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Abstract

Background: Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related mortality. Programmed
cell death receptor-1 (PD-1) immunotherapy has shown results in the treatment of NSCLC; however, not all patients respond
effectively to it. Identifying predictive biomarkers for PD-1 therapy response is critical to improving patient outcomes and
treatment strategies. Traditional methods of biomarker discovery often fall short in terms of accuracy and comprehensiveness.
Recent advancements in deep learning provide a powerful approach to analyze complex genomic data to resolve this issue.

Objective: This study aims to leverage deep neural networks (DNNs) to identify genomic biomarkers predictive of patient
responses to PD-1 immunotherapy in NSCLC. DeepImmunoGene is a model designed using a reduced feature set to identify
the most critical biomarkers. We use feature selection to reduce the space and apply deep learning to identify the highly
predictive gene subset.

Methods: Differentially expressed genes were identified in RNA-seq data from 355 patients with NSCLC using the LIMMA
package in R, followed by preprocessing with log2 transformation, removing outliers, and detecting easily identified genes.
Machine learning models, including support vector machines, extreme gradient boosting (XGBoost), and DNNs, were applied
to gene expression data to predict patient responses to immunotherapy. Key predictive genes were identified through model
interpretation techniques, and differences in model performance were assessed for statistical significance. Primarily, the metric
used identifies which genes serve as key biomarkers in regard to immunotherapy detection.

Results: Initially, we identified 1093 differentially expressed genes from RNA-seq data of 355 patients. We then trained
models using SVM, XGBoost, and DNN to predict immunotherapy response. The DNN model outperformed both SVM and
XGBoost with an accuracy of 82%, an area under the curve of 90%, and recall of 85%. To identify key biomarkers, we
performed a permutation importance analysis, narrowing down the gene set to 98 genes. DeepImmunoGene, trained on these
98 genes, showed superior results, with an accuracy of 87% and an area under the curve of 95%. The top 36 upregulated
genes in responders and 62 upregulated genes in nonresponders were identified, which could serve as potential biomarkers for
predicting response to PD-1 inhibitors. These findings suggest that DeeplmmunoGene can reliably forecast immunotherapy
outcomes and aid in biomarker discovery, supporting the development of more personalized treatment strategies in NSCLC.

Conclusions: The DeepImmunoGene predictive model identified 36 upregulated genes that may represent candidate genomic
biomarkers associated with response to PD-1 immunotherapy in patients with NSCLC. Notably, the 10 most significant
genes offer valuable insights into the underlying mechanisms of treatment responses. These biomarkers may not only aid
in predicting which patients are more likely to respond to PD-1 immunotherapy but also offer insights into the molecular
differences associated with nonresponse.
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Introduction

Lung cancer is a leading cause of cancer-related deaths
globally, with approximately 238,340 new cases and 127,070
deaths annually in the United States [1,2] and 2.5 million
new cases and 1.8 million deaths worldwide [3]. Smoking
accounts for approximately 90% of lung cancer cases [4],
whereas the remaining cases in nonsmokers are due to
other factors, including environmental exposure to asbes-
tos, arsenic, nickel, pesticides, other toxic chemicals, and
air pollution [5,6]. Lung cancer is classified into 2 main
groups: small cell lung cancer (SCLC) and non—small cell
lung cancer (NSCLC) [4]. SCLC is a rare, fast-growing
form of lung cancer that primarily develops in individuals
with a long history of tobacco smoking, whereas NSCLC
is more common, accounting for 85% of lung cancer cases
compared to 15% for SCLC [5]. Although tobacco smoking
is a major risk factor for NSCLC, it can also develop in
nonsmokers. NSCLC is divided into 3 main types: adenocar-
cinoma, squamous cell carcinoma, and large cell carcinoma
[5,6]. Among these, adenocarcinoma is the most prevalent
type, typically developing in the outer parts of the lung
and being more common in individuals aged <45 years [5,
6]. In contrast, squamous cell carcinoma originates from
the epithelial cells of the central airways and is strongly
associated with smoking [7,8].

Over the last 10 years, lung cancer treatment has under-
gone significant changes, with advancements in understand-
ing its biology leading to the development of immunotherapy,
which has emerged as a promising therapeutic option [9,10].
Immunotherapy works by enhancing the immune system
through the use of drugs that block inhibitory signaling
pathways, allowing it to better recognize and eliminate
cancer cells [9,10]. Cancer can evade immunosurveillance
by expressing ligands for inhibitory checkpoint molecules,
such as programmed cell death receptor-1 (PD-1) and
cytotoxic T-lymphocyte—associated protein-4, which prevent
T cells from recognizing and destroying cancer cells [11].
Thus, immune checkpoint inhibitors (ICIs) have become an
effective cancer therapy [12]. In recent years, ICIs have been
used as the first line of treatment for metastatic NSCLC
as well as consolidation therapy after surgical removal and
chemotherapy [10]. PD-1 is a surface receptor found on
T cells in lung cancer that acts as a negative regulator of
immune responses [13-15]. Recent studies have shown that
inhibiting PD-1 or programmed cell death-ligand 1 (PD-L1)
restores T cell function, enabling the immune system to
recognize and destroy cancer cells, suggesting their potential
as promising therapeutic targets for NSCLC treatment [15-
17]. However, only a fraction of patients respond to this
immunotherapy. Therefore, we aimed to investigate genomic
features that may help distinguish responders from nonres-
ponders to PD-1 inhibitors and to gain insight into potential
underlying biological differences. Furthermore, researchers
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have increasingly turned to bioinformatics and machine
learning (ML) techniques to discover more precise biomark-
ers by analyzing large-scale genomic and molecular data.
Among ML techniques, deep neural networks (DNNs) are
particularly well suited for these tasks due to their ability
to process and analyze vast, high-dimensional datasets. The
use of ML in this research is indispensable for tackling
the complexity of RNA-seq data and addressing the limita-
tions of traditional analytical methods. Traditional statistical
methods, such as ANOVA and 7 tests, rely on assumptions
such as a normal distribution of the data, which is generally
violated in gene expression data. Furthermore, as sample
sizes and feature dimensions expand, these approaches also
face computational constraints. In contrast, deep learning
(DL) methods are particularly well suited to capturing the
complex patterns present in genomic data [18]. Such models
enable the identification of high-impact biomarkers, uncover
nonlinear relationships in gene expression, and generate
robust predictions for patient responses to PD-1 immunother-

apy.

Several DL approaches have previously been proposed to
predict immunotherapy outcomes, including survival-focused
models such as DeepSurv and attention-based architectures
designed to capture complex transcriptomic interactions
[19-23]. These models demonstrate the growing interest
in applying advanced DL to immunogenomics. We build
upon this foundation by integrating interpretability into our
approach. Furthermore, other existing approaches typically
rely heavily on imaging-based methods, which can suf-
fer from scanner or protocol heterogeneity and spurious
correlation, among others. This study highlights the poten-
tial of ML techniques, particularly DNNs, in advancing
precision medicine for patients with NSCLC undergoing
PD-1 immunotherapy. We applied permutation importance
in conjunction with DeepImmunoGene, which identified 98
important genes from a large RNA-seq dataset of 19,911
genes in the Gene Expression Omnibus (GEO) Repository
[24]. We trained the DeeplmmunoGene model on these
genes, which outperformed linear models, achieving an
accuracy of 87% and an area under the receiver operating
characteristic curve (AUC) of 95%. This model identified a
set of 36 upregulated genes in patients with NSCLC who
are responders, which may serve as potential biomarkers
for predicting responses to PD-1 immunotherapy for this
group. Additionally, it identified another set of 62 upregula-
ted genes in patients with NSCLC who are nonresponders,
which could act as potential biomarkers for developing ICI
therapy for this subgroup. These findings not only offer
a foundation for improving patient stratification but also
provide insights for tailoring therapeutic strategies. Despite
significant advancements in treatment over the past decade,
including the development of immunotherapy as a promising
strategy for NSCLC, the prognosis for many patients remains
poor [25,26]. Although ICIs targeting PD-1 and PD-L1 have
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shown potential as immunotherapy for patients with NSCLC,
only a small fraction of patients respond to PD-1 inhibitors
[24].

This underscores the need for more reliable biomarkers
to accurately identify patients who will benefit from PD-1
inhibitors. The core work tries to answer 2 research questions
(RQs) as follows:

* RQ1: How do ML models perform in predicting patient
response to PD-1 immunotherapy based on differen-
tially expressed genes (DEGs)?

* RQ2: What are the key biomarkers identified through
feature selection and DL that predict patient response
to PD-1 immunotherapy, and how do they contribute to
model performance?

Mubarak et al

Methods

Overview

The study was carried out according to the workflow
presented in Figure 1. This workflow delineates the steps,
beginning with the identification of significant DEGs from
RNA-seq data [27] using the LIMMA package and culminat-
ing in the application of the DeepImmunoGene framework to
identify and validate key genes associated with the response
to PD-1 immunotherapy in patients with NSCLC.

Figure 1. Workflow for identifying biomarkers and predicting programmed cell death receptor-1 immunotherapy response in non—small cell lung
cancer. DEG: differentially expressed gene; DNN: deep neural network; SVM: support vector machine; XGBoost: extreme gradient boosting.
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We used one RNA-Seq dataset (GSE218989) from the GEO
public database GEO Repository [24]. This dataset included
gene expression data for 19,911 genes across 355 patients
with lung cancer who were treated with either PD-1 or
PD-L1 inhibitors. It consisted of 187 nonresponders and 168
responders. Responsiveness was determined by Kang et al
[24] using Response Evaluation Criteria in Solid Tumors
(RECIST; version 1.1) [28]. Progression-free survival [29]
was measured from the start of PD-1/PD-L1 inhibitor therapy
to either documented disease progression or death from
any cause. Overall survival was measured from the start
of PD-1/PD-L1 inhibitor therapy to death from any cause
[24]. A responder is therefore classified as a patient who
showed improvement under the RECIST criteria or, in other
words, a patient who experienced improvements after the
PD-1 immunotherapy was administered. At the same time,
a nonresponder is a patient who did not meet the criteria
showcased by a worsening or stable disease.

The raw gene expression count data were already
normalized in the transcripts per million (TPM) value for
the 19911 protein-coding genes. We first identified the
DEGs between the responders and nonresponders using the
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LIMMA package [30] in R (version 4.4.1; Bioconductor,
USA). LIMMA was used to create a linear function to model
the entire dataset and to develop correlations with response
status as the main variable in the design matrix. Empirical
Bayes moderation was performed to model and stabilize the
gene-wise variances using a prior marginal distribution of the
data [30]. Genes with a LIMMA-calculated P value less than
.05 were considered significantly differentially expressed and
were selected for all subsequent analyses and modeling. For
model training and testing, the data were further processed
by performing a log2 (TPM+1) transformation on each gene
expression value to stabilize the variance in gene expression.

ML Models

Overview

The application of ML is vital in this research due to
the complexity, scale, and dimensionality of RNA-seq
data, as well as the intricate, nonlinear biological mecha-
nisms underlying immunotherapy response in patients with
NSCLC [31]. Traditional statistical methods struggle with
high-dimensional datasets, such as the 19,911-gene RNA-seq
data used here, often succumbing to the “curse of dimen-
sionality” and failing to capture subtle gene interactions.
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ML models such as support vector machines (SVMs) [32],
extreme gradient boosting (XGBoost) [33], and DNN [34]
overcome these challenges by effectively handling high-
dimensional inputs, modeling complex nonlinear relation-
ships, and identifying important gene features through built-in
feature selection techniques. This enables the discovery of
meaningful gene patterns that differentiate responders from
nonresponders while enhancing predictive power and model
generalizability.

Moreover, ML methods excel in managing noise and
variability inherent in biological data, offering robust
performance through techniques such as regularization and
early stopping [35,36]. Their scalability and automation allow
for efficient analysis of massive RNA-seq datasets, ensuring
accuracy and rapid processing, essential for clinical transla-
tion. By integrating advanced techniques for hyperparameter
tuning, ML provides a unified, systematic workflow that
optimizes predictive performance [37]. These capabilities
facilitate the identification of potential predictive biomarkers
from gene expression data, which may serve as a founda-
tion for future precision medicine efforts aimed at tailoring

Table 1. Summary of model architectures’ hyperparameter settings.
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immunotherapy strategies in patients with NSCLC. This
study used several ML models, including SVM, XGBoost,
and DNN [11]. Their predictive performance was evaluated to
identify the model that worked best. We built the SVM model
using the Python package Scikit-learn (sklearn); for XGBoost,
we used the XGBoost Python package [38]; and for the DNN,
we used the Keras and TensorFlow Python packages [11].
The details about each ML approach are further described
below.

Support Vector Machine

SVM is a kernel-based binary classifier that separates key
data features linearly into 2 groups in a high-dimensional
space called the feature space [38,39]. It searches for the
optimal decision boundary (hyperplane) to separate the
features by maximizing the margin between the hyperplane
and the nearest training data. SVM effectively extracts
key but subtle patterns in a complex dataset, allowing
for low-error, high-precision sample classification [40]. The
model architecture’s hyperparameter settings are given in
Table 1.

Model Key hyperparameters tuned

Final settings

Optimization approach

SVM? C, kernel, gamma

XGBoost® n_estimators, max_depth, learning_rate,
sampling

DNNd batch_size, epochs, initializer, optimizer,

activation, dropout, layers, nodes

C=0.1, kernel=linear, gamma=0.1
n_estimators=300, max_depth=100,
learning_rate=0.1, sampling=uniform
Input=256; hidden layers=[128, 100, 100];
activation=ELU®; optimizer=Adam; dropout=0;

GridSearchCV (5-fold CVP)
GridSearchCV (5-fold CV)

Multistage GridSearchCV

epochs=100; batch size=100

4SVM: support vector machine.

bCV: cross-validation.

¢XGBoost: extreme gradient boosting.
dDNN: deep neural network.

®ELU: exponential linear unit.

XGBoost

XGBoost is an ensemble learning algorithm that builds
gradient-boosted decision trees one by one and passes the
residuals of the previous tree to train the following model.
It uses the second partial derivative of the loss function and
adds an L1 and L2 regularization term to reduce overfitting
[41]. Similar to SVM, we optimized the hyperparameters
using GridSearchCV to evaluate a combination of parameters.
The hyperparameter settings are given in Table 1.

Deep Neural Network

DNN is a nonlinear model that combines neurons that
simulate the human brain to make predictions [41,42]. It
consists of 3 layers: the input layer, hidden layers, and output
layer, which are linked by weights to allow the model to
understand complex patterns in the data. We used a DNN
because they have been previously applied for genomic-based
predictions for diseases [43]. Similar to the previous 2
models, we started with hyperparameter optimization using
GridSearchCV. As the DNN has more parameters to tune, we
split the Grid Search into 3 stages: (1) batch size and epoch;
(2) weight initializer, optimizer, and activation function;
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and (3) hidden layers, nodes per hidden layer, and dropout
optimization. The resulting network consisted of an input
layer with 256 nodes, 3 hidden layers with 128 nodes, 100
nodes, and 100 nodes, respectively, an exponential linear
unit activation function, Adam optimizer, zero dropout, and
normal initializer. The details are summarized in Table 1. We
applied the binary cross-entropy loss function as shown in
Equation 1 so that the model minimizes to learn the optimal
weights for each gene to classify responder and nonresponder
patients.

Lnce = = 7 2 v X og(p) + (L= y) X logl=p(r) ()

The model was trained for 100 epochs with a batch size of
100 based on the GridSearchCV results. After identifying
these optimal hyperparameters for the DNN, we used it to
construct the architecture for the DeepImmunoGene network.

Permutation Importance

To develop the DeepImmunoGene framework, we used the
permutation importance method from scikit-learn to identify
the subset of genes that most significantly contributed to the
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DNN’s prediction of patient outcomes to PD-1 immunother-
apy [11]. Basically, this technique improves model accuracy
by removing the “noisy” genes. First, we used the original
DNN trained on the 1093 gene expression data to establish
a baseline performance using the accuracy score. Then, we
randomly shuffled each gene’s expression values across the
71 testing patients one at a time to disrupt any existing
association between that gene and the response classification.
After shuffling a gene, the DNN was run again to recalculate
the accuracy. If the accuracy decreased after shuffling, that
gene was important for predicting the response. Conversely, if
the accuracy increased or did not change after shuffling, that
gene showed little to no correlation with response prediction.
Given the nonlinearity of PD-1 immunotherapy genetics, a
standard linear model, such as least absolute shrinkage and
selection operator or stepwise regression, is unable to capture
the noise in the genes. Feature permutation ignores this
weakness by using a direct DNN architecture to quantify the
decrease in performance due to a change in the feature. By
exploring the performance of the model directly, we remove
the uncertainty of a linear model and guarantee the impor-
tance of the features in the deployed solution. To evaluate
the stability of the features identified, we ran the analysis
3 additional times, each with 50 iterations. We then com-
pared the resulting gene sets to quantify their overlap. We
also trained and evaluated the model using each gene set
to determine the superior cohort for all subsequent analy-
ses. Equation 2 was used to calculate the importance score
assigned to each gene.

Importance score = acCUraCyy,geline — 2CCUTACY permutation 2)

Training and Testing

We executed our code for the ML models in Google Colab
notebooks [44] using an NVIDIA T4 GPU [45] operating
with 15 GB of RAM. For all models, 284 patients were
used for training, and 71 patients were used for testing.
This provided an 80/20 percentage split of the data. For
the DNN, an additional validation split of 10% was applied
to the training data to monitor model performance during
training. This validation set was extracted from the training
data, leaving the test set of 71 patients unchanged. During
the training of the DNN, an early stopping method was
used to monitor the validation loss after each epoch to stop
training if the model’s performance diminished. The state of
the model was saved after each epoch so that it could revert
to the optimal state for testing. This was done to mitigate any
overfitting that might occur during training. All ML models
were executed 15 times.

Evaluation Metrics

To evaluate the models’ performance, we used accuracy,
AUC score, recall, specificity, precision, and F-scores [46],
which are standard metrics used to assess classification
performance. These metrics can be found using the confusion
matrix, a 2x2 matrix with the number of true positives, true
negatives, false positives, and false negatives that the model
predicts, with the equations listed below to calculate each
metric.
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Precision + Recall

Accuracy (Equation 3) measures the overall correct predic-
tions out of all predictions made. Recall evaluates the model’s
ability to correctly identify PD-1 responders as positive out
of all PD-1 responders, as shown in Equation 4. Specificity
(Equation 5) is the opposite; it measures the model’s ability
to correctly identify PD-1 nonresponders out of all nonres-
ponders. Precision (Equation 6) is the ratio of all correctly
identified positive PD-1 respondents to all the patients the
model assigns as positive, and the Fj-score (Equation 7) is a
harmonic mean of precision and recall that penalizes extreme
values [47]. AUC measures the trade-off between specificity
and recall [38.48].

Bioinformatics and Statistical Analysis

All computations and analyses in this study were performed
in Google Colab notebooks using Python (version 3.10)
and R (version 4.4.1). Differentially expressed genes were
analyzed with LIMMA in R [30]. Upregulated genes were
classified for responders and nonresponders by calculating
log fold changes (LogFC). Accuracy, AUC, recall, specific-
ity, precision, Fj-score, true positives, true negatives, false
positives, and false negatives were calculated using sklearn
Metrics. Statistical analyses were conducted using Graph-
Pad Prism (version 5.01; GraphPad Software). The Kruskal-
Wallis nonparametric test, followed by the Dunn post hoc
multiple comparison test, was used to compare predictive
performance between the models. A P value less than .05 was
considered statistically significant.

The next section delves into the detailed analysis of the
genes identified through the DeepImmunoGene framework
and their relevance in predicting immunotherapy response. It
outlines how the permutation importance method was used
to isolate key genes associated with positive or negative
treatment outcomes and discusses the biological significance
of these genes in the context of immune response modulation
in NSCLC. Additionally, the section provides an in-depth
comparison of the ML models’ performance, highlighting
the strengths and limitations of each approach, and evaluates
their potential applications in clinical settings for improving
patient stratification and personalized treatment strategies. By
integrating these findings, the study aims to contribute to
our understanding of molecular biomarkers that may inform
future efforts to optimize the use of PD-1 inhibitors in cancer
therapy.
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External Validation

To externally validate the biomarkers identified by Deep-
ImmunoGene, we obtained a bulk RNA-seq dataset
(GSE207422) from the GEO public database. This dataset
included gene expression data for 58,387 genes across 24
patients with NSCLC who were treated with PD-1 inhibitors
combined with chemotherapy [49]. Patient responsiveness
was determined using RECIST, where complete response and
partial response were considered responders, whereas stable
disease was considered a nonresponder. The cohort comprised
17 responders and 7 nonresponders. This external dataset
was processed using the aforementioned workflow applied
to the training dataset. The Mann-Whitney U test was used to
determine whether the difference in gene expression between
responders and nonresponders was statistically significant.
We generated violin plots of the top-ranked responder and
nonresponder biomarkers identified by DeepImmunoGene to
assess whether their expression patterns in the test set were
consistent with the model’s predictions using the ggplot2
package [50].

Mubarak et al

Ethical Considerations

This study used only publicly available or fully deidentified
secondary data; therefore, institutional review board approval
and informed consent were not required. No personal
identifiers were accessed, and privacy and confidentiality
were strictly maintained.

Results

ML Predicts Response to PD-1
Immunotherapy (RQ1)

DEGs were identified using LIMMA power analysis of bulk
RNA-seq data (GSE218989) from the GEO public database
GEO Repository. LIMMA identified 1093 important DEGs
from a total of 19,911 genes in patients with lung cancer,
where 522 genes were upregulated in responders, and 571
genes were upregulated in nonresponders (P=.04), as shown
in Figure 2.

Figure 2. Identification and stratification of differentially expressed genes associated with programmed cell death receptor-1 immunotherapy
response in non—small cell lung cancer. Bulk RNA-seq data from 355 patients (GSE218989) were analyzed using LIMMA differential expression
analysis (P=.04), identifying 1093 differentially expressed genes. These genes were stratified by direction of differential expression into responder-
upregulated (n=522) and nonresponder-upregulated (n=571) gene sets, forming the initial feature space for downstream machine learning analyses.

DEG: differentially expressed gene.

RNA-seq Dataset
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Here, we trained SVM and XGBoost models using the 1093
identified DEGs to predict patient response to PD-1 immuno-
therapy. The performance of the models was evaluated using
several metrics, including accuracy, AUC, recall, specificity,
precision, and Fj-score [46]. First, we applied SVM, and
our data showed that it achieved an accuracy of 68% and
an AUC score of 76% with recall, specificity, precision, and
F{-score values of 0.70, 0.65, 0.77, and 0.71, respectively
(Figure 3A, 3B and Table 1). Next, we used XGBoost to see
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if its ensemble learning method could yield higher accuracy
and AUC scores. Our data showed that XGBoost performed
slightly better than SVM, with an accuracy of 72%, an
AUC score of 77%, a recall of 0.73, a specificity of 0.71, a
precision of 0.76, and an F|-score of 0.74 (Figure 3A, 3B and
Table 2). The suboptimal performance of these 2 models may
be due to the large dataset, suggesting that a more complex
and nonlinear approach, such as a DNN, is necessary for
accurately predicting patient responses. We used SVM and
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XGBoost as baseline classifiers commonly applied in gene
expression studies to provide context for the performance
of our DNN. While these models differ in complexity from

Mubarak et al

DNNs, the comparison helps demonstrate the added value of
capturing nonlinear interactions in gene expression data.

Figure 3. Predictive performance comparison of support vector machine (SVM), extreme gradient boosting (XGBoost), and deep neural network
(DNN) models. (A) Accuracy scores and (B) receiver operating characteristic (ROC) curve analysis demonstrate that the DNN model outperformed
both SVM and XGBoost. The DNN achieved an accuracy of 82% and an area under the curve (AUC) of 90%, compared to 68% and 76% for SVM
and 72% and 77% for XGBoost. These results highlight the advantage of deep learning for modeling complex, high-dimensional gene expression

data.
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Table 2. Performance comparison of machine learning models for predicting response to programmed cell death receptor-1 immunotherapy.

Models Accuracy AUC? Recall Specificity Precision F1-score
SVMP (1093 genes) 0.68 0.76 0.70 0.65 0.77 0.71
XGBoost® (1093 genes) 0.72 0.77 0.73 0.71 0.76 0.74
DNN¢ (1093 genes) 0.82°¢ 0.90° 0.85¢ 0.78¢ 0.81 0.84¢
SVM (98 genes) 0.65 0.75 0.65 0.65 0.70 0.68
XGBoost (98 genes) 0.77 0.81 0.80 0.74 0.80 0.80
DeepImmunoGene (98 genes) 0.87¢ 0.95¢ 0.87¢ 0.89¢ 0.93¢ 0.89¢

3AUC: area under the receiver operating characteristic curve.
bSVM: support vector machine.

¢XGBoost: extreme gradient boosting.

dDNN: deep neural network.

€A statistically significant difference from DeepImmunoGene when compared to SVM or XGBoost.

DNN Predicts Response to PD-1
Immunotherapy With Higher Accuracy

Given that the RNA-seq data includes the expression of
more than 1000 genes, we implemented a DNN to enhance
predictive accuracy. First, we set the DNN training for 100
epochs, but it stopped at 45 epochs due to early stopping, and
the model was then reverted to the optimal state reached at 35
epochs (Figure 4). During the training process, both training
and validation accuracy and loss were monitored. We found
that the accuracy increased until it exhibited an asymptotic
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behavior (Figure 4A). Conversely, the training loss decreased
steadily, while the validation loss showed some fluctuations
(Figure 4B). These findings suggest that training the model
for additional epochs would not further improve its per-
formance. Next, we tested the predictive performance. Our
data revealed that the DNN achieved excellent predictive
performance compared to both SVM and XGBoost, achieving
an accuracy of 82%, an AUC score of 90%, a recall of 0.85,
a specificity of 0.78, a precision of 0.81, and an Fy-score
of 0.84 (Figure 3A, 3B and Table 2). Given the nature
of the data, DNN can analyze multidimensional genetic
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information more accurately than existing linear models. This
is showcased with a 21% accuracy improvement over more
linear models, such as SVM, and a 14% improvement over
XGBoost in our experiments. As a result, we can showcase

Mubarak et al

that to capture the intricacies of the data, it is important to
use a model capable of supporting complex multidimensional
relationships such as a DNN architecture.

Figure 4. Deep neural network training and validation performance. (A) Training and validation accuracy over epochs shows a steady increase until
convergence, with early stopping triggered at epoch 45 and the model reverting to optimal weights from epoch 35. (B) Training loss decreased
continuously, whereas validation loss fluctuated slightly before stabilizing, indicating that further training would not significantly improve model

performance.
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We applied DeepImmunoGene with scikit-learn permutation
importance to a set of 1093 genes. To mitigate variability in
feature importance estimates and to ensure the identification
of robust features, this procedure was repeated 3 additional
times with 50 iterations each. We then compared the gene sets
identified across all 4 total runs and observed a high degree
of overlap, with an average of 85.5% consistency among
them. The resulting analysis (Figure 5) identified a final set
of 98 genes with nonzero importance scores and ranked them
according to their level of importance (Figure 6). Although
individual gene importance scores below 0.0025 may appear
low, the combined contribution of these genes accounts for
approximately 18% of the total model importance, indicating
they meaningfully improve the model’s predictive perform-
ance. These 98 genes were subsequently used to train
DeepImmunoGene. Testing this model revealed an accuracy
of 0.87 and an AUC of 0.95, a recall of 0.87, a specificity of
0.89, a precision of 0.93, and an Fj-score of 0.89, demonstrat-
ing superior performance across all metrics. To validate the
necessity of a DL approach for our feature selection and to
better contextualize the significant performance improvement
of DeepImmunoGene, we conducted a comparative analysis
with the traditional ML models. We trained and tested both
SVM and XGBoost on the same 98 genes identified via
permutation importance. The 98-gene SVM model attained
an accuracy of 65%, an AUC of 75%, a recall and specificity
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of 0.65, a precision of 0.70, and an Fi-score of 0.68. The
98-gene XGBoost model achieved an accuracy of 77%,
an AUC of 81%, a recall of 0.80, a specificity of 0.74,
a precision of 0.80, and an Fi-score of 0.80 (Table 2).
This indicates that DeepImmunoGene outperformed all other
models in every metric (Table 2). Genes with a LogFC
greater than 0 were considered upregulated in responders,
whereas genes with a LogFC less than 0 were considered
upregulated in nonresponders. We discovered that 36 genes
were upregulated in patients with NSCLC who responded to
PD-1 immunotherapy, with the top 10 most significant being
GSTT2B, HMGA2, AC135050.2, ANKRD33B, MMPI3,
PLA2G2D, RASGEF1A, BIRC7, DCAF4L2, and CHMP7
(Figure 7). These genes may serve as potential biomarkers for
predicting response to PD-1 immunotherapy. Additionally,
we identified 62 upregulated genes in nonresponder patients
with NSCLC, with the top 10 most important being SPINK1,
FEZF1, THBS4, BEST3, TESC, C6orf226, TSSK2, SFRP2,
CIGALTICIL, and RARRESI (Figure 7).

The top 10 most significant upregulated genes were
identified for both responder and nonresponder patients with
NSCLC based on the DeepImmunoGene model. In respond-
ers, genes such as GSTT2B, HMGA2, and MMP13 were
prominent, whereas SPINKI1, FEZF1, and THBS4 were
among the top in nonresponders. These genes may serve as
potential predictive biomarkers for PD-1 treatment outcomes.
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Figure 5. Workflow for identifying predictive biomarkers using DeeplImmunoGene. Schematic of the DeepImmunoGene model pipeline. The 1093
differentially expressed genes were subjected to permutation importance analysis to extract the 98 most informative features, which were then used

to train the final model. This approach enabled identification of key genes associated with programmed cell death receptor-1 (PD-1) immunotherapy
response.
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Figure 6. Gene importance ranking using permutation analysis. Permutation importance applied to the 1093 differentially expressed genes using
the DeepImmunoGene model identified 98 genes with nonzero importance scores. These genes were ranked based on their contribution to model

prediction performance, highlighting their potential as key features for programmed cell death receptor-1 response classification in patients with
non—-small cell lung cancer.
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Figure 7. DeeplmmunoGene-based stratification of predictive biomarkers associated with programmed cell death receptor-1 (PD-1) immunotherapy
response. Using permutation importance and deep neural network modeling, 98 high-importance genes were identified and stratified based on
direction of differential expression. Thirty-six genes were upregulated in responders and 62 in nonresponders. The top 10 genes in each group are

shown as candidate biomarkers for predicting PD-1 treatment outcomes in non—small cell lung cancer.

External Validation of Biomarkers
Identified by DeeplmmunoGene

Here, we sought to determine whether DeeplmmunoGene’s
predicted biomarkers showed consistent expression pat-
terns in an independent dataset. We generated violin
plots comparing log2 (TPM +1) gene expression between
responders and nonresponders. Of the top 10 nonresponder-
upregulated biomarkers identified by DeepImmunoGene, 6
genes were present in the independent dataset and analyzed.
We found that 4 of these 6 genes (SPINKI1, THBS4,
TESC, and SFRP2) showed a consistent trend of higher
median expression in nonresponders (Figure 8A). Of these, 3
genes (THBS4, TESC, and SFRP2) demonstrated statistically
significantly higher expression (P=.04) in nonresponders.

https://bioinform.jmir.org/2026/1/¢70553

Of the top 10 responder-upregulated biomarkers identi-
fied, 6 genes were present in the independent dataset and
analyzed. We found that 4 of these 6 genes (HMGA2,
ANKRD33B, PLA2G2D, and RASGEF1A) showed higher
median expression in responders (Figure 8B). BIRC7 and
MMP13 had similar median expression in both groups;
however, their violin plots displayed extended upper tails,
indicating that some patients exhibited markedly higher
expression levels. While these patterns suggest differences in
expression between responders and nonresponders, statistical
significance was not reached in this analysis.
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Figure 8. Validation of biomarkers identified by DeepImmunoGene. Violin plots showing differences in the expression of (A) 6 nonresponder-upre-

Mubarak et al

gulated biomarkers and (B) 6 responder-upregulated biomarkers. P values determined by Mann-Whitney U test. *P=.05, **P<.01.
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Discussion

Principal Findings

We aimed to identify DEGs associated with response to
PD-1 immunotherapy in patients with lung cancer using a
DNN model to explore the biological mechanisms underly-
ing immunotherapy response. Here, we developed Deeplm-
munoGene, a computational framework that uses an advanced
neural network with an integrated approach to predict patient
response to PD-1 immunotherapy with high accuracy. Our
model identified 36 upregulated genes, including the top 10
(GSTT2B, HMGA?2, AC135050.2, ANKRD33B, MMP13,
PLA2G2D, RASGEFI1A, BIRC7, DCAF4L2, and CHMP7),
which were associated with positive responses to PD-1
immunotherapy in patients with NSCLC. However, apart
from the 10 described, our model was able to find approxi-
mately 96 total critical genes. If we were to leverage only
differential gene expression rather than DeepImmunoGene,
more than 1000 genes would be present, many of which
are not significant biomarkers for identifying responders.
As a result, we deployed a permutation importance feature
selector to identify from the potential 1000 expressive genes
the ones that are critical in the identification of the patient,
reducing the quantity of noisy biomarkers in the dataset.
These findings suggest that these genes could serve as the
candidate biomarkers for predicting patients who respond to
PD-1 inhibitors. Some of these genes (HMGA2, MMP13,
BIRC7, and PLA2G2D) have been reported to be overex-
pressed in various cancers, including lung adenocarcinoma,
and are associated with tumor progression and metastasis
[51-54], supporting their potential as biomarkers for PD-1
immunotherapy. We can identify these genes by ranking
based on feature importance. We identify the most important
genes, given the decrease in performance once permutated.
The 10 most critical genes show the greatest decline in
model accuracy once they are shifted. Furthermore, existing
literature has shown many of these genes to be capable
identifiers of immunotherapy. Genes such as HMGA2 and
MMP13 are currently in the literature to identify a high
likelihood of therapy success [55,56]. Our primary contribu-
tion lies not in introducing a novel DL architecture, but
in developing DeepImmunoGene, a framework that comple-
ments prior frameworks, integrating interpretability and ML
with the novelty to identify key genomic markers for PD-1
immunotherapy response.

In addition to their differential expression patterns,
several of the top-ranked genes identified in our model
have established roles in cancer-related biological processes.
HMGA?2 is a well-characterized architectural transcription
factor associated with epithelial-mesenchymal transition and
metastatic progression [57]. MMP13 contributes to extracel-
lular matrix degradation and tumor invasion [55]. BIRC7
(also known as Livin) has been implicated in the inhibi-
tion of apoptosis and immune evasion mechanisms in solid
tumors [58]. PLA2G2D is known for its involvement in
inflammatory signaling and has been shown to modulate
dendritic cell function and T-cell recruitment in the tumor
microenvironment [59]. These functional insights, drawn
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from existing literature, suggest that many of the identi-
fied genes may influence immunotherapy response through
diverse oncogenic and immune-related pathways. Although a
formal pathway enrichment analysis was not performed, the
biological relevance of these genes supports their potential as
markers of therapeutic response.

Our analysis began with the application of the LIMMA
method to bulk RNA-seq data, which identified 1093 DEGs
from a total of 19,911 genes in patients with lung cancer
[24]. LIMMA is a widely used tool for differential gene
expression analysis, facilitating the identification of genes
linked to disease pathogenesis, particularly in RNA-seq and
microarray data [30]. We evaluated these 1093 genes using 3
different ML models, including SVM, XGBoost, and DNN,
to assess their predictive performance. The SVM showed
moderate performance in classifying patient response with
an accuracy of 0.68 and an AUC of 0.76, suggesting that it
was unable to effectively capture the underlying correlations
between gene expression and patient response. This may be
due to the nonlinear nature of gene expression data, which
likely hindered the SVM model’s ability to generalize its
predictions across patients [11,60]. While XGBoost outper-
formed SVM by a slight margin (0.04 for accuracy and
0.01 for AUC), there is no significant difference between
these models, indicating that neither model could provide
sufficiently robust predictions. These findings suggest that
the high dimensionality, small sample size, and categorical
imbalance of RNA-seq data pose significant challenges for
traditional ML approaches [61].

To address the limitations of traditional ML models, we
applied a DNN, a nonlinear model capable of capturing
complex relationships within large gene expression data-
sets by mimicking the information-processing patterns of
the human brain to generate predictions [11,40,60]. Unlike
traditional models such as SVM and XGBoost, the DNN
consists of multiple layers of neurons connected by weigh-
ted links, which allow the model to learn intricate patterns
within the data. DNNs have shown strong performance in
genomic predictions for various diseases [43]. The DNN
model using the 1093 DEGs significantly outperformed both
SVM and XGBoost. It exceeded SVM by 14% in both
accuracy and AUC and outperformed XGBoost by 10% in
accuracy and 13% in AUC. This improved performance of
the DNN is attributed to its ability to capture and learn from
the high-dimensional, nonlinear interactions inherent in gene
expression data, which are challenging for traditional linear
models to predict accurately [61]. This capability allows the
DNN to generalize more effectively across diverse patient
data, leading to more accurate and robust predictions than
those made by more basic, linear computational models.

To reduce the number of genes and enhance the reliabil-
ity of our model, we performed a permutation importance
analysis using the scikit-learn framework. This analysis was
repeated 4 times, each with 50 iterations to ensure the
identification of a robust gene set to build DeepImmuno-
Gene on. This subsequently reduced the set of 1093 genes
to 98 genes based on nonzero importance scores, which
were correlated with the response to PD-1 inhibitors and
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ranked according to their importance [62]. The DeepImmu-
noGene model was then trained using this refined set of
98 genes. Compared to our previous models, DeepImmu-
noGene demonstrated superior performance and robustness
across all metrics (Table 2), indicating that the application
of permutation importance effectively eliminated irrelevant,
noisy genes, allowing the model to focus exclusively on the
most relevant genes without interference during training, such
as overfitting. However, we also observed that specificity
was consistently slightly lower than recall across all models,
indicating that the models had more difficulty discerning
nonresponders. This suggests that nonresponders may not
have responded to immunotherapy due to external factors,
such as the tumor microenvironment, age, or gender [24].
The comparative analysis with traditional ML models using
the 98-gene subset found through permutation importance
validates the core framework of DeeplmmunoGene. The
results highlight a specific synergistic effect between our
feature selection method and the DNN, which is critical
for achieving superior predictive performance. Although
reducing the feature set to 98 genes improved computation
efficiency no less, the fact that SVM and XGBoost trained
on this same reduced feature set still failed to achieve
comparable performance suggests that the DNN is better
suited to capture the complex, nonlinear relationships and
subtle gene-gene interactions underlying the RNA-seq data.
Ultimately, the strength of DeepImmunoGene lies in this
integrative approach of first identifying the most influential
genes for accurate prediction and then leveraging a sophisti-
cated DL model to interpret their combined predictive signal.

Further analysis revealed that 36 genes were upregula-
ted (LogFC>0) in patients who responded to PD-1 immu-
notherapy, whereas 62 genes were upregulated (LogFC<0)
in nonresponders [63]. These results suggest that Deeplm-
munoGene could serve as a robust ML-based tool for
predicting immunotherapy outcomes in patients with lung
cancer. The identification of these genes linked to respond-
ers and nonresponders not only offers potential biomarkers
for predicting immunotherapy success but also enhances
our understanding of the molecular mechanisms underlying
the immune response in cancer. This could help guide
more personalized treatment strategies, ultimately reducing
unnecessary side effects and financial burdens for patients
and health care systems, as immunotherapy is currently
administered without prior knowledge of its effectiveness
or safety for each patient [24,26]. Recent studies showed
that only approximately 25% of patients show a positive
response to immunotherapy, as PD-1/PD-L1 expression is
not a sufficient biomarker to select patients who are likely
to benefit [25,26]. Therefore, in addition to PD-1/PD-L1
expressions, these genes could be used as clinically action-
able biomarkers for predicting response to ICIs with high
accuracy.

Finally, we externally validated the predictive biomark-
ers identified by DeepImmunoGene using an independent
bulk RNA-seq dataset of patients with NSCLC treated with
PD-1 inhibitors (GSE207422) [49]. Given the small size of
the external validation cohort (n=24) and the notable class
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imbalance (17 responders vs 7 nonresponders), we anticipa-
ted limited statistical power to detect meaningful differen-
ces (67). Additionally, the dataset itself includes patients
receiving PD-1 inhibitors in combination with chemotherapy,
which introduces treatment heterogeneity that may cause
much of the variations observed in the expression patterns.
Despite these limitations inherent to the available data, our
analysis found that 4 of 6 nonresponder-upregulated genes
showed higher median expression in nonresponders, with 3
achieving statistically significant differences in the predicted
direction (P<.05). Similarly, 4 of 6 responder-upregulated
genes demonstrated higher median expression in responders,
although none reached statistical significance. This partial
agreement offers encouraging evidence that the model-identi-
fied biomarkers capture biologically meaningful expression
trends even in an independent, clinically realistic cohort.
While these results should be interpreted cautiously, given the
small sample size, class imbalance, and treatment variabil-
ity, they support the potential utility of these gene markers
for predicting immunotherapy response. Future validation in
larger, well-annotated cohorts with consistent PD-1 treatment
protocols is warranted to confirm their clinical relevance,
fully validate the model’s predictive classification perform-
ance, and further refine the list of biomarkers.

To contextualize DeeplmmunoGene among existing
approaches, we compared our method to previously pub-
lished biomarker studies in NSCLC using PD-1 datasets.
For example, Hwang et al [64] developed immune gene
signatures derived from small patient cohorts with a limited
number of features, which can restrict the model’s ability to
generalize to diverse patient populations or capture variabil-
ity in gene expression. In contrast, Ravi et al [65] applied
regression-based linear models that assume compounding,
independent effects of genes on treatment response, which
may fail to capture complex, nonlinear gene-gene interac-
tions. By leveraging a DNN architecture, DeepImmunoGene
is designed to learn these nonlinear dependencies across
large-scale gene expression data, enabling more compre-
hensive and potentially generalizable biomarker discovery
for predicting immunotherapy response. Other approaches,
such as Lee et al [66], propose an ensemble method incor-
porating different models for the classification from gene
expression profiles and additional information. This adds
informative features, which may not always be available;
in contrast, DeepImmunoGene reduces the feature space of
RNA sequencing, helping isolate and detect features that are
more likely to carry correct information.

Conclusions

Our DeeplmmunoGene predictive model identified 36
upregulated genes in patients with NSCLC who responded
to PD-1 immunotherapy. Among these, the 10 most signifi-
cant genes (GSTT2B, HMGA2, AC135050.2, ANKRD33B,
MMP13, PLA2G2D, RASGEF1A, BIRC7, DCAF4L2, and
CHMP7) may serve as potential genomic biomarkers for
predicting which patients with NSCLC are most likely to
respond to PD-1 immunotherapy. Our external validation
on an independent cohort supported several of the model-
identified biomarkers, demonstrating partial agreement with
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DeepImmunoGene’s predicted expression patterns despite
the small sample size and class imbalance. These findings
offer a promising foundation for future research aiming
to improve patient stratification for PD-1 immunotherapy.
Further validation in larger, well-annotated datasets and
biological systems is needed to confirm their correlation with
PD-1 inhibitors, which could lead to the development of
more personalized and effective immunotherapies for lung
cancer. Although the DeepImmunoGene model demonstra-
ted promising predictive performance, this study has several
limitations. First, the analysis was conducted on a relatively
small cohort of 355 patients with lung cancer. Second, we
relied on a single publicly available RNA-seq dataset, which
limited our ability to perform external validation. Third, key
demographic and clinical variables, such as cancer stage,
NSCLC subtype, age, and sex, were not available in the
dataset. These factors are known to influence both immune
response and gene expression, and their absence restricts the
model’s robustness assessment across patient subgroups. As
a result, we were unable to evaluate the potential influence
of demographic biases on model predictions. Future work
with more comprehensive and diverse datasets is essential
to validate the model’s generalizability and to assess its
consistency across clinically relevant subpopulations. We
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plan to conduct a follow-up study using external datasets
when available and collaborate with clinics to validate our
findings and further refine the list of biomarkers.

We also acknowledge that more advanced DL models exist
for this task. Future work will involve evaluating DeepIm-
munoGene against state-of-the-art architectures, incorporating
multimodal data, and validating performance on larger and
more diverse cohorts. In this study, while DeepImmunoGene
demonstrated strong performance metrics, future research
should focus on improving the model’s robustness through
external validation across diverse datasets, including those
from different geographical regions, patient demographics,
and cancer stages. This would help assess how well the
model generalizes beyond the current cohort of 355 patients.
Moreover, the bias-variance tradeoff is crucial in this context.
Our current model, which is highly sophisticated (DNN),
likely strikes a balance between bias and variance, but there
may still be room for improvement. High bias could occur if
the model is overly simplified, missing important patterns in
the data, whereas high variance could result from overfitting
the model to the training data, leading to poor performance on
new, unseen data.
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