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Abstract
Background: Previous machine learning approaches for prostate cancer detection using gene expression data have shown
remarkable classification accuracies. However, prior studies overlook the influence of racial diversity within the population
and the importance of selecting outlier genes based on expression profiles.
Objective: We aim to develop a classification method for diagnosing prostate cancer using gene expression in specific
populations.
Methods: This research uses differentially expressed gene analysis, receiver operating characteristic analysis, and MSigDB
(Molecular Signature Database) verification as a feature selection framework to identify genes for constructing support vector
machine models.
Results: Among the models evaluated, the highest observed accuracy was achieved using 139 gene features without oversam-
pling, resulting in 98% accuracy for White patients and 97% for African American patients, based on 388 training samples and
92 testing samples. Notably, another model achieved a similarly strong performance, with 97% accuracy for White patients and
95% for African American patients, using only 9 gene features. It was trained on 374 samples and tested on 138 samples.
Conclusions: The findings identify a race-specific diagnosis method for prostate cancer detection using enhanced feature
selection and machine learning. This approach emphasizes the potential for developing unbiased diagnostic tools in specific
populations.

JMIR Bioinform Biotech 2025;6:e72423; doi: 10.2196/72423
Keywords: prostate cancer; feature selection; gene expression; race specific; classification; support vector machine; machine
learning

Introduction
Prostate Cancer Statistics
Prostate cancer is the most common type of organ cancer
and the second leading cause of death in the United States
among men [1,2]. In 2019, over 893,660 cancer cases were

recorded in the United States, with prostate cancer being over
191,930 of them, along with the 2020 estimated number of
deaths caused by cancer being 321,160, of which 33,310 were
prostate cancer [3-5]. This is likely caused by risk factors
found in prostate cancer that include age, family history,
and lifestyle. Studies have shown that Asians tend to have
a lower risk of prostate cancer than Europeans and Africans
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due to their genetics and environmental differences [6]. This
indicates racial disparity in prostate cancer, which has been
extensively documented by numerous studies, with African
American men having a higher risk of developing prostate
cancer and facing a 2.5-fold higher mortality rate compared
to European American men [7,8]. This disparity is attrib-
uted to socioeconomic and biological differences, including
aggressive tumor phenotypes documented at the molecular
level in African American men [9].
Prostate Cancer Detection Methods
In the early 1990s, digital rectal examination was used for
screening prostate cancer, which had a significant impact on
prostate cancer diagnosis at the time. Digital rectal exami-
nation remains beneficial for distinguishing between benign
and malignant conditions in the prostate, but it is limited by
its low sensitivity and inability to detect cancer at an early
stage [3,10,11]. Another screening method is the prostate-spe-
cific antigen (PSA) test. While widely used, PSA testing is
controversial due to its susceptibility to false positives, as
PSA is a gland-specific biomarker rather than cancer-specific
biomarker [10,12]. The lack of a reliable and robust detection
method gives rise to the need for a race-based approach to
detect prostate cancer.
Machine Learning and Support Vector
Machine
In recent years, machine learning applications in health care
and biotechnology have grown rapidly, driving advancements
in disease diagnostics, personalized medicine, and bioinfor-
matics [13]. In this research, support vector machines (SVMs)
were selected for their remarkable performance in classi-
fication tasks in the medical field using gene expression
data [14-18]. Being a supervised machine learning algo-
rithm that is proficient at distinguishing between 2 sample
classes, SVM works by creating a hyperplane that optimally
separates sample classes. SVM transforms class data into
a higher-dimensional space to effectively identify complex,
nonlinear relationships. This makes SVM especially powerful
in cases with small sample sizes and high-dimensional
data, such as gene expression profiles or genomic datasets.
These characteristics made SVM an invaluable algorithm
in bioinformatics, where the classification of diseases such
as cancer requires robust, data-driven methods to handle
variability and heterogeneity [10,15].
Gene Expression Data
Gene expression is a process where information in DNA
becomes instructions to make proteins or other molecules
[16,19]. The process starts when DNA is copied into mRNA
and changed into proteins. Gene expression analysis is
typically used for monitoring genetic changes in tissues or
single cells under certain conditions. It checks how many
DNA transcripts are in a sample to know which genes are
active and by how much, including comparing the sequenced
reads with the number of base pairs from a DNA piece
to a known genome or transcriptome. The process’ accu-
racy depends on the clarity of information obtained, which
allows bioinformatics tools to match them to the right genes.

However, the gene expression dataset poses an additional
challenge due to their high dimensionality, where the ratio
of features to samples is high, hindering the performance of
classification models. To address this, researchers have used
feature selection methods to filter out irrelevant or redun-
dant genes [20,21]. Feature selection has a critical role in
improving machine learning models’ classification outcomes
in high-dimensional datasets, making it a basis for an efficient
classification model for cancer detection [22,23].

Racial Dataset Influence in Artificial
Intelligence
Racial-based genomic datasets present challenges for machine
learning applications. Studies have shown that using race-
based genomics data for artificial intelligence algorithms may
exhibit biases where trained models favor the majority race
in training data, lowering the accuracy on the minority races
[8,24]. Racial class imbalance in the dataset, where certain
races have more samples, can influence the accuracy of
algorithms. However, when the class imbalance is less severe,
the algorithms tend to achieve higher balanced accuracy
across all racial groups [25]. To mitigate this, an approach
that reweighs the minority classes is performed, yet this
approach was unreliable when the class imbalance is severe
[24,26]. This research uses race-based genomics data instead
of a combined race dataset to address the biases that may
appear when using a combined dataset.
Prior Research and Objective
Despite significant advancements in machine learning and
prostate cancer diagnosis, a gap remains in addressing racial
disparities in prostate cancer. A recent study by Alshareef
et al [27] introduces artificial intelligence–based feature
selection with deep learning model for prostate cancer
detection, a newly developed method of prostate cancer
detection using deep learning approach using microarray gene
expression data with 52 prostate samples and 50 normal
samples on 2135 genes [28]. It focuses on feature selection
using Chaotic Invasive Weed Optimization and hyperparame-
ter tuning over multiple iterations of the proposed artificial
intelligence–based feature selection with deep learning model
for prostate cancer detection model which leads to an average
accuracy of 97.19%, precision of 97.14%, and F1-score of
97.28%. Similarly, Ravindran et al [29] proposed a prediction
deep learning model for prostate cancer which focuses on
data augmentation using the Wasserstein Tabular Genera-
tive Adversarial Network technique, which enables powerful
discriminators that supply reliable gradient information to the
sample generator even with poor sample qualities, allowing
for a more stable training process [27]. The research uses
a Micro Gene Expression Cancer Dataset (MGECD), of
which the prostate cancer MGECD consists of 102 samples
and 6033 features, and feature selection based on correla-
tion coefficients with the goal of reducing the features to
1/3 of the initial MGECD by applying a threshold of 0.7.
This results in 1833 features being used for the final model
that has a 97% accuracy, 98% precision, and 97% recall
values, a total of 3.4% accuracy improvement on prostate
cancer classification using Wasserstein Tabular Generative
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Adversarial Network SVM compared to only using SVM.
Previous research has demonstrated admirable results with
limited amounts of samples, yet the proposed methods do
not account for the racial biases that may be present in
gene expression data and the number of genes needed to
efficiently train machine learning models. To bridge this
gap, we use feature selection methods such as differentially
expressed gene (DEG) analysis, receiver operating charac-
teristic (ROC) analysis, and MSigDB (Molecular Signature
Database) verification. Our goal is to develop a race-based
SVM model that improves prostate cancer detection for White
populations and provides a novel genomics-based approach
for health care professionals.

Methods
Study Design
This study implements data collection, preprocessing, feature
selection, and SVM modeling and evaluation as seen in
Figure 1. These methods are conducted using Python (version
3.12.3; Python Software Foundation) programming language
and the necessary libraries using Visual Studio Code editor
(version 1.95.3; Microsoft Corp) [30].

Figure 1. Race-specific prostate cancer detection modeling framework. DEG: differentially expressed gene; GDC: Genomic Data Commons;
MSigDB: Molecular Signature Database; ROC: receiver operating characteristic; STAR: Spliced Transcripts Alignment to a Reference; SVM:
support vector machine; TCGA: The Cancer Genome Atlas; UCSC: University of California, Santa Cruz.

Ethical Considerations
This study used publicly available datasets from the Uni-
versity of California, Santa Cruz Xena [31]. University
of California, Santa Cruz Xena allows users to explore
functional genomic data sets for correlations between

genomic or phenotypic variables. Thus, no ethics approval
was required.
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Data Collection
This study implements a structured methodology to identify
and model significant genes for prostate cancer using gene
expression data. There are 2 datasets used and obtained
in August 2024 from Xenabrowser’s GDC (Genomic
Data Commons) TCGA-PRAD (The Cancer Genome Atlas
Prostate Adenocarcinoma) cohort, of which 1 contains gene
expression counts data, and the other contains the clinical
information of the samples [29]. Gene expression dataset has
been prenormalized by Xenabrowser using log2(count+1).
Data Preprocessing
Data preprocessing involved separating the counts dataset
racially by mapping the samples to their race in the pheno-
type dataset, filtering samples with missing gene expression
values, and labeling samples as normal or cancer via the
TCGA (The Cancer Genome Atlas) barcode. These steps
were conducted using the Pandas (version 2.2.2; NumFO-
CUS, Inc) and NumPy (version 1.26.4; NumPy Developers)
libraries in a Jupyter Notebook (LF Charities) environment
[32-34].
Feature Selection
Feature selection to train the machine learning model was
achieved through refining the filtered genes from DEG
analysis, performed using the PyDESeq2 package (version
0.4.10; OWKIN) [35-37]. After creating metadata and the
appropriate data frame, we used the DESeqDataSet function
to create a suitable dataset for the DESeq2 process. There
are 3 parameters used in creating the DESeqDataSet. First
is counts, which is where the data frame of gene expres-
sion values of each gene ID and sample ID is used. To
create metadata for the DeseqDataSet function, we specify
the design of the DEG experiment and the factors to be
analyzed. The factors in this research are labeled sample
IDs with their condition that has been converted to a data
frame by using the DeseqStats function. Lastly, we defined
the design factor to guide the DEG analysis to focus on
the important variables, in this case, the sample conditions.
Identifying significant genes is based on the set threshold of
baseMean≥10 and p-adj<.05. The filtered genes were used
to create 5 experimental scenarios, with the first scenario
focusing on the outlier genes identified through PyDESeq2
that met the specified thresholds.

The second and third scenarios were developed by
introducing additional thresholds to the DEG results. The
additional scenarios further narrowed down the outlier genes
by applying log2FoldChange>0.35 and >0.4, respectively.

For the fourth scenario, ROC analysis was performed
using the scikit-learn metrics library (version 1.5.1; scikit-
learn developers) to isolate genes with high predictive impact
[38,39]. Genes were filtered based on a cutoff threshold of
area under the curve value above 0.90, and the results were
visualized using the matplotlib library (version 3.9.1; The
Matplotlib development team) [40]. These genes were then
used to create the fourth scenario.

The final scenario involves converting the isolated genes’
Ensembl IDs into gene symbols using BioTools.fr for the
human species Ensembl format [41] and verifying using gene
set enrichment analysis (GSEA). Gene symbols were queried
to MSigDB from GSEA to compute overlaps on curated
gene sets which enables identification of well-established
biological pathways and is widely used in cancer immunology
and metabolic research, computational gene sets to comple-
ment the curated gene sets by providing unbiased large-scale
insights and specific gene expression patterns, oncogenic
gene sets that are directly relevant to cancer research and
linked to gene expression changes on specific oncogenic
events, and False Discovery Rate q-value less than 0.05 to
reduce the likelihood of false positives in enrichment results
[22,42-46]. Overlaps between the queried genes and the gene
sets in MSigDB were analyzed to validate their relevance
to prostate cancer. Genes with confirmed prostate cancer
relevance were selected for use in the final scenario.
SVM Modeling
The dataset initially shows a strong class imbalance,
with a cancer-to-normal ratio of 1:9. To address this
class imbalance, the data were split into training and
testing sets using various stratified splits: 60%/40%,
70%/30%, and 80%/20%. Stratification ensures that the
class distribution among the training data class imbalance
was then addressed on all the training data scenarios
using oversampling methods, including RandomOverSam-
pler, SVMSMOTE, SMOTEENN, SMOTETomek, ADA-
SYN, BorderlineSMOTE, and KMeansSMOTE from sci-kit
libraries with a sampling strategy of 0.3, meaning the training
data consists of 66.66% cancer samples and 33.33% normal
samples, creating a balanced dataset for model training and
preserving the authenticity of the testing data, making a
realistic environment for the model to perform in.

Multimedia Appendix 1 (Table S1) and Table 1 show
multiple experimental scenarios that were designed to test
different parameter combinations and datasets. Two modeling
scenarios were used; first, using the default SVC function
with linear kernel. Second, conducting hyperparameter tuning
to optimize model performance. Hyperparameter tuning was
performed using GridSearchCV with a linear kernel SVC
classifier and 5-fold cross-validation. The hyperparameters
and their ranges were as follows: multiple kernels of the
SVC function were used, linear, polynomial, and radial basis
function. C values were ranging from 0.01, 0.1, 1, and 10,
with gamma values of 0.01, 0.1, and 1, coef0 values of 0 and
1, and lastly class weights of none and balanced.

Evaluation of the model was obtained and inspected using
the classification_report function, by focusing on harmoni-
zation between F1-score, recall, accuracy, precision, and
macro-avg values, we evaluated the models’ performance on
training and test sets to ensure reliability of the model with no
over- or underfitting present. To further validate the results of
the obtained machine learning model, we tested the model on
a black dataset with corresponding gene amounts to further
investigate the racial differences in prostate cancer. This
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approach aligns with the goal of improving the identification
of prostate cancer within a specific population.

Table 1. Top 5 models for 4-gene scenario.

Balancing
method

Data
splitting
ratio

Hyper-
parameter White Black

Train
accuracy
(%)

Test
accuracy
(%)

F1-score
(%)

Precision
(%)

Recall
(%)

Test
accuracy
(%)

F1-score
(%)

Precision
(%)

Recall
(%)

KMeansSMOTE 80:20 Yes 94.2 94.6 97 94.3 100 93.7 96.5 94.9 98.2
KMeansSMOTE 70:30 No 92.8 93.5 96.5 94.6 98.4 93.7 96.5 94.9 98.2
KMeansSMOTE 80:20 No 92.8 93.5 96.4 95.3 97.6 92.2 95.6 94.8 96.5
SVMSMOTE 80:20 Yes 94.9 92.4 95.8 95.2 96.4 92.2 95.6 96.4 94.7
KMeansSMOTE 70:30 Yes 93.6 92 95.7 92.5 99.2 90.6 94.9 91.8 98.2

Results
Datasets
Data for this research consists of 2 correlated secondary
datasets, obtained through an open-source prostate can-
cer gene expression database, Xenabrowser GDC TCGA
gene expression RNAseq Spliced Transcripts Alignment
to a Reference–counts, and Xenabrowser GDC TCGA
phenotypes. Gene expression RNAseq Spliced Transcripts
Alignment to a Reference–counts contains 550 samples and
60,480 gene IDs in Ensembl format. On the other hand, the
phenotype dataset contains 623 rows and 127 samples of
clinical information on the samples included, from which
sample types and race demographics columns are used to
create a dataset based on race demographics. Out of the
550 samples present in the phenotype dataset, 458 were
White, 12 were Asian, 1 was American Indian, 64 were
African Americans, and 15 were not reported. The filtered-out
White race count data that contains 57,429 gene IDs and
458 samples with their respective classes are presented in
Multimedia Appendix 1 (Table S2).
Feature Selection
To create a more enhanced feature selection method, several
scenarios were made combining multiple methods based on
DEG analysis thresholds. These scenarios reveal the most
optimal combination of methods to identify genes relevant to
prostate cancer.

From DEG analysis, various genes are extracted with
several thresholds (Table S3 in Multimedia Appendix 1), the
most being 139 genes. This result is further refined with ROC
analysis and MSigDB investigation, which reveals 9 of 139
genes to have a direct correlation to prostate cancer.

Of the 139 genes identified through DEG analysis, PCA3
showed the strongest up-regulated correlation with prostate
cancer (Table S4 in Multimedia Appendix 1). PCA3 had
a baseMean of 12.33, indicating high expression across
samples, a log2FoldChange of 0.6198, reflecting increased
expression in cancerous tissue, and a p-adj value of <.001,
confirming statistical significance.

Among the 139 genes identified from DEG analysis,
WFDC2 has the strongest down-regulated correlation with
prostate cancer (Table S5 in Multimedia Appendix 1). This
is evident with a baseMean of 10.17 indicating a moder-
ate expression level across samples, a log2FoldChange of
−0.3069 which shows a decrease in expression levels in
cancerous tissue compared to normal tissue, and a p-adj<.001
indicating high statistical significance after adjustment for
multiple testing.

ROC analysis was performed on 139 genes obtained using
the White race DEG analysis, applying an area under the
curve score threshold above 0.9. This process identified
13 genes as outliers, as shown in Figure 2, significantly
narrowing down the initial gene set.
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Figure 2. A total of 13 genes were identified to have a strong correlation (AUC>0.9) with prostate cancer obtained through ROC analysis of 139
genes. AUC: area under the curve; ROC: receiver operating characteristic.

Genes that were identified from ROC analysis were conver-
ted from Ensembl format to gene symbol using BioTools.fr
(Table S1 in Multimedia Appendix 1) to be verified through
MSigDB.

GSEA MSigDB investigation results reveal that the genes’
correlation varies between gene sets. We found that out of

13 genes, 9 were found to have a correlation to MSigDBs’
LIU_PROSTATE_CANCER_DN gene set with a P<.001 and
False Discovery Rate q-value of 2.05 e−11 as seen in Figure 3.
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Figure 3. GSEA MSigDB investigation results of 139 genes selected from DEG analysis reveal 9 genes that are down-regulated in prostate cancer.
3CA / PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; AILT: Angioimmunoblastic T-cell lymphoma; CNS: Central
Nervous System; DEG: differentially expressed gene; FDR q: False Discovery Rate q-value; GSEA: gene set enrichment analysis; HDAC:Histone
Deacetylase; k/K: is a ratio of number of genes in GSEA MSigDB data set (k) divided by the number of genes in the indicated dataset (K); LIU:
protein LIU; MSigDB: Molecular Signature Database; PDGFB: Platelet-Derived Growth Factor Subunit B; PTC: papillary thyroid carcinoma; RNAi:
RNA interference; U2OS: a human osteosarcoma cell line;

SVM Classifier
Various scenarios with different balancing methods and
splitting percentages were implemented for constructing the
ideal SVM model, creating minimal but important differences
in class counts as seen in Multimedia Appendix 1 (Table S7).

From the various scenarios, we identified the top 5
best-performing models across different feature categories.
The model using 139 genes from DEG analysis combined
with the SMOTEENN balancing technique achieved the most
consistent results, with a training accuracy of 100% and
test accuracies of 97% for the White race and 96% for the
Black race, alongside strong harmonization across F1-score,
precision, and recall.

Compared to models using 4 and 7 genes, obtained
through DEG analysis thresholds of log2FoldChange>0.35
and 0.4, achieved accuracies of 95% or below with unfavora-
ble harmonization, thus the need for more advanced feature
selection methods, such as ROC analysis combined with
online GSEA. Models with 13 and 9 selected genes obtained
through ROC analysis and GSEA demonstrated competitive
performance, achieving 97% accuracy for the White race and
95% for the Black race, though slight deviations in precision
and recall for the Black race were observed. Detailed metrics
for all scenario models can be found from Tables 1-5.
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Table 2. Top 5 models for 7-genes scenario.

Balancing
method

Data
splitting
ratio

Hyper-
parameter White Black

Train
accuracy
(%)

Test
accuracy
(%)

F1-score
(%)

Precision
(%)

Recall
(%)

Test
accuracy
(%)

F1-score
(%)

Precision
(%)

Recall
(%)

KMeansSMOTE 80:20 Yes 94.9 95.6 97.6 95.4 100 95.3 97.4 96.5 98.2
SVMSMOTE 80:20 Yes 97.9 94.6 97 96.4 97.6 90.6 94.6 96.4 93
KMeansSMOTE 80:20 No 94.4 94.6 97 95.3 98.8 93.7 96.5 94.9 98.2
KMeansSMOTE 60:40 No 96 92.9 96.1 94.7 97.6 95.3 97.4 96.5 98.2
SVMSMOTE 70:30 Yes 98.7 92.7 96.1 93.9 98.4 95.3 97.4 96.5 98.2

Table 3. Top 5 models for 9-genes scenario.

Balancing
method

Data
splitting
ratio

Hyper-
parameter White Black

Train
accuracy
(%)

Test
accuracy
(%)

F1-score
(%)

Precision
(%)

Recall
(%)

Test
accuracy
(%)

F1-score
(%)

Precision
(%)

Recall
(%)

SVMSMOTE 70:30 Yes 98.4 97.1 98.4 98.4 98.4 95.3 97.3 98.2 96.5
KMeansSMOTE 80:20 No 96.5 96.7 98.2 98.8 97.6 93.7 96.4 100 93
KMeansSMOTE 80:20 Yes 95.6 96.7 98.2 98.8 97.6 96.9 98.2 98.2 98.2
SMOTETomek 70:30 Yes 98.7 96.4 98 98.4 97.6 95.3 97.3 98.2 96.5
KMeansSMOTE 70:30 No 95.7 96.4 98 99.2 96.8 95.3 97.3 98.2 96.5

Table 4. Top 5 models for 13-genes scenario.

Balancing method

Data
splitting
ratio

Hyper-
parameter White Black

Train
accuracy
(%)

Test
accuracy
(%)

F1-score
(%)

Precision
(%)

Recall
(%)

Test
accuracy
(%)

F1-score
(%)

Precision
(%)

Recall
(%)

KMeansSMOTE 70:30 No 95.2 97.1 98.4 99.2 97.6 95.3 97.3 98.2 96.5
SMOTETomek 80:20 Yes 98.1 96.7 98.2 97.6 98.8 95.3 97.3 100 94.7
BorderlineSMOTE 70:30 No 90.4 96.4 97.9 99.2 96.8 95.3 97.3 100 94.7
KMeansSMOTE 60:40 No 96.9 96.2 97.9 98.2 97.6 92.2 95.5 98.1 93
KMeansSMOTE 70:30 Yes 95.2 95.6 97.6 98.4 96.8 95.3 97.3 98.2 96.5

Table 5. Top 5 models for the 139 genes scenario.

Balancing method

Data
splitting
ratio

Hyper-
parameter White Black

Train
accuracy
(%)

Test
accuracy
(%)

F1-score
(%)

Precision
(%)

Recall
(%)

Test
accuracy
(%)

F1-score
(%)

Precision
(%)

Recall
(%)

SMOTEENN 80:20 No 100 97.8 98.8 98.8 98.8 96.9 98.2 100 96.5
BorderlineSMOTE 60:40 Yes 98.8 97.3 98.5 99.4 97.6 96.9 98.2 100 96.5
SMOTEENN 70:30 Yes 100 97.1 98.4 99.2 97.6 96.9 98.2 100 96.5
SMOTEENN 70:30 No 100 97.1 98.4 99.2 97.6 96.9 98.2 100 96.5
SMOTEENN 80:20 Yes 100 96.7 98.2 98.8 97.6 96.9 98.2 100 96.5
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Discussion
Principal Results
In this study, we explored multiple feature selection scenarios
for race-based SVM classification models aimed at pros-
tate cancer detection using gene expression data. Our
findings demonstrate that race-based models with signifi-
cantly reduced features are capable of achieving competitive
performance comparable to models using thousands of genes.
The best-performing model, achieved without hyperparameter
tuning or cross-validation, demonstrated outstanding results
with a training accuracy of 100% and test accuracies of
98% on the White race and 97% on the Black race. Addition-
ally, the model showed strong harmonization across F1-score,
precision, and recall values, which indicates consistent model
classification performance. However, models in scenarios
with 4 and 7 genes, selected using DEG analysis with
thresholds of log2FoldChange>0.35 and 0.4, respectively,
showed lower accuracies of 95% or lower, despite noteworthy
harmonization between F1-score, precision, and recall values.
This shows the limitations of feature selection solely using
DEG analysis thresholds, as it failed to capture the critical
biomarkers necessary for reliable classification.

Moreover, models with 9 and 13 selected genes through
ROC analysis and GSEA present matched performance,
achieving accuracies of 97% on the White race and 95%
on the Black race. These models also demonstrated good
stability, consistently performing well over different train-test
dataset splits. While these reduced-feature models showed
strong metrics for the White race, the slight drop in accu-
racy for the Black race indicates the presence of racial
disparities in feature selection. This highlights the need for
further research to improve model generalizability across
more diverse populations.
Strengths
This study addresses racial disparities in prostate cancer gene
expression datasets to create a race-specific SVM classifi-
cation model with multiple scenarios. Our testing demon-
strated greater accuracies on scenarios using 139 genes;
however, models with 13 and 9 selected genes also yielded
97% accuracy, highlighting the effectiveness of an optimized
feature selection strategy. This feature reduction implies the
significance of feature selection along with model construc-
tion parameters such as balancing methods, data splitting
ratios, and hyperparameter optimization in achieving a robust
classification model.

From a clinical standpoint, these results imply signifi-
cant cost reduction and practical applicability. Reducing the
number of genes required for sequencing substantially lowers
the financial and computational cost of diagnostic workflows,
making this approach more accessible and scalable for routine
prostate cancer screening and early detection [47-49].
Comparison With Prior Works
While prior works used feature selection methods with
correlation-based and evolutionary algorithm approaches

without further validations, our approach used tools such as
PyDESeq2 and MSigDB investigation to further validate the
biological relevance of our selected genes to prostate cancer
to improve the diagnostic accuracy and provide insights into
race-specific prostate cancer biology, an area often neglected
by other studies.

Our study achieved comparable accuracies to prior works
while significantly reducing the number of features used.
For example, Ravindran et al [29] reported a 97% accuracy
while using 1833 features selected from the initial 6033 genes
through a correlation-based approach [27]. Conversely, our
models achieved similar accuracy using only 13 or 9 features,
validating the performance of our feature selection method.
Additionally, our study integrates racially based datasets to
account for racial disparities while achieving robust perform-
ance for both the White (98% accuracy) and Black popula-
tions (97% accuracy). This further addresses the gap between
prior works such as the model by Alshareef et al [27], with
52 prostate cancer samples and 1833 features, which overlook
racial disparities [28]. To further appraise our model, we also
compared it to a recent study by Xie and Xie [50] using an
artificial neural network model on a DEG panel of 220 genes
and reporting an accuracy of 78%, our optimized racial-based
SVM model outperformed it with higher accuracy and fewer
features, while maintaining consistent results across multiple
dataset splits. These comparisons highlight the competitive-
ness and reliability of our SVM-based framework in prostate
cancer detection.
Limitations
However, this study has the following limitations. The
datasets used are heavily imbalanced, with an overrepresen-
tation of White individuals and cancer samples compared
to normal samples. Only a single dataset source was used
due to restricted access to other publicly available data-
sets, which limits the diversity and variability of the data.
Future work should prioritize the inclusion of larger, more
diverse populations to enhance the model’s generalizability
and consider an external independent dataset to validate the
model’s performance. Additionally, exploring other genomic
and epigenomic features, such as DNA methylation patterns,
may yield further insights into race-specific prostate cancer
biology.
Conclusions
This research used enhanced feature selection methods such
as DESeq2 DEG analysis and ROC analysis to reduce feature
quantity in machine learning models for prostate cancer
detection in specific racial groups. Our findings show that
while testing on White race reducing features-maintained
model, performance was comparable to studies with larger
feature sets. To examine racial disparities, we tested the
model on African American data, revealing minimal (~1%)
accuracy differences between racial groups. These findings
indicate a low influence of racial features on classification
while emphasizing the importance of feature selection in
developing race-based SVM models for prostate cancer using
gene expression data.
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