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Abstract
Background: Integrating clinical, genomic, and social determinants of health (SDOH) data is essential for advancing
precision medicine and addressing cancer health disparities. However, existing bioinformatics tools often lack the flexibility to
perform equity-driven analyses or require significant programming expertise.
Objective: We developed AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in
Population Metrics), a conversational artificial intelligence system designed to enable natural language–driven, multidimen-
sional cancer analysis. This study describes the development, implementation, and application of AI-HOPE-PM to support
hypothesis testing that integrates genomic, clinical, and SDOH data.
Methods: AI-HOPE-PM leverages large language models and Python-based statistical scripts to convert user-defined natural
language queries into executable workflows. It was evaluated using curated colorectal cancer datasets from The Cancer
Genome Atlas and cBioPortal, enriched with harmonized SDOH variables. Accuracy of natural language interpretation, run
time efficiency, and usability were benchmarked against cBioPortal and UCSC Xena.
Results: AI-HOPE-PM successfully supported case-control stratification, survival modeling, and odds ratio analysis using
natural language prompts. In colorectal cancer case studies, the system revealed significant disparities in progression-free
survival and treatment access based on financial strain, health care access, food insecurity, and social support, demonstrating
the importance of integrating SDOH in cancer research. Benchmark testing showed faster task execution compared to existing
platforms, and the system achieved 92.5% accuracy in parsing biomedical queries.
Conclusions: AI-HOPE-PM lowers technical barriers to integrative cancer research by enabling real-time, user-friendly
exploration of clinical, genomic, and SDOH data. It expands on prior work by incorporating equity metrics into precision
oncology workflows and offers a scalable tool for supporting disparities-focused translational research. Five videos are
included as multimedia appendices to demonstrate platform functionality in real-world scenarios.
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Introduction
Health care is being transformed by comprehensive pre-
cision medicine, which personalizes treatment based on
individual differences in genetics, environment, and lifestyle
[1,2]. Alongside this shift, there is growing recognition
of the critical role social determinants of health (SDOH)
play in shaping disease outcomes and access to care
[2-5]. To advance both scientific discovery and health
equity, integrating clinical, genomic, and SDOH data is
imperative for uncovering disease mechanisms, enhancing
treatment effectiveness, and reducing disparities—especially
among underserved populations. However, several challenges
remain: data silos, the need for specialized expertise in
multiomics analysis, and the underrepresentation of diverse
populations in existing datasets all continue to hinder the
equitable realization of precision medicine [6-9].

The complexity of cancer research workflows demands
seamless integration of molecular profiles, clinical metadata,
and population-level variables such as race, ethnicity, income,
health literacy, and access to care. Although web-based
tools like cBioPortal [10] and UALCAN [11] offer struc-
tured platforms for querying public cancer datasets such
as The Cancer Genome Atlas (TCGA) [12], they operate
within predefined analytical frameworks and require users
to manually conduct multistep filtering, stratification, and

statistical interpretation [13-16]. These limitations restrict the
flexibility needed to explore hypothesis-driven, context-spe-
cific research questions—especially those involving SDOH
variables critical for addressing health equity.

Meanwhile, emerging artificial intelligence (AI)–based
tools like CellAgent [17] and AutoBA [18] have begun to
explore the potential of large language models (LLMs) in
bioinformatics workflows [19-22]. However, these systems
often focus solely on genomic data and lack the capacity
to simultaneously integrate clinical and SDOH variables,
thereby limiting their utility in advancing equitable biomed-
ical research.

Motivated by these gaps, we introduced AI-HOPE-PM
(Artificial Intelligence Agent for High-Optimization and
Precision Medicine in Population Metrics), a novel LLM-
powered conversational agent designed to democratize access
to integrative bioinformatics analysis. AI-HOPE-PM allows
users—regardless of technical background—to conduct
robust, multidimensional cancer research using natural
language queries. As illustrated in Figure 1, the platform
employs natural language processing, retrieval-augmented
generation, and Python-based bioinformatics pipelines to
translate user queries into reproducible and explainable
analyses. This includes case–control comparisons, survival
modeling, and stratified multiomics analysis—all without
requiring code or manual data preprocessing.

Figure 1. Overview of AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) workflow.
LLM: large language model; SDOH: social determinants of health; TCGA: The Cancer Genome Atlas.

Unlike traditional graphical user interface (GUI) tools,
AI-HOPE-PM supports complex, user-defined queries such as
“Analyze FOLFOX-treated colorectal cancer (CRC) patients

with TP53 mutations and varying levels of financial strain.”
The system autonomously identifies relevant data, filters
patient cohorts, integrates clinical treatment and genomic
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mutation data with socioeconomic context, and generates
statistical visualizations, survival curves, and interpreta-
tive summaries. By enabling real-time, dynamic explora-
tion of clinical-genomic-SDOH interactions, AI-HOPE-PM
simplifies complex workflows and enhances the translational
relevance of precision oncology research. This work builds
on our previously developed platform, AI-HOPE [23], a
conversational AI agent designed to support natural lan-
guage-driven integration of clinical and genomic data for
precision medicine research. While AI-HOPE demonstrated
effective local analysis of structured datasets and addressed
key bioinformatics needs, it did not incorporate SDOH or
population-level variables critical to health equity research.
AI-HOPE-PM extends this foundation by integrating SDOH
data and supporting population-aware case-control analyses,
enabling researchers to interrogate disparities across both
molecular and social axes. To evaluate its performance,
AI-HOPE-PM is being benchmarked against established tools
such as cBioPortal and UCSC Xena [24]. The benchmark-
ing involves assessing run time efficiency, reproducibility,
and usability. In contrast to tools that require step-by-step
configuration, AI-HOPE-PM offers streamlined execution of
advanced bioinformatics pipelines through LLM-guided user
interaction, significantly lowering barriers to data exploration
and hypothesis testing.

By bridging the gap between data complexity and user
accessibility, AI-HOPE-PM offers a scalable, inclusive, and
equitable AI framework for biomedical discovery. Its ability
to integrate clinical, genomic, and SDOH variables addresses
the long-standing need for tools that not only generate
high-quality insights but also promote diversity and inclusive-
ness in biomedical research.

To address the limitations of current bioinformatics tools
and advance equity in translational precision medicine, this
study introduces AI-HOPE-PM—a novel conversational AI
platform purpose-built to integrate clinical, genomic, and
SDOH data through natural language interaction. The aim
of this paper is to describe the development, implementation,
and application of AI-HOPE-PM for multidimensional cancer
analysis, with a focus on its ability to democratize data
exploration, reduce technical barriers, and enable equity-
driven hypothesis testing. Specifically, we demonstrate how
AI-HOPE-PM enables real-time, case-control, and survival
analyses that incorporate SDOH variables such as financial
strain, food insecurity, health care access, and health literacy,
alongside genomic and clinical features. By benchmarking
its performance and illustrating its use through case studies
in CRC, we highlight the platform’s potential to accelerate
disparities-focused research, improve biomarker discovery,
and support inclusive precision oncology.

Methods
Development of AI-HOPE-PM and Data
Sources
AI-HOPE-PM is a conversational AI platform designed to
advance translational precision oncology by enabling users to

perform integrative bioinformatics analyses through plain-
language queries. The system is built on a retrieval-augmen-
ted generation framework—a method that enhances response
accuracy by retrieving relevant information from structured
datasets—and a fine-tuned biomedical LLM (LLaMA 3).
Behind the scenes, the platform uses Python-based scripts to
carry out statistical analyses and genomic data processing.

To enable robust analyses, we used curated multimodal
datasets from TCGA, AACR Project GENIE, and cBioPortal.
These datasets included harmonized clinical, genomic, and
demographic variables. In addition, we generated synthetic
SDOH variables using a validated Python script, guided
by a literature-informed framework. These SDOH features
included health care access, financial strain, food insecur-
ity, social support, and health literacy. All datasets were
preprocessed into standardized tab-delimited formats with
annotated metadata describing each variable type. A full
list of variables analyzed—including over 200 clinical,
genomic, treatment, and SDOH fields—is publicly available
[25], which also contains the source code, example quer-
ies, simulated data, and documentation for reproducing all
analyses.
Workflow and Natural Language
Interface
Users interact with AI-HOPE-PM via a GUI that accepts
plaintext queries. The system interprets these queries using
a natural language processing engine to define analytic
tasks, including loading a dataset, stratifying cohorts based
on genomic or SDOH features, and performing statistical
analyses such as survival modeling or odds ratio testing.
The resulting structured commands are executed programmat-
ically, streamlining workflows that typically require multiple
manual steps or coding expertise.
Evaluation and Validation of System
Accuracy
We evaluated AI-HOPE-PM’s query interpretation accuracy
using 100 natural language prompts that reflected diverse
real-world research scenarios in clinical genomics and health
disparities. A team of expert reviewers established ground
truth interpretations for each query to assess system per-
formance. AI-HOPE-PM achieved an overall accuracy of
92.5%, with near-perfect accuracy (99.1%) for single-var-
iable queries and strong performance (88.4%) for more
complex, multivariable prompts. Most errors stemmed from
ambiguous phrasing (eg, nonspecific end points), syntactic
inconsistencies (eg, nested logic), or misalignment between
user language and system variable mappings. To address
these issues, AI-HOPE-PM integrates built-in clarification
prompts and applies a domain-specific ontology to harmonize
terminology and guide users toward more structured input.
Future development will focus on improving the natural
language understanding engine and refining internal mapping
algorithms to further enhance accuracy and reproducibility.

To confirm the analytical fidelity of AI-HOPE-PM, we
cross-validated its survival analyses, odds ratio outputs, and
cohort stratifications against manually performed analyses

JMIR BIOINFORMATICS AND BIOTECHNOLOGY Yang et al

https://bioinform.jmir.org/2025/1/e76553 JMIR Bioinform Biotech 2025 | vol. 6 | e76553 | p. 3
(page number not for citation purposes)

https://bioinform.jmir.org/2025/1/e76553


previously published by our group using similar datasets
and variables. These included studies investigating CRC
disparities based on TP53, APC, and KRAS mutation status,
treatment modality, and SDOH factors across TCGA and
cBioPortal cohorts. The results generated by AI-HOPE-
PM were consistent with those from traditional statistical
pipelines in terms of hazard ratios, P values, and overall
survival trends. This validation step supports the platform’s
accuracy in replicating established findings and reinforces
its reliability as a tool for real-time, natural language–driven
bioinformatics analyses.

Although we benchmarked AI-HOPE-PM against
established platforms such as cBioPortal and UCSC Xena,
it is important to acknowledge that these platforms func-
tion through traditional GUIs requiring multistep, click-
based interactions. This structural difference makes direct
comparisons with AI-HOPE-PM—an intelligent, conversa-
tional AI system—challenging. In cBioPortal and Xena,
executing multilayered queries or stratified analyses may
involve multiple browser windows, dropdown menus, and
manual dataset subsetting. In contrast, AI-HOPE-PM enables
users to perform similar tasks via a single plain-language
prompt, streamlining the process and reducing complexity.
While speed remains an advantage for AI-HOPE-PM, we
also validated its outputs through comparisons with pre-
viously published manual analyses, ensuring consistency
and analytical fidelity. This intelligent design is intended
to reduce the technical barrier for researchers and sup-
port scalable, real-time hypothesis generation in precision
medicine Multimedia Appendix 1.

To ensure robustness in handling natural language
variability, AI-HOPE-PM incorporates an interactive
clarification mechanism that prompts users for additional
input when queries are ambiguous or underspecified.
Common edge cases include vague end points (eg, “bet-
ter outcomes”), undefined comparison groups, or syntactic
inconsistencies (eg, nested logic). In these instances, the
system pauses execution and requests clarification through a
structured prompt. Furthermore, AI-HOPE-PM uses a curated
biomedical ontology to harmonize synonymous terms and
align user inputs with internal variable definitions. These
strategies support resilient query interpretation and maintain
analytical fidelity across diverse and potentially ambiguous
user queries (Multimedia Appendix 2).
Benchmarking and Comparative Analysis
To assess usability and speed, we benchmarked AI-HOPE-
PM against existing platforms including cBioPortal and
UCSC Xena. Biomedical researchers were asked to complete
tasks such as dataset loading, filtering based on genomic
or SDOH attributes, and initiating analyses. Task dura-
tions were measured using stopwatch protocols. AI-HOPE-
PM consistently outperformed traditional tools in terms of
execution time and ease of use, owing to its automation and
intuitive language-driven interface.

To evaluate the capacity of AI-HOPE-PM to inte-
grate and analyze SDOH alongside clinical and genomic

data, we developed a set of simulated SDOH variables.
These variables—including financial strain, food insecur-
ity, social support, health literacy, and insurance access
—were generated using a Python-based simulation frame-
work informed by published epidemiological distributions
and associations relevant to cancer outcomes. The simula-
tion approach was designed to mirror the variability and
prevalence observed in real-world populations [26], thereby
enabling realistic case–control stratifications and hypothesis
testing. Although these SDOH variables are simulated, they
serve as a pragmatic proxy in the absence of widely availa-
ble, high-quality, individual-level SDOH data within public
genomic datasets. For full transparency and reproducibility,
the simulation scripts are publicly available [25]. Future
validation studies using empirical SDOH data from institu-
tional and community-linked datasets are planned to further
refine and expand the platform’s capabilities.
Statistical Analysis and Report
Generation
The platform supports several statistical methods commonly
used in cancer genomics, including Kaplan-Meier survival
analysis with log-rank testing, Cox proportional hazards
regression, and odds ratio calculations for categorical
comparisons. Output includes plots such as survival curves
and forest plots, accompanied by narrative summaries that
describe the findings in context. All outputs are backed by
reproducible Python code logs, which are stored internally
and can be exported for validation or inclusion in publications
[13-15].
Usability Study and Accessibility
A formal usability study is underway to evaluate AI-HOPE-
PM’s effectiveness and accessibility for biomedical research-
ers. Participants are comparing its interface, output quality,
and query interpretation capabilities with those of GUI-based
tools and other AI-driven platforms. While we did not
perform head-to-head comparisons with generative systems
such as CellAgent or AutoBA due to differing scopes,
AI-HOPE-PM’s unique ability to integrate SDOH, clinical,
and genomic data positions it as a novel tool for equitable and
scalable precision medicine research.

To preliminarily assess usability, we conducted a small-
scale case study involving six non-bioinformatician users,
including oncology fellows and public health researchers.
Participants were asked to perform common research tasks
using AI-HOPE-PM—such as loading datasets, selecting
cohorts by genomic and social variables, and running survival
analyses—using only natural language queries. All users
completed the tasks successfully, with positive feedback
highlighting the intuitive interface, rapid execution, and
elimination of the need for coding expertise. These findings
provide initial validation of the platform’s accessibility to
diverse research users.

Ethical and Privacy Considerations
As with any LLM-based system, AI-HOPE-PM is suscepti-
ble to biases and potential hallucinations, particularly when
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interpreting complex or underspecified queries. To mitigate
these risks, the system integrates domain-specific ontologies
and harmonized variable dictionaries to reduce misinterpreta-
tion and support consistent query resolution. Additionally, the
platform’s built-in clarification prompts serve as a real-time
validation mechanism, prompting users to confirm or refine
ambiguous instructions. While simulated SDOH-genomic
interactions provide a useful testing framework, future efforts
will emphasize empirical validation using real-world datasets
to reduce confounding.

To address privacy concerns when working with sensi-
tive real-world SDOH variables—such as insurance status,
ethnicity, and income—AI-HOPE-PM is designed to operate
as a secure, local AI system deployed within institutional
infrastructures. Unlike cloud-based models that may transmit
data externally, AI-HOPE-PM processes all data on-site,
minimizing the risk of exposure or unauthorized access.
This local deployment model supports compliance with
data protection regulations, including the Health Insurance
Portability and Accountability Act and the General Data
Protection Regulation, where applicable. In future iterations,
we plan to integrate customizable privacy modules and access
controls to align with institutional review board protocols and
ensure ethical handling of sensitive population-level health
data.

To mitigate the risk of hallucinations and enhance the
reliability of AI-HOPE-PM’s outputs, the platform incorpo-
rates several ethical safeguards. First, the system leverages
domain-specific biomedical ontologies to align user quer-
ies with validated clinical and genomic concepts, reducing
the likelihood of misinterpretation. Second, AI-HOPE-PM
includes built-in prompts that clarify ambiguous user input,
supporting more accurate query resolution. We also plan
to implement human-in-the-loop verification workflows and
bias detection modules, which will allow researchers to
review, confirm, and flag generated outputs prior to down-
stream use. These strategies collectively enhance interpret-
ability, accountability, and user trust in the AI-driven
analytical process.

Given the sensitivity of SDOH data, especially varia-
bles such as insurance status, ethnicity, or socioeconomic
conditions, AI-HOPE-PM is currently designed as a locally
deployed system to prevent data exposure through external
servers or third-party services. This architecture ensures that
no identifiable information is shared beyond institutional
firewalls. For future deployments that may involve real-
world SDOH data, we plan to incorporate privacy-preserv-
ing methods including data deidentification, access controls,
and secure computation protocols. All future iterations will
comply with established data protection regulations such as
the Health Insurance Portability and Accountability Act and

the General Data Protection Regulation, ensuring responsible
and ethical use of sensitive population-level data.

Results
By converting natural language instructions into executable
bioinformatics workflows, AI-HOPE-PM enabled seamless
integration and analysis of clinical, genomic, and SDOH
data within CRC datasets. The platform’s ability to inter-
pret user queries and automate complex analyses demon-
strated its effectiveness in supporting multidimensional,
translational cancer research. Through its intuitive conversa-
tional interface, the system dynamically classified patient
samples into case and control cohorts based on user-defined
criteria. These criteria encompassed gene mutation status,
treatment regimens, SDOH attributes, and demographic
variables, facilitating highly customizable stratifications.
The system autonomously performed statistical analyses—
including prevalence estimation, odds ratio tests, and survival
modeling—and generated comprehensive visualizations and
interpretable reports.

In a prominent use case, AI-HOPE-PM analyzed data
from the TCGA COAD dataset to investigate how financial
strain affects outcomes among folinic acid, fluorouracil, and
oxaliplatin (FOLFOX)–treated patients with CRC with TP53
mutations (Figure 2). The analysis began by selecting the
COAD dataset enriched with SDOH data, allowing users
to explore attribute distributions such as financial strain.
A bar chart visualization was generated, showing both the
count and percentage distribution of financial strain levels
across the dataset (Figure 2A). Based on user-defined filtering
criteria—patients treated with FOLFOX and harboring TP53
mutations—AI-HOPE-PM created two cohorts: a case cohort
of 40 (10.9%) patients reporting mild or no financial issues
and a control cohort of 43 (11.7%) patients experiencing
moderate to severe financial strain, including those unable to
afford care. Pie charts illustrated the proportional distribution
of these cohorts within the total 366-sample dataset (Figure
2B). Once cohorts were defined, the user selected a survival
analysis module. AI-HOPE-PM performed a Kaplan-Meier
analysis to assess both overall and progression-free survival.
The resulting survival plots demonstrated significantly shorter
survival in the control group compared to the case group,
with P values of .05 (overall survival) and .03 (progres-
sion-free survival), supported by CIs indicating statistical
robustness (Figure 2C). These findings underscore AI-HOPE-
PM’s ability to integrate clinical, genomic, and SDOH data
through natural language–guided workflows, enabling rapid
identification of clinically meaningful disparities in treatment
outcomes and survival. This functionality is further supported
by the multimedia demonstration with a similar query [27].
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Figure 2. AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) analysis of folinic acid,
fluorouracil, and oxaliplatin–treated patients with colorectal cancer with TP53 mutations and varying levels of financial strain.

Another case study explored the impact of APC mutation
status among patients with CRC treated with FOLFOX and
reporting easy access to health care (Figure 3). The anal-
ysis began by selecting the COAD dataset enriched with
SDOH, which enabled exploration of the distribution of
health care access variables. A bar chart was generated to
visualize both the count and percentage of patients strati-
fied by their reported level of health care access (Figure
3A). AI-HOPE-PM then applied user-defined filters to create
case and control cohorts. The case cohort consisted of 40
(10.9%) patients who had APC mutations, reported easy
access to health care, and received FOLFOX treatment. The
control cohort comprised 12 (3.3%) patients who met the
same filtering criteria except they were APC wild-type. Pie
charts illustrated the proportional distribution of these cohorts
out of the total 366 patients in the dataset (Figure 3B).
After defining the cohorts, AI-HOPE-PM enabled the user
to run a Kaplan-Meier survival analysis, which revealed that
patients in the control group (APC wild-type) experienced

significantly poorer progression-free survival, with a P
value of .02, as shown in the survival plot (Figure 3C).
This suggests a potential prognostic role of APC mutation
status under standardized treatment and access conditions.
Additionally, the system performed an odds ratio analysis
to assess differences in ethnic representation between the
cohorts. In this context, Hispanic/Latino identity was used as
the comparative variable. The case cohort included 6 (15%)
in-context Hispanic/Latino patients and 34 out-of-context
patients, while the control cohort included 3 (15%) in-con-
text patients and 9 out-of-context patients. The resulting odds
ratio was 0.529 (95% CI 0.11-2.541), indicating a lower—but
not statistically significant—representation of Hispanic/Lat-
ino individuals in the control group (Figure 3D). Together,
these results reinforce AI-HOPE-PM’s ability to integrate
genomic, clinical, and SDOH variables and to highlight the
importance of considering ancestral background and access to
care when evaluating mutation-driven outcomes in precision
oncology. As shown through the multimedia demonstration
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with a similar query [28], the platform effectively processes
complex, user-defined inputs.

Figure 3. AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) analysis of patients with
colorectal cancer with and without APC mutations that have easy access to health care and treated with folinic acid, fluorouracil, and oxaliplatin.

In a third application, AI-HOPE-PM examined patients with
early-onset CRC (age <50 y) to evaluate the impact of
social support on survival outcomes among those treated
with FOLFOX chemotherapy (Multimedia Appendix 1).
The user began by selecting the COAD dataset containing
enriched SDOH data. This enabled visualization of patient-
level attributes such as age, treatment type, mutation status,
and social support level. Histograms and bar plots provided
an overview of the distribution of these variables across
the cohort (Multimedia Appendix 1A). The case cohort was
defined using user-set criteria: patients younger than 50 years,
treated with FOLFOX, and classified as having strong or
moderate social support, resulting in 17 patients. This subset
was visualized using pie charts to reflect the proportion of
selected versus total samples (Multimedia Appendix 1B).
In parallel, the control cohort was defined with the same

criteria except for social support, selecting 14 patients who
reported limited or no support. A similar pie chart depicted
the sample distribution for the control group (Multimedia
Appendix 1C). A Kaplan-Meier survival analysis was then
conducted to assess overall and progression-free survival
differences between the two groups. The survival curves
revealed a statistically significant difference in progression-
free survival (P=.02), with the control group experiencing
poorer outcomes. Although the difference in overall survival
did not reach statistical significance (P=.07), a trend toward
worse survival in the control group was observed (Multi-
media Appendix 1D). To further characterize these groups,
an odds ratio analysis was performed using TP53 muta-
tion status as the comparative context. The case group
had a lower—but not statistically significant—prevalence of
TP53 mutations, resulting in an odds ratio of 0.706 (95%
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CI 0.208-2.396; Multimedia Appendix 1E). These findings
suggest that lower levels of social support may be linked
to poorer progression-free survival and potentially associ-
ated with mutational profiles, reinforcing the importance of
incorporating psychosocial variables in precision oncology—
particularly in younger patients with CRC. The capabilities
of AI-HOPE-PM are further demonstrated in the multimedia
example of a comparable query [29].

In another analysis focused on food insecurity, AI-HOPE-
PM investigated survival disparities and treatment access
among patients with CRC with APC mutations (Multime-
dia Appendix 2). The analysis began with the selection
of the COAD dataset integrated with SDOH, allowing the
user to visualize variables such as food insecurity, treatment
type, and APC mutation status. Histograms and bar plots
summarized the distribution of these attributes across the
cohort—highlighting proportions of food-insecure patients
and chemotherapy exposure stratified by mutation status
(Multimedia Appendix 2A). The case cohort was defined
as patients reporting no food insecurity and having an
APC mutation, yielding 245 samples. A pie chart illustrated
the representation of this subset within the overall dataset
(Multimedia Appendix 2B). The control cohort was estab-
lished using the same criteria—APC mutation present—but
selecting patients with moderate-to-severe food insecurity,
resulting in 206 samples. A corresponding pie chart depicted
this cohort’s proportional distribution (Multimedia Appen-
dix 2C). A Kaplan-Meier progression-free survival analy-
sis was performed, stratifying patients by treatment type,
specifically whether they received chemotherapy. Although
exact P values were not displayed in the figure, the sur-
vival curves showed a clear separation, suggesting poorer
outcomes in food-insecure patients not receiving chemother-
apy (Multimedia Appendix 2D). These visual trends support
the finding that food-insecure patients experienced signifi-
cantly worse progression-free survival, as confirmed by a P
value of .02 from the associated analysis. To further explore
this disparity, an odds ratio analysis was conducted using
TREATMENT_TYPE (chemotherapy vs nonchemotherapy)
as the comparative context. The results revealed that food-
insecure patients were less likely to receive chemotherapy,
with an odds ratio of 0.356 (95% CI 0.136-1.186), indicat-
ing a potential treatment access gap (Multimedia Appendix
2E). This analysis underscores the ability of AI-HOPE-PM
to uncover how socioeconomic burden, in conjunction with
genomic context, may modulate both treatment delivery
and clinical outcomes in CRC. As illustrated through the
multimedia demonstration of a similar query [30], the
platform effectively interprets complex natural language
inputs.

Sex-based disparities were explored in a separate analysis
focusing on patients with CRC with limited health liter-
acy who were treated with FOLFOX chemotherapy (Mul-
timedia Appendix 3). AI-HOPE-PM utilized the COAD
dataset enriched with SDOH and genomic annotations to
assess the intersection of insurance status, tumor stage, and
KRAS mutation status. Bar charts provided an overview of
insurance coverage within the dataset, illustrating both the

absolute counts and proportional distribution across different
insurance categories (Multimedia Appendix 3A). To define
the cohorts, the case group was filtered to include insured
patients who had KRAS mutations, were diagnosed at stage I
or II, and received leucovorin-based chemotherapy, yielding
31 samples. This subset was visualized using a pie chart to
indicate its proportion out of the total 373 samples (Multi-
media Appendix 3B). The control cohort applied identical
clinical and molecular filters but included only uninsured
patients, resulting in 30 samples (Multimedia Appendix 3C).
This side-by-side comparison emphasizes how insurance
coverage may influence patient stratification and treatment
access, even under otherwise uniform clinical conditions.
An odds ratio test was performed using KRAS mutation
status as the defining context to examine mutation preva-
lence differences between insured and uninsured groups. A
stacked bar chart visualized the distribution of in-context
(KRAS-mutated) versus out-of-context samples in each group.
The analysis revealed a modest difference in KRAS muta-
tion representation, suggesting that financial access to care
could intersect with genomic profiles in ways that warrant
deeper investigation (Multimedia Appendix 3D). In a related
sex-disparity analysis among patients with limited health
literacy, AI-HOPE-PM defined a case cohort of 33 females
and a control cohort of 41 males, both treated with FOLFOX.
Odds ratio testing using KRAS mutation status showed that
30.3% of females and 56.1% of males were KRAS-mutated,
yielding an odds ratio of 0.503 (95% CI 0.192-1.319; P=.24).
Although not statistically significant, these findings suggest
potential sex-based differences in KRAS mutation prevalence
under constrained health literacy conditions and highlight
the utility of AI-HOPE-PM for uncovering multidimensional
disparities in cancer genomics and treatment. This process is
illustrated through the multimedia demonstration of a similar
query [31].

AI-HOPE-PM also facilitated analyses of nongenomic
SDOH influences on CRC outcomes. In one study, the
platform was used to explore how insurance status, treatment
exposure, and clinical care setting affected survival among
patients in the COAD dataset (Multimedia Appendix 4).
The analysis began with the selection of a dataset enriched
with SDOH attributes. Bar charts provided a comprehen-
sive overview of insurance type distribution, showing both
the absolute number of patients per insurance category and
their relative proportions, offering insight into the socioeco-
nomic landscape of the cohort (Multimedia Appendix 4A).
Using this context, AI-HOPE-PM defined a case cohort
of 41 insured patients with the following characteristics:
stage IV CRC, Hispanic/Latino ethnicity, FOLFOX treat-
ment, and care received at a community oncology practice.
A pie chart visualized the size of this cohort relative to
the dataset (Multimedia Appendix 4B). A control cohort
was generated using the same clinical and demographic
criteria but restricted to uninsured patients, resulting in
22 samples. The corresponding pie chart highlighted the
discrepancy in sample size and access between the insured
and uninsured groups (Multimedia Appendix 4C). Following
cohort definition, AI-HOPE-PM performed a Kaplan-Meier
survival analysis to evaluate overall survival outcomes. The
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survival plots illustrated a clear separation between the two
groups, with uninsured patients showing poorer survival
outcomes, despite receiving similar treatments and having
similar disease profiles (Multimedia Appendix 4D). While the
figure does not specify P values or CIs, the divergence in
survival curves strongly suggests a detrimental impact of lack
of insurance on patient outcomes. These findings underscore
the critical role of insurance coverage in modulating survival,
even when controlling for genomic, treatment, and staging
variables. As demonstrated in the multimedia example using
a comparable query [26], the platform accurately handles
complex, user-driven inputs.

This study complements other AI-HOPE-PM findings
by leveraging its capacity to integrate SDOH with clinical
and genomic data to uncover disparities in CRC care and
outcomes. In one analysis, the system examined the relation-
ship between moderate to severe financial strain and CRC
screening adherence, revealing that patients experiencing
economic hardship were significantly less likely to participate
in screening programs, highlighting a critical barrier to early
detection (Multimedia Appendix 5). The analysis began with
the selection of the SocialFactors_COAD dataset, enabling
structured visualization of variables such as APC mutation
status and health care access levels. Bar plots showed both
the frequency of APC mutations and the distribution of
health care access categories within the full cohort (Multi-
media Appendix 5A). A case cohort of 326 patients was
created using filters for limited health care access; treat-
ment with agents in fluorouracil, leucovorin, and oxalipla-
tin; and presence of APC mutations (mutation_status=1).
A pie chart depicted their proportion relative to the total
dataset (Multimedia Appendix 5B). A control cohort of
354 patients was defined using the same criteria except for
APC wild-type status (mutation_status=0). Their distribu-
tion was similarly visualized (Multimedia Appendix 5C).
A Kaplan-Meier progression-free survival analysis was then
performed, stratified by chemotherapy treatment status and
highlighting differences particularly among Hispanic/Latino
patients. The survival curves revealed a noticeable separation
between groups, suggesting a potential survival disadvant-
age linked to disparities in health care access and genomic
background (Multimedia Appendix 5D). Additionally, an
odds ratio analysis evaluated treatment disparities based on
chemotherapy exposure across the defined cohorts. A bar
plot illustrated differences in chemotherapy receipt, reinforc-
ing how limited access to care and mutation status may
jointly influence treatment pathways and clinical outcomes
(Multimedia Appendix 5E). Other AI-HOPE-PM analyses
supported these observations. One study found that patients
reporting low social support or isolation had higher rates
of treatment discontinuation and worse survival outcomes,
consistent with psychosocial oncology literature [24]. The
platform also uncovered racial and ethnic disparities in
progression-free survival, with non-Hispanic White patients
demonstrating better outcomes than Black and Hispanic
patients, even after adjusting for treatment type and dis-
ease stage. Collectively, these results underscore the value
of incorporating SDOH variables into precision medicine
frameworks, enabling AI-HOPE-PM to reveal systemic

inequities that might otherwise be overlooked in genomic-
only analyses. The multimedia demonstration of a similar
query [29] highlights the platform’s ability to interpret and
execute complex, user-defined instructions.

AI-HOPE-PM demonstrated high computational effi-
ciency, executing high-dimensional case-control studies
involving over 10,000 patient records in under 1 minute. In
a benchmark comparison, the platform required only 28.02
seconds to open the application, select a database, and filter
a single data attribute—significantly faster than cBioPortal
(58.01 s) and UCSC Xena (46.06 s). By automating the
ingestion, filtering, analysis, and reporting stages, AI-HOPE-
PM substantially reduced manual burden and turnaround
time compared to conventional bioinformatics tools. This
performance underscores its value as a scalable AI platform
capable of delivering real-time, integrative data analysis to
support precision oncology and health equity research.

In a comparative timing analysis, AI-HOPE-PM signif-
icantly outperformed established platforms such as cBio-
Portal and UCSC Xena in executing basic data query
tasks. The standardized task—which included launching the
application, selecting a dataset, and applying a filter based
on a single data attribute—was completed in just 28.02
seconds using AI-HOPE-PM. In contrast, the same task
required 58.01 seconds on cBioPortal and 46.06 seconds
on UCSC Xena. These results underscore the efficiency
advantages of AI-HOPE-PM’s natural language–driven,
automated workflow, which streamlines multistep analyses
and reduces manual input time compared to traditional
GUI-based platforms.

Discussion
Principal Findings
This study presents the development and application of
AI-HOPE-PM, a conversational AI system designed to
integrate clinical, genomic, and SDOH data for precision
oncology research. AI-HOPE-PM addresses key limitations
in existing bioinformatics tools by enabling users to pose
natural language queries that are automatically translated into
executable workflows. This allows for case-control stratifica-
tion and hypothesis testing that include both molecular and
nonmolecular variables.

In multiple CRC case studies, AI-HOPE-PM demonstrated
the ability to reveal associations between genomic altera-
tions (eg, TP53 and APC mutations), treatment exposures
(eg, FOLFOX chemotherapy), and SDOH variables such
as financial strain, food insecurity, health care access, and
social support. These findings underscore the importance
of contextualizing genomic data within broader socioeco-
nomic and behavioral frameworks to better understand cancer
disparities and inform population-relevant strategies.
Comparison to Prior Work
Traditional tools such as cBioPortal and UCSC Xena have
facilitated broad access to public cancer genomic datasets, yet
they require manual, multistep filtering and operate within
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fixed analytical frameworks. These platforms typically lack
support for SDOH integration and require a certain level of
technical expertise, limiting their accessibility for noncompu-
tational researchers and clinicians. More recent tools like
CellAgent [17] and AutoBA [18] have begun to explore
the use of LLMs in biomedical contexts, but their scope is
generally limited to genomic analysis and does not extend
to the integration of clinical or social variables essential for
advancing health equity.

Our group’s prior work introduced AI-HOPE, a closed-
system, LLM-driven conversational agent designed to enable
integrative clinical and genomic data analyses through natural
language interactions [23]. AI-HOPE allows users to perform
association studies, prevalence assessments, and survival
analyses on locally stored datasets while maintaining data
security and interpretability. It demonstrated its capabilities
by identifying well-documented associations in TCGA CRC
datasets, such as the enrichment of TP53 mutations in
late-stage CRC and the association of KRAS mutations with
poor progression-free survival in FOLFOX-treated patients.
While AI-HOPE addressed the integration of clinical and
genomic data, it was not explicitly designed to handle
population-level equity metrics or SDOH variables.

AI-HOPE-PM builds on and significantly extends this
foundation by incorporating SDOH dimensions—such as
financial strain, health care access, food insecurity, and
health literacy—into its analytical framework. This addition
allows researchers to study cancer outcomes in a more
holistic context, bridging molecular findings with real-world
social environments. Furthermore, AI-HOPE-PM expands
the scope of natural language query handling to accommo-
date multimodal stratification involving genomic, clinical,
and social parameters, which is essential for addressing
health disparities. By doing so, it complements AI-HOPE’s
functionality while introducing new capabilities that are
critical for equity-focused translational research.
Strengths and Limitations
A key strength of AI-HOPE-PM is its ability to perform
integrative, user-defined analyses through natural language
queries without requiring programming expertise. This
significantly reduces technical barriers for clinician-scien-
tists and public health researchers. Importantly, the platform
enables the inclusion of SDOH variables—such as finan-
cial strain, health care access, and social support—that are
often absent from traditional bioinformatics workflows. Its
modular architecture supports rapid cohort definition, survival
modeling, and odds ratio testing across large, harmonized
datasets, allowing for real-time hypothesis generation and
exploratory analysis.

However, several limitations should be acknowledged.
First, while this study used harmonized and simulated SDOH
variables to demonstrate the platform’s functionality, the
availability and quality of real-world, longitudinal SDOH data
remain limited in many health care systems. This may affect
the generalizability of findings and the real-world applicabil-
ity of the platform. Future efforts will require integration with
validated, longitudinal SDOH datasets—potentially through

partnerships with clinical institutions and population health
data repositories. Second, AI-HOPE-PM’s current design is
optimized for structured, publicly available datasets such
as TCGA, cBioPortal, and AACR GENIE. As such, its
adaptability to unstructured clinical data or eHealth records
is limited. While this design choice enhances reproducibil-
ity and alignment with standardized biomedical ontologies,
future work should explore interoperability with clinical
informatics platforms and natural language extraction from
eHealth records to expand usability in health care settings.
Third, this study focused exclusively on CRC datasets.
As a result, findings and workflows may not be immedi-
ately generalizable to other cancer types without retraining
or additional customization of the AI system. Although
the architecture is designed to be adaptable, validation
on other tumor types and disease areas will be essential
for broader adoption. Fourth, while benchmarking analyses
demonstrated strong performance compared to tools like
cBioPortal and UCSC Xena, formal usability testing and
prospective validation in real-world clinical and research
environments were not conducted. These are planned as part
of future development phases and will be critical for refining
the user interface, evaluating human-AI collaboration, and
assessing clinical impact. By acknowledging and addressing
these limitations, future iterations of AI-HOPE-PM can be
improved to better support equitable, scalable, and clinically
relevant precision medicine research.

A notable limitation of the current study is the use of
simulated SDOH variables rather than real-world data. While
these simulated features were generated to reflect established
patterns from peer-reviewed literature and public health
datasets, they cannot fully replicate the variability, context-
dependence, or missingness typical of empirical SDOH data
collected in clinical or community settings. This limitation
may impact the external validity of some findings and restrict
generalizability. To address this, we are actively pursuing
collaborations with health systems and community-based data
partners to incorporate validated, longitudinal SDOH datasets
into future deployments of AI-HOPE-PM. This planned
integration will enable more accurate assessment of equity-
relevant outcomes and enhance the platform’s application in
real-world clinical research.

While AI-HOPE-PM achieved a high query interpretation
accuracy of 92.5% during internal evaluation, several error
modes were identified that merit consideration. The most
frequent issues involved ambiguity in natural language input
—particularly when users provided imprecise criteria for
cohort selection or omitted critical parameters. Additionally,
complex nested queries and nonstandard phrasing occasion-
ally led to misinterpretation or partial execution. In a minority
of cases, errors stemmed from misalignment between user
terminology and the platform’s internal ontology, particularly
for less common clinical or SDOH variables. To address these
challenges, AI-HOPE-PM integrates clarification prompts
that guide users toward more precise query formulation and
supports synonym recognition for common variable names.
Ongoing improvements include refining the language model’s
domain specificity and expanding the internal ontology to
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better accommodate diverse user inputs. These enhancements
are essential for improving reproducibility and user experi-
ence in real-world settings.

A key limitation of this study is the use of simulated
SDOH variables rather than real-world data. While simulation
allowed us to prototype and evaluate the functionality of
AI-HOPE-PM under controlled conditions, it does not fully
capture the complexity, heterogeneity, or potential missing-
ness often present in real clinical and social datasets. To
address this limitation, we have developed and released an
open-source Python script [25] that transparently outlines
our simulation methodology. Additionally, we are actively
working on the integration of real-world SDOH data through
ongoing projects [32], which is sequencing and characteriz-
ing tumors from 500 Hispanic/Latino patients in the Los
Angeles catchment area. These datasets will allow us to test
AI-HOPE-PM’s performance in real clinical environments
and refine its capacity to analyze authentic, population-spe-
cific SDOH variables in future iterations.

To address this limitation, we acknowledge that the current
evaluation of AI-HOPE-PM using 100 natural language
queries—while carefully curated by physician-scientists,
public health researchers, biostatisticians, and bioinformati-
cians to reflect real-world clinical and translational scenar-
ios—represents an early validation phase. These queries
were intentionally designed to ensure clinical accuracy,
relevance, and internal consistency. However, we recognize
the importance of expanding evaluation to include a broader
and more diverse group of end users across different levels of
expertise. Future iterations of AI-HOPE-PM will incorporate
structured feedback from clinicians, public health research-
ers, and community health stakeholders. This participatory
approach will help identify diverse interaction patterns,
reduce potential biases, and enhance the platform’s interpre-
tive capacity over time.
Future Directions
Future development of AI-HOPE-PM will focus on several
enhancements. First, expanding support for additional omics
layers [32], including spatial biology [33] and single-cell [34-
36], could improve the platform’s applicability to emerg-
ing areas in systems oncology. Integration with federated
learning frameworks may also enable secure, institution-spe-
cific model updates without compromising patient privacy.
Moreover, enhancing the system’s ability to handle longitudi-
nal data, including treatment timelines and SDOH trajecto-
ries, will be critical for supporting causal inference and
policy-relevant research [37-42].

Future iterations of AI-HOPE-PM will prioritize the
integration of more inclusive and representative genomic
datasets to enhance the platform’s utility across diverse
patient populations. While the current analyses rely on
publicly available sources such as TCGA and cBioPor-
tal—which are known to underrepresent racial and eth-
nic minorities—there have been encouraging advances in
improving dataset diversity, particularly in CRC cohorts
submitted by major US cancer centers. Notably, several
ongoing initiatives aim to sequence and characterize tumors

from historically underrepresented populations, including
Hispanic/Latino patients with CRC [32]. These datasets, once
publicly released, will be incorporated into AI-HOPE-PM
to improve its generalizability and relevance in addressing
cancer health disparities. This aligns with our overarching
mission to develop equity-focused precision oncology tools
that are responsive to the needs of all communities.

In this study, benchmarking primarily focused on task
completion time—measuring the duration to execute standard
bioinformatics queries across AI-HOPE-PM, cBioPortal, and
UCSC Xena. While AI-HOPE-PM demonstrated superior
efficiency due to its natural language automation, we
acknowledge that this assessment does not encompass
analytical output comparison. Future benchmarking studies
will evaluate not only speed but also reproducibility and
concordance of statistical results, including survival curves,
odds ratios, and subgroup analyses. This expanded evaluation
will ensure that AI-HOPE-PM delivers results comparable
in accuracy and robustness to established platforms, further
supporting its utility for translational cancer research.

A preliminary usability assessment was conducted during
an internal pilot deployment involving five clinician-scien-
tists and three public health researchers. Participants were
asked to complete common clinical-genomic queries using
AI-HOPE-PM and provide structured feedback on system
usability, interpretability of outputs, and ease of query
formulation. Feedback indicated that users found the natural
language interface intuitive and appreciated the automation of
statistical analyses without coding. Suggestions for improve-
ment included refining terminology prompts and expand-
ing visualization customization. These insights have been
incorporated into the current version of AI-HOPE-PM, and
a formal usability study with a larger and more diverse cohort
is currently underway to systematically evaluate accessibility,
performance, and user satisfaction.

To enhance accessibility and promote broader adop-
tion, particularly in resource-constrained environments, we
are actively exploring deployment strategies that reduce
local infrastructure requirements. Although the current
AI-HOPE-PM system benefits from graphics processing
unit acceleration for large-scale genomic analyses, the
core functionalities—including query interpretation, basic
statistical modeling, and report generation—can be executed
on standard central processing unit-based systems. Addition-
ally, we are developing a lightweight web-hosted version
of the platform with backend support on scalable cloud
infrastructure, enabling institutions with limited computa-
tional resources to access AI-HOPE-PM through a browser
without the need for specialized hardware. Future itera-
tions will also offer modular processing options that allow
users to select compute-intensive features based on available
resources.

User-centered evaluations—including usability studies
with diverse researchers and clinicians—are planned to
better understand the platform’s accessibility and impact
in real-world settings. Additionally, collaborations with
community-based research initiatives may help validate
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AI-HOPE-PM’s role in addressing health disparities and
improving equity in precision medicine.

AI-HOPE-PM was developed with scalability and
accessibility in mind, including potential deployment in
resource-constrained settings. The system can be installed
and executed locally, eliminating the need for high-bandwidth
internet or continuous cloud access. While graphics process-
ing unit acceleration can enhance performance for large-scale
queries, the platform’s modular backend supports central
processing units–only configurations for smaller datasets
and standard analyses. Ongoing optimization efforts aim to
further reduce computational overhead through lightweight
LLM variants and model compression techniques. These
features support broader adoption across diverse institutional
environments, including low-resource clinical and research
settings.

A key consideration for the broader adoption of AI-
HOPE-PM is the potential for language bias and variability

in natural language queries. While the current version of
the platform is optimized for English-language input, this
may limit accessibility for nonnative English speakers or
introduce semantic variability that could affect interpreta-
tion. To mitigate this, AI-HOPE-PM employs a domain-
specific ontology with synonym recognition and structured
clarification prompts that guide users toward standardized,
interpretable input. These features reduce the likelihood
of misinterpretation and increase the reliability of query
processing. Nonetheless, we recognize the importance of
supporting diverse linguistic backgrounds in biomedical
research. Future iterations of the platform will integrate
multilingual capabilities and undergo structured usability
evaluations in non–English-speaking populations to ensure
equitable utility and minimize language-related inequities in
research engagement.

Data Availability
The AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics)
platform, along with demonstration datasets, can be accessed on GitHub [25].
Conflicts of Interest
None declared.
Multimedia Appendix 1
AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) analysis of
patients with early-onset colorectal cancer treated with folinic acid, fluorouracil, and oxaliplatin and varying levels of social
support.
[DOCX File (Microsoft Word File), 502 KB-Multimedia Appendix 1]

Multimedia Appendix 2
AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) analysis of
patients with colorectal cancer with and without chemotherapy treatment, food security, and APC mutations.
[DOCX File (Microsoft Word File), 360 KB-Multimedia Appendix 2]

Multimedia Appendix 3
AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) analysis of
patients with colorectal cancer with KRAS mutations in the context of insurance coverage and tumor stage.
[DOCX File (Microsoft Word File), 329 KB-Multimedia Appendix 3]

Multimedia Appendix 4
AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) analysis of
survival outcomes in patients with colorectal cancer with different insurance and treatment profiles.
[DOCX File (Microsoft Word File), 353 KB-Multimedia Appendix 4]

Multimedia Appendix 5
AI-HOPE-PM (Artificial Intelligence Agent for High-Optimization and Precision Medicine in Population Metrics) stratifica-
tion of patients with colorectal cancer by health care access, APC mutation, and ethnicity for survival and treatment disparity
analysis.
[DOCX File (Microsoft Word File), 385 KB-Multimedia Appendix 5]
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