JMIR Bioinformatics and Biotechnology

Methods, devices, web-based platforms, open data and open software tools for big data analytics, understanding biological/medical data, and information retrieval in biology and medicine.


JMIR Bioinformatics and Biotechnology (JBB) is a new open access journal from JMIR Publications, the leading publisher for technology in health and medicine. JBB is a new sister journal of JMIR, the leading journal in medicine, ehealth and health services research in the Internet age. 

We are currently seeking academic leaders in this field to apply as acquistion editors or section editors for Editorial Board positions. Among the EB, we will select an editor-in-chief

Prequisites include a scholarly track-record, demonstrated by being a first author on peer-reviewed publications and having served as peer-reviewer (preferably this should include JMIR journals. Applicants can self-assign themselves to papers to be peer-reviewed at JMIR Preprints). Please include a list of publications as well as journals you reviewed for.

To apply, please read these instructions and submit the application form including a brief description of your expertise and interests. 

Recent Articles

Article Thumbnail
Original Article

COVID-19, caused by the novel SARS-CoV-2, is considered the most threatening respiratory infection in the world, with over 40 million people infected and over 0.934 million related deaths reported worldwide. It is speculated that epidemiological and clinical features of COVID-19 may differ across countries or continents. Genomic comparison of 48,635 SARS-CoV-2 genomes has shown that the average number of mutations per sample was 7.23, and most SARS-CoV-2 strains belong to one of 3 clades characterized by geographic and genomic specificity: Europe, Asia, and North America.

|
Article Thumbnail
Original Article

The RNA genome of the emerging novel coronavirus is rapidly mutating, and its human-to-human transmission rate is increasing. Hence, temporal dissection of their evolutionary dynamics, the nature of variations among different strains, and understanding the single nucleotide polymorphisms in the endemic settings are crucial. Delineating the heterogeneous genomic constellations of this novel virus will help us understand its complex behavior in a particular geographical region.

|
Article Thumbnail
Tutorial

In the field of drug discovery, many methods of molecular modeling have been employed to study complex biological and chemical systems. Experimental strategies are integrated with computational approaches for the identification, characterization, and development of novel drugs and compounds. In modern drug designing, molecular docking is an approach that explores the confirmation of a ligand within the binding site of a macromolecule. To date, many software and tools for docking have been employed. AutoDock Vina (in UCSF [University of California, San Francisco] Chimera) is one of the computationally fastest and most accurate software employed in docking. In this paper, a sequential demonstration of molecular docking of the ligand fisetin with the target protein Akt has been provided, using AutoDock Vina in UCSF Chimera 1.12. The first step involves target protein ID retrieval from the protein database, the second step involves visualization of the protein structure in UCSF Chimera, the third step involves preparation of the target protein for docking, the fourth step involves preparation of the ligand for docking, the fifth step involves docking of the ligand and the target protein as Mol.2 files in Chimera by using AutoDock Vina, and the final step involves interpretation and analysis of the docking results. By following the guidelines and steps outlined in this paper, researchers with no previous background in bioinformatics research can perform computational docking in an easier and more user-friendly manner.

|
Article Thumbnail
Original Article

The novel coronavirus disease (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to the ongoing 2019-2020 pandemic. SARS-CoV-2 is a positive-sense single-stranded RNA coronavirus. Effective countermeasures against SARS-CoV-2 infection require the design and development of specific and effective vaccine candidates.

|

Preprints Open for Peer-Review