, integrating multiple omics can
enhance our understanding of diseases and provide patients
with better treatment options. Therefore, integrating data from
multiple omics, rather than using single-omic techniques, may
provide a better understanding of biological systems and
the causes of diseases. This integration improves predic-
tion accuracy and facilitates more efficient identification of
therapeutic targets [10,11].

Dealing with omics data poses several challenges, one of
which is that sequencing data are high-dimensional. Sec-
ond, class imbalance in patient data will reduce the mod-
el’s performance. The third challenge is that the number of
patients in the study is still relatively small, which may cause
overfitting problems [12]. Based on these challenges, there
is a need for development and contribution in this field,
including the development of models that can successfully
distinguish between types of cancer while considering the 3
challenges.

Recent studies on the analysis of critical data for cancer
disorders have used a variety of machine learning strategies,
including the multilayer perceptron [13-16]. The multilayer
perceptron is a 3-layer system that consists of an input layer,
an output layer, and a hidden layer positioned in the middle.
A convolutional neural network (CNN) [17,18] is another
kind of neural network that is used. It functions similarly
to a feed-forward neural network and consists of a convolu-
tional layer that processes the input and outputs the result to
the next layer. They also used random forest (RF) [13,19],
which is a technique that involves training a large number
of decision trees. The final output of the RF is the class that
the majority of the trees select. Deep neural architectures for
classification have also been used in [18,20,21]. In addition,
the support vector machine (SVM) and k-nearest neighbors
(KNN), which are typically used for regression and classifica-
tion, are commonly applied in this field.
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Working with omics data presents several challenges, such
as overfitting and class imbalance, which we outline below,
along with an overview of how previous work has addressed
them. Overfitting is common due to the limited amount
of data, often resulting in lower model performance. The
model’s accuracy is directly influenced by the amount of
data used. This issue has been noted in several studies where
models are excessively trained to fit the training examples.
Upon review, some papers overlooked this issue, while
others addressed it through approaches such as regularization,
cross-validation, and dropout techniques. Class imbalance
is another significant issue in this type of data, affecting
model training by biasing it toward the class with more
data. Summarizing the methods for dealing with this problem
involves 2 main approaches. First, oversampling techniques
such as SMOTE (Synthetic Minority Oversampling Techni-
que) and undersampling methods such as downsampling are
used to balance class distribution in the dataset. Second,
another effective strategy is to use ensemble learning, where
different models are trained on either different subsets of
data or using various algorithms, pooling their predictions for
improved overall performance. These methods collectively
aim to address the challenges posed by class imbalance in
data-driven tasks such as cancer classification using omics
data.

The model proposed in this paper uses ensemble learning
of 5 common models to classify the 5 most common types
of cancer in the Kingdom of Saudi Arabia using 3 types
of omics data. The objective is to investigate whether the
model’s classification accuracy improves upon integrating
multiomics data into our stacking model, which combines 5
of the most popular methods in this field.

Methods

Overview

Our proposed model presents a classification of the 5 most
common types in the Kingdom of Saudi Arabia, which
are breast, colorectal, thyroid, non-Hodgkin lymphoma, and
corpus uteri [22], by using deep learning, which in turn
extracts features that are believed to have an important role.
The model was designed using stacking ensemble learning
as shown in Figure 1, which goes through 2 phases: a
preprocessing phase that includes normalization and feature
extraction (FE), and a classification phase using an ensemble
stacking model. Data entered the preprocessing phase, and
the output was then directed to the stacking model. We have
performed our experiments in Python 3.10 (Python Software
Foundation) on the Aziz Supercomputer of King Abdulaziz
University, which is the second fastest supercomputer in the
Middle East and North Africa region. The following sections
explain how the proposed model works, starting with data
collection, followed by preprocessing, and ending with the
stacking model.
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Figure 1. Methodology of the proposed model. ANN: artificial neural network; CNN: convolutional neural network; FE: feature extraction; KNN:
k-nearest neighbors; RF: random forest; SVM: support vector machine; TPM: transcripts per million.
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Preprocessing

TPM

Data Collection and Preprocessing

For RNA sequencing data in this investigation, we used
The Cancer Genome Atlas (TCGA) dataset, which is openly
accessible to researchers. TCGA comprises approximately
20,000 primary cancer and matched normal samples across
33 cancer types, including the 5 cancer types addressed in our
work. Its main goal is to provide scientists with information
to improve cancer detection, treatment, and prevention [23].
Furthermore, somatic mutation and methylation data were
obtained from the publicly accessible LinkedOmics dataset,
which includes multiomics data from all 32 TCGA cancer

Stacking model

, Cancer
type

types and 10 Clinical Proteomic Tumor Analysis Consortium
(CPTAC) cohorts [24].

Figure 2 shows a screenshot of the data types. These
are tabular data, with columns representing genes and rows
representing cases that are infected by cancer. In Figure
2A, RNA sequencing data capture gene expression levels
as continuous values. In Figure 2B, somatic mutation data
are sparse and binary (0 or 1), indicating the presence of
genomic alterations. In Figure 2C, methylation data provide
continuous epigenetic information reflecting gene regulation
patterns, with values ranging from —1 to 1.

Figure 2. Show screenshots of the data types: (A) RNA sequencing, (B) somatic mutations, and (C) methylation.
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Initially, the data underwent extensive cleaning to ensure the
integrity of the model by identifying and removing 7% of
cases with missing or duplicate values. Table 1 describes the
number of cases of the 5 types of cancer after preprocessing.

Regarding RNA sequencing data, preparation is required
before use to provide a precise model evaluation. Thus, 2
processes were carried out in order to preprocess the data:
normalization and Feature Extraction (FE).

Table 1. Show the number of samples in each cancer type after preprocessing.

Cancer type Abbreviation RNA sequencing Somatic mutation Methylation
Breast BRCA? 1223 976 784
Colorectal COADP 521 490 394
Thyroid THCA® 568 496 504
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Cancer type Abbreviation RNA sequencing Somatic mutation Methylation
Non-Hodgkin lymphoma NHL4 481 240 288
Corpus uteri UCEC*® 587 249 432

4BRCA: breast invasive carcinoma.

PCOAD: colon adenocarcinoma.

°THCA: thyroid carcinoma.

dNHL: non-Hodgkin lymphoma.

CUCEC: uterine corpus endometrial carcinoma.

Next, for the normalization step, we used the transcripts per
million method to eliminate systematic experimental bias
and technical variation while maintaining biodiversity. In
addition, it can reduce the bias resulting from the choice
of technique used and the conditions tested, or from the
experimental procedure, and it can reduce the variance
resulting from natural variation and measurement precision
[25]. Transcripts per million can be calculated by equation 1
and should be read as “for every 1,000,000 RNA molecules in
the RNA-seq sample, x came from this gene/transcript” [26].

reads mapped to transcript | transcript length
sum (reads mapped to transcript / transcript length)

TPM = 10° x @

Feature Extraction

RNA sequencing data are high-dimensional. Therefore, to
reduce the dimensionality, we use an autoencoder technique
based on the results of a study [27] that concluded that
autoencoders perform effectively while preserving essential
biological properties, allowing for better visualization and
interpretation of complex data structures. The architecture of

Figure 3. Downsampling for data. NHL had 481 cases in RNA-seq data;

the autoencoder model is composed of an encoder, a code,
and a decoder. The encoder compresses the input (features),
and the decoder attempts to recreate the input (features)
from the compressed version provided by the encoder. The
autoencoder model has 5 dense layers, each with 500 nodes
and a rectified linear unit (ReLU) activation function. A
dropout of 0.3 was applied to handle the overfitting.

Methods for Handling Class Imbalances

In particular, for classes with tiny sample sizes, imbalanced
class sizes in the dataset may result in subpar prediction
accuracy. Downsampling and SMOTE are 2 methods used
to address class imbalances and enhance model performance
[28]. In the study by Dittman et al [29], researchers tried class
oversampling and class undersampling; then, after evaluating
the data, they concluded that undersampling has better results
than the oversampling method. Therefore, we decided to
apply the downsampling method for the data used in this
paper and verified that the data were free of duplicates and
then divided into 80% training and 20% test data (Figure 3).

80% (385 cases) were allocated for training and 20% (96 cases) for testing.

Somatic mutation types were downsampled to 80% (192 cases) for training and 20% (48 cases) for testing. Methylation data followed suit, with
80% (230 cases) and 20% (58 cases) for training and testing, respectively. BRCA: breast invasive carcinoma; COAD: colon adenocarcinoma; NHL:
non-Hodgkin lymphoma; RNA-seq: RNA sequencing; THCA: thyroid carcinoma; UCEC: uterine corpus endometrial carcinoma.
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In this dataset, the smallest class (ie, non-Hodgkin lym-
phoma) included 481 cases in the RNA sequencing data.
To balance the dataset, 481 cases were randomly selected
from each of the other classes. This resulted in 80% (385

https://bioinform.jmir.org/2025/1/e70709

cases) used for training and 20% (96 cases) for testing. For
somatic mutations data, each of the 5 types was downsam-
pled to 80% (192 cases) for training and 20% (48 cases) for
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testing. Similarly, for methylation data, 80% (230 cases) were
assigned for training and 20% (58 cases) for testing.

Stacking Ensemble Model

Stacking builds a model with improved performance by
training multiple models to come up with the best combina-
tion of predictions from these models. The model structure
consists of 5 base models and a meta-model that collects the
predictions of the base models.

The hyperparameters of each model were described
using GridSearchCV (scikit-learn developers), providing a
comprehensive configuration for testing and optimization.
For the nearest neighbor classifier (BM1), GridSearchCV
was used to discover the optimal number of neighbors from
values of (1, 3, 5, 10, 5, and 0) and found that the opti-
mal number of neighbors was 10. For the RF classifier
(BM2), GridSearchCV was used to explore combinations of
“n_estimators” and “min_samples_leaf,” achieving the best
performance using 500 trees and a minimum of 2 samples per
leaf. For the support vector classifier (BM3), the regulari-
zation parameter “C” was tuned across a range of values
0.1, 1, 5, 7, and 10), with C=10 achieving the highest

Table 2. Hyperparameters of each base model.

Ameen et al

accuracy. For CNN (BM4) and artificial neural network
(ANN; BMS), GridSearchCV was used to find the optimal
activation function from ReLU and softmax, choose dropout
rates from 0.1 to 0.6, and finally find the filter value in
CNN. Table 2 shows the hyperparameters that we used in
each model. Next, the stacking ensemble uses an ANN as the
meta-model to combine predictions from BM1 to BMS. The
meta-model architecture consists of a neural network with
multiple layers. The first dense layer has 32 units and uses a
ReLU activation function, followed by a dropout layer with a
50% rate to reduce overfitting. The second dense layer has 16
units and a ReLU activation function, followed by a dropout
layer with a 50% rate. The model ends with an output layer
that has 5 units and a softmax activation function, suitable for
multiclass classification. The model is trained using an Adam
optimizer with a learning rate of 0.001 and sparse categorical
cross-entropy loss. The integration of the 5 models (SVM,
KNN, ANN, CNN, and RF) follows a stacking ensemble
approach, where the predictions from each model serve as
input features for the meta-model. These base models are
trained independently, and their outputs are concatenated to
form the input layer of the meta-model.

Model Classifier Hyperparameter

BMI KNN? Neighbors=10

BM2 RFP n_estimators=500 and min_samples_leaf=2

BM3 SVM€© C=10

BM4 CNN¢ Conv1D with filters= 64, activation="ReLU,” optimizer= “adam,” loss= “sparse_categorical_crossentropy,” and
dropout=0.3

BMS5 ANNf 3 dense layers, activation="ReLU,” “softmax,” optimizer="adam,” loss="sparse categorical crossentropy,” and

dropout=0.4

4KNN: k-nearest neighbor.

bRF: random forest.

CSVM: support vector machine.
dCNN: convolutional neural network.
ReLU: rectified linear unit.

fANN: artificial neural network.

Ethical Considerations

This study exclusively used publicly available datasets
obtained from TCGA and LinkedOmics with project
names “TCGA-BRCA,” “TCGA-COAD,” “TCGA-THCA,”
“TCGA-DLBC,” and “TCGA-UCEC”. All datasets were fully
anonymized and complied with the respective repository’s
data usage policies.

Results

Overview

In this section, we present the results of our study.
First, in the “Performance Evaluation Metrics” section, we
analyze critical metrics including the classification report, the
confusion matrix, and the receiver operating characteristic
(ROC) curve. Second, we present the results of the 5 models
individually to compare with our results.

https://bioinform.jmir.org/2025/1/e70709

Performance Evaluation Metrics

To assess the effectiveness of the multiclass classification
model, various performance metrics were calculated and are
shown in Figure 4. The graph shows the performance metrics
for a multiclass classification model, including precision,
recall, and F-score for each class. Precision indicates the
accuracy of positive predictions, while recall measures how
many actual positives were correctly identified. The F-score
balances precision and recall. The model achieved an overall
accuracy of 98%. Both the macro and weighted averages of
the metrics are very similar, reflecting consistent performance
across all classes. Subsequently, in Figure 5, we examined
the confusion matrix to assess the model’s classification
performance across the 5 classes. The matrix percentages
indicated that the correct classification rates (the diagonal
values) were between 91.67% and 100%, showing accurate
classification results with error rates (the off-diagonal values)
of roughly 8% or less for each class.
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Figure 4. Classification report visualizing precision, recall, Fj-score, and support for each class in the stacking ensemble model. BRCA: breast
invasive carcinoma; COAD: colon adenocarcinoma; NHL: non-Hodgkin lymphoma; THCA: thyroid carcinoma; UCEC: uterine corpus endometrial

carcinoma.
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Figure 5. Confusion matrix illustrating the true versus predicted classifications generated by the stacking ensemble model.
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Furthermore, we analyzed the ROC curve, which is a tool for
assessing the model’s discriminative abilities across multiple
classifications. The ROC curve, which provides information
about model performance, was modified for our multiclass
scenario even though it is usually used in binary classifica-
tion. In our experiment, we observed compromises between
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true and false positive rates, which validates the discrimi-
native power of the model. The results, shown in Figure
6, indicate that all classes had consistent performance, as
indicated by the area under the curve ranging from 0.90 to
1. These results demonstrate how well the model can classify
cases in various classes.
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Figure 6. Receiver operating characteristic curve demonstrating the performance of the stacking ensemble model.
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To evaluate the performance of different machine learning
approaches on individual omics datasets, we evaluated 5
commonly used classifiers—KNN, RF, SVM, CNN, and
ANN—as well as a stacking model composed of all 5
models for each omics type. As shown in Table 3, the
RF achieved the highest accuracy on the RNA sequencing
dataset (0.98), while the CNN outperformed all other models
on the somatic mutations dataset with an accuracy of 0.87.
On the methylation dataset, the ANN slightly outperformed
the other models with an accuracy of 0.97. The proposed
stacking model demonstrated balanced performance across
all 3 genome types, achieving accuracies of 0.96 (RNA
sequencing), 0.81 (somatic mutations), and 0.96 (methyla-
tion). To detail the stacking results, we present Table 4,
which shows the performance metrics—precision, Fi-score,
recall, and accuracy—for different inputs: RNA sequencing,
somatic mutations, methylation separately, and the multio-
mics approach. For the RNA sequencing input, the model
consistently performs well across all 3 folds, with an average

precision, Fi-score, recall, and accuracy of 0.96. For the
somatic mutations data, the model’s accuracy, Fj-score, and
recall were relatively low at 0.60, with a slightly higher
precision of 0.70. With a mean of 0.97, the accuracy of the
model tested on the methylation dataset varied between 0.95
and 0.99 across folds. Similarly, Fi-score and recall averaged
0.96 and 0.97, respectively, while accuracy averaged 0.96.
In the multiomics approach, the model achieved an average
score of 0.98 across all metrics. Specifically, the model
demonstrates near-perfect performance in folds 2 and 3,
achieving a precision, recall, and Fy-score of 0.99, reflecting
the added value of incorporating multiple data modalities.
Overall, the multiomics approach outperforms using each
omics type separately, offering a more robust and accurate
model across all evaluation metrics. Our analysis showed that
some models performed better in terms of recall and precision
for certain cancer types when using multiomics, highlighting
the importance of combining data to get the most out of the
analysis.

Table 3. Classification accuracy of individual models and the stacking model across RNA sequencing, somatic mutations, and methylation datasets.

Classification model RNA sequencing Somatic mutation Methylation
K-nearest neighbors 091 0.72 0.95
Random forest 0.98 0.73 0.96
Support vector machine 0.95 0.79 0.96
Convolutional neural network 0.96 0.87 0.96
Artificial neural network 0.96 0.80 0.97
Stacking with the five model 0.96 0.81 0.96

https://bioinform.jmir.org/2025/1/e70709
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Table 4. Performance of the stacking model using RNA sequencing, somatic mutations, methylation, and multiomics data.

Input type and k-fold Precision F1-score Recall Accuracy
RNA sequencing
1 0.95 0.94 0.94 0.94
2 0.97 0.96 0.96 0.96
3 0.98 0.98 0.98 0.98
Avg? 0.96 0.96 0.96 0.96
Somatic mutations
1 0.6 0.6 0.6 0.7
2 0.86 0.85 0.86 0.86
3 0.92 091 091 091
Avg 0.79 0.79 0.79 0.81
Methylation
1 0.95 0.94 0.94 0.94
2 0.97 0.96 0.97 0.96
3 0.99 098 0.99 0.99
Avg 0.97 0.96 0.97 0.96
Multiomics (RNA sequencing, somatic mutations, and methylation)
1 0.96 0.95 0.95 0.95
2 0.99 0.99 0.99 0.99
3 0.99 0.99 0.99 0.99
Avg 0.98 0.98 0.98 0.98

3Avg: average.

Discussion

Principal Findings

The results of this study provide insights into ensemble
learning for cancer classification and diagnosis, using 5
different machine learning models. These models were
selected based on their proven effectiveness in previous
studies and their popularity in the literature, offering a
balanced approach to handling the complex nature of
multiomics data.

Comparison With Prior Work

Table 5 summarizes several studies that used multiomics
data and machine learning techniques to classify and predict
various types of cancer. It is worth noting that these studies
are not based on the same data but have been reviewed
to support our findings that using multiomics data enhance
accuracy. As seen, models from recent studies such as Koh

et al [30] and Mohamed and Ezugwu [31] show high area
under the curve scores (0.96) and accuracy (97%). Other
models, such as Cappelli et al [32] and Jagadeeswara Rao
and Sivaprasad [33], also report strong results, typically in
the range of 91%-95%. Overall, these studies highlight the
power of integrating multiomics data with advanced machine
learning techniques, which consistently led to high accuracy,
with models achieving between 91% and 98% accuracy
across different cancer types [34]. Although, when compar-
ing the performance of our model with theirs, our approach
shows the highest overall accuracy (98%) across a range of
cancer types and data modalities. We addressed common
challenges in omics data analysis, such as overfitting, class
imbalance, and high dimensionality, through the application
of techniques such as dropout, downsampling, and FE. These
methods significantly contributed to the robustness of our
models, though their effectiveness varied depending on the
model and data type.

Table 5. Comparison of cancer classification performance across multiomics research.

Overfitting Class imbalance Results
Paper Year Data type Cancer types Classification model handling handling (accuracy)
Cappelli et al [32] 2018 RNA sequencing and BRCA?, C4.5,RFY, Feature N/Ag 95%
methylation THCA®, RIPPER® regularization
c ’ methods
and KIRP and CAMUR'
Kwonetal [34] 2023  cfDNA" and CNVs! LUADI AdaBoost, Cross- N/A 91%-98%
MLPX. and LR! validation
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Overfitting Class imbalance Results
Paper Year Data type Cancer types Classification model handling handling (accuracy)
Koh et al [30] 2024 Proteomics, RNA Lung Machine learning Regularization ~ Balanced AUC"0.96
sequencing, and QC™ datasets
metabolomics, and
targeted immunoassays
Jagadeeswara Rao 2024 RNA sequencing and PAAD° Ensemble learning ~ Ensemble SMOTEP 95%
and Sivaprasad methylation techniques
[33]
Mohamed and 2024 RNA sequencing, LUAD CNN' Dropout SMOTE 97%
Ezugwu [31] miRNAY, and DNA
methylation
Our model 2024 RNA sequencing, BRCA ,THCA, Ensemble learning  Cross- Downsampling  98%
methylation, and NHLS, UCECH, validation and
somatic mutations and COAD" dropout

4BRCA: breast carcinoma.

PTHCA: thyroid carcinoma.

°KIRP: kidney renal papillary cell carcinoma.

dRF: random forest.

°RIPPER: Repeated Incremental Pruning to Produce Error Reduction.
fCAMUR: Computer Assisted Molecular Unified Receptor.
EN/A: not available.

hefDNA: cell-free DNA.

ICNV: copy number variation.

JLUAD: lung adenocarcinoma.

XMLP: multilayer perceptron.

ILR: logistic regression.

MQC: quality control.

"AUC: area under the curve.

°PAAD: pancreatic adenocarcinoma.

PSMOTE: Synthetic Minority Oversampling Technique.
9miRNA: microRNA.

'CNN: convolutional neural network.

SNHL: non-Hodgkin lymphoma.

YUCEC: uterine corpus endometrial carcinoma.

UCOAD: colon adenocarcinoma.

Typically, deep learning components benefit from graphics
processing unit acceleration and need a large amount of
computational power, particularly when trained on high-
dimensional clinical data. Nevertheless, after training, the
model inference time is rather short, allowing for quick
predictions that can assist with clinical decisions made in real
time. Even while low-resource systems might not be able to
support model training, these pretrained models could be used
for clinical deployment, particularly in settings with recent
computer technology.

Strengths and Limitations

Typically, deep learning components benefit from graphics
processing unit acceleration and need a large amount of
computational power, particularly when trained on high-
dimensional clinical data. Nevertheless, the model inference
time is rather short after the ensemble has been trained,
allowing for quick predictions that can assist with clinical
decisions made in real time. Even while low-resource systems
might not be able to support model training, pretrained
models can be used for clinical deployment, particularly in
settings with recent computer technology.

https://bioinform.jmir.org/2025/1/e70709

However, the study has several limitations that must be
acknowledged. Data availability constraints limited the scope
of our analysis, and the absence of clinical data meant that
our findings are based solely on omics data. This restricts the
generalizability of our results to real-world clinical settings,
where the integration of clinical and omics data is crucial
for accurate cancer diagnosis and prognosis. Furthermore,
the common limitation in omics data is dataset size, which
may result in overfitting. Another restriction is the absence of
external validation.

Future Directions

Future research should focus on expanding the types of
data used in cancer classification, particularly by incorpo-
rating patient clinical data and exploring additional omics
layers such as metabolomics and proteomics. Furthermore,
the integration of multiomics data with advanced machine
learning methods holds promise for deepening our under-
standing of the molecular mechanisms underlying cancer
development. This could lead to more precise cancer staging
and prognosis, ultimately improving patient outcomes.
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Conclusions

In conclusion, while our study advances the accuracy of
cancer classification algorithms, it underscores the need
for continuous improvement and validation in diverse and
clinically relevant datasets. By addressing these challenges,
future research can enhance the applicability of these models
in clinical practice, contributing to more effective cancer
detection and treatment strategies.

The study aimed to investigate whether incorporating
multiomics data into a stacking model that integrates 5 key
methods, namely SVM, KNN, ANN, CNN, and RF, enhances
the model’s ability to classify cancer. With multiomics, the

Ameen et al

stacking ensemble model obtained 98% accuracy, compared
to 96% with RNA sequencing and methylation separately and
81% with somatic mutation data. It emphasizes the impor-
tance of integrating advanced machine learning techniques
into health care for more effective cancer detection and
prognosis. This highlights the need for continuous improve-
ment and validation of classification models in real-world
clinical settings to maximize their impact on cancer care.
Future research should focus on incorporating clinical
metadata and multiomics data to enhance cancer classifica-
tion, which would improve patient outcomes and clinical
applicability.
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