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Abstract

Background: Plant-derived exosome-like nanovesicles (P-ELNs) effectively deliver bioactive compounds due to their high
biocompatibility and low immunogenicity. While liquid chromatography-mass spectrometry (LC-MS) profiles compounds in
complex samples, its analysis of large datasets remains limited by traditional methods. Recent advances in large language models
(LLMs) and domain-specific systems have enhanced Chinese biomedical data processing and cross-modal pharmaceutical
research.

Objective: This study aimed to create a multimodal framework of LC-MS combined with DeepSeek models for data mining
of compounds with wound-healing properties from exosome-like nanovesicles derived from Cayratia japonica (CJ-ELNs).

Methods: LC-MS identified compounds enriched in CJ (n=3) and CJ-ELNs (n=3), and then compounds specifically enriched
in CJ-ELNs were filtered via a four-step filtering workflow. The CJ-ELNs-specific compounds were processed by DeepSeek
models for screening naturally active compounds with targeted functions of antioxidation, anti-inflammation, anticellular damage,
antiapoptosis, wound healing and tissue regeneration, and cell proliferation.

Results: A multimodal framework of LC-MS combined with the DeepSeek-DF model was created. With the assistance of
artificial intelligence (AI), a total of 46 naturally active compounds derived from CJ-ELNs with targeted functions were identified.

Conclusions: A self-designed multimodal framework of LC-MS, combined with DeepSeek models, rapidly and accurately
identifies naturally active compounds from CJ-ELNs. This AI-powered system innovatively integrates the traditional analytical
technique with modern LLMs, thus greatly favoring data mining of active ingredients in traditional Chinese medicine herbs.

(JMIR Bioinform Biotech 2026;7:e80539)   doi:10.2196/80539

KEYWORDS

DeepSeek; liquid chromatography-mass spectrometry; LC-MS; Cayratia japonica exosome-like nanovesicles; CJ-ELNs; artificial
intelligence; AI-powered multimodal framework; wound healing and tissue regeneration

Introduction

Plant-derived exosome-like nanovesicles (P-ELNs) contain
abundant bioactive molecules, serving as novel carriers of
natural products to mediate intercellular communication and
mediate physiological processes [1,2]. P-ELNs are superior to
conventional mammalian-derived exosomes, possessing unique

advantages such as high biocompatibility, high skin
permeability, low cytotoxicity and low immunogenicity [3,4].
Multiple in vitro and in vivo studies indicate that these P-ELNs
possess intrinsic therapeutic activity, offering promise for
disease treatment and enhancing human health [5,6]. Cayratia
japonica, a traditional Chinese medicinal herb, is widely used
for the treatment of traumatic injuries such as contusions and
lacerations [7]. Recent clinical studies have confirmed that
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topical application of CJ ointment effectively alleviates local
inflammation and promotes the repair and regeneration of
damaged tissue, demonstrating favorable therapeutic outcomes
in the management of postoperative infectious wounds around
the anus [8]. However, research and application of exosome-like
nanovesicles (ELNs) derived from CJ remain incomplete. Our
research team successfully extracted and characterized a novel
type of P-ELNs from the traditional Chinese medicinal herb
Cayratia japonica, namely Cayratia japonica exosome-like
nanovesicles (CJ-ELNs). They possess efficient delivery of
bioactive compounds to wound sites, thus favoring tissue
regeneration from infectious wound-related disorders. Bioactive
constituents encapsulated within CJ-ELNs are dominant in
wound healing. Consequently, the identification and
characterization of bioactive compounds responsible for wound
healing are of paramount significance.

Great strides have been made in the screening of active
ingredients from natural products via omics techniques [9].
Liquid chromatography–mass spectrometry (LC-MS) has
emerged as a powerful tool for profiling trace-level compounds
in complex samples, although its performance in processing
massive data is limited by traditional manual or rule-based
analytical approaches [10,11]. In recent years, large-scale
pretrained language models (LLMs), such as ChatGPT, GPT-4,
and domain-specific systems like DeepSeek, have significantly
transformed the landscape of biomedical data analysis and
knowledge discovery [11,12]. These models exhibit powerful
capabilities in natural language understanding, semantic
reasoning, and prompt-based knowledge retrieval [13-15]. They
are promising tools to assist omics analysis. In particular,
DeepSeek models have been widely adopted for optimizing
Chinese-language biomedical contexts, and supporting
cross-modal tasks in pharmaceutical research, such as entity
recognition, document summarization, and semantic ranking
[16,17].

In this study, we innovatively created a multimodal framework
of LC-MS combined with DeepSeek models for data mining of
compounds with wound-healing properties from CJ-ELNs. This
work illustrates the potential of artificial intelligence (AI) as a
computational engine in natural compound discovery and offers
a scalable solution for mining multimodal biochemical data.

Methods

Preprocessing of LC-MS Data
Untargeted metabolomic profiling of CJ and CJ-ELNs was
performed by LC-MS. A total of 6 samples (including 3 CJ
samples and 3 CJ-ELNs samples) were analyzed using a
ultra-high-performance liquid chromatography (UHPLC) system
coupled to a Q Exactive HF-X mass spectrometer (Thermo
Scientific). Chromatographic separation was performed on an
HSS T3 column (maintained at 40°C) with a 12-minute linear
gradient from 2% to 98% mobile phase B at a flow rate of 0.3
mL/min. Mass spectrometry (MS) data were acquired in both
positive and negative electrospray ionization (ESI) mode (±
ESI) using a data-dependent acquisition strategy (top 10 most
intense ions). Raw data were first converted to the mzML format
using ProteoWizard, followed by processing, using Compound
Discoverer 3.3 (Thermo Fisher Scientific) for peak alignment
(with maximum retention time shift of 0.5 min and mass
tolerance of 10 ppm) and normalization (using the median of
maximum peak areas). Compound identification was achieved
by matching MS/MS spectra against the following databases:
mzCloud, LipidMaps, KEGG, HMDB, and MassBank. The
matching criteria were set to a mass tolerance of 10 ppm and a
minimum match factor threshold of 10. A four-step filtering
workflow was designed to quantitatively identify target
compounds as follows (Figure 1).

1. Filtering of match confidence: compounds with spectral
match scores ≥80 were retained [18];

2. Filtering of unique compounds of CJ-ELNs: compounds
identified in CJ and CJ-ELNs were compared with isolated
compounds unique to CJ-ELNs;

3. Filtering of biological relevance: candidate compounds
were screened for associations with wound healing-related
signaling pathways using the DeepSeek-Bio model;

4. Semantic recognition and prompt engineering: final
candidate molecules were refined through semantic analysis
and prompt-based selection.

Common and unique compounds derived from CJ and CJ-ELNs
were visualized in a Venn diagram, and a word cloud analysis
was conducted via Python. Functions and tools, and databases
of key terms used in this study are listed in Table 1.
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Figure 1. A four-step filtering workflow. CJ-ELNs: Cayratia japonica exosome-like nanovesicle; LC-MS: liquid chromatography-mass spectrometry.

JMIR Bioinform Biotech 2026 | vol. 7 | e80539 | p.4https://bioinform.jmir.org/2026/1/e80539
(page number not for citation purposes)

Fu et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


JMIR Bioinform Biotech 2026 | vol. 7 | e80539 | p.5https://bioinform.jmir.org/2026/1/e80539
(page number not for citation purposes)

Fu et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table . Key terms, functions, tools and databases used in this study.

Tools/databasesFunctionsKey terms

ProteoWizardStandardized data storagemzML

Deepseek 671B Model Network Edition

KEGG database

Biological pathway association analysisDeepSeek-Bio

Chemoinformatics software packagesDigital characterization of molecular structuresMorgan

PubMed.proLiterature feature extractionPubMedBERT

Deep learning frameworks (eg, PyTorch)Visualization of model decisionsGrad-CAM

The Great Prophecy Model of Human-Computer
Interaction

automatic semantic recognitionASR

Construction of a Multimodal Framework of LC-MS
Combined With DeepSeek Models
A multimodal framework of LC-MS combined with the
DeepSeek-DF model was created, consisting of two major
components of the input and output layers. The input layer
integrated structural features of compounds (Morgan

fingerprints), quantitative features (z score normalization), and
literature-derived features (PubMedBERT embeddings). The
core architecture was listed in Figure 2. Additionally, the output
layer used multitask learning to simultaneously predict
wound-healing activity via Sigmoid output and mechanism
category via Softmax output.

Figure 2. The core architecture of the input layer.

Interpretability-Based Filtering
The Automated Semantic Recognition (ASR) module and
prompt engineering techniques of DeepSeek-R1 32B, as well
as web searching were used to interpret the potential biological
functions of the screened candidate compound with an
annotation of functional labels. A plausibility assessment was
then performed based on predefined criteria, including
antioxidation, anti-inflammation, anticellular damage,
antiapoptosis, wound healing and tissue regeneration, and cell
proliferation. Each compound was evaluated and categorized

using the following scoring scheme: √ (confirmed), × (not
supported), and ? (uncertain). Taking the metabolite
(-)-Epicatechin 3-O-gallate as an example, its function, category
and possibility in the involvement of wound healing, tissue
regeneration, antioxidant, and anticellular damage were
predicted via the multimodal framework (Table 2). Following
this preliminary filtering, manual curation was conducted to
eliminate compounds of nonplant origin and those with low
abundances. Ultimately, a refined set of characteristic natural
products from CJ-ELNs with potential wound-healing properties
was selected.
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Table . Functions, categories and possibility in the involvement of biological processes of representative metabolites.

PossibilityCategoriesFunctionsCompound

Wound healing: ×, tissue regenera-
tion: ×, antioxidant: √, anti-cellular
damage: ?

Organic compound, antioxidant
factor, anti-inflammatory factor,
energy metabolism, phenolic factor

Antioxidant, anti-inflammatory, an-
ti-cancer, cardiovascular protection,
glucose and lipid metabolism regu-
lation.

(-)-Epicatechin 3-O-gallate

Wound healing: ×, tissue regenera-
tion: ×, antioxidant: √, anti-cellular
damage: ?

Flavonoids, antioxidant, anti-inflam-
matory

Antioxidant and anti-inflammatory,
maintaining vascular resilience, re-
ducing vascular permeability and
fragility, exhibiting certain antiviral
and anticancer effects.

Rutin

Wound healing: ×, tissue regenera-
tion: ×, antioxidant: ×, anti-cellular
damage: ×

Organic compounds, alkaloids, ener-
gy metabolism

Central nervous system stimulants,
enhance mental alertness, alleviate
fatigue.

Caffeine

Results

Acidic Compounds Are Enriched in CJ-ELNs
After conversion and normalization of the raw LC-MS data, a
total of 829 and 2212 compounds were identified from CJ and

CJ-ELNs. A Venn diagram visualized 1881 specific compounds
in CJ-ELNs (Figure 3). “Acid,” as the most frequent term across
all entries of metabolite names, was detected by a word cloud
analysis (Multimedia Appendix 1). It suggested that acidic
compounds were highly enriched in CJ-ELNs.

Figure 3. Enrichment of acidic compounds in CJ-ELNs. (A) A Venn diagram visualizing an intersection of compounds identified from both CJ and
CJ-ELNs and unique compounds in CJ-ELNs. CJ: Cayratia japonica; CJ-ELNs: Cayratia japonica exosome-like nanovesicle.

Rapid and Accurate Data Mining of Compounds in
CJ-ELNs With Functional Properties
A total of 1881 candidate compounds enriched in CJ-ELNs
were functionally annotated and classified using the
self-designed multimodal framework of LC-MS combined with

DeepSeek models. They were categorized into 20 distinct
classes, including organic compounds, alkaloids, amino acids,
biomolecules, organic acids, antioxidants, anti-inflammatory
agents, energy metabolism-related molecules, phenolics,
cytoprotective agents, alcohols, and others. Organic compounds
were the leading category of compounds enriched in CJ-ELNs
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(Figure 4, Multimedia Appendix 2). Functionally, 43.33%
(n=39) of compounds enriched in CJ-ELNs possessed the
antioxidant property. With the assistance of DeepSeek, we
specifically screened compounds enriched in CJ-ELNs with

targeted functions of antioxidation, anti-inflammation,
anticellular damage, antiapoptosis, wound healing and tissue
regeneration, and cell proliferation.

Figure 4. Rapid and accurate data mining of compounds in CJ-ELNs with functional properties. Top 20 classifications of compounds enriched in
CJ-ELNs. CJ-ELN: Cayratia japonica exosome-like nanovesicle.

Bioactive Compounds of CJ-ELNs Responsible for
Wound Healing and Tissue Regeneration
We estimated the overall expression levels of compounds across
the six target functions derived from the DeepSeek model within
this multimodal framework, visualizing the results in radar chart
format after log2-transformation. (Figure 5). Notably,
compounds with the antioxidant function possessed the highest
expression levels, proving the antioxidant mechanism of
CJ-ELNs in wound repair. Finally, a secondary filtering of

compounds with targeted functions was conducted. We manually
excluded nonplant–derived compounds, including those of
animal origin, synthetic chemicals, and other nonbotanical
sources. In addition, compounds with low expression levels in
CJ-ELNs were also removed. As a result, a total of 46 naturally
active compounds derived from CJ-ELNs with targeted functions
were identified (Figure 6 and Multimedia Appendix 3). Citric
acid was the most abundant compound with the targeted
functions, which was consistent with the finding from the word
cloud analysis.
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Figure 5. Radar plots visualizing bioactive compounds of Cayratia japonica exosome-like nanovesicles with targeted functions.

Figure 6. Expression levels (log2-transformed) of naturally active compounds derived from Cayratia japonica exosome-like nanovesicle identified by
an integration of liquid chromatography-mass spectrometry and DeepSeek models.
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Discussion

Principal Findings
This study innovatively integrated DeepSeek models with
LC-MS to successfully predict the major natural products of
CJ-ELNs responsible for wound healing. DeepSeek’s ASR
semantic recognition and prompt engineering worked together
to generate initial classification labels. Moreover, an automatic
assessment effectively, rapidly, and accurately achieved the
goal of data mining of specific compounds for targeted
functions.

AI techniques, particularly LLMs, have become an unstoppable
force for reshaping medical research [19,20]. Traditionally,
LC-MS is a powerful analytical technique to identify and
quantify active ingredients in traditional Chinese medicine
(TCM) herbs. However, a rapid and accurate recognition of
compounds with targeted functions, and a quantitative analysis
of trace concentrations in complicated samples can be
challenging [21]. We expected that an integration of LC-MS
and LLMs would benefit TCM research, including the
acceleration of active ingredient screen, precise targeting of
interested compounds for certain diseases, and anchoring the
promising candidates for developing new drugs. DeepSeek is
an intelligent system based on a large-scale pre-trained language
model, exhibiting strong capabilities in text understanding,
knowledge reasoning, and cross-modal collaborative analysis,
particularly excelling in processing information within
Chinese-language contexts [22,23]. It enables rapid processing
and analyzing massive volumes of both unstructured and
structured data, thus digging biological insights out of complex
omics datasets [24,25].

In the present study, we first created a four-step filtering
workflow and quantitatively identified target compounds from
CJ-ELNs by LC-MS. The cloud word analysis emphasized the
term of acid among screened compounds enriched in CJ-ELNs.
Acidic compounds derived from traditional Chinese herbals are
established for the role of clearing heat and detoxifying [26].
Numerous studies have reported that acidic compounds in plants
exert antioxidant, antibacterial, and anti-inflammatory effects
through mechanisms such as scavenging free radicals, alleviating
oxidative stress, modulating inflammatory factors, stimulating
fibroblast proliferation, promoting collagen deposition,

enhancing epithelialization, and inducing angiogenesis [27,28].
To achieve a precise data mining of compounds with relevant
functions, DeepSeek models lent a hand that specifically
screened compounds in CJ-ELNs with targeted functions of
antioxidation, anti-inflammation, anticellular damage,
antiapoptosis, wound healing and tissue regeneration, and cell
proliferation. Finally, naturally active compounds in CJ-ELNs
were resurfaced for their promising potentials in wound repair.
For example, studies have shown that baicalin accelerates the
wound healing process by downregulating the expression of
pro-inflammatory cytokines (IL-6 and IL-1β) while upregulating
the anti-inflammatory factor IL-10, and by promoting the
secretion of various growth factors (VEGF, FGF-2, PDGF-β,
and CTGF) [29]. The combination of LC-MS with DeepSeek
paves the way to further analyses of therapeutic targets from
traditional Chinese herbs for wound healing and tissue
regeneration [30,31].

Limitations in this study should be noted. Firstly, bioactive
compounds derived from CJ-ELNs were mined via LC-MS and
a single LLM, namely, DeepSeek-R1. Other cutting-edge LLMs
such as Claude, GPT-4 and Liama [32] can be further analyzed
for the assistance of LC-MS in identifying interested
compounds. Secondly, the 46 naturally active compounds
derived from CJ-ELNs with targeted functions should be
validated in in vivo and in vitro experiments. Lastly, the
workflow we have established requires further validation on
independent datasets. We shall address the aforementioned
issues in subsequent work, including evaluating the efficacy of
compounds through cell migration and transdermal tissue
compatibility assays, verifying their efficacy via macroscopic
imaging and H&E staining following animal wound modelling
interventions, and validating potential pathways involved
through Western blot and immunohistochemical analysis.

Conclusion
We innovatively designed a multimodal framework of LC-MS
combined with DeepSeek models that rapidly and accurately
identify naturally active compounds from CJ-ELNs. This
AI-powered system innovatively integrates the traditional
analytical technique with modern large language models,
showing a huge potential in modern medicine and TCM
research.
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Abstract

Background: The manual abstraction of unstructured clinical data is often necessary for granular clinical outcomes research
but is time consuming and can be of variable quality. Large language models (LLMs) show promise in medical data extraction
yet integrating them into research workflows remains challenging and poorly described.

Objective: This study aimed to develop and integrate an LLM-based system for automated data extraction from unstructured
electronic health record (EHR) text reports within an established clinical outcomes database.

Methods: We implemented a generative artificial intelligence pipeline (UODBLLM) utilizing a flexible language model interface
that supports various LLM implementations, including Health Insurance Portability and Accountability Act-compliant cloud
services and local open-source models. We used extensible markup language (XML)-structured prompts and integrated using an
open database connectivity interface to generate structured data from clinical documentation in the EHR. We evaluated the
UODBLLM’s performance on the completion rate, processing time, and extraction capabilities across multiple clinical data
elements, including quantitative measurements, categorical assessments, and anatomical descriptions, using sample magnetic
resonance imaging (MRI) reports as test cases. System reliability was tested across multiple batches to assess scalability and
consistency.

Results: Piloted against MRI reports, UODBLLM processed 1800 clinical documents with a 100% completion rate and an
average processing time of 8.90 seconds per report. The token utilization averaged 2692 tokens per report, with an input-to-output
ratio of approximately 13:2, resulting in a processing cost of US $0.009 per report. UODBLLM had consistent performance
across 18 batches of 100 reports each and completed all processing in 4.45 hours. From each report, UODBLLM extracted 16
structured clinical elements, including prostate volume, prostate-specific antigen values, Prostate Imaging Reporting and Data
System scores, clinical staging, and anatomical assessments. All extracted data were automatically validated against predefined
schemas and stored in standardized JSON format.

Conclusions: We demonstrated the successful integration of an LLM-based extraction system within an existing clinical
outcomes database, achieving rapid, comprehensive data extraction at minimal cost. UODBLLM provides a scalable, efficient
solution for automating clinical data extraction while maintaining protected health information security. This approach could
significantly accelerate research timelines and expand feasible clinical studies, particularly for large-scale database projects.

(JMIR Bioinform Biotech 2026;7:e70708)   doi:10.2196/70708

KEYWORDS

generative artificial intelligence; artificial intelligence large language model; GPT-4; chatbot; pattern analysis; prostate cancer;
kidney cancer
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Introduction

Background
Electronic health record (EHR) systems contain extensive health
data, but much of it is in unstructured notes such as radiology
and pathology reports, making it hard to access for large-scale
research. Granular clinical outcomes research often requires
laborious manual chart review. The automation of this process
requires significant investment, and algorithm performance
varies with report parameters and automation type [1,2].
Previous attempts to automate this process have tried natural
language processing on prostate cancer pathology reports,
reporting a weighted F1 score and accuracy as high as 0.97%
and 93%, respectively [3].

Large language models (LLMs) represent a new opportunity
for addressing this problem. LLMs are generative artificial
intelligence programs capable of drafting human-like responses
to specific queries. In oncological contexts, LLM applications
can create medical notes, aggregate imaging findings, extract
operative note data, and identify presenting symptoms [4-7].
Previous studies analyzing the overall data extraction capabilities
have found accuracies ranging from 63.9% to 100% in retrieving
data elements [5,8-13]. Specifically, several LLM models have
also been developed to extract medical information from text,
including early-stage LLM trained on medical encyclopedias
and radiology datasets to read annotated radiology reports
(71.6% accuracy) and inferring cancer disease response based
on computed tomography reports (89% accuracy) [14,15]. Some
of these groups also implemented or hypothesized implementing
their systems into medical research pipelines for expediting data
extraction [3,8]. Another group applied a customized,
open-source LLM trained on medical data to read magnetic
resonance imaging (MRI) reports with a sensitivity of 96% and
specificity of 99%. In terms of data extraction, generative
pre-trained transformer (GPT)-4 has been shown to extract
hepatocellular carcinoma data from MRI reports with an overall
accuracy of 93.4% [16]. LLMs have also proven to be flexible
and frequently outperform traditional automated models,
suggesting that powerful LLMs might be ready to support
research endeavors via the extraction of unstructured data
[5,8,17]. Implementing LLMs into practical, applicable tools
remains challenging, and some private organizations have
attempted to improve clinical data extraction through EHR
integration [18]. Despite this, most efforts, such as the American
Urological Association Quality Registry, remain dependent on
manual data management, partially due to difficulty integrating
new tools into existing workflows. While some larger
institutions have begun implementing automated data extraction
pipelines, traditional methods of data extraction require
considerable technical expertise and resources to initiate, making
these methods inaccessible for most institutions.

The University of California, San Francisco (UCSF) Department
of Urology maintains the Urologic Outcomes Database (UODB)
for prostate, bladder, and renal cancers [19]. The UODB is an
SQL-based clinical data research database that holds structured
manually abstracted clinical data for patients treated at the
UCSF, including 7000 patients with prostate cancer over 20

years. Due to limited manual abstraction capacity and increasing
patient volume, clinical events and data entry often lag. Previous
in-house attempts to automate this process using traditional
natural language processing solutions proved to be
time-consuming to develop and maintain [1-3,20]. The aim of
this study was to demonstrate a practical use of LLMs in
academic clinical research by describing the successful
implementation of a secure, baseline, institutional version of
GPT-4 within the UODB to quickly and easily extract
unstructured data and effectively reduce manual labor in
gathering data from medical reports.

Related Work
Previous studies by our group have utilized UCSF’s Versa, an
internal, secure, Health Insurance Portability and Accountability
Act (HIPAA)-compliant deployment of OpenAI’s GPT models
(OpenAI Inc.) that includes an application programming
interface (API) for query automation [17,21]. We demonstrated
that systems based on the Versa GPT-4 API can accurately
extract structured data from real-world clinical reports. In one
study involving 424 prostate MRI reports, our pipeline, using
zero-shot prompting, achieved an overall median field-level
accuracy of 98.1% (IQR 96.3%‐99.2%), with key elements
such as prostate-specific antigen density (98.3%), extracapsular
extension (97.4%), and TNM staging (98.1%) [21]. In a separate
effort with 228 prostate MRI reports, the approach achieved
similarly high concordance (over 95%) when compared with
manual abstraction [17].

These validation efforts serve to confirm the accuracy of the
underlying extraction prompts and Versa GPT-4 API
performance. The focus of the current work, therefore, is not
on additional accuracy testing; rather, we build upon this
foundation to present a modular, scalable implementation
pipeline that operationalizes LLM-driven extraction at scale,
within a secure, clinical-grade environment.

Methods

Overall Design
This study presents the implementation and performance
evaluation of UODBLLM, a modular LLM-based pipeline
designed for structured data extraction from a wide range of
unstructured clinical reports. For this technical implementation,
the system was evaluated using free-text prostate MRI radiology
reports as the primary use case (Figure 1). The system was
deployed within a secure, HIPAA-compliant clinical
environment using the internal UCSF Versa GPT-4 API,
ensuring that protected health information (PHI) remained
confined to institutional systems. UODBLLM was designed
with a flexible architecture to support multiple language models
and API endpoints, enabling adaptability across varied clinical
settings.

Prompts are stored as configurable components in dedicated
database tables, allowing users to dynamically pair extraction
templates with report sets without modifying the underlying
code. This design supports rapid iteration, version control, and
seamless adaptation to evolving information extraction needs.
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Figure 1. System design and data flow of the UODBLLM application. The process begins with an initial connection between the electronic health
record (EHR) and the Urologic Outcomes Database (UODB) for imaging report updates (1). The UODBLLM application is governed by a configuration
file defining its core parameters (2). The application periodically fetches new records from the UODB (3), collects the relevant reports (4) and component
prompts (5), and sends these to the Versa application programming interface (API) for processing (6). The API returns structured interpretations of the
reports (7), which are then written back into the UODB (8). A user, via the UODBLLM interface, can send a data request to the UODB (9) and receive
a data response for review and analysis (10).

Study Population
The study dataset comprised 1800 prostate MRI radiology
reports retrieved from the institutional EHR system. Reports
were selected based on procedural coding and metadata filters
to ensure relevance to downstream urologic data extraction.

Intervention
UODBLLM is a Python-based (version 3.9.6, Python Software
Foundation, worldwide) application designed to extract
structured information from clinical reports using a modular,
API-driven architecture. Source text is retrieved from the UODB
using a parameterized SQL query passed via a secure Open
Database Connectivity connection. Text blocks are staged and
dispatched in configurable batches, controlled by a modifiable
parameter specified in a configuration file or modifiable via
command-line flag.

The pipeline retrieves a version-controlled extensible markup
language (XML)-based prompt template at runtime using a
parameterized SQL query from the UODB. This template
specifies the role, task, JSON response schema, and a structured
sub-prompt with 16 XML elements that each represent a clinical
field of interest (eg, prostate volume, prostate-specific antigen
density, and overall Prostate Imaging Reporting and Data
System score), each with plain-language extraction instructions
(Figure S1 in Multimedia Appendix 1). For every report, the
program inserts the full free-text report into the template’s
designated placeholder, producing a complete prompt that is
then submitted to the Versa GPT-4 model. Embedding the report
within a constant, schema-constrained envelope ensures that
returned JSON follows a predictable structure, enabling reliable
downstream parsing and storage.

Each batch is passed to a thin wrapper around the Versa GPT-4
API. Requests are streamed to the API endpoint; results are
captured, parsed, and validated against the predefined JSON
schema. Error handling includes up to 5 retry attempts per
request with exponential back-off (2ⁿ seconds, capped at 30
seconds). Failed requests are logged, and the affected reports
are re-queued for later processing. Element-level completeness
is defined as the proportion of reports for which the pipeline
returned a non-null value.

Extracted fields are transmitted back to the database using a set
of parameterized SQL UPDATE statements mapped to internal
column identifiers. A custom statistics tracking module records
token usage, response latency, and processing cost per report
by counting model-specific numerical tokens generated from
text via Byte Pair Encoding. System-wide throughput and error
frequency are also recorded. The pipeline was executed on a
2019 MacBook Pro (Intel Core i9, 2.4 GHz, 64 GB RAM,
macOS Ventura 13.2.1). The system’s computational workload
is lightweight and not hardware dependent, making it executable
on a standard consumer laptop. The source code will be made
available to investigators for non-commercial purposed upon
request.

Ethical Considerations
The study was approved by the University of California, San
Francisco Institutional Review Board (IRB #11-05329), and
the requirement for informed consent was waived. The system
was deployed within a secure, HIPAA-compliant clinical
environment using the internal UCSF Versa GPT-4 API,
ensuring that PHI remained confined to institutional systems.
All reports were de-identified prior to processing.
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Results

Processing Performance and Resource Utilization
The analysis of system logs demonstrated consistent
performance metrics, with an average processing speed of 8.90
seconds per report across 1800 reports. UODBLLM maintained
100% completion rates across all test runs, with batch sizes of
100 reports. Token utilization, representing the count of
model-specific numerical tokens generated from the input and
output text via Byte Pair Encoding (calculated using the tiktoken
library), averaged 2692 tokens per report. Given the model’s
context window capacity relative to typical report lengths,
specific token optimization techniques like input text chunking
were not required for this implementation. This resulted in an
input-to-output ratio of approximately 13:2 (4,196,697 input
tokens, 648,723 output tokens), resulting in an average
processing cost of US $0.009 per report. The total processing
run successfully analyzed all 1800 test reports in 4.45 hours,
showing sustained performance at scale.

Prior Validation
Although the present study did not re-evaluate extraction
accuracy on this corpus, the underlying extraction logic and
prompt structure have been previously validated in two
independent studies by our group. In one effort involving 424
prostate MRI reports, the system achieved a median field-level
accuracy of 98.1% (IQR 96.3%‐99.2%) for key clinical
variables [21]. A subsequent study with 228 MRI reports
demonstrated similarly high extraction fidelity, with all
structured elements exceeding 95% accuracy [17]. These
findings confirm the robustness of the prompt design and model
configuration across settings, supporting their reliability in the
context of the current implementation.

Experience
Researchers interact with UODBLLM by selecting the clinical
report category (eg, MRI reports or pathology reports) through
a secure web-based application that integrates with the UODB
and is accessible only through local institutional network
connections. UODBLLM displays quantitative processing
metrics for the selected report type, including extraction
completion timestamps, LLM prompts, and performance
statistics from previous analyses. This longitudinal view enables
investigators to evaluate existing structured data’s temporal
relevance and completeness before proceeding with additional
processing.

Researchers can use previously extracted structured data or
initiate a new extraction cycle with refined extraction
parameters. When opting for new extraction, investigators can
specify temporal bounds for report inclusion and modify
extraction prompts stored in the database tables. This
parameterization enables the analysis of specific clinical cohorts
while ensuring consistent extraction methodology across
research protocols.

Upon initiating the UODBLLM process, the system executes
batch processing of identified reports, with real-time logging
providing visibility into extraction progress. Researchers can
monitor the system performance through logs that track

processing times, success rates, and any encountered exceptions.
The structured JSON output is automatically integrated into the
UODB, enabling immediate access for researchers.

Quality assurance is implemented through a review interface
where researchers can perform comparative analysis of extracted
data elements against source reports and any pre-existing
manually abstracted data with the opportunity to iteratively
refine prompts. Successfully processed reports are flagged in
the database, preventing duplicate processing while maintaining
a comprehensive audit trail of all data extraction operations.

Discussion

Principal Findings and Comparison With Previous
Works
In this study, we developed and validated an automated
LLM-based integration for UODB management that achieved
a 100% completion rate across 1800 clinical documents, with
an average processing time of 8.90 seconds per report. The
UODBLLM demonstrates an implementation of a PHI-secure,
LLM-agnostic system for automated data extraction from
urological outcomes documentation. By leveraging institutional
cloud infrastructure and established database architecture, we
created a scalable solution that significantly reduces the manual
effort traditionally required for data extraction while maintaining
high accuracy rates [19]. This advancement represents a crucial
step toward efficient, accurate, and comprehensive research
database management [18].

The integration of generative artificial intelligence in clinical
data management has seen rapid evolution, with several
institutions developing specialized approaches for extracting
structured data from clinical documentation [1,2]. While the
validation of a local GPT model showed promising accuracy
in the low 90th percentile for biomedical data collection, their
focus on chromatin expression in cell lines addressed a more
constrained data domain [20]. UODBLLM demonstrates
comparable accuracy rates with the ability for researcher
customization. Recent oncology initiatives using LLMs for
clinical note evaluation have shown potential, but our approach
differs by providing a complete pipeline that not only extracts
data but also integrates directly with existing database
infrastructure [5,6]. The problem of integration from clinical
care to research database is common in clinical trials, clinical
record management, and safety reports, encouraging other
groups to design automated data capture and transfer pipelines.
These pipelines have historically been evaluated as successful
by the variables they extract, efficiency gained, and
interoperability they provide, aligning with our key performance
indicators [22,23]. The pipeline here described and designed
has been estimated to improve data extraction manual time
efficiency by as much as 90% if pulling multiple variables from
hundreds of reports, although this enhancement varies based
on report type, variable, and iterations of prompt refinement.

The technical robustness of our approach is supported by key
design decisions and validated through comprehensive testing.
Our choice to leverage a PHI-secure institutional version of
GPT-4 addresses performance and privacy requirements, crucial

JMIR Bioinform Biotech 2026 | vol. 7 | e70708 | p.17https://bioinform.jmir.org/2026/1/e70708
(page number not for citation purposes)

Carlisle et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


considerations for clinical data management [5]. The system’s
integration within the UODB piggybacks off a validated
foundation for data structure and management [19]. Our
validation protocol included processing reports across various
batch sizes, achieving consistent performance and reliable
operation at scale. The ability of the UODBLLM to efficiently
process clinical documentation while maintaining high accuracy
suggests the potential for significant resource optimization in
research operations [6]. These efficiency gains could
dramatically accelerate research timelines and expand the scope
of feasible clinical studies.

Although this study did not re-assess extraction accuracy, this
was a deliberate design choice. The extraction framework
employed here has already undergone validation in prior work,
with element-level accuracies exceeding 95% across multiple
prostate MRI cohorts [17,21]. In contrast, our current objective
was to evaluate the system-level performance of a scalable,
generalizable implementation pipeline deployed within a secure
clinical environment. Notably, the architecture is model-agnostic
and allows for future integration of various LLMs or prompt
schemas. This decoupling of model validation from pipeline
implementation facilitates adaptability while building on
established, validated components.

The limitations of our approach warrant careful consideration.
While UODBLLM performs robustly for current use cases, the
accuracy of LLM-based data extraction still requires human
validation for critical data points, a challenge noted across
multiple studies [4,5,8]. The evolving nature of clinical research

means that prompt engineering must continually adapt to new
data types and research questions. Additionally, while our
pipeline is LLM-agnostic, our specific performance results were
achieved using a PHI-secure version of GPT-4, and performance
may vary with different models or implementations. While this
implementation focused on prostate MRI reports, the
UODBLLM pipeline was designed for broad applicability across
diverse clinical documents. This generalizability is enabled by
its modular, model-agnostic architecture and a flexible
prompting system where extraction templates are stored as
configurable components in the database. The design allows
the pipeline to be readily adapted for other unstructured texts,
such as pathology results or operative notes, which aligns with
plans to expand its use to other urologic cancers.

Conclusions
Our study demonstrates the feasibility and effectiveness of
integrating LLM-based automation into UODB management.
Our system’s perfect completion rate, rapid processing speed,
and cost-effective operation provides a robust framework for
modernizing clinical research data management. Looking ahead,
we aim to develop protocols for using LLMs to validate existing
data entries and expanding to renal and bladder cancer radiology
and pathology texts. The potential benefits of increased research
efficiency and data quality suggest that LLM-based approaches
will play an increasingly important role in clinical research
infrastructure [4]. These advances may ultimately accelerate
the pace of discovery in clinical oncology and serve as a model
for other medical specialties.
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Multimedia Appendix 1
Example of the UODBLLM Data Extraction Workflow. (A) The original unstructured text from a sample magnetic resonance
imaging report. (B) The corresponding extensible markup language-structured prompt containing instructions and specific data
extraction queries sent to the large language model (LLM). (C) The structured JSON data returned by the LLM based on the
prompt and report.
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Abstract

Background: Non–small cell lung cancer (NSCLC) is one of the leading causes of cancer-related mortality. Programmed cell
death receptor-1 (PD-1) immunotherapy has shown results in the treatment of NSCLC; however, not all patients respond effectively
to it. Identifying predictive biomarkers for PD-1 therapy response is critical to improving patient outcomes and treatment strategies.
Traditional methods of biomarker discovery often fall short in terms of accuracy and comprehensiveness. Recent advancements
in deep learning provide a powerful approach to analyze complex genomic data to resolve this issue.

Objective: This study aims to leverage deep neural networks (DNNs) to identify genomic biomarkers predictive of patient
responses to PD-1 immunotherapy in NSCLC. DeepImmunoGene is a model designed using a reduced feature set to identify the
most critical biomarkers. We use feature selection to reduce the space and apply deep learning to identify the highly predictive
gene subset.

Methods: Differentially expressed genes were identified in RNA-seq data from 355 patients with NSCLC using the LIMMA
package in R, followed by preprocessing with log2 transformation, removing outliers, and detecting easily identified genes.
Machine learning models, including support vector machines, extreme gradient boosting (XGBoost), and DNNs, were applied
to gene expression data to predict patient responses to immunotherapy. Key predictive genes were identified through model
interpretation techniques, and differences in model performance were assessed for statistical significance. Primarily, the metric
used identifies which genes serve as key biomarkers in regard to immunotherapy detection.

Results: Initially, we identified 1093 differentially expressed genes from RNA-seq data of 355 patients. We then trained models
using SVM, XGBoost, and DNN to predict immunotherapy response. The DNN model outperformed both SVM and XGBoost
with an accuracy of 82%, an area under the curve of 90%, and recall of 85%. To identify key biomarkers, we performed a
permutation importance analysis, narrowing down the gene set to 98 genes. DeepImmunoGene, trained on these 98 genes, showed
superior results, with an accuracy of 87% and an area under the curve of 95%. The top 36 upregulated genes in responders and
62 upregulated genes in nonresponders were identified, which could serve as potential biomarkers for predicting response to
PD-1 inhibitors. These findings suggest that DeepImmunoGene can reliably forecast immunotherapy outcomes and aid in biomarker
discovery, supporting the development of more personalized treatment strategies in NSCLC.

Conclusions: The DeepImmunoGene predictive model identified 36 upregulated genes that may represent candidate genomic
biomarkers associated with response to PD-1 immunotherapy in patients with NSCLC. Notably, the 10 most significant genes
offer valuable insights into the underlying mechanisms of treatment responses. These biomarkers may not only aid in predicting
which patients are more likely to respond to PD-1 immunotherapy but also offer insights into the molecular differences associated
with nonresponse.

(JMIR Bioinform Biotech 2026;7:e70553)   doi:10.2196/70553

KEYWORDS

lung cancer; machine learning; deep neural network; DeepImmunoGene; biomarkers; RNA-seq analysis; differential gene
expression; programmed cell death receptor-1; immunotherapy
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Introduction

Lung cancer is a leading cause of cancer-related deaths globally,
with approximately 238,340 new cases and 127,070 deaths
annually in the United States [1,2] and 2.5 million new cases
and 1.8 million deaths worldwide [3]. Smoking accounts for
approximately 90% of lung cancer cases [4], whereas the
remaining cases in nonsmokers are due to other factors,
including environmental exposure to asbestos, arsenic, nickel,
pesticides, other toxic chemicals, and air pollution [5,6]. Lung
cancer is classified into 2 main groups: small cell lung cancer
(SCLC) and non–small cell lung cancer (NSCLC) [4]. SCLC
is a rare, fast-growing form of lung cancer that primarily
develops in individuals with a long history of tobacco smoking,
whereas NSCLC is more common, accounting for 85% of lung
cancer cases compared to 15% for SCLC [5]. Although tobacco
smoking is a major risk factor for NSCLC, it can also develop
in nonsmokers. NSCLC is divided into 3 main types:
adenocarcinoma, squamous cell carcinoma, and large cell
carcinoma [5,6]. Among these, adenocarcinoma is the most
prevalent type, typically developing in the outer parts of the
lung and being more common in individuals aged <45 years
[5,6]. In contrast, squamous cell carcinoma originates from the
epithelial cells of the central airways and is strongly associated
with smoking [7,8].

Over the last 10 years, lung cancer treatment has undergone
significant changes, with advancements in understanding its
biology leading to the development of immunotherapy, which
has emerged as a promising therapeutic option [9,10].
Immunotherapy works by enhancing the immune system through
the use of drugs that block inhibitory signaling pathways,
allowing it to better recognize and eliminate cancer cells [9,10].
Cancer can evade immunosurveillance by expressing ligands
for inhibitory checkpoint molecules, such as programmed cell
death receptor-1 (PD-1) and cytotoxic T-lymphocyte–associated
protein-4, which prevent T cells from recognizing and destroying
cancer cells [11]. Thus, immune checkpoint inhibitors (ICIs)
have become an effective cancer therapy [12]. In recent years,
ICIs have been used as the first line of treatment for metastatic
NSCLC as well as consolidation therapy after surgical removal
and chemotherapy [10]. PD-1 is a surface receptor found on T
cells in lung cancer that acts as a negative regulator of immune
responses [13-15]. Recent studies have shown that inhibiting
PD-1 or programmed cell death-ligand 1 (PD-L1) restores T
cell function, enabling the immune system to recognize and
destroy cancer cells, suggesting their potential as promising
therapeutic targets for NSCLC treatment [15-17]. However,
only a fraction of patients respond to this immunotherapy.
Therefore, we aimed to investigate genomic features that may
help distinguish responders from nonresponders to PD-1
inhibitors and to gain insight into potential underlying biological
differences. Furthermore, researchers have increasingly turned
to bioinformatics and machine learning (ML) techniques to
discover more precise biomarkers by analyzing large-scale
genomic and molecular data. Among ML techniques, deep
neural networks (DNNs) are particularly well suited for these
tasks due to their ability to process and analyze vast,
high-dimensional datasets. The use of ML in this research is

indispensable for tackling the complexity of RNA-seq data and
addressing the limitations of traditional analytical methods.
Traditional statistical methods, such as ANOVA and t tests,
rely on assumptions such as a normal distribution of the data,
which is generally violated in gene expression data.
Furthermore, as sample sizes and feature dimensions expand,
these approaches also face computational constraints. In contrast,
deep learning (DL) methods are particularly well suited to
capturing the complex patterns present in genomic data [18].
Such models enable the identification of high-impact
biomarkers, uncover nonlinear relationships in gene expression,
and generate robust predictions for patient responses to PD-1
immunotherapy.

Several DL approaches have previously been proposed to predict
immunotherapy outcomes, including survival-focused models
such as DeepSurv and attention-based architectures designed
to capture complex transcriptomic interactions [19-23]. These
models demonstrate the growing interest in applying advanced
DL to immunogenomics. We build upon this foundation by
integrating interpretability into our approach. Furthermore, other
existing approaches typically rely heavily on imaging-based
methods, which can suffer from scanner or protocol
heterogeneity and spurious correlation, among others. This study
highlights the potential of ML techniques, particularly DNNs,
in advancing precision medicine for patients with NSCLC
undergoing PD-1 immunotherapy. We applied permutation
importance in conjunction with DeepImmunoGene, which
identified 98 important genes from a large RNA-seq dataset of
19,911 genes in the Gene Expression Omnibus (GEO)
Repository [24]. We trained the DeepImmunoGene model on
these genes, which outperformed linear models, achieving an
accuracy of 87% and an area under the receiver operating
characteristic curve (AUC) of 95%. This model identified a set
of 36 upregulated genes in patients with NSCLC who are
responders, which may serve as potential biomarkers for
predicting responses to PD-1 immunotherapy for this group.
Additionally, it identified another set of 62 upregulated genes
in patients with NSCLC who are nonresponders, which could
act as potential biomarkers for developing ICI therapy for this
subgroup. These findings not only offer a foundation for
improving patient stratification but also provide insights for
tailoring therapeutic strategies. Despite significant advancements
in treatment over the past decade, including the development
of immunotherapy as a promising strategy for NSCLC, the
prognosis for many patients remains poor [25,26]. Although
ICIs targeting PD-1 and PD-L1 have shown potential as
immunotherapy for patients with NSCLC, only a small fraction
of patients respond to PD-1 inhibitors [24].

This underscores the need for more reliable biomarkers to
accurately identify patients who will benefit from PD-1
inhibitors. The core work tries to answer 2 research questions
(RQs) as follows:

• RQ1: How do ML models perform in predicting patient
response to PD-1 immunotherapy based on differentially
expressed genes (DEGs)?

• RQ2: What are the key biomarkers identified through
feature selection and DL that predict patient response to
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PD-1 immunotherapy, and how do they contribute to model
performance?

Methods

Overview
The study was carried out according to the workflow presented
in Figure 1. This workflow delineates the steps, beginning with

the identification of significant DEGs from RNA-seq data [27]
using the LIMMA package and culminating in the application
of the DeepImmunoGene framework to identify and validate
key genes associated with the response to PD-1 immunotherapy
in patients with NSCLC.

Figure 1. Workflow for identifying biomarkers and predicting programmed cell death receptor-1 immunotherapy response in non–small cell lung
cancer. DEG: differentially expressed gene; DNN: deep neural network; SVM: support vector machine; XGBoost: extreme gradient boosting.

Data Acquisition and Preprocessing
We used one RNA-Seq dataset (GSE218989) from the GEO
public database GEO Repository [24]. This dataset included
gene expression data for 19,911 genes across 355 patients with
lung cancer who were treated with either PD-1 or PD-L1
inhibitors. It consisted of 187 nonresponders and 168 responders.
Responsiveness was determined by Kang et al [24] using
Response Evaluation Criteria in Solid Tumors (RECIST; version
1.1) [28]. Progression-free survival [29] was measured from
the start of PD-1/PD-L1 inhibitor therapy to either documented
disease progression or death from any cause. Overall survival
was measured from the start of PD-1/PD-L1 inhibitor therapy
to death from any cause [24]. A responder is therefore classified
as a patient who showed improvement under the RECIST criteria
or, in other words, a patient who experienced improvements
after the PD-1 immunotherapy was administered. At the same
time, a nonresponder is a patient who did not meet the criteria
showcased by a worsening or stable disease.

The raw gene expression count data were already normalized
in the transcripts per million (TPM) value for the 19,911
protein-coding genes. We first identified the DEGs between the
responders and nonresponders using the LIMMA package [30]
in R (version 4.4.1; Bioconductor, USA). LIMMA was used to
create a linear function to model the entire dataset and to develop
correlations with response status as the main variable in the
design matrix. Empirical Bayes moderation was performed to
model and stabilize the gene-wise variances using a prior
marginal distribution of the data [30]. Genes with a
LIMMA-calculated P value less than .05 were considered
significantly differentially expressed and were selected for all
subsequent analyses and modeling. For model training and

testing, the data were further processed by performing a log2
(TPM+1) transformation on each gene expression value to
stabilize the variance in gene expression.

ML Models

Overview
The application of ML is vital in this research due to the
complexity, scale, and dimensionality of RNA-seq data, as well
as the intricate, nonlinear biological mechanisms underlying
immunotherapy response in patients with NSCLC [31].
Traditional statistical methods struggle with high-dimensional
datasets, such as the 19,911-gene RNA-seq data used here, often
succumbing to the “curse of dimensionality” and failing to
capture subtle gene interactions. ML models such as support
vector machines (SVMs) [32], extreme gradient boosting
(XGBoost) [33], and DNN [34] overcome these challenges by
effectively handling high-dimensional inputs, modeling complex
nonlinear relationships, and identifying important gene features
through built-in feature selection techniques. This enables the
discovery of meaningful gene patterns that differentiate
responders from nonresponders while enhancing predictive
power and model generalizability.

Moreover, ML methods excel in managing noise and variability
inherent in biological data, offering robust performance through
techniques such as regularization and early stopping [35,36].
Their scalability and automation allow for efficient analysis of
massive RNA-seq datasets, ensuring accuracy and rapid
processing, essential for clinical translation. By integrating
advanced techniques for hyperparameter tuning, ML provides
a unified, systematic workflow that optimizes predictive
performance [37]. These capabilities facilitate the identification
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of potential predictive biomarkers from gene expression data,
which may serve as a foundation for future precision medicine
efforts aimed at tailoring immunotherapy strategies in patients
with NSCLC. This study used several ML models, including
SVM, XGBoost, and DNN [11]. Their predictive performance
was evaluated to identify the model that worked best. We built
the SVM model using the Python package Scikit-learn (sklearn);
for XGBoost, we used the XGBoost Python package [38]; and
for the DNN, we used the Keras and TensorFlow Python
packages [11]. The details about each ML approach are further
described below.

Support Vector Machine
SVM is a kernel-based binary classifier that separates key data
features linearly into 2 groups in a high-dimensional space called
the feature space [38,39]. It searches for the optimal decision
boundary (hyperplane) to separate the features by maximizing
the margin between the hyperplane and the nearest training data.
SVM effectively extracts key but subtle patterns in a complex
dataset, allowing for low-error, high-precision sample
classification [40]. The model architecture’s hyperparameter
settings are given in Table 1.

Table . Summary of model architectures’ hyperparameter settings.

Optimization approachFinal settingsKey hyperparameters tunedModel

GridSearchCV (5-fold CVb)C=0.1, kernel=linear, gamma=0.1C, kernel, gammaSVMa

GridSearchCV (5-fold CV)n_estimators=300, max_depth=100,
learning_rate=0.1, sampling=uni-
form

n_estimators, max_depth, learn-
ing_rate, sampling

XGBoostc

Multistage GridSearchCVInput=256; hidden layers=[128, 100,

100]; activation=ELUe; optimiz-
er=Adam; dropout=0; epochs=100;
batch size=100

batch_size, epochs, initializer, opti-
mizer, activation, dropout, layers,
nodes

DNNd

aSVM: support vector machine.
bCV: cross-validation.
cXGBoost: extreme gradient boosting.
dDNN: deep neural network.
eELU: exponential linear unit.

XGBoost
XGBoost is an ensemble learning algorithm that builds
gradient-boosted decision trees one by one and passes the
residuals of the previous tree to train the following model. It
uses the second partial derivative of the loss function and adds
an L1 and L2 regularization term to reduce overfitting [41].
Similar to SVM, we optimized the hyperparameters using
GridSearchCV to evaluate a combination of parameters. The
hyperparameter settings are given in Table 1.

Deep Neural Network
DNN is a nonlinear model that combines neurons that simulate
the human brain to make predictions [41,42]. It consists of 3
layers: the input layer, hidden layers, and output layer, which
are linked by weights to allow the model to understand complex
patterns in the data. We used a DNN because they have been
previously applied for genomic-based predictions for diseases
[43]. Similar to the previous 2 models, we started with
hyperparameter optimization using GridSearchCV. As the DNN
has more parameters to tune, we split the Grid Search into 3
stages: (1) batch size and epoch; (2) weight initializer, optimizer,
and activation function; and (3) hidden layers, nodes per hidden
layer, and dropout optimization. The resulting network consisted
of an input layer with 256 nodes, 3 hidden layers with 128
nodes, 100 nodes, and 100 nodes, respectively, an exponential
linear unit activation function, Adam optimizer, zero dropout,
and normal initializer. The details are summarized in Table 1.
We applied the binary cross-entropy loss function as shown in
Equation 1 so that the model minimizes to learn the optimal

weights for each gene to classify responder and nonresponder
patients.

(1)LBCE=−1N∑i=1Nyi×log (p(yi))+(1−yi)×log (1−p(yi))

The model was trained for 100 epochs with a batch size of 100
based on the GridSearchCV results. After identifying these
optimal hyperparameters for the DNN, we used it to construct
the architecture for the DeepImmunoGene network.

Permutation Importance
To develop the DeepImmunoGene framework, we used the
permutation importance method from scikit-learn to identify
the subset of genes that most significantly contributed to the
DNN’s prediction of patient outcomes to PD-1 immunotherapy
[11]. Basically, this technique improves model accuracy by
removing the “noisy” genes. First, we used the original DNN
trained on the 1093 gene expression data to establish a baseline
performance using the accuracy score. Then, we randomly
shuffled each gene’s expression values across the 71 testing
patients one at a time to disrupt any existing association between
that gene and the response classification. After shuffling a gene,
the DNN was run again to recalculate the accuracy. If the
accuracy decreased after shuffling, that gene was important for
predicting the response. Conversely, if the accuracy increased
or did not change after shuffling, that gene showed little to no
correlation with response prediction. Given the nonlinearity of
PD-1 immunotherapy genetics, a standard linear model, such
as least absolute shrinkage and selection operator or stepwise
regression, is unable to capture the noise in the genes. Feature
permutation ignores this weakness by using a direct DNN
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architecture to quantify the decrease in performance due to a
change in the feature. By exploring the performance of the
model directly, we remove the uncertainty of a linear model
and guarantee the importance of the features in the deployed
solution. To evaluate the stability of the features identified, we
ran the analysis 3 additional times, each with 50 iterations. We
then compared the resulting gene sets to quantify their overlap.
We also trained and evaluated the model using each gene set to
determine the superior cohort for all subsequent analyses.
Equation 2 was used to calculate the importance score assigned
to each gene.

(2)Importance score=accuracybaseline−accuracypermutation

Training and Testing
We executed our code for the ML models in Google Colab
notebooks [44] using an NVIDIA T4 GPU [45] operating with
15 GB of RAM. For all models, 284 patients were used for
training, and 71 patients were used for testing. This provided
an 80/20 percentage split of the data. For the DNN, an additional
validation split of 10% was applied to the training data to
monitor model performance during training. This validation set
was extracted from the training data, leaving the test set of 71
patients unchanged. During the training of the DNN, an early
stopping method was used to monitor the validation loss after
each epoch to stop training if the model’s performance
diminished. The state of the model was saved after each epoch
so that it could revert to the optimal state for testing. This was
done to mitigate any overfitting that might occur during training.
All ML models were executed 15 times.

Evaluation Metrics
To evaluate the models’ performance, we used accuracy, AUC
score, recall, specificity, precision, and F1-scores [46], which
are standard metrics used to assess classification performance.
These metrics can be found using the confusion matrix, a 2×2
matrix with the number of true positives, true negatives, false
positives, and false negatives that the model predicts, with the
equations listed below to calculate each metric.

(3)Accuracy=TP+TNTP+TN+FP+FN × ∈[0,1]

(4)Recall=TPTP+FN×∈0,1

(5)Specificity=TNTN+FP×∈0,1

(6)Precision=TPTP+FP×∈0,1

(7)F1=2 ×Precision ×Recall Precision+Recall × ∈[0,1]

Accuracy (Equation 3) measures the overall correct predictions
out of all predictions made. Recall evaluates the model’s ability
to correctly identify PD-1 responders as positive out of all PD-1
responders, as shown in Equation 4. Specificity (Equation 5) is
the opposite; it measures the model’s ability to correctly identify
PD-1 nonresponders out of all nonresponders. Precision
(Equation 6) is the ratio of all correctly identified positive PD-1
respondents to all the patients the model assigns as positive,
and the F1-score (Equation 7) is a harmonic mean of precision
and recall that penalizes extreme values [47]. AUC measures
the trade-off between specificity and recall [38,48].

Bioinformatics and Statistical Analysis
All computations and analyses in this study were performed in
Google Colab notebooks using Python (version 3.10) and R
(version 4.4.1). Differentially expressed genes were analyzed
with LIMMA in R [30]. Upregulated genes were classified for
responders and nonresponders by calculating log fold changes
(LogFC). Accuracy, AUC, recall, specificity, precision, F1-score,
true positives, true negatives, false positives, and false negatives
were calculated using sklearn Metrics. Statistical analyses were
conducted using GraphPad Prism (version 5.01; GraphPad
Software). The Kruskal-Wallis nonparametric test, followed by
the Dunn post hoc multiple comparison test, was used to
compare predictive performance between the models. A P value
less than .05 was considered statistically significant.

The next section delves into the detailed analysis of the genes
identified through the DeepImmunoGene framework and their
relevance in predicting immunotherapy response. It outlines
how the permutation importance method was used to isolate
key genes associated with positive or negative treatment
outcomes and discusses the biological significance of these
genes in the context of immune response modulation in NSCLC.
Additionally, the section provides an in-depth comparison of
the ML models’ performance, highlighting the strengths and
limitations of each approach, and evaluates their potential
applications in clinical settings for improving patient
stratification and personalized treatment strategies. By
integrating these findings, the study aims to contribute to our
understanding of molecular biomarkers that may inform future
efforts to optimize the use of PD-1 inhibitors in cancer therapy.

External Validation
To externally validate the biomarkers identified by
DeepImmunoGene, we obtained a bulk RNA-seq dataset
(GSE207422) from the GEO public database. This dataset
included gene expression data for 58,387 genes across 24
patients with NSCLC who were treated with PD-1 inhibitors
combined with chemotherapy [49]. Patient responsiveness was
determined using RECIST, where complete response and partial
response were considered responders, whereas stable disease
was considered a nonresponder. The cohort comprised 17
responders and 7 nonresponders. This external dataset was
processed using the aforementioned workflow applied to the
training dataset. The Mann-Whitney U test was used to
determine whether the difference in gene expression between
responders and nonresponders was statistically significant. We
generated violin plots of the top-ranked responder and
nonresponder biomarkers identified by DeepImmunoGene to
assess whether their expression patterns in the test set were
consistent with the model’s predictions using the ggplot2
package [50].

Ethical Considerations
This study used only publicly available or fully deidentified
secondary data; therefore, institutional review board approval
and informed consent were not required. No personal identifiers
were accessed, and privacy and confidentiality were strictly
maintained.
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Results

ML Predicts Response to PD-1 Immunotherapy (RQ1)
DEGs were identified using LIMMA power analysis of bulk

RNA-seq data (GSE218989) from the GEO public database
GEO Repository. LIMMA identified 1093 important DEGs
from a total of 19,911 genes in patients with lung cancer, where
522 genes were upregulated in responders, and 571 genes were
upregulated in nonresponders (P=.04), as shown in Figure 2.

Figure 2. Identification and stratification of differentially expressed genes associated with programmed cell death receptor-1 immunotherapy response
in non–small cell lung cancer. Bulk RNA-seq data from 355 patients (GSE218989) were analyzed using LIMMA differential expression analysis (P=.04),
identifying 1093 differentially expressed genes. These genes were stratified by direction of differential expression into responder-upregulated (n=522)
and nonresponder-upregulated (n=571) gene sets, forming the initial feature space for downstream machine learning analyses. DEG: differentially
expressed gene.

Here, we trained SVM and XGBoost models using the 1093
identified DEGs to predict patient response to PD-1
immunotherapy. The performance of the models was evaluated
using several metrics, including accuracy, AUC, recall,
specificity, precision, and F1-score [46]. First, we applied SVM,
and our data showed that it achieved an accuracy of 68% and
an AUC score of 76% with recall, specificity, precision, and
F1-score values of 0.70, 0.65, 0.77, and 0.71, respectively
(Figure 3A, 3B and Table 1). Next, we used XGBoost to see if
its ensemble learning method could yield higher accuracy and
AUC scores. Our data showed that XGBoost performed slightly

better than SVM, with an accuracy of 72%, an AUC score of
77%, a recall of 0.73, a specificity of 0.71, a precision of 0.76,
and an F1-score of 0.74 (Figure 3A, 3B and Table 2). The
suboptimal performance of these 2 models may be due to the
large dataset, suggesting that a more complex and nonlinear
approach, such as a DNN, is necessary for accurately predicting
patient responses. We used SVM and XGBoost as baseline
classifiers commonly applied in gene expression studies to
provide context for the performance of our DNN. While these
models differ in complexity from DNNs, the comparison helps
demonstrate the added value of capturing nonlinear interactions
in gene expression data.
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Figure 3. Predictive performance comparison of support vector machine (SVM), extreme gradient boosting (XGBoost), and deep neural network
(DNN) models. (A) Accuracy scores and (B) receiver operating characteristic (ROC) curve analysis demonstrate that the DNN model outperformed
both SVM and XGBoost. The DNN achieved an accuracy of 82% and an area under the curve (AUC) of 90%, compared to 68% and 76% for SVM and
72% and 77% for XGBoost. These results highlight the advantage of deep learning for modeling complex, high-dimensional gene expression data.

Table . Performance comparison of machine learning models for predicting response to programmed cell death receptor-1 immunotherapy.

F1-scorePrecisionSpecificityRecallAUCaAccuracyModels

0.710.770.650.700.760.68SVMb (1093
genes)

0.740.760.710.730.770.72XGBoostc (1093
genes)

0.84e0.810.78e0.85e0.90e0.82eDNNd (1093
genes)

0.680.700.650.650.750.65SVM (98 genes)

0.800.800.740.800.810.77XGBoost (98
genes)

0.89e0.93e0.89e0.87e0.95e0.87eDeepImmunoGene
(98 genes)

aAUC: area under the receiver operating characteristic curve.
bSVM: support vector machine.
cXGBoost: extreme gradient boosting.
dDNN: deep neural network.
eA statistically significant difference from DeepImmunoGene when compared to SVM or XGBoost.

DNN Predicts Response to PD-1 Immunotherapy With
Higher Accuracy
Given that the RNA-seq data includes the expression of more
than 1000 genes, we implemented a DNN to enhance predictive
accuracy. First, we set the DNN training for 100 epochs, but it
stopped at 45 epochs due to early stopping, and the model was
then reverted to the optimal state reached at 35 epochs (Figure
4). During the training process, both training and validation
accuracy and loss were monitored. We found that the accuracy
increased until it exhibited an asymptotic behavior (Figure 4A).

Conversely, the training loss decreased steadily, while the
validation loss showed some fluctuations (Figure 4B). These
findings suggest that training the model for additional epochs
would not further improve its performance. Next, we tested the
predictive performance. Our data revealed that the DNN
achieved excellent predictive performance compared to both
SVM and XGBoost, achieving an accuracy of 82%, an AUC
score of 90%, a recall of 0.85, a specificity of 0.78, a precision
of 0.81, and an F1-score of 0.84 (Figure 3A, 3B and Table 2).
Given the nature of the data, DNN can analyze multidimensional
genetic information more accurately than existing linear models.

JMIR Bioinform Biotech 2026 | vol. 7 | e70553 | p.27https://bioinform.jmir.org/2026/1/e70553
(page number not for citation purposes)

Mubarak et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


This is showcased with a 21% accuracy improvement over more
linear models, such as SVM, and a 14% improvement over
XGBoost in our experiments. As a result, we can showcase that

to capture the intricacies of the data, it is important to use a
model capable of supporting complex multidimensional
relationships such as a DNN architecture.

Figure 4. Deep neural network training and validation performance. (A) Training and validation accuracy over epochs shows a steady increase until
convergence, with early stopping triggered at epoch 45 and the model reverting to optimal weights from epoch 35. (B) Training loss decreased
continuously, whereas validation loss fluctuated slightly before stabilizing, indicating that further training would not significantly improve model
performance.

Key Biomarker Identification (RQ2)
We applied DeepImmunoGene with scikit-learn permutation
importance to a set of 1093 genes. To mitigate variability in
feature importance estimates and to ensure the identification of
robust features, this procedure was repeated 3 additional times
with 50 iterations each. We then compared the gene sets
identified across all 4 total runs and observed a high degree of
overlap, with an average of 85.5% consistency among them.
The resulting analysis (Figure 5) identified a final set of 98
genes with nonzero importance scores and ranked them
according to their level of importance (Figure 6). Although
individual gene importance scores below 0.0025 may appear
low, the combined contribution of these genes accounts for
approximately 18% of the total model importance, indicating
they meaningfully improve the model’s predictive performance.
These 98 genes were subsequently used to train
DeepImmunoGene. Testing this model revealed an accuracy of
0.87 and an AUC of 0.95, a recall of 0.87, a specificity of 0.89,
a precision of 0.93, and an F1-score of 0.89, demonstrating
superior performance across all metrics. To validate the
necessity of a DL approach for our feature selection and to better
contextualize the significant performance improvement of
DeepImmunoGene, we conducted a comparative analysis with
the traditional ML models. We trained and tested both SVM
and XGBoost on the same 98 genes identified via permutation
importance. The 98-gene SVM model attained an accuracy of

65%, an AUC of 75%, a recall and specificity of 0.65, a
precision of 0.70, and an F1-score of 0.68. The 98-gene
XGBoost model achieved an accuracy of 77%, an AUC of 81%,
a recall of 0.80, a specificity of 0.74, a precision of 0.80, and
an F1-score of 0.80 (Table 2). This indicates that
DeepImmunoGene outperformed all other models in every
metric (Table 2). Genes with a LogFC greater than 0 were
considered upregulated in responders, whereas genes with a
LogFC less than 0 were considered upregulated in
nonresponders. We discovered that 36 genes were upregulated
in patients with NSCLC who responded to PD-1
immunotherapy, with the top 10 most significant being
GSTT2B, HMGA2, AC135050.2, ANKRD33B, MMP13,
PLA2G2D, RASGEF1A, BIRC7, DCAF4L2, and CHMP7
(Figure 7). These genes may serve as potential biomarkers for
predicting response to PD-1 immunotherapy. Additionally, we
identified 62 upregulated genes in nonresponder patients with
NSCLC, with the top 10 most important being SPINK1, FEZF1,
THBS4, BEST3, TESC, C6orf226, TSSK2, SFRP2,
C1GALT1C1L, and RARRES1 (Figure 7).

The top 10 most significant upregulated genes were identified
for both responder and nonresponder patients with NSCLC
based on the DeepImmunoGene model. In responders, genes
such as GSTT2B, HMGA2, and MMP13 were prominent,
whereas SPINK1, FEZF1, and THBS4 were among the top in
nonresponders. These genes may serve as potential predictive
biomarkers for PD-1 treatment outcomes.
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Figure 5. Workflow for identifying predictive biomarkers using DeepImmunoGene. Schematic of the DeepImmunoGene model pipeline. The 1093
differentially expressed genes were subjected to permutation importance analysis to extract the 98 most informative features, which were then used to
train the final model. This approach enabled identification of key genes associated with programmed cell death receptor-1 (PD-1) immunotherapy
response.

Figure 6. Gene importance ranking using permutation analysis. Permutation importance applied to the 1093 differentially expressed genes using the
DeepImmunoGene model identified 98 genes with nonzero importance scores. These genes were ranked based on their contribution to model prediction
performance, highlighting their potential as key features for programmed cell death receptor-1 response classification in patients with non–small cell
lung cancer.
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Figure 7. DeepImmunoGene-based stratification of predictive biomarkers associated with programmed cell death receptor-1 (PD-1) immunotherapy
response. Using permutation importance and deep neural network modeling, 98 high-importance genes were identified and stratified based on direction
of differential expression. Thirty-six genes were upregulated in responders and 62 in nonresponders. The top 10 genes in each group are shown as
candidate biomarkers for predicting PD-1 treatment outcomes in non–small cell lung cancer.

External Validation of Biomarkers Identified by
DeepImmunoGene
Here, we sought to determine whether DeepImmunoGene’s
predicted biomarkers showed consistent expression patterns in
an independent dataset. We generated violin plots comparing
log2 (TPM +1) gene expression between responders and
nonresponders. Of the top 10 nonresponder-upregulated
biomarkers identified by DeepImmunoGene, 6 genes were
present in the independent dataset and analyzed. We found that
4 of these 6 genes (SPINK1, THBS4, TESC, and SFRP2)
showed a consistent trend of higher median expression in
nonresponders (Figure 8A). Of these, 3 genes (THBS4, TESC,

and SFRP2) demonstrated statistically significantly higher
expression (P=.04) in nonresponders.

Of the top 10 responder-upregulated biomarkers identified, 6
genes were present in the independent dataset and analyzed.
We found that 4 of these 6 genes (HMGA2, ANKRD33B,
PLA2G2D, and RASGEF1A) showed higher median expression
in responders (Figure 8B). BIRC7 and MMP13 had similar
median expression in both groups; however, their violin plots
displayed extended upper tails, indicating that some patients
exhibited markedly higher expression levels. While these
patterns suggest differences in expression between responders
and nonresponders, statistical significance was not reached in
this analysis.
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Figure 8. Validation of biomarkers identified by DeepImmunoGene. Violin plots showing differences in the expression of (A) 6 nonresponder-upregulated
biomarkers and (B) 6 responder-upregulated biomarkers. P values determined by Mann-Whitney U test. *P=.05, **P<.01.
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Discussion

Principal Findings
We aimed to identify DEGs associated with response to PD-1
immunotherapy in patients with lung cancer using a DNN model
to explore the biological mechanisms underlying immunotherapy
response. Here, we developed DeepImmunoGene, a
computational framework that uses an advanced neural network
with an integrated approach to predict patient response to PD-1
immunotherapy with high accuracy. Our model identified 36
upregulated genes, including the top 10 (GSTT2B, HMGA2,
AC135050.2, ANKRD33B, MMP13, PLA2G2D, RASGEF1A,
BIRC7, DCAF4L2, and CHMP7), which were associated with
positive responses to PD-1 immunotherapy in patients with
NSCLC. However, apart from the 10 described, our model was
able to find approximately 96 total critical genes. If we were to
leverage only differential gene expression rather than
DeepImmunoGene, more than 1000 genes would be present,
many of which are not significant biomarkers for identifying
responders. As a result, we deployed a permutation importance
feature selector to identify from the potential 1000 expressive
genes the ones that are critical in the identification of the patient,
reducing the quantity of noisy biomarkers in the dataset. These
findings suggest that these genes could serve as the candidate
biomarkers for predicting patients who respond to PD-1
inhibitors. Some of these genes (HMGA2, MMP13, BIRC7,
and PLA2G2D) have been reported to be overexpressed in
various cancers, including lung adenocarcinoma, and are
associated with tumor progression and metastasis [51-54],
supporting their potential as biomarkers for PD-1
immunotherapy. We can identify these genes by ranking based
on feature importance. We identify the most important genes,
given the decrease in performance once permutated. The 10
most critical genes show the greatest decline in model accuracy
once they are shifted. Furthermore, existing literature has shown
many of these genes to be capable identifiers of immunotherapy.
Genes such as HMGA2 and MMP13 are currently in the
literature to identify a high likelihood of therapy success [55,56].
Our primary contribution lies not in introducing a novel DL
architecture, but in developing DeepImmunoGene, a framework
that complements prior frameworks, integrating interpretability
and ML with the novelty to identify key genomic markers for
PD-1 immunotherapy response.

In addition to their differential expression patterns, several of
the top-ranked genes identified in our model have established
roles in cancer-related biological processes. HMGA2 is a
well-characterized architectural transcription factor associated
with epithelial-mesenchymal transition and metastatic
progression [57]. MMP13 contributes to extracellular matrix
degradation and tumor invasion [55]. BIRC7 (also known as
Livin) has been implicated in the inhibition of apoptosis and
immune evasion mechanisms in solid tumors [58]. PLA2G2D
is known for its involvement in inflammatory signaling and has
been shown to modulate dendritic cell function and T-cell
recruitment in the tumor microenvironment [59]. These
functional insights, drawn from existing literature, suggest that
many of the identified genes may influence immunotherapy
response through diverse oncogenic and immune-related

pathways. Although a formal pathway enrichment analysis was
not performed, the biological relevance of these genes supports
their potential as markers of therapeutic response.

Our analysis began with the application of the LIMMA method
to bulk RNA-seq data, which identified 1093 DEGs from a total
of 19,911 genes in patients with lung cancer [24]. LIMMA is
a widely used tool for differential gene expression analysis,
facilitating the identification of genes linked to disease
pathogenesis, particularly in RNA-seq and microarray data [30].
We evaluated these 1093 genes using 3 different ML models,
including SVM, XGBoost, and DNN, to assess their predictive
performance. The SVM showed moderate performance in
classifying patient response with an accuracy of 0.68 and an
AUC of 0.76, suggesting that it was unable to effectively capture
the underlying correlations between gene expression and patient
response. This may be due to the nonlinear nature of gene
expression data, which likely hindered the SVM model’s ability
to generalize its predictions across patients [11,60]. While
XGBoost outperformed SVM by a slight margin (0.04 for
accuracy and 0.01 for AUC), there is no significant difference
between these models, indicating that neither model could
provide sufficiently robust predictions. These findings suggest
that the high dimensionality, small sample size, and categorical
imbalance of RNA-seq data pose significant challenges for
traditional ML approaches [61].

To address the limitations of traditional ML models, we applied
a DNN, a nonlinear model capable of capturing complex
relationships within large gene expression datasets by mimicking
the information-processing patterns of the human brain to
generate predictions [11,40,60]. Unlike traditional models such
as SVM and XGBoost, the DNN consists of multiple layers of
neurons connected by weighted links, which allow the model
to learn intricate patterns within the data. DNNs have shown
strong performance in genomic predictions for various diseases
[43]. The DNN model using the 1093 DEGs significantly
outperformed both SVM and XGBoost. It exceeded SVM by
14% in both accuracy and AUC and outperformed XGBoost
by 10% in accuracy and 13% in AUC. This improved
performance of the DNN is attributed to its ability to capture
and learn from the high-dimensional, nonlinear interactions
inherent in gene expression data, which are challenging for
traditional linear models to predict accurately [61]. This
capability allows the DNN to generalize more effectively across
diverse patient data, leading to more accurate and robust
predictions than those made by more basic, linear computational
models.

To reduce the number of genes and enhance the reliability of
our model, we performed a permutation importance analysis
using the scikit-learn framework. This analysis was repeated 4
times, each with 50 iterations to ensure the identification of a
robust gene set to build DeepImmunoGene on. This
subsequently reduced the set of 1093 genes to 98 genes based
on nonzero importance scores, which were correlated with the
response to PD-1 inhibitors and ranked according to their
importance [62]. The DeepImmunoGene model was then trained
using this refined set of 98 genes. Compared to our previous
models, DeepImmunoGene demonstrated superior performance
and robustness across all metrics (Table 2), indicating that the
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application of permutation importance effectively eliminated
irrelevant, noisy genes, allowing the model to focus exclusively
on the most relevant genes without interference during training,
such as overfitting. However, we also observed that specificity
was consistently slightly lower than recall across all models,
indicating that the models had more difficulty discerning
nonresponders. This suggests that nonresponders may not have
responded to immunotherapy due to external factors, such as
the tumor microenvironment, age, or gender [24]. The
comparative analysis with traditional ML models using the
98-gene subset found through permutation importance validates
the core framework of DeepImmunoGene. The results highlight
a specific synergistic effect between our feature selection
method and the DNN, which is critical for achieving superior
predictive performance. Although reducing the feature set to
98 genes improved computation efficiency no less, the fact that
SVM and XGBoost trained on this same reduced feature set
still failed to achieve comparable performance suggests that the
DNN is better suited to capture the complex, nonlinear
relationships and subtle gene-gene interactions underlying the
RNA-seq data. Ultimately, the strength of DeepImmunoGene
lies in this integrative approach of first identifying the most
influential genes for accurate prediction and then leveraging a
sophisticated DL model to interpret their combined predictive
signal.

Further analysis revealed that 36 genes were upregulated
(LogFC>0) in patients who responded to PD-1 immunotherapy,
whereas 62 genes were upregulated (LogFC<0) in nonresponders
[63]. These results suggest that DeepImmunoGene could serve
as a robust ML-based tool for predicting immunotherapy
outcomes in patients with lung cancer. The identification of
these genes linked to responders and nonresponders not only
offers potential biomarkers for predicting immunotherapy
success but also enhances our understanding of the molecular
mechanisms underlying the immune response in cancer. This
could help guide more personalized treatment strategies,
ultimately reducing unnecessary side effects and financial
burdens for patients and health care systems, as immunotherapy
is currently administered without prior knowledge of its
effectiveness or safety for each patient [24,26]. Recent studies
showed that only approximately 25% of patients show a positive
response to immunotherapy, as PD-1/PD-L1 expression is not
a sufficient biomarker to select patients who are likely to benefit
[25,26]. Therefore, in addition to PD-1/PD-L1 expressions,
these genes could be used as clinically actionable biomarkers
for predicting response to ICIs with high accuracy.

Finally, we externally validated the predictive biomarkers
identified by DeepImmunoGene using an independent bulk
RNA-seq dataset of patients with NSCLC treated with PD-1
inhibitors (GSE207422) [49]. Given the small size of the
external validation cohort (n=24) and the notable class
imbalance (17 responders vs 7 nonresponders), we anticipated
limited statistical power to detect meaningful differences (67).
Additionally, the dataset itself includes patients receiving PD-1
inhibitors in combination with chemotherapy, which introduces
treatment heterogeneity that may cause much of the variations
observed in the expression patterns. Despite these limitations
inherent to the available data, our analysis found that 4 of 6

nonresponder-upregulated genes showed higher median
expression in nonresponders, with 3 achieving statistically
significant differences in the predicted direction (P<.05).
Similarly, 4 of 6 responder-upregulated genes demonstrated
higher median expression in responders, although none reached
statistical significance. This partial agreement offers encouraging
evidence that the model-identified biomarkers capture
biologically meaningful expression trends even in an
independent, clinically realistic cohort. While these results
should be interpreted cautiously, given the small sample size,
class imbalance, and treatment variability, they support the
potential utility of these gene markers for predicting
immunotherapy response. Future validation in larger,
well-annotated cohorts with consistent PD-1 treatment protocols
is warranted to confirm their clinical relevance, fully validate
the model’s predictive classification performance, and further
refine the list of biomarkers.

To contextualize DeepImmunoGene among existing approaches,
we compared our method to previously published biomarker
studies in NSCLC using PD-1 datasets. For example, Hwang
et al [64] developed immune gene signatures derived from small
patient cohorts with a limited number of features, which can
restrict the model’s ability to generalize to diverse patient
populations or capture variability in gene expression. In contrast,
Ravi et al [65] applied regression-based linear models that
assume compounding, independent effects of genes on treatment
response, which may fail to capture complex, nonlinear
gene-gene interactions. By leveraging a DNN architecture,
DeepImmunoGene is designed to learn these nonlinear
dependencies across large-scale gene expression data, enabling
more comprehensive and potentially generalizable biomarker
discovery for predicting immunotherapy response. Other
approaches, such as Lee et al [66], propose an ensemble method
incorporating different models for the classification from gene
expression profiles and additional information. This adds
informative features, which may not always be available; in
contrast, DeepImmunoGene reduces the feature space of RNA
sequencing, helping isolate and detect features that are more
likely to carry correct information.

Conclusions
Our DeepImmunoGene predictive model identified 36
upregulated genes in patients with NSCLC who responded to
PD-1 immunotherapy. Among these, the 10 most significant
genes (GSTT2B, HMGA2, AC135050.2, ANKRD33B, MMP13,
PLA2G2D, RASGEF1A, BIRC7, DCAF4L2, and CHMP7)
may serve as potential genomic biomarkers for predicting which
patients with NSCLC are most likely to respond to PD-1
immunotherapy. Our external validation on an independent
cohort supported several of the model-identified biomarkers,
demonstrating partial agreement with DeepImmunoGene’s
predicted expression patterns despite the small sample size and
class imbalance. These findings offer a promising foundation
for future research aiming to improve patient stratification for
PD-1 immunotherapy. Further validation in larger,
well-annotated datasets and biological systems is needed to
confirm their correlation with PD-1 inhibitors, which could lead
to the development of more personalized and effective
immunotherapies for lung cancer. Although the
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DeepImmunoGene model demonstrated promising predictive
performance, this study has several limitations. First, the analysis
was conducted on a relatively small cohort of 355 patients with
lung cancer. Second, we relied on a single publicly available
RNA-seq dataset, which limited our ability to perform external
validation. Third, key demographic and clinical variables, such
as cancer stage, NSCLC subtype, age, and sex, were not
available in the dataset. These factors are known to influence
both immune response and gene expression, and their absence
restricts the model’s robustness assessment across patient
subgroups. As a result, we were unable to evaluate the potential
influence of demographic biases on model predictions. Future
work with more comprehensive and diverse datasets is essential
to validate the model’s generalizability and to assess its
consistency across clinically relevant subpopulations. We plan
to conduct a follow-up study using external datasets when
available and collaborate with clinics to validate our findings
and further refine the list of biomarkers.

We also acknowledge that more advanced DL models exist for
this task. Future work will involve evaluating DeepImmunoGene
against state-of-the-art architectures, incorporating multimodal
data, and validating performance on larger and more diverse
cohorts. In this study, while DeepImmunoGene demonstrated
strong performance metrics, future research should focus on
improving the model’s robustness through external validation
across diverse datasets, including those from different
geographical regions, patient demographics, and cancer stages.
This would help assess how well the model generalizes beyond
the current cohort of 355 patients. Moreover, the bias-variance
tradeoff is crucial in this context. Our current model, which is
highly sophisticated (DNN), likely strikes a balance between
bias and variance, but there may still be room for improvement.
High bias could occur if the model is overly simplified, missing
important patterns in the data, whereas high variance could
result from overfitting the model to the training data, leading
to poor performance on new, unseen data.
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