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Abstract

Background: Approximately 90% of the 65,000 human diseases are infrequent, collectively affecting ~400 million people,
substantially limiting cohort accrual. This low prevalence constrains the development of robust transcriptome-based machine
learning (ML) classifiers. Standard data-driven classifiers typically require cohorts of more than 100 participants per group to
achieve clinical accuracy while managing high-dimensional input (~25,000 transcripts). These requirements are infeasible for
microcohorts of ~20 individuals, where overfitting becomes pervasive.

Objective: To overcome these constraints, we developed a classification method that integrates three enabling strategies: (i)
paired-sample transcriptome dynamics, (ii) N-of-1 pathway-based analytics, and (iii) reproducible machine learning operations
(MLOps) for continuous model refinement.

Methods: Unlike ML approaches relying on a single transcriptome per subject, within-subject paired-sample designs—such
as pre- versus post-treatment or diseased versus adjacent-normal tissue—effectively control intraindividual variability under
isogenic conditions and within-subject environmental exposures (eg, smoking history, other medications, etc), improve
signal-to-noise ratios, and, when pre-processed as single- studies (N-of-1), can achieve statistical power comparable with
that obtained in animal models. Pathway-level N-of-1 analytics further reduces each sample’s high-dimensional profile into
~4000 biologically interpretable features, annotated with effect sizes, dispersion, and significance. Complementary MLOp
practices —automated versioning, continuous monitoring, and adaptive hyperparameter tuning—improve model reproducibility
and generalization.

Results: In two case studies of distinct diseases, human rhinovirus infection (HRV) versus matched healthy controls (n=16
training; n=3 test) and breast cancer tissues harboring TP53 or PIK3CA mutations versus adjacent normal tissue (n=27 training;
n=9 test)—this approach achieved 90% precision and recall on an unseen breast cancer test set and 92% precision with 90%
recall in rhinovirus fivefold cross-validation. Incorporating paired-sample dynamics boosted precision by up to 12% and recall
by 13% in breast cancer and by 5% each in HRV. MLOps workflows yielded an additional ~14.5% accuracy improvement
compared to traditional pipelines. Moreover, our method identified 42 critical gene sets (pathways) for rhinovirus response and
21 for breast cancer mutation status, selected as the most important features (mean decrease impurity) of the best-performing
model, with retroactive ablation of top 20 features reducing accuracy by ~25%.

Conclusions: These proof-of-concept results support the utility of integrating intrasubject dynamics, “biological knowledge”-
based feature reduction (pathway-level feature reduction grounded in prior biological knowledge; eg, N-of-1-pathway
analytics), and reproducible MLOp workflows can overcome cohort size limitations in infrequent disease, offering a scalable,
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interpretable solution for high-dimensional transcriptomic classification. Future work will extend these advances across various

therapeutic and small cohort designs.
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Introduction

Precision medicine seeks to personalize health care by
accounting for individual differences in genetic makeup,
environmental exposures, and lifestyle factors. This tailored
approach becomes especially challenging when analyz-
ing high-dimensional transcriptomic data derived from
small patient cohorts (microcohorts), a scenario frequently
encountered in studies of rare or infrequent diseases.
Microcohorts typically involve datasets characterized by
high dimensionality (approximately 25,000 transcriptomic
features) juxtaposed against limited sample sizes (approx-
imately 20 persons), conditions that commonly induce
overfitting in traditional machine learning models. Advanced
analytical methodologies have thus become essential in
identifying robust and clinically meaningful biomarkers from
these small-scale studies to facilitate personalized patient
care.

A large share of the ~65,000 known human diseases are
infrequent—neither rare nor common—making it difficult
to assemble statistically robust cohorts without multiyear,
multicenter efforts. Around 5.9% of the global population
is affected by rare diseases [1], highlighting their substantial
impact on global health.

Moreover, finely stratified subtypes of otherwise com-
mon diseases present similar challenges as their reduced
prevalence within heterogeneous populations undermines
statistical power. For example, in highly heterogeneous
diseases, such as cancer, where tumor subtypes and genetic
mutation profiles can vary substantially between individu-
als, conventional machine learning approaches often suffer
from insufficient statistical power and heightened risk of
overfitting. To mitigate these challenges, single-subject
(N-of-1) transcriptome analytics has emerged as an inno-
vative approach, allowing individuals to serve effectively
as their own controls. By measuring within-subject tran-
scriptomic changes and integrating these measurements
into biologically interpretable pathway-level features, N-of-1
analyses significantly reduce noise and enhance the detection
of biologically meaningful signals, even amidst substantial
intersubject variability [2-8].

Concurrently, the emergence of machine learning
operations (MLOps), inspired by DevOps practices, has
significantly improved the deployment, optimization, and
monitoring of machine learning (ML) models. MLOps
leverage automated experiment tracking, hyperparameter
tuning, and continuous integration, enhancing workflow
efficiency, reliability, reproducibility, and scalability —factors
essential for developing robust and maintainable models in
biomedical research [9-15].
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We hypothesized that integrating three complemen-
tary strategies would enhance classification accuracy and
robustness in microcohort scenarios: (i) implementing MLOp
frameworks to achieve robust and reproducible model
performance and (ii) leveraging transcriptomic dynamics
observed between paired biological samples (eg, diseased
versus healthy tissues from the same individual). Paired-sam-
ple information can be incorporated in two distinct ways:
(ii-a) as continuous fold-change values between matched
samples or (ii-b) through single-subject (N-of-1) pathway
analysis, which aggregates paired gene-level signals into
biologically interpretable, ternary pathway features (upregu-
lated, downregulated, or unchanged) across ~4000 human
curated biological pathways annotated along with their
respective effect sizes and significance levels.

To empirically test this hypothesis, we conducted a
proof-of-concept analysis on two distinct human microco-
horts, one in breast cancer (BC) (TP53 vs PIK3CA tumors)
and one in human rhinovirus (HRV) infection (symptomatic
vs asymptomatic), each comprising paired biological samples
representing two different tissue conditions per subject. For
each cohort, we systematically evaluated three distinct data
transformation strategies: [i] conventional analysis using only
the affected tissue per subject [ii], fold-change transforma-
tion involving the ratio of affected tissue mRNA expression
to paired control tissue expression for each subject, and
[iii] N-of-1-pathway transformation, summarizing individual
subject-level pathway effect sizes and P values. The TP53-
PIK3CA contrast provides a clinically relevant and mecha-
nistically distinct testbed: both genes are frequent drivers
in BC, associated with divergent transcriptomic programs
and prognostic implications across the Cancer Genome Atlas
and independent cohorts. Their prevalence and biological
differences make them suitable paired-sample targets to
evaluate whether within-subject transformations amplify
signal over baseline variability.

Each of these 3 data transformations was subjected to
classification modeling both with and without incorporat-
ing MLOps, resulting in a total of 12 experimental condi-
tions across both cohorts. To further validate the robustness
and relevance of features selected by the best-performing
classifier, we conducted a rigorous retrospective ablation
analysis. Specifically, in ablation analysis, we masked the top
20 y discriminative features from the dataset and assessed the
resulting impact on classification accuracy and stability. This
comprehensive analysis framework allowed us to quantify
the individual contributions of key biomarkers to the model’s
predictive performance.
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Methods

Ethical Considerations

All transcriptomes were obtained as expression files from
public published USA NIH datasets (gene Expression
Omnibus and TCGA). Such expression data are not consid-
ered protected human information under HIPAA.

Human Cohort Datasets

Two distinct human cohorts, spanning cancer and infection,
were selected to test our framework: a BC cohort (oncogene

Table 1. Description of the two human cohort datasets®.
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drivers TP53 vs PIK3CA) and a HRV infection cohort
(symptomatic vs asymptomatic). Both cohorts were character-
ized by small sample sizes, varying heterogeneity, and paired
tissue samples per subject (Table 1). Processing followed
published methods, ensuring prior studies' comparability [16,
17].

Dataset HRVP Dataset

BCF€ Dataset

Source-reference GSE17156 (downloaded 9/17/2014) [18]

Platform Microarrays: Human Gene U133A 2.0

Paired tissues

The Cancer Genome Atlas (TCGA-BRCA
(downloaded 03/05/2019) [19,20]

Tllumina Hi-Seq 2000 (version 2 analyses)

Experimental

PBMCY samples drawn before and 48 hours after HRV nasal
inoculation

Symptom measures before and after successful inoculation (virus
present in sputum confirmed): [1] asymptomatic vs [2] symptomatic

Primary breast carcinoma biopsies (affected) versus
unaffected breast tissue margins

Somatic (tumor) mutations in either [1] TP53 or [2]
PIK3CA (cases with both mutations or none of these
excluded)

groups (headache, throat ache, rhinorrhea, and/or mild fever)
Individuals 19 healthy adult volunteers
#total 10 symptomatic for common cold
9 asymptomatic
Sample 38 gene expression microarray files

42 patients
TP53 (23 patients)

PIK3CA (19 patients)
84 RNAseq count files

a4#: count of individuals.

YHRV: human rhinovirus

°BC: breast cancer.

dPBMC: peripheral blood mononuclear cell

The classification task in BC was to identify one of two
oncogene drivers that influence the treatment and progno-
sis, because in primary, early-stage, nonmetastatic breast
carcinoma, TP53-mutated and PIK3CA-mutated tumors are
generally not reliably distinguishable by histopathology alone
—that is, without molecular (immunochemistry or genetic)
assays. In addition, the TP53-driven subtype has substantially
poorer 5-year survival and presents substantial resistance
to therapy [21]. While the classification task in HRV was
classifying symptomatic infected individuals versus asympto-
matic infected ones.

Additionally, we downloaded Gene Ontology (GO)
Biological Process and their gene annotations termed ‘“gene
sets,” downloaded from Ashburner et al on January 3, 2024
[22].

Dataset Transformations

One Affected Tissue Transcriptome Per
Individual

Most conventional transcriptome classifiers typically analyze
a single transcriptome derived from the affected tissue
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of each individual. To evaluate the accuracy achievable
with traditional classification methods using one sample per
individual, we used the affected tissue of the datasets and
did not use the paired control tissue. The BC cohort [16]inclu-
ded 22,279 TMM (trimmed mean of M values) normalized
gene expression [23] values from 42 individuals, and two
samples per individual (BC and unaffected margins). The
HRYV cohort [16]included 20,502 RMA-normalized Affyme-
trix GeneChip expressions of probe sets from 19 individuals
and two samples per individual (peripheral blood mononu-
clear cells 48 h before HRV inoculation and after successful
inoculation and shedding of virus) (Figure 1, Panel A).
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Figure 1. Panel A. Overview of methods and process flow of the proof-of-concept study. Classification methods are applied to 2 cohorts (Table 1),
each with two distinct clinical phenotypes: (I) Individuals with BC, stratified by oncogenic drivers (TP53 vs PIK3CA), and (ii) HRV-infected patients
(symptomatic vs asymptomatic). Each subject provides 2 samples under different conditions: (i) BC—within-subject comparison of cancerous tissue
vs. unaffected margins, and (ii) HRV —within-subject comparison before versus during infection. Six classification experiments are conducted on
each cohort’s extracted transcriptomes, evaluating 3 complementary classification strategies for microcohorts: (i) MLOps-driven robustness (Panel
B), (ii) transcriptome dynamics between paired samples (eg, exposed vs unexposed tissue), and (iii) single-subject pathway analytics (N-of-1;
details in Figure 2). Panel B. RF classifier pipeline of the BC dataset. The RF classification workflow consists of 5 key steps after extracting an
unseen evaluation set: (i) hyperparameter tuning using Weights & Biases MLOp sweep definition, (ii) human-in-the-loop expert heuristics to assess
failure patterns and overfitting (YAML-based sweep configuration: criterion, max_depth, max_features, n_estimators via wandb.sweep function),
(iii) iterative model refinement via 300 resampling cycles of 5-fold cross-validation (80% samples in the training set, 20% in the validation set,
orchestrated by W&B MLOps (wandb.agent), (iv) MLOps Automated Best Model Selection, and (v) final evaluation on unseen dataset. Panel C.
Retroactive feature ablation analysis: feature importance is assessed in both datasets to evaluate the impact of individual features on classification
performance. BC: breast cancer; HRV: human rhinovirus; RF: Random Forest;
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Figure 2. Description of the N-of-1-pathway Wilcoxon analytics in each single subject. We used the “N-of-1-pathways” method [17], which
aggregates paired RNA-level signals of each subject into pathway-level effect sizes, conducts a nonparametric Wilcoxon test comparing the
pathway-associated mRNAs in each Gene Ontology (GO) Biological Processes [P <.05; other thresholds studied elsewhere [2,3,6,16,17] for each
subject, enabling downstream classification over a smaller number of human-interpretable GO features. This method identifies significantly altered
mRNA sets associated with a pathway between two samples of one subject, yielding 4,442 GO mRNA sets in the BC cohort and 2,332 GO mRNA
sets in the HRV cohort. The output consists of ternary matrices indicating response status 1—: negatively regulated, +1: positively regulated, and
0: unaltered GO pathway. For each GO pathway, we compute FC of mRNA expression values between the affected and control tissue of a single
individual. A Wilcoxon test is then performed on these values, where the sum of positive ranks (W+) and negative ranks (W-) determine the test
statistic W by min(W+,W-). The relative magnitude of W+versus W— indicates whether the pathway is positively or negatively regulated in a
significant test (eg, W+>W-— indicates a positively regulated pathway; W—>W+ indicates a negatively regulated pathway, and a nonsignificant test
indicates an unaltered pathway). HRV scores were refined with a coefficient of variation <31%. FC: fold change; n: number of subjects; P or p:
number of features (transcripts); W+: statistically significant Wilcoxon test with up-regulated gene set (pathway score positive); W-I: statistically
significant Wilcoxon test with downregulated gene set (pathway score positive); negative): mRNA=messenger RNA; X2: indices of the affected

tissue; X1: indices of the control tissue.

Pathway Score
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Paired Samples: One Affected Tissue
Transcriptome and One Control Tissue Per
Subject.

We calculated the fold change by dividing the expression of
each mRNA value of the affected tissue by that of the control
tissue, in each subject, in each dataset, followed by a log;
transformation [6]. Single-subject studies (N-of-1-pathways)
are described in Figure 1 Panel A and Figure 2.

Model Selection

We evaluated several ML models, including Random Forest
(RF), XGBoost, Support Vector Machine (SVM), and
Logistic Regression. Random Forest was ultimately chosen
due to its robustness, capacity to model nonlinear interactions,
and superior predictive performance in identifying sympto-
matic patients and relevant gene sets. Multimedia Appendix 1
provides a comparative analysis of the ML models, highlight-
ing the factors underlying RF’s superior performance.

Classification, Cross-validation, and
MLOps

Model robustness was evaluated in both datasets using 5-fold
cross-validation. The RF model was integrated into the
Weights & Biases (W&B) MLOp framework (W&B v0.17.0,
Python 3.11.4) [24] to systematically identify features whose
interactions significantly contribute to class differentiation.
MLOps facilitated robust experiment tracking, hyperparame-
ter optimization, and model monitoring, applying consistent
hyperparameter ranges across the BC dataset (42 samples)
and the HRV dataset (19 samples). This setup allowed
us to assess MLOps’ effectiveness in guiding hyperparame-
ter tuning and model tracking while maintaining human
oversight. This study was designed to compare the ability of

https://bioinform.jmir.org/2025/1/e80735

different combinations of data transformations (single-sample
per individual, FC, N-of-1-pathways analytics) to improve
performance in small human cohorts (small n<30 individu-
als) with high feature dimensionality (very large p, transcrip-
tomes=25,000 mRNA features)

In W&B MLOps, the sweep.yaml file configured
hyperparameter sweeps by defining key parameters, search
strategies, optimization metrics, and other relevant settings
for systematic model optimization. Python’s StratifiedKFold
strategy ensured class proportion consistency and class
imbalance across 5 folds, and this process was repeated across
5 iterations with different folds serving as the validation
set, constituting a stratified 5-fold cross-validation unbiased
model selection protocol. Accuracy, precision, and recall
performance metrics were calculated across cross-validation
folds and held-out unseen test sets (Tables 2 and 3). The
held-out unseen test partition was sequestered throughout
model development and accessed only once, after cross-
validation and hyperparameter selection were completed,
ensuring that no tuning decisions were informed by test
data. To refine hyperparameter ranges, a human expert in
the sweep configuration loop revised the best hyperparameter
intervals using the sweep.yaml configuration. This YAML
file specifies the parameters to be tuned, the search strategy,
optimization metrics, and other pertinent settings (Figure
1, Panel B). To further evaluate generalizability given the
limited cohort sizes, we performed a learning curve analysis
and accompanying power calculations; results are provi-
ded in Multimedia Appendix 2, which details experimental
reproducibility safeguards (eg, immutable YAML configura-
tions, dataset/hyperparameter hashes, deterministic folds, and
logging of all trials to MLOps). Methods for tracing RF
classifier decisions to biological mechanisms are addressed
in Multimedia Appendix 3.
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Table 2. Performance summary of analysis in human rhinovirus (symptomatic vs asymptomatic) Random Forest classifier.?

Feature (transcript) transformation

Two-sample (one sample in each condition) mRNAs

design Single-sample mRNAs Fold change N-of-1 pathways (single-subject studies)
Number of features and samples
Number of mRNA transcripts 22,279 features 12 496 features 553 (no. of GOsb)
Training samples 15 15 16
Validation samples 4 4 3
Cross validation (CV) values
CV accuracy: mean (SD) .85 (.16) 95 (.15) .88 (.14)
CV precision: mean (SD) 87 (22) 97 (21) 92 (.14)
CV recall: mean (SD) .85 (.16) 95 (.17) 90 (.16)
CV F1: mean .86 91 96
Selected feature count 266 mRNAs 112 mRNAs 42 GOs
Hyperparameters
Entropy criterion maximum depth 87 18 42

Maximum features log2 n-estimators: 148

null n-estimators: 56

sqrt n-estimators: 24

4Fold-change model achieves highest CV precision (0.97), while N-of-1 pathway model offers greater stability with the lowest CV (SD 0.14),
outperforming single-sample designs across all metrics. Corresponding 90% Cls are provided in Supplement File 5 in Multimedia Appendix 4.

bGO: Gene ontology Biological Process gene set.

Table 3. Performance summary analysis in the breast cancer Random Forest (PTP53 vs PIK3CA) classifier®.

Feature (transcript) transformation design

Two sample (one in each condition) mRNAs

Single mRNAs Fold change N-of-1 pathways (single-subject studies)

Number of mRNA transcripts 20,502 features 16,384 features 4442 features (no. of GOsb)
Training sample 27 27 27
Validation sample 6 6 6
Test samples 9 9 9
Cross validation (CV) accuracy: mean (SD) 72 (.18) .62 (.15) 73 (07)
Unseen test set accuracy

Test accuracy 78 .78 .89

Test precision 78 .86 90

Test recall a7 78 90

Test F1 78 .82 90
Selected feature count 105 mRNAs 97 mRNAs 21 GOs
Entropy criterion maximum depth 115 148 165

Maximum features sqrt n-estimators: 17

log2 n-estimators: 23 null n-estimators: 8

40n the unseen test set, pathway-level features achieved 12% higher accuracy and greater stability compared with fold-change and single-sample
classifications. Corresponding 90% Cls are provided in Multimedia Appendix 4.

Feature Importance, Stability, and Top-K
Retroactive Feature Ablation

For each dataset and representation (single-sample mRNA,
fold-change mRNA, and N-of-1 pathway scores), we trained
RF under repeated, stratified 5-fold cross-validation. Within
each fit, “feature importance” was computed as a mean
decrease in impurity (MDI)—the sample-weighted reduction
in node impurity attributable to a feature—and then aggrega-
ted across trees, folds, and repeats to yield a global rank-
ing [25]. To assess the “stability” of per-repeat rankings,
we computed (i) Spearman rank correlation (Q) on the full
ordering and (ii) Jaccard overlap of the Top-k feature sets
[26-28]. Top-K denotes the k highest-ranked features by

https://bioinform.jmir.org/2025/1/e80735

aggregated MDI computed on the full, unpruned feature
space.

We conducted a retroactive feature ablation analysis on
both datasets to assess the impact of the top-ranked fea-
tures identified by our selected classifiers. To harmonize
ablations across representations, we prespecified k=20 (two
final models selected 21 features, motivating a common k).
For retroactive ablation, we removed the top 20 features from
the training, validation, and held-out test partitions. We then
refit from scratch the previously selected model configuration
with its exact, prechosen hyperparameters, without additional
tuning or human-in-the-loop changes. The held-out test set,
transformed once by dropping the same training-derived top
20 indices, was evaluated a single time. This remove-and-refit
procedure estimates the marginal contribution of top-ranked
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features while minimizing information leakage [29]. This
retraining step was conducted to measure the influence of the
ablated features on performance metrics such as precision and
recall (Figure 1, Panel C). Together, MDI rankings, stability
metrics, and ablation results provide post hoc explainability
of the model’s global feature contributions [30].

Results

In both datasets, RF model robustness was evaluated using
5-fold cross-validation (Methods 2.3-2.4, Figure 1 Panels
A-B). For the 42 individuals BC dataset (23 TP53 and
19 PIK3CA), 80% (27 individuals) was used for training,
while the remaining 20% was split into 6 individuals for
validation and 9 individuals for testing, ensuring consis-
tent evaluation. Similarly, in the HRV dataset, consisting
of 19 individuals (10 symptomatic and 9 asymptomatic),
the data were split into 80% (16 individuals) for training
and 20% (3 individuals) for validation. The StratifiedKFold
approach from the scikit-learn Python package was used to
maintain consistent class proportions across folds, ensuring
validation consistency and reproducibility, and preserve class
proportions in every training/validation split (class imbal-
ance results not shown). In MLOp-guided studies (Methods
24, Figure 1 Panel B), after testing various hyperparame-
ter interval ranges, a human-in-the-loop (expert) confirmed
the following optimal RF hyperparameters: criterion (gini

https://bioinform.jmir.org/2025/1/e80735
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or entropy), number of estimators (5 to 150), maximum
features (sqrt, log2, or None), and tree depth (5 to 200).
SVM and XGBoost hyperparameters are not shown as
they yielded lower accuracies. As summarized in Table 2
(HRV), Table 3 (BC), and Figure 3, paired-sample—based
feature transformation strategies outperformed single-sample
approaches across all major evaluation metrics. In the HRV
cohort, the fold-change model yielded the highest cross-vali-
dation (CV) precision (0.97+0.21 SD) and recall (0.95+0.17
SD), while the N-of-1 pathway-based classifier demonstra-
ted superior stability, achieving lower CV SDs across all
metrics, including CV precision. By contrast, the single-sam-
ple model achieved a CV precision of only 0.87+0.22 SD.
To further assess generalizability given the limited cohort
sizes, we performed a learning-curve analysis using N-of-1
pathways as an exemplar; these results are provided in
Multimedia Appendix 2. To trace classifier-selected features
back to underlying biological processes, we performed
heatmap clustering of features and pathway enrichment of
transcripts, provided in Multimedia Appendix 3. To address
the concern that the superior performance of the N-of-1
pathway method may reflect dimensionality reduction rather
than pathway biology, we performed an additional analysis
applying comparable feature reduction (~4000 features) to
the single-sample and fold-change models; these results are
provided in Multimedia Appendix 5.

JMIR Bioinform Biotech 2025 | vol. 6 | 80735 | p. 7
(page number not for citation purposes)


https://bioinform.jmir.org/2025/1/e80735

JMIR BIOINFORMATICS AND BIOTECHNOLOGY Shabanian et al

Figure 3. Paired sample per subject machine learning designs outperform single-sample designs. As illustrated, paired-sample per subject designs,
either using log, fold change (purple) or single-subject N-of-1-pathway analysis (yellow), achieved higher classification accuracies compared to
single-sample per subject designs (green), across both Breast Cancer (BC) and Human Rhinovirus (HRV) microcohorts. However, pathway-based
classification surpassed fold-change performance in only one dataset, suggesting that the underlying biology (eg, structure of the information
model) of a condition may determine whether pathway-level or gene-level (fold-change) features are more informative for classification. No
MLOps indicates a conventional cross-validation run without iterative retraining or sweep-based refinement, serving as the baseline against which
the orchestrated MLOp pipeline was compared. Incorporating MLOps (circles and squares) yielded an average accuracy improvement of ~14.5%
compared to traditional approaches without iterative retraining (ie, single cross-validation runs). By contrast, classifiers subjected to retroactive top
20 feature ablation (indicated by squares) experienced a performance drop of approximately 25%. MLOps: Machine Learning Operations; mRNA:

messenger RNA; Log2: logarithm base 2
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In the BC cohort, the N-of-1 pathway—based model ach-
ieved the highest test precision and recall of 0.90, reflecting
an approximate 12% absolute improvement over the single-
sample classifier (0.78 precision, 0.77 recall). This model
also demonstrated greater stability, with a cross-validation
SD approximately half that of the single-sample and fold-
change approaches. These findings are further illustrated in
Figure 3, which compares performance across transformation
strategies. Collectively, the results demonstrate the effective-
ness of paired-sample transformations—particularly when
combined with MLOp-guided optimization—in improving
classification accuracy and model stability in micro-cohort
settings.

Retroactive feature ablation studies were conducted in
breast cancer and HRV datasets (Figure 3; Multimedia
Appendix 5). To assess the impact of top-ranked features
on model performance, an ablation study was performed
by sequentially removing the 20 highest-ranked features
identified by the classifiers and retraining the optimal
Random Forest model with previously tuned hyperparame-
ters. It consisted of masking these features from the data
input and retraining (Methods 2.5; Figure 1 Panel C).
This analysis quantified the contribution of these features
by evaluating changes in precision and recall, revealing a
significant decline in predictive accuracy upon their removal.

https://bioinform.jmir.org/2025/1/e80735

The results underscore the robustness of the selected features
derived through the MLOps-driven pipeline, with perform-
ance degradation observed across all feature sets. Of note,
most classifiers retained on the order of ~100 features,
whereas the final BC model retained only 21 N-of-1 pathway
features; nonetheless, the ablation step uniformly removed the
top 20 features across all methods to maintain consistency,
regardless of the total feature count. In addition, we evalu-
ated models trained using only the top 20 features, which
performed substantially better than the ablated models but
below the full models (Multimedia Appendix 5), thereby
quantifying both the predictive value and the limitations of
this small feature subset.

Discussion

Principal Findings and Comparison With
Previous Works

Transcriptome classifiers traditionally analyze a single
transcriptome per subject, providing a baseline for evaluating
the performance of standard classification methods. In our
study, this conventional approach was represented by the
single-sample per subject design. Specifically, the BC cohort
[11] included 22,279 gene expression values normalized
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using the trimmed mean of M values (TMM) method [20]
from 42 individuals, while the HRV cohort [6] comprised
20,502 Affymetrix GeneChip probe-set expressions normal-
ized using Robust Multiarray Average (RMA) from 19
individuals.

We systematically compared 3 mRNA feature transfor-
mation strategies—single-sample, log, fold-change (paired
design), and N-of-1 pathways (paired design)—across both
datasets, using identical hyperparameter sweeps implemented
within the W&B MLOp platform (wandb v0.17.0, Python
3.11.4). Among the evaluated classifiers (Random Forest,
XGBoost, SVM, Logistic Regression), RF was selected for
final implementation based on its ability to model nonlinear
interactions and superior predictive performance in distin-
guishing symptomatic individuals and uncovering relevant
gene sets (data not shown).

Results consistently demonstrated that paired-sample per
designs outperformed single-sample designs, with up to
12% higher precision accuracy observed for the N-of-1
pathway—based approach in BC and 5% in HRV, while
recall was increased by 13% and 5%, respectively. How-
ever, this performance advantage varied across datasets:
while pathway-based classification outperformed fold-change
in the BC cohort, fold-change achieved 10% increase in
both precision and recall in the HRV dataset. The impact
of pathway-level features on classification outcomes is
demonstrated by their high importance rankings and the
sharp ~25% accuracy drop observed in retroactive ablation,
showing that the model not only learns from these fea-
tures but also relies on them as key decision boundaries.
Thus, the consistent finding is that 2-sample transformations
outperform single-sample designs, although which represen-
tation (fold-change vs pathway) is optimal appears task-
and biology-specific. At present, methods to prospectively
identify which 2-sample representation will perform best in
a given dataset remain undeveloped; however, the differen-
tial results here are consistent with biological granularity
as oncogene-level classification in breast cancer is inher-
ently pathway mediated, while HRV organism-level symptom
classification reflects broader organismal phenotypes. These
differences suggest that the underlying disease biology
influences whether gene-level or pathway-level features are
more informative. In our framework, pathway-level features
contribute to classification by encoding coordinated transcrip-
tomic changes into ternary indicators of pathway activation
(upregulated, downregulated, or unchanged). Unlike raw
expression values or continuous fold-change variables, these
ternary ordinal features emphasize significant, coordinated
shifts at the pathway level, providing interpretable signals
that capture biological mechanisms rather than gene-level
noise. These ternary variables act as global indicators of
pathway perturbation, enabling the classifier to learn patterns
of coordinated biological dysregulation that are not captured
by individual transcripts alone. This representation reduces
dimensionality by several orders of magnitude, mitigates
noise from gene-level variability, and provides features with
direct biological meaning.

https://bioinform.jmir.org/2025/1/e80735
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Distinguishing TP53- from PIK3CA-driven breast cancers
is clinically important: TP53 mutations predominate
in estrogen receptor—negative tumors and portend poor
prognosis, whereas PIK3CA mutations are frequent in
estrogen receptor—positive tumors and guide PI3K/mTOR-
targeted therapy [21]. Transcriptome-based classifiers that
stratify TP53 versus PIK3CA mutations therefore have
direct translational value for prognosis and treatment
selection. Classifying transcriptome-level signals (~1078
m) by oncogenic driver mutations—molecular alterations
occurring at the nanometer scale is inherently a proximal
task in the biological hierarchy, especially when contrasted
with symptom-based classifications for HRV infection, which
manifest at the meter scale. Moreover, early-stage primary
breast carcinoma remains fundamentally a disease of genetic,
genomic, and subcellular pathways. It is therefore more
amenable to gene set-based transformations as conventional
histology alone cannot reliably distinguish its molecular
subtypes without adjunct immunohistochemical or genomic
markers. In summary, paired-sample designs consistently
improved precision and recall, as hypothesized; however, the
optimal transformation method may vary by disease context,
with some conditions favoring fold-change models and others
better suited to single-subject gene set analysis.

Integrating MLOps into the modeling pipeline led to
a ~145% improvement in classification accuracy com-
pared with non-MLOps workflows that relied on a sin-
gle cross-validation run without iterative retraining. This
finding underscores the benefit of programmatic, reprodu-
cible, and feedback-driven model development. Moreover,
our retroactive top feature ablation analysis, which involved
retraining classifiers after removing the top 20 features,
revealed a ~25% reduction in accuracy, demonstrating the
importance of retaining high-contribution features in high-
dimensional settings.

In the HRV microcohort, the MLOp-guided fold-change
model achieved excellent precision (0.97) and recall (0.95),
while single-sample designs were more susceptible to
overfitting and noise due to higher dimensionality. By
contrast, the N-of-1-pathway approach proved more effective
in the BC cohort, which is characterized by heterogeneous
tumor biology; this model achieved test precision and recall
of 0.90. Conversely, MLOp-guided fold-change analysis in
BC yielded lower precision (0.86) and recall (0.75), highlight-
ing the relative strength of pathway-informed features for
modeling complex biological variation.

Collectively, these results highlight how paired-sample
designs—particularly when paired with MLOps—yield more
accurate and interpretable models, especially in small cohort
scenarios. Furthermore, our study demonstrates how expert-
guided decisions about feature transformations (eg, fold-
change vs pathways), integrated with programmatic MLOp
workflows, can lead to substantial performance gains. The
combination of human-in-the-loop oversight and automated
optimization (as shown in Tables 2-3 and Multimedia
Appendix 1) offers a pragmatic framework for building
biologically grounded classifiers in data-limited settings.
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Few studies have systematically addressed classifier
development requirements in very small cohorts. Our
previous work demonstrated feasibility in a prospective
cohort [6] without comparative evaluations against conven-
tional methods or MLOp integration. Transfer learning has
shown promise in classifying cell types in single-cell RNA
sequencing [31] and transcriptomic datasets derived from
large human cohorts [32], but these methods have not yet
been applied specifically to small human cohorts for clinical
predictive analytics.

Several limitations must be noted: (i) alternative machine
learning models (SVM, Logistic Regression, XGBoost)
consistently underperformed relative to RF, and results
were omitted for brevity. Future research should explore
fusion deep learning and transfer learning approaches. (ii)
Our conclusions are based on limited datasets, necessitat-
ing additional transcriptomic data or simulation studies to
robustly assess generalizability. (iii) Despite efforts to control
overfitting, inherent constraints persist due to small sample
sizes, emphasizing the need to develop microcohorts through
subsampling larger paired-sample datasets in future studies;
though such datasets are uncommon.

Conclusions

Most of the approximately 65,000 known human disea-
ses remain inadequately treated due to their rarity and
the consequent scarcity of comprehensive studies. The
low prevalence of these diseases severely limits conven-
tional transcriptomic approaches as bulk RNA sequencing
(bRNAseq) typically requires larger cohorts for effective
classifier development. Emerging technologies such as
spatial RNA sequencing and single-cell RNA sequencing
present promising alternatives suitable for smaller cohort
studies; however, these methods currently incur approxi-
mately 20 times higher costs per sample and capture
around 5 times fewer mRNA transcripts. As these tech-
nologies become more affordable and achieve improved
transcriptomic coverage, novel analytical methodologies
tailored for small cohorts are expected to evolve. Addi-
tionally, transfer learning techniques, already successfully
applied to large-scale transcriptomic datasets, offer consid-
erable potential for small-cohort classification. However,
standardized frameworks for applying transfer learning
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specifically to paired-sample designs are not yet established,
highlighting an important area for future research.

This study systematically evaluated multiple complemen-
tary approaches designed to enhance the statistical power of
bulk mRNA-based classification within microcohorts. Our
results demonstrate that the integration of these approaches
improves precision and recall by approximately 12.5%-
14.5% compared to traditional single-sample methodologies.
Specifically, we propose strategies that include the following:
(1) leveraging paired comparisons of affected and control
tissues within individual subjects, and (ii) using MLOp-gui-
ded analytical workflows combined with expert-in-the-loop
oversight to ensure robustness, transparency, and reprodu-
cibility. This paired-sample methodology has been shown
to improve classifier development in large cohorts [6,33-
38], and here we show that, in very small cohorts, it
also facilitated classifier development at both the individual
mRNA level (via fold-change analysis) and the biologically
interpretable knowledge-anchored pathway level (through
N-of-1-pathway-based analyses leveraging Gene Ontology
gene sets). Our results indicate that both paired-sample
representations can outperform single-sample approaches,
with fold-change or pathway-based features proving more
effective depending on the underlying biological context.
The adoption of MLOps practices optimized hyperparameter
tuning and model deployment, as well as mitigated overtrain-
ing, while expert oversight ensured the biological valid-
ity of the results. Collectively, these strategies effectively
address the challenges posed by high feature dimensionality
and limited sample sizes, thereby laying the groundwork
for advancing personalized therapeutic interventions in rare
disease contexts.

Although this investigation primarily targeted a specific
transcriptomic scale, optimal classifiers for clinical predic-
tion are likely to incorporate comprehensive data across
diverse biological scales (metabolome, genome, proteome,
methylome, etc) jointly with real-world evidence and clinical
dimensions. Future research endeavors should integrate
transcriptomic data with multiomics approaches, medical
imaging, and patient-centric outcomes to further enhance
predictive accuracy and personalized medicine capabilities.
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