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Abstract

Background: Plant-derived exosome-like nanovesicles (P-ELNs) effectively deliver bioactive compounds due to their high
biocompatibility and low immunogenicity. While liquid chromatography-mass spectrometry (LC-MS) profiles compounds in
complex samples, its analysis of large datasets remains limited by traditional methods. Recent advances in large language models
(LLMs) and domain-specific systems have enhanced Chinese biomedical data processing and cross-modal pharmaceutical
research.

Objective: This study aimed to create a multimodal framework of LC-MS combined with DeepSeek models for data mining
of compounds with wound-healing properties from exosome-like nanovesicles derived from Cayratia japonica (CJ-ELNs).

Methods: LC-MS identified compounds enriched in CJ (n=3) and CJ-ELNs (n=3), and then compounds specifically enriched
in CJ-ELNs were filtered via a four-step filtering workflow. The CJ-ELNs-specific compounds were processed by DeepSeek
models for screening naturally active compounds with targeted functions of antioxidation, anti-inflammation, anticellular damage,
antiapoptosis, wound healing and tissue regeneration, and cell proliferation.

Results: A multimodal framework of LC-MS combined with the DeepSeek-DF model was created. With the assistance of
artificial intelligence (AI), a total of 46 naturally active compounds derived from CJ-ELNs with targeted functions were identified.

Conclusions: A self-designed multimodal framework of LC-MS, combined with DeepSeek models, rapidly and accurately
identifies naturally active compounds from CJ-ELNs. This AI-powered system innovatively integrates the traditional analytical
technique with modern LLMs, thus greatly favoring data mining of active ingredients in traditional Chinese medicine herbs.

(JMIR Bioinform Biotech 2026;7:e80539)   doi:10.2196/80539
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Introduction

Plant-derived exosome-like nanovesicles (P-ELNs) contain
abundant bioactive molecules, serving as novel carriers of
natural products to mediate intercellular communication and
mediate physiological processes [1,2]. P-ELNs are superior to
conventional mammalian-derived exosomes, possessing unique

advantages such as high biocompatibility, high skin
permeability, low cytotoxicity and low immunogenicity [3,4].
Multiple in vitro and in vivo studies indicate that these P-ELNs
possess intrinsic therapeutic activity, offering promise for
disease treatment and enhancing human health [5,6]. Cayratia
japonica, a traditional Chinese medicinal herb, is widely used
for the treatment of traumatic injuries such as contusions and
lacerations [7]. Recent clinical studies have confirmed that
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topical application of CJ ointment effectively alleviates local
inflammation and promotes the repair and regeneration of
damaged tissue, demonstrating favorable therapeutic outcomes
in the management of postoperative infectious wounds around
the anus [8]. However, research and application of exosome-like
nanovesicles (ELNs) derived from CJ remain incomplete. Our
research team successfully extracted and characterized a novel
type of P-ELNs from the traditional Chinese medicinal herb
Cayratia japonica, namely Cayratia japonica exosome-like
nanovesicles (CJ-ELNs). They possess efficient delivery of
bioactive compounds to wound sites, thus favoring tissue
regeneration from infectious wound-related disorders. Bioactive
constituents encapsulated within CJ-ELNs are dominant in
wound healing. Consequently, the identification and
characterization of bioactive compounds responsible for wound
healing are of paramount significance.

Great strides have been made in the screening of active
ingredients from natural products via omics techniques [9].
Liquid chromatography–mass spectrometry (LC-MS) has
emerged as a powerful tool for profiling trace-level compounds
in complex samples, although its performance in processing
massive data is limited by traditional manual or rule-based
analytical approaches [10,11]. In recent years, large-scale
pretrained language models (LLMs), such as ChatGPT, GPT-4,
and domain-specific systems like DeepSeek, have significantly
transformed the landscape of biomedical data analysis and
knowledge discovery [11,12]. These models exhibit powerful
capabilities in natural language understanding, semantic
reasoning, and prompt-based knowledge retrieval [13-15]. They
are promising tools to assist omics analysis. In particular,
DeepSeek models have been widely adopted for optimizing
Chinese-language biomedical contexts, and supporting
cross-modal tasks in pharmaceutical research, such as entity
recognition, document summarization, and semantic ranking
[16,17].

In this study, we innovatively created a multimodal framework
of LC-MS combined with DeepSeek models for data mining of
compounds with wound-healing properties from CJ-ELNs. This
work illustrates the potential of artificial intelligence (AI) as a
computational engine in natural compound discovery and offers
a scalable solution for mining multimodal biochemical data.

Methods

Preprocessing of LC-MS Data
Untargeted metabolomic profiling of CJ and CJ-ELNs was
performed by LC-MS. A total of 6 samples (including 3 CJ
samples and 3 CJ-ELNs samples) were analyzed using a
ultra-high-performance liquid chromatography (UHPLC) system
coupled to a Q Exactive HF-X mass spectrometer (Thermo
Scientific). Chromatographic separation was performed on an
HSS T3 column (maintained at 40°C) with a 12-minute linear
gradient from 2% to 98% mobile phase B at a flow rate of 0.3
mL/min. Mass spectrometry (MS) data were acquired in both
positive and negative electrospray ionization (ESI) mode (±
ESI) using a data-dependent acquisition strategy (top 10 most
intense ions). Raw data were first converted to the mzML format
using ProteoWizard, followed by processing, using Compound
Discoverer 3.3 (Thermo Fisher Scientific) for peak alignment
(with maximum retention time shift of 0.5 min and mass
tolerance of 10 ppm) and normalization (using the median of
maximum peak areas). Compound identification was achieved
by matching MS/MS spectra against the following databases:
mzCloud, LipidMaps, KEGG, HMDB, and MassBank. The
matching criteria were set to a mass tolerance of 10 ppm and a
minimum match factor threshold of 10. A four-step filtering
workflow was designed to quantitatively identify target
compounds as follows (Figure 1).

1. Filtering of match confidence: compounds with spectral
match scores ≥80 were retained [18];

2. Filtering of unique compounds of CJ-ELNs: compounds
identified in CJ and CJ-ELNs were compared with isolated
compounds unique to CJ-ELNs;

3. Filtering of biological relevance: candidate compounds
were screened for associations with wound healing-related
signaling pathways using the DeepSeek-Bio model;

4. Semantic recognition and prompt engineering: final
candidate molecules were refined through semantic analysis
and prompt-based selection.

Common and unique compounds derived from CJ and CJ-ELNs
were visualized in a Venn diagram, and a word cloud analysis
was conducted via Python. Functions and tools, and databases
of key terms used in this study are listed in Table 1.
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Figure 1. A four-step filtering workflow. CJ-ELNs: Cayratia japonica exosome-like nanovesicle; LC-MS: liquid chromatography-mass spectrometry.
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Table . Key terms, functions, tools and databases used in this study.

Tools/databasesFunctionsKey terms

ProteoWizardStandardized data storagemzML

Deepseek 671B Model Network Edition

KEGG database

Biological pathway association analysisDeepSeek-Bio

Chemoinformatics software packagesDigital characterization of molecular structuresMorgan

PubMed.proLiterature feature extractionPubMedBERT

Deep learning frameworks (eg, PyTorch)Visualization of model decisionsGrad-CAM

The Great Prophecy Model of Human-Computer
Interaction

automatic semantic recognitionASR

Construction of a Multimodal Framework of LC-MS
Combined With DeepSeek Models
A multimodal framework of LC-MS combined with the
DeepSeek-DF model was created, consisting of two major
components of the input and output layers. The input layer
integrated structural features of compounds (Morgan

fingerprints), quantitative features (z score normalization), and
literature-derived features (PubMedBERT embeddings). The
core architecture was listed in Figure 2. Additionally, the output
layer used multitask learning to simultaneously predict
wound-healing activity via Sigmoid output and mechanism
category via Softmax output.

Figure 2. The core architecture of the input layer.

Interpretability-Based Filtering
The Automated Semantic Recognition (ASR) module and
prompt engineering techniques of DeepSeek-R1 32B, as well
as web searching were used to interpret the potential biological
functions of the screened candidate compound with an
annotation of functional labels. A plausibility assessment was
then performed based on predefined criteria, including
antioxidation, anti-inflammation, anticellular damage,
antiapoptosis, wound healing and tissue regeneration, and cell
proliferation. Each compound was evaluated and categorized

using the following scoring scheme: √ (confirmed), × (not
supported), and ? (uncertain). Taking the metabolite
(-)-Epicatechin 3-O-gallate as an example, its function, category
and possibility in the involvement of wound healing, tissue
regeneration, antioxidant, and anticellular damage were
predicted via the multimodal framework (Table 2). Following
this preliminary filtering, manual curation was conducted to
eliminate compounds of nonplant origin and those with low
abundances. Ultimately, a refined set of characteristic natural
products from CJ-ELNs with potential wound-healing properties
was selected.
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Table . Functions, categories and possibility in the involvement of biological processes of representative metabolites.

PossibilityCategoriesFunctionsCompound

Wound healing: ×, tissue regenera-
tion: ×, antioxidant: √, anti-cellular
damage: ?

Organic compound, antioxidant
factor, anti-inflammatory factor,
energy metabolism, phenolic factor

Antioxidant, anti-inflammatory, an-
ti-cancer, cardiovascular protection,
glucose and lipid metabolism regu-
lation.

(-)-Epicatechin 3-O-gallate

Wound healing: ×, tissue regenera-
tion: ×, antioxidant: √, anti-cellular
damage: ?

Flavonoids, antioxidant, anti-inflam-
matory

Antioxidant and anti-inflammatory,
maintaining vascular resilience, re-
ducing vascular permeability and
fragility, exhibiting certain antiviral
and anticancer effects.

Rutin

Wound healing: ×, tissue regenera-
tion: ×, antioxidant: ×, anti-cellular
damage: ×

Organic compounds, alkaloids, ener-
gy metabolism

Central nervous system stimulants,
enhance mental alertness, alleviate
fatigue.

Caffeine

Results

Acidic Compounds Are Enriched in CJ-ELNs
After conversion and normalization of the raw LC-MS data, a
total of 829 and 2212 compounds were identified from CJ and

CJ-ELNs. A Venn diagram visualized 1881 specific compounds
in CJ-ELNs (Figure 3). “Acid,” as the most frequent term across
all entries of metabolite names, was detected by a word cloud
analysis (Multimedia Appendix 1). It suggested that acidic
compounds were highly enriched in CJ-ELNs.

Figure 3. Enrichment of acidic compounds in CJ-ELNs. (A) A Venn diagram visualizing an intersection of compounds identified from both CJ and
CJ-ELNs and unique compounds in CJ-ELNs. CJ: Cayratia japonica; CJ-ELNs: Cayratia japonica exosome-like nanovesicle.

Rapid and Accurate Data Mining of Compounds in
CJ-ELNs With Functional Properties
A total of 1881 candidate compounds enriched in CJ-ELNs
were functionally annotated and classified using the
self-designed multimodal framework of LC-MS combined with

DeepSeek models. They were categorized into 20 distinct
classes, including organic compounds, alkaloids, amino acids,
biomolecules, organic acids, antioxidants, anti-inflammatory
agents, energy metabolism-related molecules, phenolics,
cytoprotective agents, alcohols, and others. Organic compounds
were the leading category of compounds enriched in CJ-ELNs
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(Figure 4, Multimedia Appendix 2). Functionally, 43.33%
(n=39) of compounds enriched in CJ-ELNs possessed the
antioxidant property. With the assistance of DeepSeek, we
specifically screened compounds enriched in CJ-ELNs with

targeted functions of antioxidation, anti-inflammation,
anticellular damage, antiapoptosis, wound healing and tissue
regeneration, and cell proliferation.

Figure 4. Rapid and accurate data mining of compounds in CJ-ELNs with functional properties. Top 20 classifications of compounds enriched in
CJ-ELNs. CJ-ELN: Cayratia japonica exosome-like nanovesicle.

Bioactive Compounds of CJ-ELNs Responsible for
Wound Healing and Tissue Regeneration
We estimated the overall expression levels of compounds across
the six target functions derived from the DeepSeek model within
this multimodal framework, visualizing the results in radar chart
format after log2-transformation. (Figure 5). Notably,
compounds with the antioxidant function possessed the highest
expression levels, proving the antioxidant mechanism of
CJ-ELNs in wound repair. Finally, a secondary filtering of

compounds with targeted functions was conducted. We manually
excluded nonplant–derived compounds, including those of
animal origin, synthetic chemicals, and other nonbotanical
sources. In addition, compounds with low expression levels in
CJ-ELNs were also removed. As a result, a total of 46 naturally
active compounds derived from CJ-ELNs with targeted functions
were identified (Figure 6 and Multimedia Appendix 3). Citric
acid was the most abundant compound with the targeted
functions, which was consistent with the finding from the word
cloud analysis.
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Figure 5. Radar plots visualizing bioactive compounds of Cayratia japonica exosome-like nanovesicles with targeted functions.

Figure 6. Expression levels (log2-transformed) of naturally active compounds derived from Cayratia japonica exosome-like nanovesicle identified by
an integration of liquid chromatography-mass spectrometry and DeepSeek models.
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Discussion

Principal Findings
This study innovatively integrated DeepSeek models with
LC-MS to successfully predict the major natural products of
CJ-ELNs responsible for wound healing. DeepSeek’s ASR
semantic recognition and prompt engineering worked together
to generate initial classification labels. Moreover, an automatic
assessment effectively, rapidly, and accurately achieved the
goal of data mining of specific compounds for targeted
functions.

AI techniques, particularly LLMs, have become an unstoppable
force for reshaping medical research [19,20]. Traditionally,
LC-MS is a powerful analytical technique to identify and
quantify active ingredients in traditional Chinese medicine
(TCM) herbs. However, a rapid and accurate recognition of
compounds with targeted functions, and a quantitative analysis
of trace concentrations in complicated samples can be
challenging [21]. We expected that an integration of LC-MS
and LLMs would benefit TCM research, including the
acceleration of active ingredient screen, precise targeting of
interested compounds for certain diseases, and anchoring the
promising candidates for developing new drugs. DeepSeek is
an intelligent system based on a large-scale pre-trained language
model, exhibiting strong capabilities in text understanding,
knowledge reasoning, and cross-modal collaborative analysis,
particularly excelling in processing information within
Chinese-language contexts [22,23]. It enables rapid processing
and analyzing massive volumes of both unstructured and
structured data, thus digging biological insights out of complex
omics datasets [24,25].

In the present study, we first created a four-step filtering
workflow and quantitatively identified target compounds from
CJ-ELNs by LC-MS. The cloud word analysis emphasized the
term of acid among screened compounds enriched in CJ-ELNs.
Acidic compounds derived from traditional Chinese herbals are
established for the role of clearing heat and detoxifying [26].
Numerous studies have reported that acidic compounds in plants
exert antioxidant, antibacterial, and anti-inflammatory effects
through mechanisms such as scavenging free radicals, alleviating
oxidative stress, modulating inflammatory factors, stimulating
fibroblast proliferation, promoting collagen deposition,

enhancing epithelialization, and inducing angiogenesis [27,28].
To achieve a precise data mining of compounds with relevant
functions, DeepSeek models lent a hand that specifically
screened compounds in CJ-ELNs with targeted functions of
antioxidation, anti-inflammation, anticellular damage,
antiapoptosis, wound healing and tissue regeneration, and cell
proliferation. Finally, naturally active compounds in CJ-ELNs
were resurfaced for their promising potentials in wound repair.
For example, studies have shown that baicalin accelerates the
wound healing process by downregulating the expression of
pro-inflammatory cytokines (IL-6 and IL-1β) while upregulating
the anti-inflammatory factor IL-10, and by promoting the
secretion of various growth factors (VEGF, FGF-2, PDGF-β,
and CTGF) [29]. The combination of LC-MS with DeepSeek
paves the way to further analyses of therapeutic targets from
traditional Chinese herbs for wound healing and tissue
regeneration [30,31].

Limitations in this study should be noted. Firstly, bioactive
compounds derived from CJ-ELNs were mined via LC-MS and
a single LLM, namely, DeepSeek-R1. Other cutting-edge LLMs
such as Claude, GPT-4 and Liama [32] can be further analyzed
for the assistance of LC-MS in identifying interested
compounds. Secondly, the 46 naturally active compounds
derived from CJ-ELNs with targeted functions should be
validated in in vivo and in vitro experiments. Lastly, the
workflow we have established requires further validation on
independent datasets. We shall address the aforementioned
issues in subsequent work, including evaluating the efficacy of
compounds through cell migration and transdermal tissue
compatibility assays, verifying their efficacy via macroscopic
imaging and H&E staining following animal wound modelling
interventions, and validating potential pathways involved
through Western blot and immunohistochemical analysis.

Conclusion
We innovatively designed a multimodal framework of LC-MS
combined with DeepSeek models that rapidly and accurately
identify naturally active compounds from CJ-ELNs. This
AI-powered system innovatively integrates the traditional
analytical technique with modern large language models,
showing a huge potential in modern medicine and TCM
research.
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Abstract

Background: The manual abstraction of unstructured clinical data is often necessary for granular clinical outcomes research
but is time consuming and can be of variable quality. Large language models (LLMs) show promise in medical data extraction
yet integrating them into research workflows remains challenging and poorly described.

Objective: This study aimed to develop and integrate an LLM-based system for automated data extraction from unstructured
electronic health record (EHR) text reports within an established clinical outcomes database.

Methods: We implemented a generative artificial intelligence pipeline (UODBLLM) utilizing a flexible language model interface
that supports various LLM implementations, including Health Insurance Portability and Accountability Act-compliant cloud
services and local open-source models. We used extensible markup language (XML)-structured prompts and integrated using an
open database connectivity interface to generate structured data from clinical documentation in the EHR. We evaluated the
UODBLLM’s performance on the completion rate, processing time, and extraction capabilities across multiple clinical data
elements, including quantitative measurements, categorical assessments, and anatomical descriptions, using sample magnetic
resonance imaging (MRI) reports as test cases. System reliability was tested across multiple batches to assess scalability and
consistency.

Results: Piloted against MRI reports, UODBLLM processed 1800 clinical documents with a 100% completion rate and an
average processing time of 8.90 seconds per report. The token utilization averaged 2692 tokens per report, with an input-to-output
ratio of approximately 13:2, resulting in a processing cost of US $0.009 per report. UODBLLM had consistent performance
across 18 batches of 100 reports each and completed all processing in 4.45 hours. From each report, UODBLLM extracted 16
structured clinical elements, including prostate volume, prostate-specific antigen values, Prostate Imaging Reporting and Data
System scores, clinical staging, and anatomical assessments. All extracted data were automatically validated against predefined
schemas and stored in standardized JSON format.

Conclusions: We demonstrated the successful integration of an LLM-based extraction system within an existing clinical
outcomes database, achieving rapid, comprehensive data extraction at minimal cost. UODBLLM provides a scalable, efficient
solution for automating clinical data extraction while maintaining protected health information security. This approach could
significantly accelerate research timelines and expand feasible clinical studies, particularly for large-scale database projects.

(JMIR Bioinform Biotech 2026;7:e70708)   doi:10.2196/70708

KEYWORDS

generative artificial intelligence; artificial intelligence large language model; GPT-4; chatbot; pattern analysis; prostate cancer;
kidney cancer
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Introduction

Background
Electronic health record (EHR) systems contain extensive health
data, but much of it is in unstructured notes such as radiology
and pathology reports, making it hard to access for large-scale
research. Granular clinical outcomes research often requires
laborious manual chart review. The automation of this process
requires significant investment, and algorithm performance
varies with report parameters and automation type [1,2].
Previous attempts to automate this process have tried natural
language processing on prostate cancer pathology reports,
reporting a weighted F1 score and accuracy as high as 0.97%
and 93%, respectively [3].

Large language models (LLMs) represent a new opportunity
for addressing this problem. LLMs are generative artificial
intelligence programs capable of drafting human-like responses
to specific queries. In oncological contexts, LLM applications
can create medical notes, aggregate imaging findings, extract
operative note data, and identify presenting symptoms [4-7].
Previous studies analyzing the overall data extraction capabilities
have found accuracies ranging from 63.9% to 100% in retrieving
data elements [5,8-13]. Specifically, several LLM models have
also been developed to extract medical information from text,
including early-stage LLM trained on medical encyclopedias
and radiology datasets to read annotated radiology reports
(71.6% accuracy) and inferring cancer disease response based
on computed tomography reports (89% accuracy) [14,15]. Some
of these groups also implemented or hypothesized implementing
their systems into medical research pipelines for expediting data
extraction [3,8]. Another group applied a customized,
open-source LLM trained on medical data to read magnetic
resonance imaging (MRI) reports with a sensitivity of 96% and
specificity of 99%. In terms of data extraction, generative
pre-trained transformer (GPT)-4 has been shown to extract
hepatocellular carcinoma data from MRI reports with an overall
accuracy of 93.4% [16]. LLMs have also proven to be flexible
and frequently outperform traditional automated models,
suggesting that powerful LLMs might be ready to support
research endeavors via the extraction of unstructured data
[5,8,17]. Implementing LLMs into practical, applicable tools
remains challenging, and some private organizations have
attempted to improve clinical data extraction through EHR
integration [18]. Despite this, most efforts, such as the American
Urological Association Quality Registry, remain dependent on
manual data management, partially due to difficulty integrating
new tools into existing workflows. While some larger
institutions have begun implementing automated data extraction
pipelines, traditional methods of data extraction require
considerable technical expertise and resources to initiate, making
these methods inaccessible for most institutions.

The University of California, San Francisco (UCSF) Department
of Urology maintains the Urologic Outcomes Database (UODB)
for prostate, bladder, and renal cancers [19]. The UODB is an
SQL-based clinical data research database that holds structured
manually abstracted clinical data for patients treated at the
UCSF, including 7000 patients with prostate cancer over 20

years. Due to limited manual abstraction capacity and increasing
patient volume, clinical events and data entry often lag. Previous
in-house attempts to automate this process using traditional
natural language processing solutions proved to be
time-consuming to develop and maintain [1-3,20]. The aim of
this study was to demonstrate a practical use of LLMs in
academic clinical research by describing the successful
implementation of a secure, baseline, institutional version of
GPT-4 within the UODB to quickly and easily extract
unstructured data and effectively reduce manual labor in
gathering data from medical reports.

Related Work
Previous studies by our group have utilized UCSF’s Versa, an
internal, secure, Health Insurance Portability and Accountability
Act (HIPAA)-compliant deployment of OpenAI’s GPT models
(OpenAI Inc.) that includes an application programming
interface (API) for query automation [17,21]. We demonstrated
that systems based on the Versa GPT-4 API can accurately
extract structured data from real-world clinical reports. In one
study involving 424 prostate MRI reports, our pipeline, using
zero-shot prompting, achieved an overall median field-level
accuracy of 98.1% (IQR 96.3%‐99.2%), with key elements
such as prostate-specific antigen density (98.3%), extracapsular
extension (97.4%), and TNM staging (98.1%) [21]. In a separate
effort with 228 prostate MRI reports, the approach achieved
similarly high concordance (over 95%) when compared with
manual abstraction [17].

These validation efforts serve to confirm the accuracy of the
underlying extraction prompts and Versa GPT-4 API
performance. The focus of the current work, therefore, is not
on additional accuracy testing; rather, we build upon this
foundation to present a modular, scalable implementation
pipeline that operationalizes LLM-driven extraction at scale,
within a secure, clinical-grade environment.

Methods

Overall Design
This study presents the implementation and performance
evaluation of UODBLLM, a modular LLM-based pipeline
designed for structured data extraction from a wide range of
unstructured clinical reports. For this technical implementation,
the system was evaluated using free-text prostate MRI radiology
reports as the primary use case (Figure 1). The system was
deployed within a secure, HIPAA-compliant clinical
environment using the internal UCSF Versa GPT-4 API,
ensuring that protected health information (PHI) remained
confined to institutional systems. UODBLLM was designed
with a flexible architecture to support multiple language models
and API endpoints, enabling adaptability across varied clinical
settings.

Prompts are stored as configurable components in dedicated
database tables, allowing users to dynamically pair extraction
templates with report sets without modifying the underlying
code. This design supports rapid iteration, version control, and
seamless adaptation to evolving information extraction needs.

JMIR Bioinform Biotech 2026 | vol. 7 | e70708 | p.15https://bioinform.jmir.org/2026/1/e70708
(page number not for citation purposes)

Carlisle et alJMIR BIOINFORMATICS AND BIOTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. System design and data flow of the UODBLLM application. The process begins with an initial connection between the electronic health
record (EHR) and the Urologic Outcomes Database (UODB) for imaging report updates (1). The UODBLLM application is governed by a configuration
file defining its core parameters (2). The application periodically fetches new records from the UODB (3), collects the relevant reports (4) and component
prompts (5), and sends these to the Versa application programming interface (API) for processing (6). The API returns structured interpretations of the
reports (7), which are then written back into the UODB (8). A user, via the UODBLLM interface, can send a data request to the UODB (9) and receive
a data response for review and analysis (10).

Study Population
The study dataset comprised 1800 prostate MRI radiology
reports retrieved from the institutional EHR system. Reports
were selected based on procedural coding and metadata filters
to ensure relevance to downstream urologic data extraction.

Intervention
UODBLLM is a Python-based (version 3.9.6, Python Software
Foundation, worldwide) application designed to extract
structured information from clinical reports using a modular,
API-driven architecture. Source text is retrieved from the UODB
using a parameterized SQL query passed via a secure Open
Database Connectivity connection. Text blocks are staged and
dispatched in configurable batches, controlled by a modifiable
parameter specified in a configuration file or modifiable via
command-line flag.

The pipeline retrieves a version-controlled extensible markup
language (XML)-based prompt template at runtime using a
parameterized SQL query from the UODB. This template
specifies the role, task, JSON response schema, and a structured
sub-prompt with 16 XML elements that each represent a clinical
field of interest (eg, prostate volume, prostate-specific antigen
density, and overall Prostate Imaging Reporting and Data
System score), each with plain-language extraction instructions
(Figure S1 in Multimedia Appendix 1). For every report, the
program inserts the full free-text report into the template’s
designated placeholder, producing a complete prompt that is
then submitted to the Versa GPT-4 model. Embedding the report
within a constant, schema-constrained envelope ensures that
returned JSON follows a predictable structure, enabling reliable
downstream parsing and storage.

Each batch is passed to a thin wrapper around the Versa GPT-4
API. Requests are streamed to the API endpoint; results are
captured, parsed, and validated against the predefined JSON
schema. Error handling includes up to 5 retry attempts per
request with exponential back-off (2ⁿ seconds, capped at 30
seconds). Failed requests are logged, and the affected reports
are re-queued for later processing. Element-level completeness
is defined as the proportion of reports for which the pipeline
returned a non-null value.

Extracted fields are transmitted back to the database using a set
of parameterized SQL UPDATE statements mapped to internal
column identifiers. A custom statistics tracking module records
token usage, response latency, and processing cost per report
by counting model-specific numerical tokens generated from
text via Byte Pair Encoding. System-wide throughput and error
frequency are also recorded. The pipeline was executed on a
2019 MacBook Pro (Intel Core i9, 2.4 GHz, 64 GB RAM,
macOS Ventura 13.2.1). The system’s computational workload
is lightweight and not hardware dependent, making it executable
on a standard consumer laptop. The source code will be made
available to investigators for non-commercial purposed upon
request.

Ethical Considerations
The study was approved by the University of California, San
Francisco Institutional Review Board (IRB #11-05329), and
the requirement for informed consent was waived. The system
was deployed within a secure, HIPAA-compliant clinical
environment using the internal UCSF Versa GPT-4 API,
ensuring that PHI remained confined to institutional systems.
All reports were de-identified prior to processing.
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Results

Processing Performance and Resource Utilization
The analysis of system logs demonstrated consistent
performance metrics, with an average processing speed of 8.90
seconds per report across 1800 reports. UODBLLM maintained
100% completion rates across all test runs, with batch sizes of
100 reports. Token utilization, representing the count of
model-specific numerical tokens generated from the input and
output text via Byte Pair Encoding (calculated using the tiktoken
library), averaged 2692 tokens per report. Given the model’s
context window capacity relative to typical report lengths,
specific token optimization techniques like input text chunking
were not required for this implementation. This resulted in an
input-to-output ratio of approximately 13:2 (4,196,697 input
tokens, 648,723 output tokens), resulting in an average
processing cost of US $0.009 per report. The total processing
run successfully analyzed all 1800 test reports in 4.45 hours,
showing sustained performance at scale.

Prior Validation
Although the present study did not re-evaluate extraction
accuracy on this corpus, the underlying extraction logic and
prompt structure have been previously validated in two
independent studies by our group. In one effort involving 424
prostate MRI reports, the system achieved a median field-level
accuracy of 98.1% (IQR 96.3%‐99.2%) for key clinical
variables [21]. A subsequent study with 228 MRI reports
demonstrated similarly high extraction fidelity, with all
structured elements exceeding 95% accuracy [17]. These
findings confirm the robustness of the prompt design and model
configuration across settings, supporting their reliability in the
context of the current implementation.

Experience
Researchers interact with UODBLLM by selecting the clinical
report category (eg, MRI reports or pathology reports) through
a secure web-based application that integrates with the UODB
and is accessible only through local institutional network
connections. UODBLLM displays quantitative processing
metrics for the selected report type, including extraction
completion timestamps, LLM prompts, and performance
statistics from previous analyses. This longitudinal view enables
investigators to evaluate existing structured data’s temporal
relevance and completeness before proceeding with additional
processing.

Researchers can use previously extracted structured data or
initiate a new extraction cycle with refined extraction
parameters. When opting for new extraction, investigators can
specify temporal bounds for report inclusion and modify
extraction prompts stored in the database tables. This
parameterization enables the analysis of specific clinical cohorts
while ensuring consistent extraction methodology across
research protocols.

Upon initiating the UODBLLM process, the system executes
batch processing of identified reports, with real-time logging
providing visibility into extraction progress. Researchers can
monitor the system performance through logs that track

processing times, success rates, and any encountered exceptions.
The structured JSON output is automatically integrated into the
UODB, enabling immediate access for researchers.

Quality assurance is implemented through a review interface
where researchers can perform comparative analysis of extracted
data elements against source reports and any pre-existing
manually abstracted data with the opportunity to iteratively
refine prompts. Successfully processed reports are flagged in
the database, preventing duplicate processing while maintaining
a comprehensive audit trail of all data extraction operations.

Discussion

Principal Findings and Comparison With Previous
Works
In this study, we developed and validated an automated
LLM-based integration for UODB management that achieved
a 100% completion rate across 1800 clinical documents, with
an average processing time of 8.90 seconds per report. The
UODBLLM demonstrates an implementation of a PHI-secure,
LLM-agnostic system for automated data extraction from
urological outcomes documentation. By leveraging institutional
cloud infrastructure and established database architecture, we
created a scalable solution that significantly reduces the manual
effort traditionally required for data extraction while maintaining
high accuracy rates [19]. This advancement represents a crucial
step toward efficient, accurate, and comprehensive research
database management [18].

The integration of generative artificial intelligence in clinical
data management has seen rapid evolution, with several
institutions developing specialized approaches for extracting
structured data from clinical documentation [1,2]. While the
validation of a local GPT model showed promising accuracy
in the low 90th percentile for biomedical data collection, their
focus on chromatin expression in cell lines addressed a more
constrained data domain [20]. UODBLLM demonstrates
comparable accuracy rates with the ability for researcher
customization. Recent oncology initiatives using LLMs for
clinical note evaluation have shown potential, but our approach
differs by providing a complete pipeline that not only extracts
data but also integrates directly with existing database
infrastructure [5,6]. The problem of integration from clinical
care to research database is common in clinical trials, clinical
record management, and safety reports, encouraging other
groups to design automated data capture and transfer pipelines.
These pipelines have historically been evaluated as successful
by the variables they extract, efficiency gained, and
interoperability they provide, aligning with our key performance
indicators [22,23]. The pipeline here described and designed
has been estimated to improve data extraction manual time
efficiency by as much as 90% if pulling multiple variables from
hundreds of reports, although this enhancement varies based
on report type, variable, and iterations of prompt refinement.

The technical robustness of our approach is supported by key
design decisions and validated through comprehensive testing.
Our choice to leverage a PHI-secure institutional version of
GPT-4 addresses performance and privacy requirements, crucial
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considerations for clinical data management [5]. The system’s
integration within the UODB piggybacks off a validated
foundation for data structure and management [19]. Our
validation protocol included processing reports across various
batch sizes, achieving consistent performance and reliable
operation at scale. The ability of the UODBLLM to efficiently
process clinical documentation while maintaining high accuracy
suggests the potential for significant resource optimization in
research operations [6]. These efficiency gains could
dramatically accelerate research timelines and expand the scope
of feasible clinical studies.

Although this study did not re-assess extraction accuracy, this
was a deliberate design choice. The extraction framework
employed here has already undergone validation in prior work,
with element-level accuracies exceeding 95% across multiple
prostate MRI cohorts [17,21]. In contrast, our current objective
was to evaluate the system-level performance of a scalable,
generalizable implementation pipeline deployed within a secure
clinical environment. Notably, the architecture is model-agnostic
and allows for future integration of various LLMs or prompt
schemas. This decoupling of model validation from pipeline
implementation facilitates adaptability while building on
established, validated components.

The limitations of our approach warrant careful consideration.
While UODBLLM performs robustly for current use cases, the
accuracy of LLM-based data extraction still requires human
validation for critical data points, a challenge noted across
multiple studies [4,5,8]. The evolving nature of clinical research

means that prompt engineering must continually adapt to new
data types and research questions. Additionally, while our
pipeline is LLM-agnostic, our specific performance results were
achieved using a PHI-secure version of GPT-4, and performance
may vary with different models or implementations. While this
implementation focused on prostate MRI reports, the
UODBLLM pipeline was designed for broad applicability across
diverse clinical documents. This generalizability is enabled by
its modular, model-agnostic architecture and a flexible
prompting system where extraction templates are stored as
configurable components in the database. The design allows
the pipeline to be readily adapted for other unstructured texts,
such as pathology results or operative notes, which aligns with
plans to expand its use to other urologic cancers.

Conclusions
Our study demonstrates the feasibility and effectiveness of
integrating LLM-based automation into UODB management.
Our system’s perfect completion rate, rapid processing speed,
and cost-effective operation provides a robust framework for
modernizing clinical research data management. Looking ahead,
we aim to develop protocols for using LLMs to validate existing
data entries and expanding to renal and bladder cancer radiology
and pathology texts. The potential benefits of increased research
efficiency and data quality suggest that LLM-based approaches
will play an increasingly important role in clinical research
infrastructure [4]. These advances may ultimately accelerate
the pace of discovery in clinical oncology and serve as a model
for other medical specialties.
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Multimedia Appendix 1
Example of the UODBLLM Data Extraction Workflow. (A) The original unstructured text from a sample magnetic resonance
imaging report. (B) The corresponding extensible markup language-structured prompt containing instructions and specific data
extraction queries sent to the large language model (LLM). (C) The structured JSON data returned by the LLM based on the
prompt and report.
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