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Abstract
Artificial intelligence (AI) is poised to become an integral component in health care research and delivery, promising
to address complex challenges with unprecedented efficiency and precision. However, many clinicians lack training and
experience with AI, and for those who wish to incorporate AI into research and practice, the path forward remains unclear.
Technical barriers, institutional constraints, and lack of familiarity with computer and data science frequently stall progress.
In this tutorial, we present a transparent account of our experiences as a newly established interdisciplinary team of clinical
oncology researchers and data scientists working to develop a natural language processing model to identify symptomatic
adverse events during pediatric cancer therapy. We outline the key steps for clinicians to consider as they explore the utility
of AI in their inquiry and practice, including building a digital laboratory, curating a large clinical dataset, and developing
early-stage AI models. We emphasize the invaluable role of institutional support, including financial and logistical resources,
and dedicated and innovative computer and data scientists as equal partners in the research team. Our account highlights both
facilitators and barriers encountered spanning financial support, learning curves inherent with interdisciplinary collaboration,
and constraints of time and personnel. Through this narrative tutorial, we intend to demystify the process of AI research and
equip clinicians with actionable steps to initiate new ventures in oncology research. As AI continues to reshape the research
and practice landscapes, sharing insights from past successes and challenges will be essential to informing a clear path forward.
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Introduction
The development of sophisticated machine learning, deep
learning, natural language processing (NLP), and large
language models has showcased artificial intelligence’s (AI’s)
potential to accelerate advances in health care research and

clinical practice [1-3]. However, growing clinician interest in
employing AI as a research tool is often met with challenges
in understanding its nuances and applications. The proper
and safe use of AI requires in-depth knowledge of computer
science, big data analytics, and specialized data science and
biostatistical approaches – skills that clinicians typically do
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not possess. Conversely, computer and data scientists with
expertise in AI who wish to contribute to clinical advances
must develop familiarity with a clinical specialty and acquire
a deep understanding of the intricacies of care delivery,
research, and biomedical needs. As a result, the effective
use of AI in health care environments necessitates collabora-
tive integration between computer science and health care
disciplines, bringing together expertise from these disparate
fields [4-6].

Although clinicians are increasingly eager to incorporate
AI into their research efforts, many face uncertainty on how
to begin or establish effective collaborations with computer
and data scientists. Using the initial phase of our pilot AI
work as an exemplar, we outline strategies for leveraging
AI and NLP in pediatric cancer inquiry, focusing on the
process of building a team blending AI and clinical oncol-
ogy research. Our transparent account details the formation
of an interdisciplinary team bridging clinical oncology and
data science, highlights challenges encountered, and shares
lessons learned. The purpose of this descriptive tutorial is
to make AI approachable for clinical researchers who are
motivated to address complex clinical questions but may lack
technical expertise. Key challenges for teams to consider
are explicitly identified within this study. We aim to equip
clinician readers with an introductory framework for initiating
AI-driven research projects, while emphasizing the logistic,
financial, and personnel resources essential for success.

The Clinical Problem and Need for
an AI-Based Solution
Cancer-directed therapy is inherently toxic, causing a host
of adverse events that are burdensome, costly, dangerous,
and sometimes life-threatening [7-9]. When toxicities become
severe, future therapy doses are reduced, delayed, or omitted,
which potentially compromises long-term survival [10].
Because of these deleterious effects, research focused on
early detection has been prioritized, so that prompt and
effective interventions can be designed to mitigate toxicity
and improve clinical outcomes [11-13].

Therapy-related toxicities are broadly categorized into
nonsymptomatic and symptomatic adverse events. Nonsymp-
tomatic adverse events are objective and easy to identify,
quantify, and analyze because they are readily detectable
through structured data like laboratory values or diagnostic
imaging. These clean and structured data allow researchers to
stratify patient cohorts, correlate symptoms with biomarkers
and treatment factors, and derive actionable insights.

In contrast, symptomatic adverse events are subjective
and must be elicited, interpreted, or individually assessed
by clinicians [14,15]. Furthermore, these events are typi-
cally captured in unstructured, free-text clinical notes which
constrains systematic identification and analysis, making
data extraction labor-intensive, time-consuming, and prone
to inconsistencies [7-9,16,17]. Not surprisingly, the data are
often unreliable [18,19], with significant negative repercus-
sions on subsequent analyses. The inability to reliably

study symptomatic adverse events is particularly concerning
because they are among the most common therapy-related
toxicities and frequently lead to treatment interruptions.

AI is a promising method for the reliable extraction
and analysis of symptomatic adverse events from electronic
medical records (EMRs). In fact, NLP technology has already
had preliminary success in identifying their presence within
unstructured, free-text clinical notes [20-24].

In pediatric oncology, 5 symptomatic adverse events
associated with chemotherapy stand out due to their prev-
alence and serious sequelae—nausea, vomiting, constipa-
tion, neuropathy, and mucositis. Herein, we describe our
interdisciplinary approach for assessing the ability of an
NLP algorithm to identify these adverse events in pediatric
oncology patient records. The initial phase of this work,
serving as the exemplar for this tutorial, is to evaluate the
degree to which existing NLP models can identify sympto-
matic adverse events in pediatric cancer therapy.

Infrastructure, Personnel, and
Funding
AI-based health care research necessitates substantial data
and computer science support. Optimally, this support
is institutional, with health care enterprises investing in
employing, contracting, or collaborating with skilled data
scientists dedicated to advancing clinical inquiry. Collabora-
tion between these technology experts and clinician research-
ers, along with departmental backing to support clinical
inquiry and innovation, as well as the necessary data
infrastructure, is essential to cultivating advancements in this
emerging domain [25].

Our institution houses a Data Science and Biostatistics
Unit (DSBU), a centralized service unit that comprises a
robust mix of 30 PhD- and master-level biostatisticians
and data scientists who work with principal investigators to
address research questions via data consultation, study design,
methodology expertise, data preparation, data analyses, and
manuscripts development. The DSBU is housed within
the Department of Biomedical and Health Informatics,
which provides an academic home and service base for all
research informatics activities at the institution, including the
development and deployment of intellectual, technical, and
educational resources in biomedical computing.

Through an enterprise-level strategic initiative, our
institute developed a next-generation suite of tools and
services, Arcus, that provides a digital laboratory environ-
ment for investigators and project staff to securely store,
access, and process electronic patient data. The Arcus
program is staffed by archivists, librarians, information
analysts, cloud computing engineers, programmers, statisti-
cians, and privacy experts. Data are managed through the
oversight of the Institutional Review Board (IRB), and access
is governed by multiple institutional policies. Arcus security
configuration and controls are based on the HIPAA (Health
Insurance Portability and Accountability Act) Security Rule.
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For this work, project team members from DSBU and
Arcus included 3 PhD-prepared data scientists and a data
integration manager. Initial services to set up the project
were provided at no cost through the internal consultation
mechanisms. As the project developed and expanded, pilot
funding was secured through internal grant mechanisms and
preliminary data were used to secure external grant fund-
ing. A data science supervisor available through the cen-
ter provided guidance in approaching an AI-based research
project.

The project team’s clinical experts were 2 oncology
clinicians and researchers who served as coprincipal
investigators—a PhD-prepared scientist and nurse practi-
tioner under the Center for Pediatric Nursing Research and
Evidence-Based Practice and Cancer Center and an attending
pediatric oncologist in the Division of Pediatric Oncology and
School of Medicine.

Building the Digital Laboratory
The clinician researchers consulted with the data science team
extensively to determine necessary data elements and ensure
feasibility. An IRB application was submitted, the research

was determined to meet exemption criteria, and a HIPAA
waiver was authorized (IRB 24‐021922).

Activities relating to building the digital laboratory,
including data flow and processing, are outlined in Figure
1. Inclusion criteria were set to any patient aged younger
than 25 years who received treatment for cancer at our
institution within the previous 10 years. We used Interna-
tional Classification of Diseases, Ninth Revision (ICD-9)
or International Classification of Diseases, Tenth Revision
(ICD-10) diagnosis codes, Current Procedural Terminology
codes for cancer-directed therapies in conjunction with
institutional cancer registry data to identify those who
received cancer treatment (“Clinical Encounter” in Figure 1).
Eligible patients were assigned a unique identifier and added
to the digital laboratory. Importantly, each unique identifier
retained a link to the patient’s electronic health record (EHR)
medical record number to ensure reliable linking of patients
with relevant clinical data. Necessary EHR data elements
(eg, chemotherapy administration records, clinical notes, and
laboratory values) were identified via joint clinical and data
science team meetings and were then imported from the data
warehouse into the digital environment (“Data Warehouse” in
Figure 1).

Figure 1. Research project progression and data flow from clinical encounters to the data warehouse, and manipulation within the digital laboratory
environment. NLP: natural language processing.

Although careful planning to meet aims is necessary for all
research projects, big data and AI-based research involves the
additional step of evaluating the accessibility and reliability of
data. A key challenge in building a digital lab is the extensive
refinement of data that is required because digital storage
of medical data differs from digital data display (the way
data appears to the clinician in the EHR). Within the data
warehouse, clinical notes are sorted and stored based on their
version status as templated, signed, addended, or modified –
with each note potentially possessing multiple versions. But
in the clinical setting, the only note displayed for staff is the
most recent version. Therefore, to ensure data matched the
clinical documentation, the data science team wrote complex
code that selected the most recent version, irrespective of its
assigned status. This was essential because there are millions

of source notes for this work and importing multiple versions
of each is not feasible due to time, data storage, and computa-
tional processing limitations.

Chemotherapy agents were identified using medication
classification codes created for the purpose of this work and
then integrated with patient medication administration records
to identify the specific administration time and dose. This
vital step underscores the need for a skilled data scientist
or analyst to be an integral member of the research team.
Laboratory values, easily extracted from the source EHR data
warehouse, also were imported to assist clinical researchers
with interpretation of data, as needed.

After 14 months of collaborative effort, all data were
imported to the laboratory (“Digital laboratory environment”
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in Figure 1) which included data on 18,408 patients,
encompassing 4.8 million clinical notes and over 450 million
medication dose administrations. From this point forward, all
research activities were performed in the digital laboratory
environment. It should be noted that due to the massive
size of EHR data files and the sheer number of individual
variables, discrete data elements are imported to the digital
laboratory in the form of tables in a relational database.
For example, the medication administration table comprised
dozens of datapoints for each of the hundreds of millions of
doses administered within our patient cohort. Similarly, the
demographic information table contained dozens of variables
and associated metadata for each patient. The clinical notes
table not only included the full note text, but also other
metadata that provided information about the notes them-
selves (eg, timestamps, subtype, and author type).

Identifying the relevant and necessary data elements from
these tables and joining them in relational databases required
the expertise of a PhD-level data scientist with fluency in
programming and querying in SQL and R languages. The
clinician scientists provided direction for selecting elements
but did not have the skill to perform the tasks. Once rela-
tional tables and databases were created, the team could
jointly verify data integrity through face validity of items
(eg, chemotherapy agents matched oncologic diagnoses for
patients). The team also reviewed randomly selected medical
records of patients in the database to ensure correct elements
and values were identified and joined appropriately in the
newly created data tables.

During the process of building the digital laboratory,
unexpected challenges arose from the complexity of the
structures of EHR data and the differences between digital
data storage and display that complicated data pulling and
importing approaches. The complexity of identifying and
pulling these data was also underestimated by the data science
team, and the process took much longer than expected, by
a scale of about a year. Clinician researchers taking initial
steps to AI-based methods should account for time required
to learn new skills and take additional time to clean and
validate data. However, the accessibility to data scientist and
technology expert knowledge, skills, and time coupled with

the infrastructure provided by institutional investments and
external grant funding made the project both feasible and
possible.

Identifying Notes of Interest
Training and evaluation of the NLP model is an iterative
process requiring labeled data. For this project, the labeled
data are annotations of text, wherein a clinician reads through
clinical notes and tags sections that indicate the absence,
presence, and severity of the adverse event of interest. A
typical allocation of 80% of annotated notes for model
training and 20% for validation was used. The necessary
number of labeled notes varies considerably depending on
the complexity of the task (ie, difficulty of being able to
identify the adverse event of interest) and the selected NLP
methodology. For these reasons, it is not possible to a priori
estimate the minimum number of notes required to adequately
train and validate the model. Thus, we used an incremental
annotation process starting with a minimum sample size for a
limited population similar to previous work [26]. For clinician
researchers accustomed to a priori–determined sample sizes,
this was difficult to conceptualize and resulted in downstream
challenges in time management and resource allocation for
the project. Adopting a qualitative research mindset – where
recruitment is ongoing until data saturation is achieved –
is helpful when conceptualizing sample size for a project
like this, despite being a technique not used frequently in
quantitative methodologies.

The process of identifying notes for annotation required
several months and the expertise of a PhD-prepared data
scientist skilled in coding and data analysis. Our goal was to
identify notes with a high likelihood of containing documen-
tation related to the adverse events of interest to facilitate
faster model training. As such, clinical researchers identi-
fied key scenarios and exposures associated with nausea,
vomiting, constipation, neuropathy, and mucositis. This
process involved specifying chemotherapy agents, dosages,
and the typical time frames within which these toxicities
manifest following administration. The schema used for
identifying notes meeting these criteria is outlined in Figure 2.
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Figure 2. Schema for identifying clinical notes to annotate for natural language processing training. BSA: body surface area; ICD-10: International
Classification of Diseases, Tenth Revision.

To identify clinical notes most likely to document constipa-
tion or neuropathy, we identified instances of vincristine
administration. For nausea and vomiting, highly emeto-
genic chemotherapy agents were identified [27]. Given that
emetogenicity depends on dosage, body surface area was
calculated using the most recent height and weight meas-
urements, and doses below the emetogenic threshold were
excluded. Patients undergoing conditioning chemotherapy
for stem cell transplantation, which is universally highly
emetogenic, were included based on an institutional transplant
registry. To identify documentation of mucositis, we focused
on intravenous methotrexate administrations as well as stem
cell transplantation.

Chemotherapy doses were identified from the medica-
tion table, and a frequency table of administration events,
including action and date and time, was reviewed to ensure
proper documentation (eg, marked as “given” in the medical
records). Determination of how administered medications
are recorded in the data warehouse required consultation
with an informaticist, since multiple actions (eg “missed,”
“late,” “withheld,” “administered,” and “given”) are assigned
to medications in the dataset with ambiguous meanings.
Cross-referencing with data visible in the EHR was required
to ensure that the devised algorithm and decisions were made.
As before, the clinical researchers learned that data stored in
the data warehouse is far more complex than that which is
displayed in the EHR. Identifying administered medications
within the medication administration record in the “visible”
EHR, for example, is far more straightforward, but incredibly
labor-intensive.

Patient identifiers were cross-referenced with demographic
and diagnosis tables, followed by the generation of a
frequency table of oncologic diagnoses and associated
ICD-9 and ICD-10 codes for each target symptom. Clinical
researchers reviewed these tables for errors or incongruen-
ces to establish face validity, ensuring that chemotherapy
agents matched the diagnoses. After validating these data,
we cross-referenced the clinical notes table using patient
identifiers to extract notes written within 14 days of che-
motherapy administration for neuropathy, constipation, and
mucositis; and 7 days for nausea or vomiting, in accordance
with expected clinical timelines.

Initial review suggested that certain note types—such as
history and physicals, progress notes, nursing notes, and
discharge summaries—were most likely to contain rele-
vant data. However, inconsistencies in data labeling posed
challenges; for instance, “progress notes” were used for
documentation by multiple specialties, adding noise to the
dataset. After careful review, notes authored by clinical
nutritionists, pharmacists, social workers, case managers,
speech and language pathologists, occupational therapists,
and physical therapists were excluded. Only the most recent
version of each note (signed, addended, or modified) as
determined by date of note initiation and note status was
retained.

Key challenges to identifying relevant note types, versions,
and authors arose from the time-intensive nature of extensive
data extraction and manual review required. Clinical staff
encountered challenges in understanding how medical record
data were stored within the data warehouse, particularly
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regarding labeling of note versions and determining when
patients received medications. Overcoming this challenge
highlights the importance of properly understanding the
metadata that accompanies variables of interest, and the
parallel importance of including all metadata in the digital
laboratory. As before, the team learned that the vocabulary
typically used in the clinical environment does not match
that used in informatics. For example, in clinical practice,
“administered” or “given” are used synonymously to indicate
that a patient has received a medication. However, these
had different meanings in the data warehouse, so understand-
ing how data are labeled and not making assumptions is
vital. Validating the data by reviewing constructed tables and
comparing them to patient medical records is necessary to
ensure the integrity of the data. These are both nuanced and
time-consuming steps that should be considered as expected
components of all big data or AI-based research projects.

Real-time collaboration with a dedicated data scientist
enabled efficient extraction and validation of large datasets.
The integration of this expertise allowed for immediate
adjustments based on clinical input, ensuring that the final
dataset was both comprehensive and focused and underscored
the importance of interdisciplinary collaboration and iterative
problem-solving.

Annotation and Validation
An annotation guide was created by the clinician research-
ers to standardize the annotation process and ensure consis-
tency in identifying and grading adverse events. The guide
aimed to provide clear instructions for clinical abstractors
and facilitate uniform application of the National Cancer
Institute’s Common Terminology Criteria for Adverse Events
(CTCAE) [28] to patient records.

The guide was created iteratively, beginning with an initial
draft used by clinician researchers during joint annotation
sessions. Common challenges encountered during annotation
were documented, and adjudication decisions were included
to ensure consistency. Common data extraction elements that
required discussion among clinicians were included in the
guide to define consensus between researchers and to provide
consistency to annotators. The guide accounts for nuances
of clinical documentation such as shorthand abbreviations,
terminology variations, and physical exam findings. To
initiate the annotation process, 100 notes, representing an
intersection of chemotherapy exposures associated with all
the target adverse events, were uploaded to the annotation
tool. Clinicians independently annotated 30 notes, compar-
ing results to assess alignment that facilitated refinement
of the annotation guide before independently completing
the remaining 70 notes. Annotation overlap and agreement
were systematically evaluated, with areas of disagreement
manually adjudicated and further revisions made to the guide.

A second and third batch of 100 notes was then annota-
ted independently and annotator agreement calculated after
each round. Annotator agreement was evaluated by interrater
reliability calculated by tag agreement at the symptom level

(constipation, mucositis, nausea, neuropathy, and vomiting)
and at the symptom degree level (eg, CTCAE severity level).
Weighted Cohen kappa quantified the level of agreement to
provide a measure of agreement accounting for the likelihood
of agreement occurring by chance. Manual adjudication after
each round was then undertaken, followed by revision of
the annotation guide. Discrepancies were explored to identify
opportunities for improvement and additional nuances in
clinical documentation.

Unexpectedly, initial low agreement between abstrac-
tors highlighted challenges in applying CTCAE criteria to
retrospective medical records. This partially stemmed from
the format of notes in the annotator tool. Because they
were removed from the EMR system, there was an inability
to incorporate contextual data typically used by clinicians
to make severity assessments. Administration of as-needed
medication, for example, was not always apparent in free-text
clinical notes. Such ambiguities are inherent to retrospective
reviews and reflect broader limitations in applying clinical
grading systems to medical record data, but the iterative
approach facilitated the creation of a detailed annotation
guide and established a reliable methodology for future
annotation efforts. The complexity of these clinical scenarios
underscores the need for expert clinicians to remain closely
involved with annotations when training AI models.

This study used a modified version of an open-source
NLP pipeline, clinical text analysis and knowledge extrac-
tion system (cTAKES) [29], as a baseline for comparison
against clinician annotations and our novel AI-based model
in phenotyping constipation, mucositis, nausea, neuropathy,
and vomiting. While cTAKES offers a valuable NLP solution
for clinical text, its default configuration is computation-
ally intensive and unsuitable for large-scale datasets. Our
existing pipeline addressed this limitation by implementing a
distributed processing pipeline capable of handling millions
of clinical notes. It also further enhanced cTAKES by
incorporating the human phenotype ontology to improve
entity recognition and improving the negation annotator to
refine accuracy in identifying negated findings [30,31]. This
modified cTAKES pipeline served as a baseline for evaluat-
ing the performance of our novel transformer models.

With the revised annotation guide and further adjudication
between annotators, F1-scores could be assessed between
our baseline NLP model and the clinician annotators. The
F1-score accounts for both sensitivity and recall of an NLP
model. The existing off-the-shelf NLP model (cTAKES)
was unable to reliably identify symptomatic adverse events
of interest for pediatric oncology patients based on inter-
rater reliability, Cohen kappa, and F1-score analyses. This
is clinically problematic, as reliable identification would
be necessary for clinical work and to use this model for
research purposes. Furthermore, the model is unable to
identify symptom severity, further highlighting a need for the
development of a fit-for-purpose novel NLP model which is
proposed as stage 2 of this study.
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Barriers and Lessons Learned
The first phase of this work provides valuable findings
that justify continued research in this area. Our experiences
as a newly developed transdisciplinary research team offer

insights relevant to other teams that are beginning to integrate
AI technologies into clinical research. Table 1 provides a
review of our key challenges and the associated implications
specific to this work.

Table 1. Key challenges, impact specific to this project, and facilitators for success in overcoming challenges.
Key challenge and implications Facilitator
Require substantial data and computer science support
  Clinician scientists and researchers with limited knowledge in computer

science and big data methodology
In-house Data Science and Biostatistical Unit with PhD- and master-level
biostatisticians and data scientists

  Cost associated with collaborative efforts and time of external experts Free data science consultation for clinical investigators and internal pilot
funding that allowed securement of external grants

  Platform to manage very large data files and analyze millions of datapoints
in analyses

Enterprise-level strategic initiative developed a suite of tools and services for
large-scale data analyses

Complexity of data structures between electronic health records and data warehouse
  Multiple versions of millions of clinical notes needed to be reviewed to

select the correct version
Collaborative effort between PhD-prepared data scientist who coded and
executed the tasks and clinicians who validated the output

  Chemotherapy agents need to be identified and incorporated to patient
selection as part of inclusion criteria

Senior data integration analysts created bespoke labeling system to identify
all chemotherapy agents

  Clinical data and associated metadata are stored in massive, discrete data
tables

PhD-level data scientists with skills in variable identification, database
management, and creation of relational databases

  Extensive time for database creation and importing of large files to create a
workable data model

Flexible timelines and expectations, mutual goals and understanding, and a
data model that supports ongoing addition of new data elements

Inconsistent or misunderstood data labeling in the warehouse
  Validate research data to ensure consistency with clinical entry formats Data extraction from the data warehouse and then validated against medical

records by clinician staff
  Extensive filtering of data elements to ensure integrity of data used for

research purposes
Real-time collaboration between data scientists and clinician team members
to refine and validate data filtering

Subjective nature of clinical interpretation of patient scenarios
  Lack of contextual data available for clinical symptom evaluation Expert clinicians are required to annotate text for model training
  Consistent method is needed to identify outcomes of interest to train AIa

models
Creation of an annotation guide and consistent ontology

  Multiple targets for annotation, creating a complicated validation process Annotation tools and software as standard components of the digital lab
environment

  Transparent assessment of agreement for decision making between
clinicians

Annotation review by expert clinicians to assess performance before model
training and evaluation

Bridging distinct scientific domains to enable unified project execution
  Mutual understanding of priorities, feasibility, and methodology between

data science and clinical research team members
Open, clear, and respectful communication; time to understand terminology
and needs; flexible timelines and ongoing dedication from all research team
members

aAI: artificial intelligence.

Barriers that slowed progress were primarily related to
the inevitable learning curves encountered when embarking
on a novel line of inquiry or acquiring a new skill set.
The clinical researchers underestimated the time required to
develop proficiency in these new methods and the time-inten-
sive nature of interdisciplinary communication. Considerable
effort was needed to understand how raw data are stored,
transformed, and imported into a digital laboratory. This is
noteworthy, not just for planning purposes for other teams,
but also in understanding that data labeling and storage is
unique to both the individual EMR platforms and the health
institutions that use them. This makes the algorithm we
have developed for identifying clinical notes specific to our
institution and not likely directly transferrable to other sites.
However, our methodology and approach can be replicated

using institution-specific data elements and metadata, but this
will require ongoing time investment.

Key challenges relating to the building of the digital
laboratory related to the need for complex coding to identify
appropriate clinical notes, the development of novel codes
to identify chemotherapy agents, extensive data cleaning
and refinement, and time-intensive data validation activi-
ties. Variations between how data are presented in the
live, front-end version of EMR systems and how they
are transformed and stored in the data warehouse created
difficulty in translating between these views and ensuring the
data accessed were accurate and correct. Logistic challenges
related to data acquisition and organization arose from the
size of datasets and tables because they included vast amounts
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of metadata in their raw form and extensive time for the
data team to identify appropriate sources for importing. These
challenges were overcome by continual partnership between
clinical and data science team members and ensuring mutual
understanding of needs before each phase of work. Unfortu-
nately, these unanticipated difficulties extended the project’s
timeline beyond what was initially anticipated.

Similarly, substantial time was dedicated to ensuring that
the data science team comprehended the clinical scenarios
underpinning this work. This reflexive exchange was critical
for troubleshooting, planning data extraction, and conduct-
ing validation activities for model training. As a result,
establishing the digital laboratory took significantly longer
than anticipated, requiring adjustments to project timelines.
Working meetings often focused on aligning terminology
and achieving a mutual understanding of project milestones,
underscoring the importance of interdisciplinary fluency.
Finally, as with many research projects, cost considerations
posed challenges. Incentives for clinicians to annotate notes
could facilitate a larger group of trained annotators or
dedicated research assistants, accelerating the process of
achieving an adequate sample size for model training.

As AI becomes increasingly embedded in clinical practice,
these models may become core components of clinical
and research training programs, underscoring the need
for ongoing interdisciplinary collaboration between data
scientists and clinicians. These advancements signal an
exciting future for AI-driven methodologies in improving
patient care and advancing clinical research.

Facilitators and Necessary
Infrastructure
Key facilitators to successfully completing the initial phase of
our pilot work are also summarized in Table 1, matched to the
implications of this project. They mainly included robust data
science infrastructure and support in addition to flexibility of
time and working toward mutual understandings. The DSBU
and Arcus teams supplied critical expertise, technology,
and financial resources, which were leveraged to scaffold
this research project and are noted essential components of
this type of collaborative work [25]. The clinical research-
ers defined a research question amenable to AI solutions,
fostering a synergistic collaboration between the teams. A
balance of funding and accessible resources is needed such
that a researcher can either have access to the data science
personnel or be able to contract with them for research
purposes. These resources enabled our team to establish
relationships, evaluate feasibility, and begin data harvest-
ing to generate preliminary data that ultimately secured
external funding. Once established, ongoing collaboration,
shared priorities, and mutual commitment among team
members facilitated a unified direction forward and long-term
engagement in the project.

Clinician investigators who desire to engage with AI
research need to have affiliation with an organization that
has embraced and built an environment to support this

work. Doing so requires the organization to make significant
financial and personnel investments and overcome several
hurdles and barriers to build a team that can orchestrate
a large AI platform. Organizations must first determine
that the clinical or financial benefits from an AI platform
outweigh the upfront costs and long-term risks, requiring
a long-term investment mindset [32]. Typical approaches
involve identifying AI as a potential useful tool for improv-
ing the execution of daily operations and, once instituted,
can be used as a research platform. It is therefore primar-
ily integrated to an organization as part of reengineering
business processes [33], although there are cases of initiating
AI platforms for research purposes as a primary objective.
In either case, primary concerns and challenges are typically
related to cost, confidentiality and security, data integration
and system compatibility, and trustworthiness.

Upfront costs for AI infrastructure are high. Computational
resources and power for initial training of algorithms are
much higher than later simple execution of the models [34].
Lengthy time to production or to see benefit can deincentivize
companies from investments [32], especially when consider-
ing that benefits and success are subject to time and other
costly factors like computational power [35]. Computational
resources, staff, personnel, training, and ongoing mainte-
nance – including data audits, revised learning algorithms,
ongoing data management, and updates – further add cost
to AI adoption across a multitude of industries [32,34,35].
For these reasons, some smaller pharmaceutical companies,
for example, have declined integration because the upfront
costs are too high, unlike their larger counterparts, who
see significant financial gain from even a small amount
of process improvement [33]. However, taking strategic
recommendations from end users, ensuring that there are
well-defined problems amenable to AI-based solutions, and
ensuring clear objectives for its use ensure valued return on
investment [32,36].

Beyond cost, confidentiality and data security are of
paramount concern, especially in health systems that are
subject to stringent privacy laws and ethical considera-
tions [6,34-36]. Safeguarding patient information requires
legal counsel, information security personnel, and computer
scientists. Similarly, these resources assist with concerns of
data integration and system compatibility, ensuring that the
AI platform can accept, synthesize, and augment existent
data and work synergistically with programs already in use.
For health care, this includes the EHR system, radiology
software, mobile apps, pharmacy programs, billing systems,
and scheduling programs.

Finally, uptake and integration of AI are halted if there
is concern about the trustworthiness of the programs or if
users – inclusive of clinicians, staff, and patients – have
unfavorable views [33]. Known trust issues, algorithmic
biases, lack of transparency, and unfairness have deincentiv-
ized health systems from adopting AI because it is viewed
as an unreliable technology [32,33,37]. Further, health care
providers often feel threatened by AI, worried that it will
replace their positions. Concern for having AI handle the
large, complex tasks of care, they will only perform simple
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tasks and lose skill over time or have to continuously learn
about emerging technologies. Past successes of using AI
in health care, however, indicate that it can augment, not
replace, care practices. By reconsidering AI as an enabler,
health care practices have seen improvements in diagnos-
tics, radiology, analyzing data from wearable technologies,
EHR monitoring, use of digital assistants, decision support
systems, and breakthroughs in drug discovery, care mod-
els, streamlining workflow, and minimizing administrative
burdens [32].

Conclusion
Despite these barriers and unexpected challenges, the results
of this pilot study emphasize the transformative potential
of AI in clinical research. The successful incorporation of
AI into clinical workflows can replace the labor-intensive,
time-consuming, and often imprecise process of manual data
extraction. The model is being trained on clinical notes from
a single institution, and since institutions use individualized
note templates with templated free text, the NLP model may
not be transferrable to other sites. However, future phases of
this project can include data imported from diverse clinical
sites to refine the model and expand its capability.

NLP, in particular, holds significant promise as a
methodological innovation to address the limitations of
extracting symptomatic adverse events from medical records.
Future use of more lightweight models or integration of a

large language model into the health system may further
improve research efficiency. The development of a custom
workflow that allowed for parallel processing of thousands
of clinical notes simultaneously by a relatively small and
inexpensive model. By improving research efficiency across
health system networks, AI enables the rapid and consistent
identification of symptomatic adverse events among patients
treated for cancer. Leveraging these large patient cohorts,
researchers can better explore the etiology, management, and
mitigation of therapy-related toxicities.

Progress in harnessing the potential of AI in clinical
research hinges on successful partnerships between clinical
and data science researchers. This transparent account of our
journey as a newly formed interdisciplinary team integrating
AI into oncology research provides a framework, key lessons,
and actionable recommendations for clinicians aiming to
explore AI applications. Success is contingent on institutional
support—both financial and logistical—and the assembly of
a team of data and computer scientists with aligned priori-
ties. Regardless of previous research experience, sufficient
time must also be allocated to achieve mutual understanding,
acquire new skills, build trust, and foster effective working
relationships. By sharing our experience, we are hopeful that
readers are empowered to take their first steps with greater
confidence, mitigate delays we encountered, and chart a more
efficient path toward advancing their own AI-driven research
endeavors.
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