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Abstract
Background: The manual abstraction of unstructured clinical data is often necessary for granular clinical outcomes research
but is time consuming and can be of variable quality. Large language models (LLMs) show promise in medical data extraction
yet integrating them into research workflows remains challenging and poorly described.
Objective: This study aimed to develop and integrate an LLM-based system for automated data extraction from unstructured
electronic health record (EHR) text reports within an established clinical outcomes database.
Methods: We implemented a generative artificial intelligence pipeline (UODBLLM) utilizing a flexible language model
interface that supports various LLM implementations, including Health Insurance Portability and Accountability Act-compliant
cloud services and local open-source models. We used extensible markup language (XML)-structured prompts and integrated
using an open database connectivity interface to generate structured data from clinical documentation in the EHR. We
evaluated the UODBLLM’s performance on the completion rate, processing time, and extraction capabilities across multiple
clinical data elements, including quantitative measurements, categorical assessments, and anatomical descriptions, using
sample magnetic resonance imaging (MRI) reports as test cases. System reliability was tested across multiple batches to assess
scalability and consistency.
Results: Piloted against MRI reports, UODBLLM processed 1800 clinical documents with a 100% completion rate and
an average processing time of 8.90 seconds per report. The token utilization averaged 2692 tokens per report, with an
input-to-output ratio of approximately 13:2, resulting in a processing cost of US $0.009 per report. UODBLLM had consis-
tent performance across 18 batches of 100 reports each and completed all processing in 4.45 hours. From each report,
UODBLLM extracted 16 structured clinical elements, including prostate volume, prostate-specific antigen values, Prostate
Imaging Reporting and Data System scores, clinical staging, and anatomical assessments. All extracted data were automati-
cally validated against predefined schemas and stored in standardized JSON format.
Conclusions: We demonstrated the successful integration of an LLM-based extraction system within an existing clinical
outcomes database, achieving rapid, comprehensive data extraction at minimal cost. UODBLLM provides a scalable, efficient
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solution for automating clinical data extraction while maintaining protected health information security. This approach could
significantly accelerate research timelines and expand feasible clinical studies, particularly for large-scale database projects.
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Introduction
Background
Electronic health record (EHR) systems contain extensive
health data, but much of it is in unstructured notes such as
radiology and pathology reports, making it hard to access
for large-scale research. Granular clinical outcomes research
often requires laborious manual chart review. The automa-
tion of this process requires significant investment, and
algorithm performance varies with report parameters and
automation type [1,2]. Previous attempts to automate this
process have tried natural language processing on prostate
cancer pathology reports, reporting a weighted F1 score and
accuracy as high as 0.97% and 93%, respectively [3].

Large language models (LLMs) represent a new oppor-
tunity for addressing this problem. LLMs are generative
artificial intelligence programs capable of drafting human-like
responses to specific queries. In oncological contexts, LLM
applications can create medical notes, aggregate imaging
findings, extract operative note data, and identify present-
ing symptoms [4-7]. Previous studies analyzing the overall
data extraction capabilities have found accuracies ranging
from 63.9% to 100% in retrieving data elements [5,8-13].
Specifically, several LLM models have also been developed
to extract medical information from text, including early-
stage LLM trained on medical encyclopedias and radiology
datasets to read annotated radiology reports (71.6% accuracy)
and inferring cancer disease response based on computed
tomography reports (89% accuracy) [14,15]. Some of these
groups also implemented or hypothesized implementing
their systems into medical research pipelines for expediting
data extraction [3,8]. Another group applied a customized,
open-source LLM trained on medical data to read magnetic
resonance imaging (MRI) reports with a sensitivity of 96%
and specificity of 99%. In terms of data extraction, generative
pre-trained transformer (GPT)-4 has been shown to extract
hepatocellular carcinoma data from MRI reports with an
overall accuracy of 93.4% [16]. LLMs have also proven to
be flexible and frequently outperform traditional automated
models, suggesting that powerful LLMs might be ready to
support research endeavors via the extraction of unstructured
data [5,8,17]. Implementing LLMs into practical, applicable
tools remains challenging, and some private organizations
have attempted to improve clinical data extraction through
EHR integration [18]. Despite this, most efforts, such as the
American Urological Association Quality Registry, remain
dependent on manual data management, partially due to
difficulty integrating new tools into existing workflows.
While some larger institutions have begun implementing
automated data extraction pipelines, traditional methods of

data extraction require considerable technical expertise and
resources to initiate, making these methods inaccessible for
most institutions.

The University of California, San Francisco (UCSF)
Department of Urology maintains the Urologic Outcomes
Database (UODB) for prostate, bladder, and renal cancers
[19]. The UODB is an SQL-based clinical data research
database that holds structured manually abstracted clinical
data for patients treated at the UCSF, including 7000 patients
with prostate cancer over 20 years. Due to limited manual
abstraction capacity and increasing patient volume, clinical
events and data entry often lag. Previous in-house attempts
to automate this process using traditional natural language
processing solutions proved to be time-consuming to develop
and maintain [1-3,20]. The aim of this study was to demon-
strate a practical use of LLMs in academic clinical research
by describing the successful implementation of a secure,
baseline, institutional version of GPT-4 within the UODB to
quickly and easily extract unstructured data and effectively
reduce manual labor in gathering data from medical reports.
Related Work
Previous studies by our group have utilized UCSF’s Versa, an
internal, secure, Health Insurance Portability and Accounta-
bility Act (HIPAA)-compliant deployment of OpenAI’s GPT
models (OpenAI Inc.) that includes an application program-
ming interface (API) for query automation [17,21]. We
demonstrated that systems based on the Versa GPT-4 API
can accurately extract structured data from real-world clinical
reports. In one study involving 424 prostate MRI reports,
our pipeline, using zero-shot prompting, achieved an overall
median field-level accuracy of 98.1% (IQR 96.3%‐99.2%),
with key elements such as prostate-specific antigen density
(98.3%), extracapsular extension (97.4%), and TNM staging
(98.1%) [21]. In a separate effort with 228 prostate MRI
reports, the approach achieved similarly high concordance
(over 95%) when compared with manual abstraction [17].

These validation efforts serve to confirm the accuracy
of the underlying extraction prompts and Versa GPT-4 API
performance. The focus of the current work, therefore, is
not on additional accuracy testing; rather, we build upon
this foundation to present a modular, scalable implementation
pipeline that operationalizes LLM-driven extraction at scale,
within a secure, clinical-grade environment.
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Methods
Overall Design
This study presents the implementation and performance
evaluation of UODBLLM, a modular LLM-based pipeline
designed for structured data extraction from a wide range
of unstructured clinical reports. For this technical implemen-
tation, the system was evaluated using free-text prostate
MRI radiology reports as the primary use case (Figure 1).
The system was deployed within a secure, HIPAA-compliant
clinical environment using the internal UCSF Versa GPT-4

API, ensuring that protected health information (PHI)
remained confined to institutional systems. UODBLLM was
designed with a flexible architecture to support multiple
language models and API endpoints, enabling adaptability
across varied clinical settings.

Prompts are stored as configurable components in
dedicated database tables, allowing users to dynamically pair
extraction templates with report sets without modifying the
underlying code. This design supports rapid iteration, version
control, and seamless adaptation to evolving information
extraction needs.

Figure 1. System design and data flow of the UODBLLM application. The process begins with an initial connection between the electronic
health record (EHR) and the Urologic Outcomes Database (UODB) for imaging report updates (1). The UODBLLM application is governed by a
configuration file defining its core parameters (2). The application periodically fetches new records from the UODB (3), collects the relevant reports
(4) and component prompts (5), and sends these to the Versa application programming interface (API) for processing (6). The API returns structured
interpretations of the reports (7), which are then written back into the UODB (8). A user, via the UODBLLM interface, can send a data request to the
UODB (9) and receive a data response for review and analysis (10).

Study Population
The study dataset comprised 1800 prostate MRI radiology
reports retrieved from the institutional EHR system. Reports
were selected based on procedural coding and metadata filters
to ensure relevance to downstream urologic data extraction.
Intervention
UODBLLM is a Python-based (version 3.9.6, Python
Software Foundation, worldwide) application designed to
extract structured information from clinical reports using a
modular, API-driven architecture. Source text is retrieved
from the UODB using a parameterized SQL query passed via
a secure Open Database Connectivity connection. Text blocks
are staged and dispatched in configurable batches, controlled
by a modifiable parameter specified in a configuration file or
modifiable via command-line flag.

The pipeline retrieves a version-controlled extensible
markup language (XML)-based prompt template at runtime

using a parameterized SQL query from the UODB. This
template specifies the role, task, JSON response schema,
and a structured sub-prompt with 16 XML elements that
each represent a clinical field of interest (eg, prostate
volume, prostate-specific antigen density, and overall Prostate
Imaging Reporting and Data System score), each with
plain-language extraction instructions (Figure S1 in Multime-
dia Appendix 1). For every report, the program inserts the full
free-text report into the template’s designated placeholder,
producing a complete prompt that is then submitted to the
Versa GPT-4 model. Embedding the report within a constant,
schema-constrained envelope ensures that returned JSON
follows a predictable structure, enabling reliable downstream
parsing and storage.

Each batch is passed to a thin wrapper around the Versa
GPT-4 API. Requests are streamed to the API endpoint;
results are captured, parsed, and validated against the
predefined JSON schema. Error handling includes up to
5 retry attempts per request with exponential back-off (2ⁿ
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seconds, capped at 30 seconds). Failed requests are logged,
and the affected reports are re-queued for later processing.
Element-level completeness is defined as the proportion of
reports for which the pipeline returned a non-null value.

Extracted fields are transmitted back to the database using
a set of parameterized SQL UPDATE statements mapped
to internal column identifiers. A custom statistics tracking
module records token usage, response latency, and process-
ing cost per report by counting model-specific numerical
tokens generated from text via Byte Pair Encoding. System-
wide throughput and error frequency are also recorded. The
pipeline was executed on a 2019 MacBook Pro (Intel Core i9,
2.4 GHz, 64 GB RAM, macOS Ventura 13.2.1). The system’s
computational workload is lightweight and not hardware
dependent, making it executable on a standard consumer
laptop. The source code will be made available to investiga-
tors for non-commercial purposed upon request.

Ethical Considerations
The study was approved by the University of California,
San Francisco Institutional Review Board (IRB #11-05329),
and the requirement for informed consent was waived. The
system was deployed within a secure, HIPAA-compliant
clinical environment using the internal UCSF Versa GPT-4
API, ensuring that PHI remained confined to institutional
systems. All reports were de-identified prior to processing.

Results
Processing Performance and Resource
Utilization
The analysis of system logs demonstrated consistent
performance metrics, with an average processing speed of
8.90 seconds per report across 1800 reports. UODBLLM
maintained 100% completion rates across all test runs, with
batch sizes of 100 reports. Token utilization, representing the
count of model-specific numerical tokens generated from the
input and output text via Byte Pair Encoding (calculated using
the tiktoken library), averaged 2692 tokens per report. Given
the model’s context window capacity relative to typical report
lengths, specific token optimization techniques like input text
chunking were not required for this implementation. This
resulted in an input-to-output ratio of approximately 13:2
(4,196,697 input tokens, 648,723 output tokens), resulting in
an average processing cost of US $0.009 per report. The total
processing run successfully analyzed all 1800 test reports in
4.45 hours, showing sustained performance at scale.
Prior Validation
Although the present study did not re-evaluate extraction
accuracy on this corpus, the underlying extraction logic
and prompt structure have been previously validated in two
independent studies by our group. In one effort involving
424 prostate MRI reports, the system achieved a median
field-level accuracy of 98.1% (IQR 96.3%‐99.2%) for
key clinical variables [21]. A subsequent study with 228
MRI reports demonstrated similarly high extraction fidelity,

with all structured elements exceeding 95% accuracy [17].
These findings confirm the robustness of the prompt design
and model configuration across settings, supporting their
reliability in the context of the current implementation.
Experience
Researchers interact with UODBLLM by selecting the
clinical report category (eg, MRI reports or pathology reports)
through a secure web-based application that integrates with
the UODB and is accessible only through local institu-
tional network connections. UODBLLM displays quantitative
processing metrics for the selected report type, includ-
ing extraction completion timestamps, LLM prompts, and
performance statistics from previous analyses. This longitudi-
nal view enables investigators to evaluate existing structured
data’s temporal relevance and completeness before proceed-
ing with additional processing.

Researchers can use previously extracted structured data
or initiate a new extraction cycle with refined extraction
parameters. When opting for new extraction, investigators
can specify temporal bounds for report inclusion and modify
extraction prompts stored in the database tables. This
parameterization enables the analysis of specific clinical
cohorts while ensuring consistent extraction methodology
across research protocols.

Upon initiating the UODBLLM process, the system
executes batch processing of identified reports, with real-
time logging providing visibility into extraction progress.
Researchers can monitor the system performance through
logs that track processing times, success rates, and any
encountered exceptions. The structured JSON output is
automatically integrated into the UODB, enabling immediate
access for researchers.

Quality assurance is implemented through a review
interface where researchers can perform comparative analysis
of extracted data elements against source reports and any
pre-existing manually abstracted data with the opportunity to
iteratively refine prompts. Successfully processed reports are
flagged in the database, preventing duplicate processing while
maintaining a comprehensive audit trail of all data extraction
operations.

Discussion
Principal Findings and Comparison With
Previous Works
In this study, we developed and validated an automated
LLM-based integration for UODB management that achieved
a 100% completion rate across 1800 clinical documents,
with an average processing time of 8.90 seconds per
report. The UODBLLM demonstrates an implementation
of a PHI-secure, LLM-agnostic system for automated data
extraction from urological outcomes documentation. By
leveraging institutional cloud infrastructure and established
database architecture, we created a scalable solution that
significantly reduces the manual effort traditionally required
for data extraction while maintaining high accuracy rates
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[19]. This advancement represents a crucial step toward
efficient, accurate, and comprehensive research database
management [18].

The integration of generative artificial intelligence in
clinical data management has seen rapid evolution, with
several institutions developing specialized approaches for
extracting structured data from clinical documentation [1,2].
While the validation of a local GPT model showed promis-
ing accuracy in the low 90th percentile for biomedical data
collection, their focus on chromatin expression in cell lines
addressed a more constrained data domain [20]. UODBLLM
demonstrates comparable accuracy rates with the ability for
researcher customization. Recent oncology initiatives using
LLMs for clinical note evaluation have shown potential, but
our approach differs by providing a complete pipeline that not
only extracts data but also integrates directly with existing
database infrastructure [5,6]. The problem of integration from
clinical care to research database is common in clinical trials,
clinical record management, and safety reports, encouraging
other groups to design automated data capture and transfer
pipelines. These pipelines have historically been evaluated as
successful by the variables they extract, efficiency gained,
and interoperability they provide, aligning with our key
performance indicators [22,23]. The pipeline here described
and designed has been estimated to improve data extraction
manual time efficiency by as much as 90% if pulling multiple
variables from hundreds of reports, although this enhance-
ment varies based on report type, variable, and iterations of
prompt refinement.

The technical robustness of our approach is suppor-
ted by key design decisions and validated through com-
prehensive testing. Our choice to leverage a PHI-secure
institutional version of GPT-4 addresses performance and
privacy requirements, crucial considerations for clinical data
management [5]. The system’s integration within the UODB
piggybacks off a validated foundation for data structure and
management [19]. Our validation protocol included process-
ing reports across various batch sizes, achieving consistent
performance and reliable operation at scale. The ability of
the UODBLLM to efficiently process clinical documentation
while maintaining high accuracy suggests the potential for
significant resource optimization in research operations [6].
These efficiency gains could dramatically accelerate research
timelines and expand the scope of feasible clinical studies.

Although this study did not re-assess extraction accuracy,
this was a deliberate design choice. The extraction framework

employed here has already undergone validation in prior
work, with element-level accuracies exceeding 95% across
multiple prostate MRI cohorts [17,21]. In contrast, our current
objective was to evaluate the system-level performance of
a scalable, generalizable implementation pipeline deployed
within a secure clinical environment. Notably, the architec-
ture is model-agnostic and allows for future integration of
various LLMs or prompt schemas. This decoupling of model
validation from pipeline implementation facilitates adaptabil-
ity while building on established, validated components.

The limitations of our approach warrant careful consid-
eration. While UODBLLM performs robustly for current
use cases, the accuracy of LLM-based data extraction still
requires human validation for critical data points, a challenge
noted across multiple studies [4,5,8]. The evolving nature
of clinical research means that prompt engineering must
continually adapt to new data types and research ques-
tions. Additionally, while our pipeline is LLM-agnostic, our
specific performance results were achieved using a PHI-
secure version of GPT-4, and performance may vary with
different models or implementations. While this implemen-
tation focused on prostate MRI reports, the UODBLLM
pipeline was designed for broad applicability across diverse
clinical documents. This generalizability is enabled by its
modular, model-agnostic architecture and a flexible prompt-
ing system where extraction templates are stored as config-
urable components in the database. The design allows the
pipeline to be readily adapted for other unstructured texts,
such as pathology results or operative notes, which aligns
with plans to expand its use to other urologic cancers.
Conclusions
Our study demonstrates the feasibility and effectiveness of
integrating LLM-based automation into UODB management.
Our system’s perfect completion rate, rapid processing speed,
and cost-effective operation provides a robust framework
for modernizing clinical research data management. Looking
ahead, we aim to develop protocols for using LLMs to
validate existing data entries and expanding to renal and
bladder cancer radiology and pathology texts. The potential
benefits of increased research efficiency and data quality
suggest that LLM-based approaches will play an increasingly
important role in clinical research infrastructure [4]. These
advances may ultimately accelerate the pace of discovery in
clinical oncology and serve as a model for other medical
specialties.

Conflicts of Interest
None declared.
Multimedia Appendix 1
Example of the UODBLLM Data Extraction Workflow. (A) The original unstructured text from a sample magnetic resonance
imaging report. (B) The corresponding extensible markup language-structured prompt containing instructions and specific data
extraction queries sent to the large language model (LLM). (C) The structured JSON data returned by the LLM based on the
prompt and report.
[DOCX File (Microsoft Word File), 10 KB-Multimedia Appendix 1]
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